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Abstract: This paper introduce a fractional-fractal i-Fueter operator in the quaternionic context
inspired in the concepts of proportional fractional derivative and Hausdorff derivative of a function
with respect to a fractal measure. Moreover, we establish the corresponding Stokes and Borel-Pompeiu
formulas associated to this generalized fractional-fractal i-Fueter operator.

Keywords: quaternionic analysis; fractal-fractional derivatives; Borel-Pompeiu type formula; cauchy
type formula

0. Introduction

The fractal derivative or Hausdorff derivative, is a relatively new concept of differentiation
that extends Leibniz’s derivative for discontinuous fractal media. In the literature, there are various
definitions of this new concept. For instance, in 2006 Chen introduced the concept of the Hausdorff
derivative of a function with respect to a fractal measure 7, where 7 is the order of the fractal derivative.
A treatment of a more general case goes back to the work of Jeffery in 1958.

Fractal calculus is extremely effective in branches such as fluid mechanics where hierarchical or
porous media, turbulence or aquifers present fractal properties, which do not necessarily follow a
Euclidean geometry.

Fractional calculus deals with the generalization of the concepts of differentiation and integration
of non-integer orders. This generalization is not merely a purely mathematical curiosity, but it
has demonstrated its application in various disciplines such as physics, biology, engineering, and
economics.

Unlike fractional calculus, fractal calculus maintains the chain rule in a very direct way, which
relates the fractal derivative to the classical derivative.

The fractal-fractional derivative (a new class of fractional derivative, which has many applications
in real world problems) is a mathematical concept that combines two different ideas: fractals and
fractional derivatives. Fractals are complex geometric patterns that repeat at different scales, while
fractional derivatives are a generalization of ordinary derivatives that allow for non-integer orders.
The combination of fractal theory and fractional calculus gave rise to new concepts of differentiation
and integration.

A considerable literature has grown up around new fractal, fractional and fractal-fractional
derivatives. For references connected with the subject being considered in this work we refer the
reader to [1-12].

Quaternionic analysis (the most natural and close generalization of complex analysis) concerns
the connection between analysis (even topology / geometry) in R* and the algebraic structure of
quaternions H. At the heart of this function theory lies the notion of ¢ —hyperholomorphic functions
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defined on domains in R* with values in H, i.e., null solutions of the so-called —Fueter operator (to be
defined later) in which the standard basis of R* is replaced by a structural set ¢ = {1, 41,2, 3} € H*.

In the last years, there is an increasing interest in finding a framework for a fractal or fractional
counterpart of quaternionic analysis, see [13-19] and the references given there.

This paper introduce a fractional-fractal ¢-Fueter operator in the quaternionic context inspired in
the concepts of proportional fractional derivative and Hausdorff derivative of a function with respect
to a fractal measure. Moreover, we establish the corresponding Stokes and Borel-Pompeiu formulas
associated to this generalized fractional-fractal y-Fueter operator.

The outline of this paper is summarized as follows. In Section 2 we give a brief exposition of
the generalized fractal-fractional derivative considered. Section 3 presents some preliminaries on
quaternionic analysis. In Section 4 we develop the rudiments of a function theory induced by a
quaternionic B-proportional fractal Fueter operator and finally in Section 5 we will be concerned with
a quaternionic B-proportional fractal Fueter operator with truncated exponential functions as fractals
measure.

1. Generalized Fractal-Fractional Derivative

Definition 1. The fractal derivative of a function f, defined on an interval I, with respect to a fractal measure
v(n,t) is given by

Aft) . f()—f()
arr - wstv(nt) —v(n, 1)’

n > 0.

If dVdJ; ,(7t> exists for all t € I then f is real fractal differentiable on I with order 1.

d
Some well-known cases. If v(h,t) = t for all t € I then —— is the derivative operator. In

e~ % /
addition, if v(h,t) = h(t) forall t € I where I/(t) > 0 forall t € I then Vd];(]t) = i/gg forall f € C'(I)
dyf(t)

On the other hand, if v(,t) = #! for all t € I then reduces to the Hausdorff derivative.

dati
Another useful fractal measure is v(1,t) = ¢! forallt € I and & € (0,1].

We consider an well-known extension of the previous fractal derivative.

Definition 2. Given § € [0, 1] we present the B-fractal derivative of a function f, defined on an interval I, with
respect to a fractal measure v(1,t):

WF) i L0 = ()P

atn =t v(n,t) —v(y,T) >0

In order to make our description of the concept of fractal-fractional derivatives to be used precise,
we introduce the notion of fractional proportional derivative, following [20].

Definition 3. Let xo, x1 : [0,1] x I be continuous functions such that

lim x1(o,t) =1, lim xo(o,t) =0, lim x1(c,t) =0, lim xo(c,t) = 1.
c—0t oc—0t+ c—1- oc—1-

The proportional derivative of f € C1(I) of order o € [0,1] is given by

D7f(t) = xalo, ) f(t) + xo(o, )f'(t), VtelL

A combination of Definitions 2 and 3 yields.
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Definition 4. Let § € [0,1], the proportional B-fractal derivative of f : I — R with respect to v(1, t) and o is
defined to be

o,B i
dvdt]:l(t) (t) = x1(o, t)f(t) +X0(‘T’t)dvd];$t>'

if it exists forall t € I.

Remark 1. Given a € (0,1] and k € N we will consider the k-truncated exponential function defined as follows

k )i
e(t), =) *)
i=0

i!
forall t € R. Fork = 1 we have e(t*); = 1+ t* and for k = oo we have e(t*) oo = e'".
Remark 2. Important particular case, when the proportional and fractal measure in Definition 4 are given by
xi(ot) =1—0, xolo,t) =0, v(kt)=e(t")

forall o € [0,1] and t € I allows to introduce some cases of generalized fractal-fractional derivative to consider.
For f € CY(I) we have

4o o (f‘B),(t)
FD‘ka(t) = (1 - U)f(t) +o e(t“);( /

forall t € 1. The particular cases k = 1, co reduces to

7P By

T f0 = =00+ LD
da,ﬁ BY/
TS0 = =)+ L,

where clearly the conditions « € (0,1] and t > 0 are necessary.
Addressing the issue o = « requires that the case & = 0 should be omitted.

PP ) = (- + LG,

dty 1 tr—1

7 ity = (1-wf + Y

Aty co pa—lett

The k-truncated exponential function as fractal measure provides the generalized fractal-fractional drivative
in much generality

dvb (P (1)
E,kf(t) = (=) f(H) + FTo(m)

2. Preliminaries on Quaternionic Analysis

We begin by recalling some background and fixing notation that will be used throughout the
entire document. For more details, we refer the interested reader to [21-23].

A real quaternion is an element of the form x = xg + xje1 + x2¢2 + x3e3, where xg, x1, X2, x3 € R
and the imaginary units ey, e, e3 satisfy:

2
=e3 = —1,e1ep = —ene1] = e3,e0e3 = —ezep = €1,€36] = —€1€3 = €3.

d0i:10.20944/preprints202502.2042.v1
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Quaternions form a skew-field denoted by H. The set {1, e1, e, e3} is the standard basis of H.

The vector part of x € H is by definition, x := xje1 + x2ep + x3e3 while its real part is xg := xp.
The quaternionic conjugation of x, denoted by * is defined by ¥ =: xy — x and norm the x € H is given
by

x| := \/x% +x3 + 23 + 2% = Vax = Vix.

The quaternionic scalar product of x,y € H is given by

—_
—_

(x,y) == 5(9@4‘]73‘) = E(xy%—yi).

A set of quaternions 1 = {1po, 1, 2, P } is called structural set if (¢, Ps) = Jy, fork,s =0,1,2,3
and any quaternion x can be rewritten as xy := Zﬁ:o XxPr, where x;. € R for all k. Notion of structural
sets is due to Néno [24,25].

Given g, x € H we follow the notation used in [21] to write

3
@,x)p =) axxe
k=0

where gy, x; € R for all k.
Let 1 an structural set. From now on, we will use the mapping

3
Z XY — (x0, x1, X2, X3). @)
k=0
in essential way.

Given a domain Q C H = R* and a function f : Q — H. Then f is written as: f = 22:0 feWx,
where fi, k = 0,1,2,3, are R-valued functions. Properties of f are due to properties of all components
fx such as continuity, differentiability, integrability and so on. For example, C!(Q), H) denotes the set
of continuously differentiable H-valued functions defined in ().

The left- and the right-i-Fueter operators are given by ¥D[f] := Y3_, ¢4drf and ¥D,[f] =

Y3 Ofy, forall f € C'(Q, H), respectively, where oy f = % for all k.
k

Let 0Q) be a 3—dimensional smooth surface. Then recall the Borel-Pompieu and differential and
integral versions of Stokes’ formulas

— X (Tl’b T T(Tl’b T—X
| (Ko(x =20t £(2) + g(0)ot Ky (v = )

— [ (Ke(y = x)#DIf1() +*Drlg] 1)Ky (y = x))dy

_) f)+s(x), xeq,
_{ 0, x € H\ G, @
forall f,g € C1(Q), H).
d(go¥ f) =(g " DIf] + YD/ [g]f)dx, 3)
/m gotf = /Q (8"DLf + ¥ Dr[glf)dx, 4)

for all f,¢ € C'(Q,H). Here d represents the exterior differentiation operator, dx is the differential
form of the 4-dimensional volume in R* and

3

of = —sgny (Z (—1)kl/1kd3?k>

k=0
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is the quaternionic differential form of the 3-dimensional volume in R* according to ¢, where dt; =
dxog A dx1 A dxp A dxz omitting factor dxg. In addition, sgny is 1, or —1, if ¢ and ¢y := {1,1,j,k}
have the same orientation, or not, respectively. Note that, |(7,lf | = dS; is the differential form of the
3-dimensional volume in R* and write oy = (T;IJ st Let us recall that the -Cauchy Kernel is given by
1 Ty — Xy

Ky(t—%) = 0——""7.
IIJ(T X) 277,'2 |T¢ — x¢|4

3. A Function Theory Generated by a B-Proportional Fractal Fueter Operator

Let us extend Definition 4 to a quaternionic differential operator associate to an arbitrary structural
set .

Definition 5. Let QO C H a domain. Fix B = (Bo,B1,B2,B3) € [0,1]* and v = (vg,v1,v2,v3) where
Vi (4k, xx) is a fractal measure for k = 0,1, 2,3 according to Definition 1. Denote x1 = (X0,1, X1,1, X2,1, X3,1)-

X0 = (X0,0, X1,0, X2,0, X3,0) and o = (00, 01,02,03) € [0, 1]* where Xi1 (% xx) and Xy o(0, xi) and are given
by Definition 3 on coordinate xj. for k=0,1,23.

Let f : QO — H such that a’/(” fg x) exists forall x € Q and all n = 0,1,2,3. Then, the quaternionic
Xn

y-proportional B-fractal derivative of f with respect to v and o, is given by

o7 B
IPD‘TﬁU i g S S Vn f(x)

n

n=0
3 aﬁn X
N nZO o <Xn,1 (0’,1, x”)f(x) + Xn,0 (Un/ xn) a?lx{;g’?”) )
3 N
n menlp (an O ) f (¥) +Xn,0(0'n/xn)£;63{:1n)(’7”)>.
Proposition 1. Given f € C'(Q), H) as above let us assume that
B ﬁn
Bn o Xn a fm( ) ﬁn /xn a
A () () 2= [ e AL (f 2 Leful)

exist for n,m = 0,1,2,3. Under conditions xo(0u,xn) # 0 and Ag:(fm)(x) # 0 forall x =
(x0,x1,%2,%3) € Qand all m,n = 0,1,2,3 we have

3
YD o 7P [f](x) =PDYP A1) + EPPIA () + Y PutpmLn £ ()AL (fn) (2),

n=0=m
forall x € Q), where
3
EFA = Y e [ (ol ) ()],
n=0=k "
n#k

3
Z (Xk0(o%, xx) )/\vk (f)(x),
d

n,00n, Xn
Lym[f](x) = (%)ehw(x)/

*n Xn,l(o'nrtn) fm

dt,
0 Xno(@u tn) AB"(£,)

By m(x) =
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forn,m € {0,1,2,3}.

Proof. To simplify notation consider A, = /\5:: foralln = 0,1, 2,3. From direct computations we have
that

o (A fr) (3)) =P

X (@, Xn)  fu 30 fn ()
X0 ) A (for) IV F a(xm]

ehn,m(x) vn -
RTED [""'“””' b no () aa’&fnﬁi)]
el P (x)
_Xn,O(‘Tn/xn) A(xp)’
nﬁn
fm(x) n0(0n, Xn) 0 wm
a(xn)’?n =2 e%nifn(X) axn(h A”(fm)( ))
Therefore,
3
DI = B BT (e ) )
3 3
= 7; lpnl/’ma (Xn,0(0n, Xn) Au(fn)(x))) — 7; Wnm L m [F1 () An (fin) (x)

3 3
e tnoon%0) 1 gnnfn)() = 2 Ll )2

|
Mw

3
Il
3
Il
=}
Il
3

3 3

= 3 g on(En (O]~ 2 gumLumlI A0 ) (9

3 3 3
= Z Ebn%[‘;(x))‘n(f)(x)] - E Ipng[xn/\n(f) (x)] = Z Ynm L[] () An (fn) (%),
n=0 n n=0 n n=0=m
3 3
whereg(x) = Y xeo(op,xp) and ke = Y xeo(on, x0).
=0 (=0

L#n
Then

o,p 3 9 3 3 o}
IDy(f](x) = Zoll’na [G(x) (ICZO/\k(f)(X)ﬂ D DR el (1€ OZ P H1CO]

n

n=0=k
n#£k
3 3 d
- Yny - lz KA (f Y Pz [kcAe(f) (%))
n=0 Xn | k=0 n=0=k n
n#k

d0i:10.20944/preprints202502.2042.v1
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As a consequence we have that

3 3
Z anaxn l (x) (;}M(f)(@) - Z KkAk(f)(x)]
3
LD DR e [Kk)‘k(f)( ) — 6 () A(f)(x Z Yntpm L [f1(2) A (fin) (%),

n=0=k n=0=m

n#k

ie.,

3
YDIPf)(x lenax Y (X0 (0 ) Ak () (%)

k=0
3
Y e Geelo A ()
n=0=k !
n#k
3
- 7; YnthmLnm [f1(X)An (fm) (%)
or equivalently
3
DU () =D () - 1 svn%[(xk,o(ak, 1)) Ak (F) (%))
n=0=k
n#k
3
- —02— Ynm L m [f] () An (fin) (x)-

O

Notation Ly, ;; and hy, for all n,m = 0,1, 2,3, can be improved but we have decided to keep it at
this level to make easier to write and read the following computations.

Definition 6. For § = (5,01,62,83) € [0,1]%, and u = (po, w1, pi2, t3) where py(Cx, Xx) is a fractal measure
for k =0,1,2,3 according to Definition 1. Denote sc1 = (3201, 311, %21, #31), 20 = (30,0, 21,0, #2,0, 43,0)
and p = (po,p1,p2,03) € [0,1]* where 31 (px, xx) and »q.o(ox, xx) and are given by Definition 3 for
k=0,1,23.

d
Given g : Q) — H such that ””g< )

there exists for all x € Q and alln = 0,1, 2,3. The quaternionic

3 ()
right y-proportional d-fractal derivative of g with respect to y and p, is given by
3 aPn On (x)
¢Df,5 X) = 8
r”l[g]( ) 1;] a(xn)C” ¢n
> o gm (x)
My, , X + 2y, , X -t .
n_;mlpmlpn< 1(0n, Xn)gm(x) 1,0(Ons Xn) a(xn)gn

Remark 3. Consider g : Q) — H such that

o g (%) o 0 (¥
A (gm) (x) = /0 g(tn)én dt, A% (g 2 / Opn8m(X) o Cn
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there exist for n,m = 0,1,2,3. If 3¢, 0(pn, Xn) # 0 and /\f{’ (gm)(x) # 0 forall x = (xg,x1,x2,x3) € Qand

n

alln = 0,1,2,3, then repeating several computations of the previous proof we can see that

3

YDro e [51x) = DRI + SRR+ L g TunSIAL (), )
for all x € Q), where
3

S = Y o [Ganlor )AL () ()] v

n=0=k

n#k

3
() = L Crolow 5N () (),

=0
Tunle0) =g, (2 e

Y 301 (Ontn)  Sm
Ly (x) = n1 dt,
nm( ) 0 %n,O(Pnrtn) /\i’;(gm)

forn,m e {0,1,2,3}.

Assuming hypothesis and notations of Proposition 1 and Remark 3 let us present some conse-
quences of quatertionic Borel-Pompeiu and Stokes formulas.

Proposition 2. Let Q) C H be a domain such that 0Q) is a 3-dimensional smooth surface. If 25"3 (], Sﬁ’(s gl €
CY(Q, H) then

| Ko(r = x)et 7P 1£1(0) + € 5] (Dot Ky (v~ )

— [ (Kew =D A1) Y DERTR ) Ky = ) )y

3
- /QKlp(y—x) (53’5 fly) + Y, anleLn,m[f](y)?\ff(fm)(y)>dy

n=0=m

3
- /Q <5£f[g](y)+ Y zpmlpnTn,m[g](y)AiZ(gm)(w)Kw(J/—x>d3/

0
| 2P+ 208l (x), xeQ,
= — ©)
0, xeH\Q,

and

| il eif i = [ (f QDAL + Y DElgl el 1] ) dr+

3
+/Q£ﬁ’5[g] (53’ﬁ[f]+ Z IPnlmen,m[fMg:(fm))dx

n=0=m

+/ Eflg) + i Tom 81N, (gn) | £77(£)d @)
a rul8 ¢mlpn nm|8 Hn 8m v f X.
—=0=

Proof. The formulas follow by application of quaternionic Borel-Pompieu and Stokes formula, func-
tions £7° [f], Sﬁ’5 [¢] and the usage of identities given in Proposition 1 and Remark 3. [

Remark 4. In case in which 25”5 and £§’5 are invertible operators we can improve formula (6) to obtain the
quaternionc values of f and g. In addition, if f € Ker(lpD]‘,T’!3 Jand g € I(er(V’Df,’;,S ) then
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| Ke(x =)ot 7P 111(0) + 2 g (D)o Ky (7 — )

3
— [ Kolr =) (s:f'ﬁmww D wnmn,m[fuymﬁs(fm><y>>dy

n=0=m

3
- Q<5££[8](y)+ ) ¢m¢nTn,m[g](y)}\iz’fq(gm)(y)>Ktlf(yx)dy

and

3
/m sf;‘s[gw;”szfﬁ[f] = [ k] (63’%‘] £ 0 PubulumlfIAL (fm)>dx

4. Quaternionic S-Proportional Fractal Fueter Operator with Truncated
Exponential Fractal Measure

From now on, partial differential operators given by Remarks 1 and 2 are considered, and let
k:= (k(]r klrkZI k3) € N4/ g = (0-01 01,02, 0-3)/ ﬁ = (,BO/ ,Blr ;BZ/ ,B?)) € [Or 1]4/ = (0‘0/ x1,%2, 0‘3) S (Or 1]
and forn =0,1,2,3.

Let O C H be a domain and f € C!(Q,R). We will use the proportional f,-fractal partial

derivatives "
afrn
aU'nrﬁnf 1 axn (x)
%, (x) == (1 —on)f(x) + U”iae(xﬁ")kn ,
ax;,

forall x = Yo _o¢x, € Q.

Definition 7. Let () C H be a domain. Given f = 22:0 Wofe € CHQ,H), where fo, f1, fa, f3 are real valued
functions. Define

(rﬁ aa"ﬁ"fﬁ
("D () : 2 g ) ®)
3 af/ X
= L g | - e)file) + o |, ©)
n=0=¢ Ee(.’x%”)k"

H." fﬂf J(x) :/ "l <de(xﬁ")kn)fg(x)1f5"dxn (10)

o dx,
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and to simplify the notation in the proof of the next statement use hy, ;(x) = HZZ,E: (fo)(x) foralln, ¢ =0,1,2,3.
In addition,

] O M
T fe)(x) = — ) fy (x)Pr,
" e”'f(x)d—xne(xﬁ")kn
[ATveLs > d 9 18
WEAW = L b P,
{=0=mn d_xge(x/)k"
{#n
3
where IP1[f](x) = ) ofe(x)Pr forall x € Qand n, £ =0,1,2,3.
(=0
Proposition 3. Given f = Y3_, ¢fy € C'(Q,H). Then
3 lof
DIy 1P| )
. 14
(=0 d_xge(x/)kf
3
=(PDUAE) + L el T () + WA ), an
n=0=/
forall x € Q.
Proof.
_ .
0 B0 (2n) Bn\ — 1_0}1 d Xn 1-Bn B _afé Ty, 0(x)
G (P fuPr) = | =2 ey, ) (Fo )P () + G ()| e
T ()
dxy L on (x) pt
= (1 =) fe(x) +on— —e"mt ——e (X" ),/
(i), | T
dx, ~ "%
Q7 Pn Tn d
——fu(x) : s (O fi(x)Pr)
x"‘n;kn ehnlg(x) 6( an) n
dx,, K
and
o, 3 9Un B
DL = Y s ()
n=0 &n,Kn
3 T O ( ni(X) £, ()P
= 2 l)bnl:bf d ) (6 wt fg(X) n).
n=0=/( e né(x)_e( z”)kn Xn
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The identities
0 1o 0 0
aon | T O = e | e
" Ee(x%")kn e "’K(X)Ef?(xn")k
P} O 0y d
== et £, (x)Pr 4 y a_( hn[(x)fé(x)ﬁn)
Xn ehﬂ,f(x) e(xzn)kn e n,((x) e(xﬁn )kn Xn
Xn Xn
and
Tn O ( Jnsx) £, ()P
- P GO ALY
et e(xn" )k,
n
o | T | - 5 7 el fy ()
Xn —C(Xﬁ" )kn Xn By o(x) —e(xﬁ” )kn
dxy, n
0 0
== T fy(x)Pr | = TP ] () ()
axn ie(xan) nMKn
dxn n Jky
imply that
P 0’,/5 o 3 a On ,Bn U'n,ﬁn
("D H)(x) = ) $uthy s | T f | = Tk fel (x)
n=0=/ dxn E(XZn )kn
3 3
d 0; P
= L Wty |y f0P | = L e T ()
n=0=/ n E ( n")kn n=0=/

3 d oy 3 3 .y
=Y e | Y P | = Y g T A ()

0 O%n = p(xm)y, £=0 n=0=(

3 3
P L TP B S AT

d
n=0 Te(xﬁ” )kn n=0=/



https://doi.org/10.20944/preprints202502.2042.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 February 2025

12 of 21

Therefore,

3
a 0
"D\ — A

3 3
0PN+ L TP 0 Y T (),

n=0=/

O

Remark 5. Denote v = (vo,v1,v2,03) € N*, p = (0o, 01,02,03), § = (0,01,62,83) € (0,1]*, v =
(Y0, 71, 72,73) € (0, 1]4 and for n = 0,1,2,3. We will use the the proportional 5,-fractal partial derivative

Pnzén
J . Recall that if g € C1(Q, R) then

ax'ankn
9g°n
1 g o2
ax"/n/kn Y pr3Lx o ae(x’nyn)kn '
9x;,

forall x =Y3_,px, € Q.

Ifg= Z%:o Pege € CHQ, H), where g0, 81, 82, g3 are real valued functions. Define the right version of
the operator given by (8) as follows:

apnr‘sn
D) () = Y w3 (x) ¢,

s Swpp—1(d . B
H gl (x) o= [ P (el )01,

U'nr,Bn

and use j, (x) = H,";"(g¢)(x) foralln, ¢ = 0,1,2,3. Denote

1O 0 i "
Shromalgel () =5 | ——* el () g, ()%,
Xn e]nf(x)ie(xzn)mn

n
3
0 )
G D e e A [OL
{4
t=0=n gl
{#n

From similar computations to presented in the previous proof we can obtain the right version of (11):

3

D, 2%1&[81 (x)

— Ye
/=0 Ee(xff)mz

3
=Dy ug) () + Y S (56 () + P VEmIS] (%), (12)
l

n=0=

forall x € Q)

d0i:10.20944/preprints202502.2042.v1
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Corollary 1. Let O3 C H be a domain such that 0Q) is a 3-dimensional smooth surface. In agreement with
notation in Definition 7 and Remark 5 we have:

1. Ifp=(1,1,1,1) then operators given in Definition 7 are represented as follows:

: I ()
DN = L e | (1= ) folx) + o — 20— |,

w0t e,

() = I [)(6) =7 e, — 1,

T [fl(x) =

where

forall x € Q.
Another important cases are the following:

(a) Ifp=(1,1,1,1)and k = (1,1,1,1) then

I ()
B - 3 axn
ODYEAE = L pute| 1= oful) 40 2 |,

n=0=/ &nXp

() = HO ) () =Lyt
]
T =5 (eh,,m

I'f] =f

forall x € Q) and (11) becomes at
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=0 XpX,
where s
d On n
A — = n(X)/
) r;)lpn 0xp (eh"(x)zx x“"_1>e
forall x € Q.
(b) IfB=(1,1,1,1) and k = (c0, 00,00, 00) then
9f
o,B 3 axn( )
(D)) =Y utpe| (1 =) fo(x) + on—"5— |,
’ n=0=/{ KXy etn

() = HE LA (1) == [ —1],

I'f] =f
WEAW = Y b (),
(—0=pn xS € n
{#n
forall x € Q) and (11) becomes at
3
Iy ] £ ) = DIENE) + A F(x) + WL I ),
0 apx, Lex!
where X
_ 9 T ha(x)
B n;olpnaxn (ehn( *) g, x%n Lo )e ’
forall x € Q.

2. Ifé6=(1,1,1,1) then the operators given in Remark 5 are represented by

3 9Pnl
(D) () = Y a3 (x)pn,
n=0=/{ ax% My
: on,1 p" -1 Tn
jn(x) = H. ko [ge](x) =—[e(xi" )m, — 1],
e On
st _9 P jul)
Yn, My [g[](X) _ax ( ) d ” e gf(x)r
n jin () 2 n
e dxne<x" Vm,,
3
J
Wl = Y P T ey
(= 0—n elx] Y, O
=v=r dx, ¢ me


https://doi.org/10.20944/preprints202502.2042.v1

doi:10.20944/preprints202502.2042.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 February 2025

15 of 21
and identity (12) is
3
D | Y g | (x) = (PDES8) (x) + g(x)B(x) + ¥ V8] (x),
=0 d_xge(xzz)mi
where
Bx) = . o o)y
=0 axn ejn(x) d e(x’)/”) nrs
dxn n my
forall x € Q.
(@) Ifé6 = (1,1,1,1) then the operators given in Remark 5 are represented by
P : gy
( Dr,’y,mg)(x) = Z wéax (x)¥n,
n=0=¢( Y Mn
On, _p” -1 n
ju(x) =H” kn[ o](x) _p—n[e(x" Yy — 1],
n,1 d j
Shrmalgel(x) =5— | —— e g, (x),
n| ein(x) e(xzn)mn
n
3
0 d
W= Yy o — S8
{=0=mn d—xf(x;”)mg
L#n
and identity (12) is
3
D, | Y ——P—g | (x) = (YDE5g) (x) + 8(x)B(x) + PV [g] (x),
(=0 _e( W)m
dx, Yo Jmy
where
Bx) = ) - o oy
=0 an ejn(x) ie(x')/n) "
dx, ="/
forall x € Q.
(b) Ifé6=(1,1,1,1) and m = (1,1,1,1) then the operators given in Remark 5 are represented by
3 l
(wDr'ymg Z l/)f 0 (x)ll)nr
=0= Yn, 1

n(x) = HE™, [g6] (x) = o

n

2 .
Pn Pn _ n(x)
S [gé]( ) <€]"( ) Yn— l>e] g gf(x)l

9 Y
3
0 %)
Vmlsl(x) = gy
(=0=n "% "

{#n
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and identity (12) is

3
D, [Z Pj“g] () = (*DES ug) (x) + g(x)B(x) + Y Vi[5 (x),

where

3
B =) (p—nw>ej"(")¢n,

n=0 X ej"(x)'Ynxn

forall x € Q.
(c) If6 =(1,1,1,1) and m = (o0, 00,00, c0) then the operators given in Remark 5 are represented by

3 1
0 oPns
(D) = L 95— (),
n=0=/¢ Tn,
. ~ rgpnld _pn —1 xZn _
o) = Hi lge) () =F = (e 1],
Pn,1 :i On Jn ()
S'Yn,OO [gg](X) axn (efn(")'ynx;f”_lexzn )6‘ gf(x)r
0.6 : Pe J
gl = ) T 5y S ()P
{=0=n Yex,o e 4 n
L#n
and identity (12) is
3
6 6
YD | Y Pl g (1) = (VDESg) () + 2(0)B(x) + Y Vi8] (x),
(=0 ypx," e

where

forall x € Q.
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Proposition 4. Let () C H be a domain such that Q) is a 3-dimensional smooth surface. In agreement with
notation in Definition 7 and Remark 5 let f = 2220 Yofe, §= Z?:o Wege € CH(Q,H), where fy, g, are real
valued functions. Then

| Ke(x=x)ot (i d‘”rﬁzmm)

=0 #=e(7 )k,

3
+/m<2d T I’”[8](T)>U§’)Kw(f—x)

(=0 rqe(TZ Jmg
— [ [Kelr =) DEER) () + (VD) ) Ky — )|y

*/ Ky(y —x l Yo pateT, f}(y)+"’WZf[f](y)]dy

n=0=/

3
L S 8 )+ PVERISI ()| Ky (v — )y

T . (13)

In addition,

+/Qg<x>[
“Ja

Proof. It is a direct consequence of Definition 7 and Remark 5 using functions

3

n=0=/

PupeTo e L) (x) + YW, L[] (X)] dx

Sﬁ'; o (80 () + PV Ig) (x)]f(x)dx (14)

3

Z N 1P [f](x) and Z I°[¢](x) and identities (11) and (12) in formulas (2)
=0 Ee(xz) chZ ( zk)mz

and (3). D

Remark 6. In formulas (13) and (14), the operators ‘/’DP b and ‘/’Dp7 m reflect the phenomenon of duality in
quaternionic analysis due to the non-commutativity of quatermomc algebra.

Corollary 2. Let QO C H be a domain such that 0Q) is a 3-dimensional smooth surface. In agreement with
notation in Definition 7 and Remark 5 let f = 22:0 Yofe, g§= Z?:o Pegr € CH(Q), H), where fe, Qe are real
valued functions. Suppose that f € Ker(‘/’DZ'f )and g € Ker(‘l’D’,i’,irm). Then
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3

| Kex=net | ¥ 1P [)(r)
” 20 e(xy,

d Ty

3
| Bt 10 [of (e -

= Ve
dTg (

T )mz
— [ Kyly—x [ Y T fil () + W 5m<y>]dy

n=0=/
A

s 4 3 0¢
Y L Pf](x)+ Y 1P [g](x), xeQ,

Ky(y — x)dy

3
Y Zwsfi:: o 180 () + VIS ()
n=0=

0, x e H\Q

and

5 e 5o et
3
- Qg(x)[ Y T ) + WL )]dx
n=0=/{

3
Z PeShrn (90) (X)u + VR[] (x)] f(x)dx

n=0=/(

Corollary 3. Let QO C H be a domain such that 0Q) is a 3-dimensional smooth surface. In agreement with
notation in Definition 7 and Remark 5let f = Yo_o¥ofe, § = Yo_o$ege € CH(Q,H), where fy, gy are
real valued functions. Suppose that f & Ker(V’DZf) and g € Ker(‘l’Df,’,i,m). For fix p = (1,1,1,1) and
6 =1(1,1,1,1) we have:

1. Ifk=(1,1,1,1)and m = (1,1,1,1), then

3 o 3
AQK¢<r—x>a$<2 f[_l)f<r>+ mgm(z = 1) ¥ Ky( — )

(=0 a4T," 07Ty

/ Ky(y —x l l/)an”Z,’ll[fe](y)Jr"’W,ff [f](y)]dy

Ky (y — x)dy

3
Y St () u + VIS ()

3
0,
flx) ) KfolJrg(x)Z pfrw xeQ,
0, x € H\Q
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and

3 o[ & o0
/aﬂg(x) (ZZO ,wxzé1>‘7x (EZ Ml)f(x)
= [ sx >[

s

where operators T‘T" 0 ‘/’WZ,E , Sp” "y and ‘/’V$ m are represented in Corollary 1.

3
Z Yutpe T Lf2l () + WL 1] (x)] dx
3
L
0

n=0=/

PS80 () + PVES 8] <x>] f(x)dx,

2. Ifk = (co,00, oo,oo) and m = (oo, 00, 00,00), then

3 3
/ Klp(r—x)ortl’ (;}W)f(r /an (Z po TZZ)U$K¢(T—X)

07T,

V4
3
—/QKw(y—x [ Y b TOL L (y) + YW ]dy

n=0=/(
3
= fo| X wiShimlsd e + PV | Koty — 00y
n=0=/(
2 : pPe
B flx) Y, " 1 a€+g(x)2 powa T xeQ,
= = ooch/ e’ (=0 ypx," et
0, xeH\Q

and

[ s r—2 ot [ © —2 |
g(x — | — | fx
a0 (=0 szrlex}f "\ och?‘*fle"f

3

= g(X)l Y Pntpe T [fz](x)+””WZf[f](x)]dx

n=0=/
+/
Q

where TZ;‘/’OO, WZ}? , Sp i ‘#Vﬁf wn are given in Corollary 1.

3. Ifk=(1,1,1,1)and m = (00,00, 00,00), then

¢ 3
/aQKw(TWT(ZZOM ) [ <r><

3
—/QKw(J/—x)[

3
Z PSh ol e](x)wn+¢V$:fn[g](x>]f(x>dx

n=0=/(

n) ¢K¢(T —x)

=0 WTW e

anleTU”l [Fe) (y) + YWELLf) (y)] dy

3
= fo| X weShimlsd e + VL0 | Kty — )y
n=0=/{
3 3 Oe
g0y —PL _ xeq,
= E;)“ o1 Eg)wxv —lex!

0, xeH\Q
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and

n=0=/(

3
Y eShieolge () u + YV [g](x)] f(x)dx,

where operators T;T:’ll, V’Wg’f ,shr v and ‘/’Vaf,’fn are given in Corollary 1.

4. Fork = (00,00,00,00) and m = (1,1,1,1) a similar result is in fact true.

5. Discussion

This paper establishes the foundations of a quaternionic function theory associated to a propor-
tional and fractional-fractal i-Fueter operator associated to a fractal measure. Also this work extends
the quaternionic hiperholomorphic function theory. So what other results can be extended to this
recent function theory?
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