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Abstract: This paper introduce a fractional-fractal ψ-Fueter operator in the quaternionic context
inspired in the concepts of proportional fractional derivative and Hausdorff derivative of a function
with respect to a fractal measure. Moreover, we establish the corresponding Stokes and Borel-Pompeiu
formulas associated to this generalized fractional-fractal ψ-Fueter operator.
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0. Introduction
The fractal derivative or Hausdorff derivative, is a relatively new concept of differentiation

that extends Leibniz’s derivative for discontinuous fractal media. In the literature, there are various
definitions of this new concept. For instance, in 2006 Chen introduced the concept of the Hausdorff
derivative of a function with respect to a fractal measure tη , where η is the order of the fractal derivative.
A treatment of a more general case goes back to the work of Jeffery in 1958.

Fractal calculus is extremely effective in branches such as fluid mechanics where hierarchical or
porous media, turbulence or aquifers present fractal properties, which do not necessarily follow a
Euclidean geometry.

Fractional calculus deals with the generalization of the concepts of differentiation and integration
of non-integer orders. This generalization is not merely a purely mathematical curiosity, but it
has demonstrated its application in various disciplines such as physics, biology, engineering, and
economics.

Unlike fractional calculus, fractal calculus maintains the chain rule in a very direct way, which
relates the fractal derivative to the classical derivative.

The fractal-fractional derivative (a new class of fractional derivative, which has many applications
in real world problems) is a mathematical concept that combines two different ideas: fractals and
fractional derivatives. Fractals are complex geometric patterns that repeat at different scales, while
fractional derivatives are a generalization of ordinary derivatives that allow for non-integer orders.
The combination of fractal theory and fractional calculus gave rise to new concepts of differentiation
and integration.

A considerable literature has grown up around new fractal, fractional and fractal-fractional
derivatives. For references connected with the subject being considered in this work we refer the
reader to [1–12].

Quaternionic analysis (the most natural and close generalization of complex analysis) concerns
the connection between analysis (even topology / geometry) in R4 and the algebraic structure of
quaternions H. At the heart of this function theory lies the notion of ψ−hyperholomorphic functions
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defined on domains in R4 with values in H, i.e., null solutions of the so-called ψ−Fueter operator (to be
defined later) in which the standard basis of R4 is replaced by a structural set ψ = {1, ψ1, ψ2, ψ3} ∈ H4.

In the last years, there is an increasing interest in finding a framework for a fractal or fractional
counterpart of quaternionic analysis, see [13–19] and the references given there.

This paper introduce a fractional-fractal ψ-Fueter operator in the quaternionic context inspired in
the concepts of proportional fractional derivative and Hausdorff derivative of a function with respect
to a fractal measure. Moreover, we establish the corresponding Stokes and Borel-Pompeiu formulas
associated to this generalized fractional-fractal ψ-Fueter operator.

The outline of this paper is summarized as follows. In Section 2 we give a brief exposition of
the generalized fractal-fractional derivative considered. Section 3 presents some preliminaries on
quaternionic analysis. In Section 4 we develop the rudiments of a function theory induced by a
quaternionic β-proportional fractal Fueter operator and finally in Section 5 we will be concerned with
a quaternionic β-proportional fractal Fueter operator with truncated exponential functions as fractals
measure.

1. Generalized Fractal-Fractional Derivative
Definition 1. The fractal derivative of a function f , defined on an interval I, with respect to a fractal measure
ν(η, t) is given by

dν f (t)
dtη := lim

τ→t

f (t)− f (τ)
ν(η, t)− ν(η, τ)

, η > 0.

If
dν f (t)

dtη exists for all t ∈ I then f is real fractal differentiable on I with order η.

Some well-known cases. If ν(h, t) = t for all t ∈ I then
dν

dtη =
d
dt

is the derivative operator. In

addition, if ν(h, t) = h(t) for all t ∈ I where h′(t) > 0 for all t ∈ I then
dν f (t)

dtη =
f ′(t)
h′(t)

for all f ∈ C1(I)

On the other hand, if ν(η, t) = tη for all t ∈ I then
dν f (t)

dtη reduces to the Hausdorff derivative.

Another useful fractal measure is ν(η, t) = etα
for all t ∈ I and α ∈ (0, 1].

We consider an well-known extension of the previous fractal derivative.

Definition 2. Given β ∈ [0, 1] we present the β-fractal derivative of a function f , defined on an interval I, with
respect to a fractal measure ν(η, t):

dβ
ν f (t)
dtη := lim

τ→t

( f (t))β − ( f (τ))β

ν(η, t)− ν(η, τ)
, η > 0.

In order to make our description of the concept of fractal-fractional derivatives to be used precise,
we introduce the notion of fractional proportional derivative, following [20].

Definition 3. Let χ0, χ1 : [0, 1]× I be continuous functions such that

lim
σ→0+

χ1(σ, t) = 1, lim
σ→0+

χ0(σ, t) = 0, lim
σ→1−

χ1(σ, t) = 0, lim
σ→1−

χ0(σ, t) = 1.

The proportional derivative of f ∈ C1(I) of order σ ∈ [0, 1] is given by

Dσ f (t) = χ1(σ, t) f (t) + χ0(σ, t) f ′(t), ∀t ∈ I.

A combination of Definitions 2 and 3 yields.
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Definition 4. Let β ∈ [0, 1], the proportional β-fractal derivative of f : I → R with respect to ν(η, t) and σ is
defined to be

dσ,β
ν f (t)

dtη (t) := χ1(σ, t) f (t) + χ0(σ, t)
dβ

ν f (t)
dtη ,

if it exists for all t ∈ I.

Remark 1. Given α ∈ (0, 1] and k ∈ N we will consider the k-truncated exponential function defined as follows

e(tα)k :=
k

∑
i=0

(tα)i

i!

for all t ∈ R. For k = 1 we have e(tα)1 = 1 + tα and for k = ∞ we have e(tα)∞ = etα
.

Remark 2. Important particular case, when the proportional and fractal measure in Definition 4 are given by

χ1(σ, t) = 1 − σ, χ0(σ, t) = σ, ν(k, t) = e(tα)k

for all σ ∈ [0, 1] and t ∈ I allows to introduce some cases of generalized fractal-fractional derivative to consider.
For f ∈ C1(I) we have

dσ,β

dtα,k
f (t) := (1 − σ) f (t) + σ

( f β)′(t)
e(tα)′k

,

for all t ∈ I. The particular cases k = 1, ∞ reduces to

dσ,β

dtα,1
f (t) = (1 − σ) f (t) + σ

( f β)′(t)
αtα−1 ,

dσ,β

dtα,∞
f (t) = (1 − σ) f (t) + σ

( f β)′(t)
αtα−1etα ,

where clearly the conditions α ∈ (0, 1] and t > 0 are necessary.
Addressing the issue σ = α requires that the case α = 0 should be omitted.

dα,β

dtα,1
f (t) = (1 − α) f (t) +

( f β)′(t)
tα−1 ,

dα,β

dtα,∞
f (t) = (1 − α) f (t) +

( f β)′(t)
tα−1etα .

The k-truncated exponential function as fractal measure provides the generalized fractal-fractional drivative
in much generality

dα,β

dtα,k
f (t) := (1 − α) f (t) +

( f β)′(t)
tα−1e(tα)k−1

.

2. Preliminaries on Quaternionic Analysis
We begin by recalling some background and fixing notation that will be used throughout the

entire document. For more details, we refer the interested reader to [21–23].
A real quaternion is an element of the form x = x0 + x1e1 + x2e2 + x3e3, where x0, x1, x2, x3 ∈ R

and the imaginary units e1, e2, e3 satisfy:

e2
1 = e2

2 = e2
3 = −1, e1e2 = −e2e1 = e3, e2e3 = −e3e2 = e1, e3e1 = −e1e3 = e2.
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Quaternions form a skew-field denoted by H. The set {1, e1, e2, e3} is the standard basis of H.
The vector part of x ∈ H is by definition, x := x1e1 + x2e2 + x3e3 while its real part is x0 := x0.

The quaternionic conjugation of x, denoted by x̄ is defined by x̄ =: x0 − x and norm the x ∈ H is given
by

∥x∥ :=
√

x2
0 + x2

1 + x3
2 + x2

3 =
√

xx̄ =
√

x̄x.

The quaternionic scalar product of x, y ∈ H is given by

⟨x, y⟩ :=
1
2
(x̄y + ȳx) =

1
2
(xȳ + yx̄).

A set of quaternions ψ = {ψ0, ψ1, ψ2, ψ2} is called structural set if ⟨ψk, ψs⟩ = δk,s, for k, s = 0, 1, 2, 3
and any quaternion x can be rewritten as xψ := ∑3

k=0 xkψk, where xk ∈ R for all k. Notion of structural
sets is due to Nôno [24,25].

Given q, x ∈ H we follow the notation used in [21] to write

⟨q, x⟩ψ =
3

∑
k=0

qkxk,

where qk, xk ∈ R for all k.
Let ψ an structural set. From now on, we will use the mapping

3

∑
k=0

xkψk → (x0, x1, x2, x3). (1)

in essential way.
Given a domain Ω ⊂ H ∼= R4 and a function f : Ω → H. Then f is written as: f = ∑3

k=0 fkψk,
where fk, k = 0, 1, 2, 3, are R-valued functions. Properties of f are due to properties of all components
fk such as continuity, differentiability, integrability and so on. For example, C1(Ω,H) denotes the set
of continuously differentiable H-valued functions defined in Ω.

The left- and the right-ψ-Fueter operators are given by ψD[ f ] := ∑3
k=0 ψk∂k f and ψDr[ f ] :=

∑3
k=0 ∂k f ψk, for all f ∈ C1(Ω,H), respectively, where ∂k f =

∂ f
∂xk

for all k.

Let ∂Ω be a 3−dimensional smooth surface. Then recall the Borel-Pompieu and differential and
integral versions of Stokes’ formulas∫

∂Ω
(Kψ(τ − x)σψ

τ f (τ) + g(τ)σψ
τ Kψ(τ − x))

−
∫

Ω
(Kψ(y − x)ψD[ f ](y) + ψDr[g](y)Kψ(y − x))dy

=

{
f (x) + g(x), x ∈ Ω,
0, x ∈ H \ Ω,

(2)

for all f , g ∈ C1(Ω,H).

d(gσ
ψ
x f ) =

(
g ψD[ f ] + ψDr[g] f

)
dx, (3)∫

∂Ω
gσ

ψ
x f =

∫
Ω

(
gψD[ f ] + ψDr[g] f

)
dx, (4)

for all f , g ∈ C1(Ω,H). Here d represents the exterior differentiation operator, dx is the differential
form of the 4-dimensional volume in R4 and

σ
ψ
x := −sgnψ

(
3

∑
k=0

(−1)kψkdx̂k

)
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is the quaternionic differential form of the 3-dimensional volume in R4 according to ψ, where dx̂k =

dx0 ∧ dx1 ∧ dx2 ∧ dx3 omitting factor dxk. In addition, sgnψ is 1, or −1, if ψ and ψstd := {1, i, j, k}
have the same orientation, or not, respectively. Note that, |σψ

x | = dS3 is the differential form of the
3-dimensional volume in R4 and write σx = σ

ψstd
x . Let us recall that the ψ-Cauchy Kernel is given by

Kψ(τ − x) =
1

2π2
τψ − xψ

|τψ − xψ|4
.

3. A Function Theory Generated by a β-Proportional Fractal Fueter Operator
Let us extend Definition 4 to a quaternionic differential operator associate to an arbitrary structural

set ψ.

Definition 5. Let Ω ⊂ H a domain. Fix β = (β0, β1, β2, β3) ∈ [0, 1]4 and ν = (ν0, ν1, ν2, ν3) where
νk(ηk, xk) is a fractal measure for k = 0, 1, 2, 3 according to Definition 1. Denote χ1 = (χ0,1, χ1,1, χ2,1, χ3,1),
χ0 = (χ0,0, χ1,0, χ2,0, χ3,0) and σ = (σ0, σ1, σ2, σ3) ∈ [0, 1]4 where χk,1(σk, xk) and χk,0(σk, xk) and are given
by Definition 3 on coordinate xk for k = 0, 1, 2, 3.

Let f : Ω → H such that
∂

βn
νn f (x)

∂(xn)ηn
exists for all x ∈ Ω and all n = 0, 1, 2, 3. Then, the quaternionic

ψ-proportional β-fractal derivative of f with respect to ν and σ, is given by

ψDσ,β
ν [ f ](x) :=

3

∑
n=0

ψn
∂

σn ,βn
νn f (x)
∂(xn)ηn

=
3

∑
n=0

ψn

(
χn,1(σn, xn) f (x) + χn,0(σn, xn)

∂
βn
νn f (x)

∂(xn)ηn

)

=
3

∑
n=0=m

ψnψm

(
χn,1(σn, xn) fm(x) + χn,0(σn, xn)

∂
βn
νn fm(x)
∂(xn)ηn

)
.

Proposition 1. Given f ∈ C1(Ω,H) as above let us assume that

λ
βn
νn ( fm)(x) :=

∫ xn

0

∂
βn
νn fm(x)
∂(tn)ηn

dt, λ
βn
νn ( f )(x) :=

3

∑
m=0

ψm

∫ xn

0

∂
βn
νn fm(x)
∂(tn)ηn

dt

exist for n, m = 0, 1, 2, 3. Under conditions χn,0(σn, xn) ̸= 0 and λ
βn
νn ( fm)(x) ̸= 0 for all x =

(x0, x1, x2, x3) ∈ Ω and all m, n = 0, 1, 2, 3 we have

ψD ◦ Lσ,β
ν [ f ](x) =ψDσ,β

ν [ f ](x) + Eσ,β
ν [ f ](x) +

3

∑
n=0=m

ψnψmLn,m[ f ](x)λβn
νn ( fm)(x),

for all x ∈ Ω, where

Eσ,β
ν [ f ](x) :=

3

∑
n = 0 = k

n ̸= k

ψn
∂

∂xn

[
(χk,0(σk, xk))λ

βk
νk ( f )(x)

]
,

L
σ,β
ν ( f )(x) =

3

∑
k=0

(χk,0(σk, xk))λ
βk
νk ( f )(x),

Ln,m[ f ](x) :=
∂

∂xn

(
χn,0(σn, xn)

ehn,m(x)

)
ehn,m(x),

hn,m(x) =
∫ xn

0

χn,1(σn, tn)

χn,0(σn, tn)

fm

λ
βn
νn ( fm)

dt,
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for n, m ∈ {0, 1, 2, 3}.

Proof. To simplify notation consider λn = λ
βn
νn for all n = 0, 1, 2, 3. From direct computations we have

that

∂

∂xn
(ehn,m(x)λn( fm)(x)) =ehn,m(x)

[
χn,1(σn, xn)

χn,0(σn, xn)

fm

λn( fm)
λn( fm)(x) +

∂
βn
νn fm(x)
∂(xn)ηn

]

=
ehn,m(x)

χn,0(σn, xn)

[
χn,1(σn, tn) fm + χn,0(σn, xn)

∂
βn
νn fm(x)
∂(xn)ηn

]

=
ehn,m(x)

χn,0(σn, xn)

∂
σn ,βn
νn fm(x)
∂(xn)ηn

,

∂
σn ,βn
νn fm(x)
∂(xn)ηn

=
χn,0(σn, xn)

ehn,m(x)
∂

∂xn

(
ehn,m(x)λn( fm)(x)

)
.

Therefore,

ψDσ,β
ν [ f ](x) =

3

∑
n=0=m

ψnψm
χn,0(σn, xn)

ehn,m(x)
∂

∂xn

(
ehn,m(x)λn( fm)(x)

)
=

3

∑
n=0=m

ψnψm
∂

∂xn
(χn,0(σn, xn)λn( fm)(x)))−

3

∑
n=0=m

ψnψmLn,m[ f ](x)λn( fm)(x)

=
3

∑
n=0

ψn
∂

∂xn
(χn,0(σn, xn)

3

∑
m=0

ψmλn( fm)(x)))−
3

∑
n=0=m

ψnψmLn,m[ f ](x)λn( fm)(x)

=
3

∑
n=0

ψn
∂

∂xn
[χn,0(σn, xn)λn( f )(x)]−

3

∑
n=0=m

ψnψmLn,m[ f ](x)λn( fm)(x)

=
3

∑
n=0

ψn
∂

∂xn
[ς(x)λn( f )(x)]−

3

∑
n=0

ψn
∂

∂xn
[κnλn( f )(x)]−

3

∑
n=0=m

ψnψmLn,m[ f ](x)λn( fm)(x),

where ς(x) =
3

∑
ℓ=0

χℓ,0(σℓ, xℓ) and κn =
3

∑
ℓ = 0
ℓ ̸= n

χℓ,0(σℓ, xℓ).

Then

ψDσ,β
ν [ f ](x) :=

3

∑
n=0

ψn
∂

∂xn

[
ς(x)

(
3

∑
k=0

λk( f )(x)

)]
−

3

∑
n = 0 = k

n ̸= k

ψn
∂

∂xn
[ς(x)λk( f )(x)]

−
3

∑
n=0

ψn
∂

∂xn

[
3

∑
k=0

κkλk( f )(x)

]
+

3

∑
n = 0 = k

n ̸= k

ψn
∂

∂xn
[κkλk( f )(x)]

−
3

∑
n=0=m

ψnψmLn,m[ f ](x)λn( fm)(x).
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As a consequence we have that

ψDσ,β
ν [ f ](x) :=

3

∑
n=0

ψn
∂

∂xn

[
ς(x)

(
3

∑
k=0

λk( f )(x)

)
−

3

∑
k=0

κkλk( f )(x)

]

+
3

∑
n = 0 = k

n ̸= k

ψn
∂

∂xn
[κkλk( f )(x)− ς(x)λk( f )(x)]−

3

∑
n=0=m

ψnψmLn,m[ f ](x)λn( fm)(x),

i.e.,

ψDσ,β
ν [ f ](x) :=

3

∑
n=0

ψn
∂

∂xn

[
3

∑
k=0

(χk,0(σk, xk))λk( f )(x)

]

−
3

∑
n = 0 = k

n ̸= k

ψn
∂

∂xn
[(χk,0(σk, xk))λk( f )(x)]

−
3

∑
n=0=m

ψnψmLn,m[ f ](x)λn( fm)(x)

or equivalently

ψDσ,β
ν [ f ](x) :=ψD ◦ Lσ,β

ν [ f ](x)−
3

∑
n = 0 = k

n ̸= k

ψn
∂

∂xn
[(χk,0(σk, xk))λk( f )(x)]

−
3

∑
n=0=m

ψnψmLn,m[ f ](x)λn( fm)(x).

Notation Ln,m and hn for all n, m = 0, 1, 2, 3, can be improved but we have decided to keep it at
this level to make easier to write and read the following computations.

Definition 6. For δ = (δ0, δ1, δ2, δ3) ∈ [0, 1]4, and µ = (µ0, µ1, µ2, µ3) where µk(ζk, xk) is a fractal measure
for k = 0, 1, 2, 3 according to Definition 1. Denote κ1 = (κ0,1,κ1,1,κ2,1,κ3,1), κ0 = (κ0,0,κ1,0,κ2,0,κ3,0)

and ρ = (ρ0, ρ1, ρ2, ρ3) ∈ [0, 1]4 where κk,1(ρk, xk) and κk,0(ρk, xk) and are given by Definition 3 for
k = 0, 1, 2, 3.

Given g : Ω → H such that
∂δn

µn g(x)
∂(xn)ζn

there exists for all x ∈ Ω and all n = 0, 1, 2, 3. The quaternionic

right ψ-proportional δ-fractal derivative of g with respect to µ and ρ, is given by

ψDρ,δ
r,µ [g](x) :=

3

∑
n=0

∂
ρn ,δn
µn g(x)
∂(xn)ζn

ψn

=
3

∑
n=0=m

ψmψn

(
κn,1(ρn, xn)gm(x) +κn,0(ρn, xn)

∂δn
µn gm(x)
∂(xn)ζn

)
.

Remark 3. Consider g : Ω → H such that

λδn
µn(gm)(x) =

∫ xn

0

∂δn
µn gm(x)
∂(tn)ζn

dt, λδn
µn(g)(x) =

3

∑
m=0

ψm

∫ xn

0

∂δn
µn gm(x)
∂(tn)ζn

dt
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there exist for n, m = 0, 1, 2, 3. If κn,0(ρn, xn) ̸= 0 and λδn
µn(gm)(x) ̸= 0 for all x = (x0, x1, x2, x3) ∈ Ω and

all n = 0, 1, 2, 3, then repeating several computations of the previous proof we can see that

ψDr ◦ Lρ,δ
µ [g](x) :=ψDρ,δ

r,µ [g](x) + E ρ,δ
r,µ [g](x) +

3

∑
n=0=m

ψmψnTn,m[g](x)λδn
µn(gm)(x), (5)

for all x ∈ Ω, where

E ρ,δ
r,µ [g](x) :=

3

∑
n = 0 = k

n ̸= k

∂

∂xn

[
(κk,0(ρk, xk))λ

δk
µk (g)(x)

]
ψn

L
ρ,δ
µ (g)(x) =

3

∑
k=0

(κk,0(ρk, xk))λ
δk
νk (g)(x),

Tn,m[g](x) :=
∂

∂xn
(
κn,0(ρn, xn)

eln,m(x)
)eln,m(x),

ln,m(x) =
∫ xn

0

κn,1(ρn, tn)

κn,0(ρn, tn)

gm

λδn
µn(gm)

dt,

for n, m ∈ {0, 1, 2, 3}.

Assuming hypothesis and notations of Proposition 1 and Remark 3 let us present some conse-
quences of quatertionic Borel-Pompeiu and Stokes formulas.

Proposition 2. Let Ω ⊂ H be a domain such that ∂Ω is a 3-dimensional smooth surface. If Lσ,β
ν [ f ],Lρ,δ

µ [g] ∈
C1(Ω,H) then ∫

∂Ω
(Kψ(τ − x)σψ

τ L
σ,β
ν [ f ](τ) + L

ρ,δ
µ [g](τ)σψ

τ Kψ(τ − x))

−
∫

Ω

(
Kψ(y − x)ψDσ,β

ν [ f ](y)− ψDρ,δ
r,µ [g](y)Kψ(y − x)

)
dy

−
∫

Ω
Kψ(y − x)

(
Eσ,β

ν [ f ](y) +
3

∑
n=0=m

ψnψmLn,m[ f ](y)λβn
νn ( fm)(y)

)
dy

−
∫

Ω

(
E ρ,δ

r,µ [g](y) +
3

∑
n=0=m

ψmψnTn,m[g](y)λδn
µn(gm)(y)

)
Kψ(y − x)dy

=

{
L

σ,β
ν [ f ](x) + L

ρ,δ
µ [g](x), x ∈ Ω,

0, x ∈ H \ Ω,
(6)

and ∫
∂Ω

L
ρ,δ
µ [g]σψ

x L
σ,β
ν [ f ] =

∫
Ω

(
L

ρ,δ
µ [g]ψDσ,β

ν [ f ] + ψDρ,δ
r,µ [g]L

σ,β
ν [ f ]

)
dx+

+
∫

Ω
L

ρ,δ
µ [g]

(
Eσ,β

ν [ f ] +
3

∑
n=0=m

ψnψmLn,m[ f ]λβn
νn ( fm)

)
dx

+
∫

Ω

(
E ρ,δ

r,µ [g] +
3

∑
n=0=m

ψmψnTn,m[g]λδn
µn(gm)

)
L

σ,β
ν [ f ]dx. (7)

Proof. The formulas follow by application of quaternionic Borel-Pompieu and Stokes formula, func-
tions Lσ,β

ν [ f ], Lρ,δ
µ [g] and the usage of identities given in Proposition 1 and Remark 3.

Remark 4. In case in which L
σ,β
ν and L

ρ,δ
µ are invertible operators we can improve formula (6) to obtain the

quaternionc values of f and g. In addition, if f ∈ Ker(ψDσ,β
ν ) and g ∈ Ker(ψDρ,δ

r,µ) then
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∫
∂Ω

(Kψ(τ − x)σψ
τ L

σ,β
ν [ f ](τ) + L

ρ,δ
µ [g](τ)σψ

τ Kψ(τ − x))

−
∫

Ω
Kψ(y − x)

(
Eσ,β

ν [ f ](y) +
3

∑
n=0=m

ψnψmLn,m[ f ](y)λβn
νn ( fm)(y)

)
dy

−
∫

Ω

(
E ρ,δ

r,µ [g](y) +
3

∑
n=0=m

ψmψnTn,m[g](y)λδn
µn(gm)(y)

)
Kψ(y − x)dy

=

{
L

σ,β
ν [ f ](x) + L

ρ,δ
µ [g](x), x ∈ Ω,

0, x ∈ H \ Ω,

and

∫
∂Ω

L
ρ,δ
µ [g]σψ

x L
σ,β
ν [ f ] =

∫
Ω
L

ρ,δ
µ [g]

(
Eσ,β

ν [ f ] +
3

∑
n=0=m

ψnψmLn,m[ f ]λβn
νn ( fm)

)
dx

+
∫

Ω

(
E ρ,δ

r,µ [g] +
3

∑
n=0=m

ψmψnTn,m[g]λδn
µn(gm)

)
L

σ,β
ν [ f ]dx.

4. Quaternionic β-Proportional Fractal Fueter Operator with Truncated
Exponential Fractal Measure

From now on, partial differential operators given by Remarks 1 and 2 are considered, and let
k := (k0, k1, k2, k3) ∈ N4, σ = (σ0, σ1, σ2, σ3), β = (β0, β1, β2, β3) ∈ [0, 1]4, α = (α0, α1, α2, α3) ∈ (0, 1]
and for n = 0, 1, 2, 3.

Let Ω ⊂ H be a domain and f ∈ C1(Ω,R). We will use the proportional βn-fractal partial
derivatives

∂σn ,βn f
∂xαn ,kn

(x) := (1 − σn) f (x) + σn

∂ f βn

∂xn
(x)

∂e(xαn
n )kn

∂xn

,

for all x = ∑3
n=0 ψxn ∈ Ω.

Definition 7. Let Ω ⊂ H be a domain. Given f = ∑3
ℓ=0 ψℓ fℓ ∈ C1(Ω,H), where f0, f1, f2, f3 are real valued

functions. Define

(ψDσ,β
α,k f )(x) :=

3

∑
n=0=ℓ

ψnψℓ
∂σn ,βn fℓ
∂xαn ,kn

(x) (8)

=
3

∑
n=0=ℓ

ψnψℓ

(1 − σn) fℓ(x) + σn

∂ f βn
ℓ

∂xn
(x)

d
dxn

e(xαn
n )kn

, (9)

Hσn ,βn
αn ,kn

[ fℓ](x) :=
∫ xn

0

σn − 1
σn

(
d

dxn
e(xαn

n )kn

)
fℓ(x)1−βn dxn (10)
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and to simplify the notation in the proof of the next statement use hn,ℓ(x) = Hσn ,βn
αn ,kn

( fℓ)(x) for all n, ℓ = 0, 1, 2, 3.
In addition,

Tσn ,βn
αn ,kn

[ fℓ](x) :=
∂

∂xn

 σn

ehn,ℓ(x) d
dxn

e(xαn
n )kn

ehn,ℓ(x) fℓ(x)βn ,

ψWσ,β
α,k [ f ](x) =

3

∑
ℓ = 0 = n
ℓ ̸= n

σℓ
d

dxℓ
e(xαℓ

ℓ )kℓ

ψn
∂

∂xn
Iβℓ [ f ](x),

where Iβn [ f ](x) =
3

∑
ℓ=0

ψℓ fℓ(x)βn for all x ∈ Ω and n, ℓ = 0, 1, 2, 3.

Proposition 3. Given f = ∑3
ℓ=0 ψℓ fℓ ∈ C1(Ω,H). Then

ψD

 3

∑
ℓ=0

σℓ
d

dxℓ
e(xαℓ

ℓ )kℓ

Iβℓ [ f ]

(x)

=(ψDρ,β
α,k f )(x) +

3

∑
n=0=ℓ

ψnψℓTσn ,βn
αn ,kn

[ fℓ](x) + ψWσ,β
α,k [ f ](x), (11)

for all x ∈ Ω.

Proof.

∂

∂xn

(
ehn,ℓ(xn) fℓ(x)βn

)
=

[
1 − σn

σn

(
d

dxn
e(xαn

n )kn

)
( fℓ(x))1−βn f βn

ℓ (x) +
∂ f βn

ℓ

∂xn
(x)

]
ehn,ℓ(x)

=

(1 − σn) fℓ(x) + σn

∂ f βn
ℓ

∂xn
(x)

d
dxn

e(xαn
n )kn

 1
σn

ehn,ℓ(x) d
dxn

e(xαn
n )kn ,

∂σn ,βn

∂xαn ,kn

fℓ(x) =
σn

ehn,ℓ(x) d
dxn

e(xαn
n )kn

∂

∂xn

(
ehn,ℓ(x) fℓ(x)βn

)

and

(ψDσ,β
α,k f )(x) =

3

∑
n=0

ψn
∂σn ,βn

∂xαn ,kn

f (x)

=
3

∑
n=0=ℓ

ψnψℓ
σn

ehn,ℓ(x) d
dxn

e(xαn
n )kn

∂

∂xn

(
ehn,ℓ(x) fℓ(x)βn

)
.
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The identities

∂

∂xn

 σn
d

dxn
e(xαn

n )kn

fℓ(x)βn

 =
∂

∂xn

 σn

ehn,ℓ(x) d
dxn

e(xαn
n )kn

ehn,ℓ(x) fℓ(x)βn



=
∂

∂xn

 σn

ehn,ℓ(x) d
dxn

e(xαn
n )kn

ehn,ℓ(x) fℓ(x)βn +
σn

ehn,ℓ(x) d
dxn

e(xαn
n )kn

∂

∂xn

(
ehn,ℓ(x) fℓ(x)βn

)

and

σn

ehn,ℓ(x) d
dxn

e(xαn
n )kn

∂

∂xn

(
ehn,ℓ(x) fℓ(x)βn

)

=
∂

∂xn

 σn
d

dxn
e(xαn

n )kn

fℓ(x)βn

− ∂

∂xn

 σn

ehn,ℓ(x) d
dxn

e(xαn
n )kn

ehn,ℓ(x) fℓ(x)βn

=
∂

∂xn

 σn
d

dxn
e(xαn

n )kn

fℓ(x)βn

− Tσn ,βn
αn ,kn

[ fℓ](x)(x)

imply that

(ψDσ,β
α,k f )(x) =

3

∑
n=0=ℓ

ψnψℓ

 ∂

∂xn

 σn
d

dxn
e(xαn

n )kn

fℓ(x)βn

− Tσn ,βn
αn ,kn

[ fℓ](x)



=
3

∑
n=0=ℓ

ψnψℓ
∂

∂xn

 σn
d

dxn
e(xαn

n )kn

fℓ(x)βn

−
3

∑
n=0=ℓ

ψnψℓTσn ,βn
αn ,kn

[ fℓ](x)

=
3

∑
n=0

ψn
∂

∂xn

 σn
d

dxn
e(xαn

n )kn

3

∑
ℓ=0

ψℓ fℓ(x)βn

−
3

∑
n=0=ℓ

ψnψℓTσn ,βn
αn ,kn

[ fℓ](x)

=
3

∑
n=0

ψn
∂

∂xn

 σn
d

dxn
e(xαn

n )kn

Iβn [ f ](x)

−
3

∑
n=0=ℓ

ψnψℓTσn ,βn
αn ,kn

[ fℓ](x).

For each n = 0, 1, 2, 3 we see that

σn
d

dxn
e(xαn

n )kn

Iβn [ f ](x) =
3

∑
ℓ=0

σℓ
d

dxℓ
e(xαℓ

ℓ )kℓ

Iβℓ [ f ](x)−
3

∑
ℓ = 0
ℓ ̸= n

σℓ
d

dxℓ
e(xαℓ

ℓ )kℓ

Iβℓ [ f ](x).
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Therefore,

ψD

 3

∑
ℓ=0

σℓ
d

dxℓ
e(xαℓ

ℓ )kℓ

Iβℓ [ f ]

(x)

=(ψDρ,β
α,k f )(x) +

3

∑
n=0=ℓ

ψnψℓTσn ,βn
αn ,kn

[ fℓ](x) +
3

∑
ℓ = 0 = n
ℓ ̸= n

σℓ
d

dxℓ
e(xαℓ

ℓ )kℓ

ψn
∂

∂xn
Iβℓ [ f ](x).

Remark 5. Denote v = (v0, v1, v2, v3) ∈ N4, ρ = (ρ0, ρ1, ρ2, ρ3), δ = (δ0, δ1, δ2, δ3) ∈ (0, 1]4, γ =

(γ0, γ1, γ2, γ3) ∈ (0, 1]4 and for n = 0, 1, 2, 3. We will use the the proportional δn-fractal partial derivative
∂ρn ,δn

∂xγn ,kn

. Recall that if g ∈ C1(Ω,R) then

∂ρn ,δn g
∂xγn ,kn

(x) := (1 − ρn)g(x) + ρn

∂gδn

∂xn
(x)

∂e(xγn
n )kn

∂xn

,

for all x = ∑3
n=0 ψxn ∈ Ω.

If g = ∑3
ℓ=0 ψℓgℓ ∈ C1(Ω,H), where g0, g1, g2, g3 are real valued functions. Define the right version of

the operator given by (8) as follows:

(ψDρ,δ
r,γ,mg)(x) :=

3

∑
n=0=ℓ

ψℓ
∂ρn ,δn gℓ
∂xγn ,mn

(x)ψn,

Hρn ,δn
γn ,kn

[gℓ](x) :=
∫ xn

0

ρn − 1
ρn

(
d

dxn
e(xγn

n )mn

)
gℓ(x)1−δn dxn.

and use jn,ℓ(x) = Hσn ,βn
αn ,kn

(gℓ)(x) for all n, ℓ = 0, 1, 2, 3. Denote

Sρn ,δn
γn ,mn [gℓ](x) :=

∂

∂xn

 ρn

ejn,ℓ(x) d
dxn

e(xγn
n )mn

ejn,ℓ(x)gℓ(x)δn ,

ψVρ,δ
γ,m[g](x) :=

3

∑
ℓ = 0 = n
ℓ ̸= n

ρℓ
d

dxℓ
e(xγℓ

ℓ )mℓ

∂

∂xn
Iδℓ [g](x)ψn.

From similar computations to presented in the previous proof we can obtain the right version of (11):

ψDr

 3

∑
ℓ=0

ρℓ
d

dxℓ
e(xγℓ

ℓ )mℓ

Iδℓ [g]

(x)

=(ψDρ,δ
r,γ,mg)(x) +

3

∑
n=0=ℓ

ψℓS
ρn ,δn
γn ,mn [gℓ](x)ψn +

ψVρ,δ
γ,m[g](x), (12)

for all x ∈ Ω
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Corollary 1. Let Ω ⊂ H be a domain such that ∂Ω is a 3-dimensional smooth surface. In agreement with
notation in Definition 7 and Remark 5 we have:

1. If β = (1, 1, 1, 1) then operators given in Definition 7 are represented as follows:

(ψDσ,β
α,k f )(x) =

3

∑
n=0=ℓ

ψnψℓ

(1 − σn) fℓ(x) + σn

∂ fℓ
∂xn

(x)

d
dxn

e(xαn
n )kn

,

hn(x) = Hσn ,1
αn ,kn

[ fℓ](x) =
σn − 1

σn
[e(xαn

n )kn − 1],

Tσn ,1
αn ,kn

[ fℓ](x) =
∂

∂xn

 σn

ehn(x) d
dxn

e(xαn
n )kn

ehn(x) fℓ(x),

I1[ f ] = f

ψWσ,β
α,k [ f ](x) =

3

∑
ℓ = 0 = n
ℓ ̸= n

σℓ
d

dxℓ
e(xαℓ

ℓ )kℓ

ψn
∂

∂xn
f (x),

for all x ∈ Ω and (11) becomes at

ψD

 3

∑
ℓ=0

σℓ
d

dxℓ
e(xαℓ

ℓ )kℓ

f

(x) =(ψDρ,β
α,k f )(x) + A(x) f (x) + ψWσ,β

α,k [ f ](x),

where

A(x) :=
3

∑
n=0

ψn
∂

∂xn

 σn

ehn(x) d
dxn

e(xαn
n )kn

ehn(x),

for all x ∈ Ω.
Another important cases are the following:

(a) If β = (1, 1, 1, 1) and k = (1, 1, 1, 1) then

(ψDσ,β
α,k f )(x) =

3

∑
n=0=ℓ

ψnψℓ

(1 − σn) fℓ(x) + σn

∂ fℓ
∂xn

(x)

αnxαn−1
n

,

hn(x) = Hσn ,1
αn ,1[ fℓ](x) =

σn − 1
σn

xαn
n ,

Tσn ,1
αn ,1 [ fℓ](x) =

∂

∂xn

(
σn

ehn(x)αnxαn−1
n

)
ehn(x) fℓ(x),

I1[ f ] = f

ψWσ,β
α,k [ f ](x) =

3

∑
ℓ = 0 = n
ℓ ̸= n

σℓ

αℓxαℓ−1
ℓ

ψn
∂

∂xn
f (x),

for all x ∈ Ω and (11) becomes at
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ψD
[

3

∑
ℓ=0

σℓ

αℓxαℓ−1
ℓ

f

]
(x) =(ψDρ,β

α,k f )(x) + A(x) f (x) + ψWσ,β
α,k [ f ](x),

where

A(x) :=
3

∑
n=0

ψn
∂

∂xn

(
σn

ehn(x)αnxαn−1
n

)
ehn(x),

for all x ∈ Ω.
(b) If β = (1, 1, 1, 1) and k = (∞, ∞, ∞, ∞) then

(Dσ,β
α,k f )(x) =

3

∑
n=0=ℓ

ψnψℓ

(1 − σn) fℓ(x) + σn

∂ fℓ
∂xn

(x)

αnxαn−1
n exαn

n

,

hn(x) = Hσn ,1
αn ,∞[ fℓ](x) =

σn − 1
σn

[
exαn

n − 1
]
,

Tσn ,1
αn ,∞[ fℓ](x) =

∂

∂xn

(
σn

ehn(x)αnxαn−1
n exαn

n

)
ehn(x) fℓ(x),

I1[ f ] = f

ψWσ,β
α,k [ f ](x) =

3

∑
ℓ = 0 = n
ℓ ̸= n

σℓ

αℓxαℓ−1
ℓ ex

αℓ
ℓ

ψn
∂

∂xn
f (x),

for all x ∈ Ω and (11) becomes at

ψD

 3

∑
ℓ=0

σℓ

αℓxαℓ−1
ℓ ex

αℓ
ℓ

f

(x) =(ψDρ,β
α,k f )(x) + A(x) f (x) + ψWσ,β

α,k [ f ](x),

where

A(x) :=
3

∑
n=0

ψn
∂

∂xn

(
σn

ehn(x)αnxαn−1
n exαn

n

)
ehn(x),

for all x ∈ Ω.

2. If δ = (1, 1, 1, 1) then the operators given in Remark 5 are represented by

(ψDρ,δ
r,γ,mg)(x) =

3

∑
n=0=ℓ

ψℓ
∂ρn ,1gℓ
∂xγn ,mn

(x)ψn,

jn(x) = Hρn ,1
γn ,kn

[gℓ](x) =
ρn − 1

ρn

[
e(xγn

n )mn − 1
]
,

Sρn ,1
γn ,mn [gℓ](x) =

∂

∂xn

 ρn

ejn(x) d
dxn

e(xγn
n )mn

ejn(x)gℓ(x),

ψVρ,δ
γ,m[g](x) =

3

∑
ℓ = 0 = n
ℓ ̸= n

ρℓ
d

dxℓ
e(xγℓ

ℓ )mℓ

∂

∂xn
g(x)ψn
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and identity (12) is

ψDr

 3

∑
ℓ=0

ρℓ
d

dxℓ
e(xγℓ

ℓ )mℓ

g

(x) = (ψDρ,δ
r,γ,mg)(x) + g(x)B(x) + ψVρ,δ

γ,m[g](x),

where

B(x) =
3

∑
n=0

∂

∂xn

 ρn

ejn(x) d
dxn

e(xγn
n )mn

ejn(x)ψn,

for all x ∈ Ω.

(a) If δ = (1, 1, 1, 1) then the operators given in Remark 5 are represented by

(ψDρ,δ
r,γ,mg)(x) =

3

∑
n=0=ℓ

ψℓ
∂ρn ,1gℓ
∂xγn ,mn

(x)ψn,

jn(x) = Hρn ,1
γn ,kn

[gℓ](x) =
ρn − 1

ρn

[
e(xγn

n )mn − 1
]
,

Sρn ,1
γn ,mn [gℓ](x) =

∂

∂xn

 ρn

ejn(x) d
dxn

e(xγn
n )mn

ejn(x)gℓ(x),

ψVρ,δ
γ,m[g](x) =

3

∑
ℓ = 0 = n
ℓ ̸= n

ρℓ
d

dxℓ
e(xγℓ

ℓ )mℓ

∂

∂xn
g(x)ψn

and identity (12) is

ψDr

 3

∑
ℓ=0

ρℓ
d

dxℓ
e(xγℓ

ℓ )mℓ

g

(x) = (ψDρ,δ
r,γ,mg)(x) + g(x)B(x) + ψVρ,δ

γ,m[g](x),

where

B(x) =
3

∑
n=0

∂

∂xn

 ρn

ejn(x) d
dxn

e(xγn
n )mn

ejn(x)ψn,

for all x ∈ Ω.
(b) If δ = (1, 1, 1, 1) and m = (1, 1, 1, 1) then the operators given in Remark 5 are represented by

(ψDρ,δ
r,γ,mg)(x) =

3

∑
n=0=ℓ

ψℓ
∂ρn ,1gℓ
∂xγn ,1

(x)ψn,

jn(x) = Hρn ,1
γn ,kn

[gℓ](x) =
ρn − 1

ρn
xγn

n ,

Sρn ,1
γn ,1[gℓ](x) =

∂

∂xn

(
ρn

ejn(x)γnxγn−1
n

)
ejn(x)gℓ(x),

ψVρ,δ
γ,m[g](x) =

3

∑
ℓ = 0 = n
ℓ ̸= n

ρℓ

γℓxγℓ−1
ℓ

∂

∂xn
g(x)ψn
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and identity (12) is

ψDr

[
3

∑
ℓ=0

ρℓ

γℓxγℓ−1
ℓ

g

]
(x) = (ψDρ,δ

r,γ,mg)(x) + g(x)B(x) + ψVρ,δ
γ,m[g](x),

where

B(x) =
3

∑
n=0

∂

∂xn

(
ρn

ejn(x)γnxγn−1
n

)
ejn(x)ψn,

for all x ∈ Ω.
(c) If δ = (1, 1, 1, 1) and m = (∞, ∞, ∞, ∞) then the operators given in Remark 5 are represented by

(ψDρ,δ
r,γ,mg)(x) =

3

∑
n=0=ℓ

ψℓ
∂ρn ,1gℓ
∂xγn ,∞

(x)ψn,

jn(x) = Hρn ,1
γn ,kn

[gℓ](x) =
ρn − 1

ρn

[
exγn

n − 1
]
,

Sρn ,1
γn ,∞[gℓ](x) =

∂

∂xn

(
ρn

ejn(x)γnxγn−1
n exγn

n

)
ejn(x)gℓ(x),

ψVρ,δ
γ,m[g](x) =

3

∑
ℓ = 0 = n
ℓ ̸= n

ρℓ

γℓxγℓ−1
ℓ ex

γℓ
ℓ

∂

∂xn
g(x)ψn

and identity (12) is

ψDr

 3

∑
ℓ=0

ρℓ

γℓxγℓ−1
ℓ ex

γℓ
ℓ

g

(x) = (ψDρ,δ
r,γ,mg)(x) + g(x)B(x) + ψVρ,δ

γ,m[g](x),

where

B(x) =
3

∑
n=0

∂

∂xn

(
ρn

ejn(x)γnxγn−1
n exγn

n

)
ejn(x)ψn,

for all x ∈ Ω.
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Proposition 4. Let Ω ⊂ H be a domain such that ∂Ω is a 3-dimensional smooth surface. In agreement with
notation in Definition 7 and Remark 5 let f = ∑3

ℓ=0 ψℓ fℓ, g = ∑3
ℓ=0 ψℓgℓ ∈ C1(Ω,H), where fℓ, gℓ are real

valued functions. Then

∫
∂Ω

Kψ(τ − x)σψ
τ

(
3

∑
ℓ=0

σℓ
d

dτℓ
e(ταℓ

ℓ )kℓ

Iβℓ [ f ](τ)

)

+
∫

∂Ω

(
3

∑
ℓ=0

ρℓ
d

dτℓ
e(τγℓ

ℓ )mℓ

Iδℓ [g](τ)

)
σ

ψ
τ Kψ(τ − x)

−
∫

Ω

[
Kψ(y − x)(ψDρ,β

α,k f )(y) + (ψDρ,δ
r,γ,mg)(y)Kψ(y − x)

]
dy

−
∫

Ω
Kψ(y − x)

[
3

∑
n=0=ℓ

ψnψℓTσn ,βn
αn ,kn

[ fℓ](y) + ψWσ,β
α,k [ f ](y)

]
dy

−
∫

Ω

[
3

∑
n=0=ℓ

ψℓS
ρn ,δn
γn ,mn [gℓ](y)ψn +

ψVρ,δ
γ,m[g](y)

]
Kψ(y − x)dy

=


3

∑
ℓ=0

σℓ
d

dxℓ
e(xαℓ

ℓ )kℓ

Iβℓ [ f ](x) +
3

∑
ℓ=0

ρℓ
d

dxℓ
e(xγℓ

ℓ )mℓ

Iδℓ [g](x), x ∈ Ω,

0, x ∈ H \ Ω.

(13)

In addition,

∫
∂Ω

 3

∑
ℓ=0

ρℓ
d

dxℓ
e(xγℓ

ℓ )mℓ

Iδℓ [g]

σ
ψ
x

 3

∑
ℓ=0

σℓ
d

dxℓ
e(xαℓ

ℓ )kℓ

Iβℓ [ f ](x)


=
∫

Ω

(
g(ψDρ,β

α,k f )(x) + (ψDρ,δ
r,γ,mg)(x) f (x

)
dx

+
∫

Ω
g(x)

[
3

∑
n=0=ℓ

ψnψℓTσn ,βn
αn ,kn

[ fℓ](x) + ψWσ,β
α,k [ f ](x)

]
dx

+
∫

Ω

[
3

∑
n=0=ℓ

ψℓS
ρn ,δn
γn ,mn [gℓ](x)ψn +

ψVρ,δ
γ,m[g](x)

]
f (x)dx (14)

Proof. It is a direct consequence of Definition 7 and Remark 5 using functions
3

∑
ℓ=0

σℓ
d

dxℓ
e(xαℓ

ℓ )kℓ

Iβℓ [ f ](x) and
3

∑
ℓ=0

ρℓ
d

dxℓ
e(xγℓ

ℓ )mℓ

Iδℓ [g](x) and identities (11) and (12) in formulas (2)

and (3).

Remark 6. In formulas (13) and (14), the operators ψDρ,β
α,k and ψDρ,δ

r,γ,m reflect the phenomenon of duality in
quaternionic analysis due to the non-commutativity of quaterinonic algebra.

Corollary 2. Let Ω ⊂ H be a domain such that ∂Ω is a 3-dimensional smooth surface. In agreement with
notation in Definition 7 and Remark 5 let f = ∑3

ℓ=0 ψℓ fℓ, g = ∑3
ℓ=0 ψℓgℓ ∈ C1(Ω,H), where fℓ, gℓ are real

valued functions. Suppose that f ∈ Ker(ψDρ,β
α,k ) and g ∈ Ker(ψDρ,δ

r,γ,m). Then
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∫
∂Ω

Kψ(τ − x)σψ
τ

 3

∑
ℓ=0

σℓ
d

dτℓ
e(ταℓ

ℓ )kℓ

Iβℓ [ f ](τ)



+
∫

∂Ω

 3

∑
ℓ=0

ρℓ
d

dτℓ
e(τγℓ

ℓ )mℓ

Iδℓ [g](τ)

σ
ψ
τ Kψ(τ − x)

−
∫

Ω
Kψ(y − x)

[
3

∑
n=0=ℓ

ψnψℓTσn ,βn
αn ,kn

[ fℓ](y) + ψWσ,β
α,k [ f ](y)

]
dy

−
∫

Ω

[
3

∑
n=0=ℓ

ψℓS
ρn ,δn
γn ,mn [gℓ](y)ψn +

ψVρ,δ
γ,m[g](y)

]
Kψ(y − x)dy

=


3

∑
ℓ=0

σℓ
d

dxℓ
e(xαℓ

ℓ )kℓ

Iβℓ [ f ](x) +
3

∑
ℓ=0

ρℓ
d

dxℓ
e(xγℓ

ℓ )mℓ

Iδℓ [g](x), x ∈ Ω,

0, x ∈ H \ Ω

and

∫
∂Ω

 3

∑
ℓ=0

ρℓ
d

dxℓ
e(xγℓ

ℓ )mℓ

Iδℓ [g]

σ
ψ
x

 3

∑
ℓ=0

σℓ
d

dxℓ
e(xαℓ

ℓ )kℓ

Iβℓ [ f ](x)


=
∫

Ω
g(x)

[
3

∑
n=0=ℓ

ψnψℓTσn ,βn
αn ,kn

[ fℓ](x) + ψWσ,β
α,k [ f ](x)

]
dx

+
∫

Ω

[
3

∑
n=0=ℓ

ψℓS
ρn ,δn
γn ,mn [gℓ](x)ψn +

ψVρ,δ
γ,m[g](x)

]
f (x)dx

Corollary 3. Let Ω ⊂ H be a domain such that ∂Ω is a 3-dimensional smooth surface. In agreement with
notation in Definition 7 and Remark 5 let f = ∑3

ℓ=0 ψℓ fℓ, g = ∑3
ℓ=0 ψℓgℓ ∈ C1(Ω,H), where fℓ, gℓ are

real valued functions. Suppose that f ∈ Ker(ψDρ,β
α,k ) and g ∈ Ker(ψDρ,δ

r,γ,m). For fix β = (1, 1, 1, 1) and
δ = (1, 1, 1, 1) we have:

1. If k = (1, 1, 1, 1) and m = (1, 1, 1, 1), then

∫
∂Ω

Kψ(τ − x)σψ
τ

(
3

∑
ℓ=0

σℓ

αℓτ
αℓ−1
ℓ

)
f (τ) +

∫
∂Ω

g(τ)

(
3

∑
ℓ=0

ρℓ

γℓτ
γℓ−1
ℓ

)
σ

ψ
τ Kψ(τ − x)

−
∫

Ω
Kψ(y − x)

[
3

∑
n=0=ℓ

ψnψℓTσn ,1
αn ,1 [ fℓ](y) + ψWσ,β

α,k [ f ](y)

]
dy

−
∫

Ω

[
3

∑
n=0=ℓ

ψℓS
ρn ,1
γn ,1[gℓ](y)ψn +

ψVρ,δ
γ,m[g](y)

]
Kψ(y − x)dy

=

 f (x)
3

∑
ℓ=0

σℓ

αℓxαℓ−1
ℓ

+ g(x)
3

∑
ℓ=0

ρℓ

γℓxγℓ−1
ℓ

, x ∈ Ω,

0, x ∈ H \ Ω
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and

∫
∂Ω

g(x)

(
3

∑
ℓ=0

ρℓ

γℓxγℓ−1
ℓ

)
σ

ψ
x

(
3

∑
ℓ=0

σℓ

αℓxαℓ−1
ℓ

)
f (x)

=
∫

Ω
g(x)

[
3

∑
n=0=ℓ

ψnψℓTσn ,1
αn ,1 [ fℓ](x) + ψWσ,β

α,k [ f ](x)

]
dx

+
∫

Ω

[
3

∑
n=0=ℓ

ψℓS
ρn ,1
γn ,1[gℓ](x)ψn +

ψVρ,δ
γ,m[g](x)

]
f (x)dx,

where operators Tσn ,1
αn ,1 , ψWσ,β

α,k , Sρn ,1
γn ,1 and ψVρ,δ

γ,m are represented in Corollary 1.

2. If k = (∞, ∞, ∞, ∞) and m = (∞, ∞, ∞, ∞), then

∫
∂Ω

Kψ(τ − x)σψ
τ

 3

∑
ℓ=0

σℓ

αℓτ
αℓ−1
ℓ eτ

αℓ
ℓ

 f (τ) +
∫

∂Ω
g(τ)

 3

∑
ℓ=0

ρℓ

γℓτ
γℓ−1
ℓ eτ

γℓ
ℓ

σ
ψ
τ Kψ(τ − x)

−
∫

Ω
Kψ(y − x)

[
3

∑
n=0=ℓ

ψnψℓTσn ,1
αn ,∞[ fℓ](y) + ψWσ,β

α,k [ f ](y)

]
dy

−
∫

Ω

[
3

∑
n=0=ℓ

ψℓS
ρn ,1
γn ,∞[gℓ](y)ψn +

ψVρ,δ
γ,m[g](y)

]
Kψ(y − x)dy

=

 f (x)
3

∑
ℓ=0

σℓ

αℓxαℓ−1
ℓ ex

αℓ
ℓ

+ g(x)
3

∑
ℓ=0

ρℓ

γℓxγℓ−1
ℓ ex

γℓ
ℓ

, x ∈ Ω,

0, x ∈ H \ Ω

and

∫
∂Ω

g(x)

 3

∑
ℓ=0

ρℓ

γℓxγℓ−1
ℓ ex

γℓ
ℓ

σ
ψ
x

 3

∑
ℓ=0

σℓ

αℓxαℓ−1
ℓ ex

αℓ
ℓ

 f (x)

=
∫

Ω
g(x)

[
3

∑
n=0=ℓ

ψnψℓTσn ,1
αn ,∞[ fℓ](x) + ψWσ,β

α,k [ f ](x)

]
dx

+
∫

Ω

[
3

∑
n=0=ℓ

ψℓS
ρn ,1
γn ,∞[gℓ](x)ψn +

ψVρ,δ
γ,m[g](x)

]
f (x)dx,

where Tσn ,1
αn ,∞, ψWσ,β

α,k , Sρn ,1
γn ,∞ and ψVρ,δ

γ,m are given in Corollary 1.

3. If k = (1, 1, 1, 1) and m = (∞, ∞, ∞, ∞), then

∫
∂Ω

Kψ(τ − x)σψ
τ

(
3

∑
ℓ=0

σℓ

αℓτ
αℓ−1
ℓ

)
f (τ) +

∫
∂Ω

g(τ)

(
3

∑
ℓ=0

ρℓ

γℓτγℓ−1eτ
γℓ
ℓ

)
σ

ψ
τ Kψ(τ − x)

−
∫

Ω
Kψ(y − x)

[
3

∑
n=0=ℓ

ψnψℓTσn ,1
αn ,1 [ fℓ](y) + ψWσ,β

α,k [ f ](y)

]
dy

−
∫

Ω

[
3

∑
n=0=ℓ

ψℓS
ρn ,1
γn ,∞[gℓ](y)ψn +

ψVρ,δ
γ,m[g](y)

]
Kψ(y − x)dy

=

 f (x)
3

∑
ℓ=0

σℓ

αℓxαℓ−1
ℓ

+ g(x)
3

∑
ℓ=0

ρℓ

γℓxγℓ−1
ℓ ex

γℓ
ℓ

, x ∈ Ω,

0, x ∈ H \ Ω
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and

∫
∂Ω

g(x)

 3

∑
ℓ=0

ρℓ

γℓxγℓ−1
ℓ ex

γℓ
ℓ

σ
ψ
x

(
3

∑
ℓ=0

σℓ

αℓxαℓ−1
ℓ

)
f (x)

=
∫

Ω
g(x)

[
3

∑
n=0=ℓ

ψnψℓTσn ,1
αn ,1 [ fℓ](x) + ψWσ,β

α,k [ f ](x)

]
dx

+
∫

Ω

[
3

∑
n=0=ℓ

ψℓS
ρn ,1
γn ,∞[gℓ](x)ψn +

ψVρ,δ
γ,m[g](x)

]
f (x)dx,

where operators Tσn ,1
αn ,1 , ψWσ,β

α,k , Sρn ,1
γn ,∞ and ψVρ,δ

γ,m are given in Corollary 1.

4. For k = (∞, ∞, ∞, ∞) and m = (1, 1, 1, 1) a similar result is in fact true.

5. Discussion
This paper establishes the foundations of a quaternionic function theory associated to a propor-

tional and fractional-fractal ψ-Fueter operator associated to a fractal measure. Also this work extends
the quaternionic hiperholomorphic function theory. So what other results can be extended to this
recent function theory?
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