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Abstract: The Fuzzy Transportation Problem (FTP) represents a significant extension of the Classical 

Transportation Problem (TP) by introducing uncertainly and imprecision into the parameters 

involved. Various algorithms have been proposed to solve the FTP, including fuzzy linear 

programming, metaheuristic algorithms and fuzzy mathematical programming techniques 

combined with Artificial Neural Networks. This paper presents the application of Trigonometric 

Acceleration Coefficients-PSO (TrigAc-PSO), a variation of the Classical Particle Swarm 

optimization algorithm, which is an innovative algorithm originally developed for solving the TP. 

TrigAC-PSO, has demonstrated remarkable success in optimizing various problem domains in crisp 

environments. In this study we explore TrigAc-PSO’s adaptability to handle fuzzy data by solving 

the FTP via instances with classic fuzzy numbers and generalized fuzzy numbers. Additionally, we 

conduct a comprehensive comparison between TrigAC-PSO and established methods, including the 

Northwest Method (NWM), the Least Cost Method (LCM), the Vogel’s Approximation Method 

(VAM) and the Maximum Supply with Maximum Cost (MOMC). Furthermore, TrigAC-PSO is 

compared with recent state-of-the-art algorithms whose results have shown superior performance 

over traditional methods. The comparative analysis demonstrates the efficiency and robustness of 

the proposed method in solving FTP across various scenarios. Through experimental results and 

performance metrics, the superiority of the proposed method is presented by achieving optimal 

solutions. This research contributes to advancing the field of fuzzy optimization while providing 

variable insights into the application of TrigAC-PSO in real-world scenarios.  

Keywords: transportation problem; particle swarm optimization; fuzzy logic; fuzzy costs; variations 

of PSO; fuzzy transportation problem 

 

1. Introduction 

In the realm of logistics and supply chain management, the Transportation Problem (TP) stands 

as a fundamental challenge, aiming to satisfy the distribution of goods from suppliers to consumers 

while minimizing overall transportation costs. Over the years, extensive research has been conducted 

to develop efficient algorithms and methods for solving various transportation problems with precise 

and deterministic values of supply and demand units such as transportation costs.  

The NorthWest corner method (NWC) is one of the methods that discovers a basic feasible 

solution to various transportation problems [1]. The method is named after the fact that it stands from 

the northwest corner cell of the transportation table and proceeds in a systematic manner. Despite 

the fact that is an easy and applicable method, it does not always guarantee an optimal solution [1]. 

The Least Cost Method (LCM) is an alternative method, which focus on selecting the cell with the 

minimum cost during the allocation process [2]. Vogel’s Approximation Method (VAM) is known for 

yielding values relatively close to the optimum, often aligning precisely with it [3]. Although, VAM 

is more complex than the LCM, since it imposes penalties on cells characterized by high 

transportation costs, it tends to achieve more favorable initial solutions than LCM [3].  
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contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 May 2024                   doi:10.20944/preprints202405.0157.v1

©  2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202405.0157.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

However, in real-world scenarios, it is difficult to predict supply and demand quantities 

“apriori” as they are inextricably linked by the season, by the trends, prevailing by consumers and 

the financial circumstances of each corporation. Equivalent situation unfolded with the prices of 

transportation which usually depends on factors such as fluctuating fuel prices, the weather, dynamic 

market conditions and varying transportation routes. To handle with these uncertainties, researchers 

have turned to fuzzy logic, a mathematical framework that allows for the representation of vagueness 

and ambiguity in decision-making processes. Going into further detail, fuzzy set theory provides a 

robust foundation for modeling and analyzing problems with imprecise information, emerged as a 

promising avenue to optimize transportation problems.  

A Fuzzy Transportation Problem (FTP) is a variation of the traditional Transportation Problem 

in which the transportation cost, supply and demand are fuzzy quantities [4]. There are several 

researches relied on fuzzy environment, proving that fuzzy decision-making method is becoming 

paramount. The inspirers of the idea of decision-making in fuzzy environment were Bellman and 

Zadeh in 1970 [5]. Following their study, new findings emerged, with the most recent studies being 

noteworthy to be mentioned. Chanas et al., in 1996, introduced the concept of an optimal solution for 

the TP with fuzzy coefficients represented as fuzzy numbers and developed an algorithm to attain 

the optimal solution [6]. Ahmed, Khan and Uddin presented a new algorithm for finding an initial 

basic feasible solution of the TP when the transportation matrix contains both fuzzy and crisp 

numbers [7]. Another intriguing respective is offered by Chakraborty and Chakraborty in 2009 [8]. 

Their method was based on the minimization of transportation cost as well as time of transportation 

when the demand, supply and shipping cost per unit of the quantities are fuzzy [8]. Basirzadeh, two 

years later, introduced an approach for solving a wide range of transportation problems by 

transforming the fuzzy quantities into crisp values using their new method [9]. During the same year, 

Nagoor Gani et al. suggested their individual version for solving the fuzzy transportation problem 

utilizing the simplex algorithm [10]. Shanmugasundaram also worked on fuzzy exact algorithms. He 

successfully developed the fuzzy version of Vogel’s and MODI methods for obtaining the fuzzy 

initial basic solution and fuzzy optimal solution, respectively [11].  Balasubramanian and 

Subramanian formulated an alternative method for dealing with a special type of FTP, in which the 

cost depicted as triangular fuzzy number. In their research, they utilized ranking methods for 

numbers to evaluate the fuzzy objective values of the objective function and determine the optimal 

alternative [12]. Pandian and Natarajan introduced a novel algorithm known as the Fuzzy Zero Point 

method for finding a fuzzy optimal solution for FTP, where the transportation cost, supply and 

demand, are represented by trapezoidal fuzzy numbers [13]. Gani and Razak formulated a two-stage-

cost-minimizing FTP, where supplies and demands are trapezoidal fuzzy numbers, while the costs 

remain crisp [14]. Malini and Kennedy introduced a method for solving FTP utilizing octagonal fuzzy 

numbers [15]. Ekanayake and Ekanayake, based their research, on the Yager’s robust ranking method 

[16]. They proposed an alternative algorithm for finding an initial basic solution to the fuzzy 

triangular and trapezoidal transportation problem [16].  

In the literature, there are many other surveys consisted of problems which are solved by various 

methods via generalized trapezoidal fuzzy numbers. Specifically, generalized fuzzy numbers extend 

the concept of classical fuzzy numbers by introducing additional parameters to provide a more 

versatile representation of uncertainty. Kaur and Kuman, proposed a new approach for solving FTP 

using generalized fuzzy numbers, which had not been applied till that point [17]. Building upon the 

concept of Kaur and Kuman, Ali Ebrahimnejad, strived to diminish the computational complexity of 

the existing method. It was manifested that the technique applied in his study was simpler and 

computationally novel efficient than the proposed method by Kaur and Kuman [18]. Chen, 

contributed to the previously mentioned research, by proposing the concept of generalized fuzzy 

numbers when there are no prescribed limits on the membership function to the normal form [19].  

FTP approximation is a crucial aspect in the realm of computational intelligence algorithms. 

Various optimization techniques including metaheuristic algorithms and mathematical 

programming approaches have been adapted or developed to handle with fuzzy transportation 

problems effectively. Lin solved the transportation problem with fuzzy coefficients using Genetic 
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Algorithms (GA) [20]. Halder and Jana emphasized on 4-Dimensional multy-item TP through GA 

and Particle Swarm Optimization (PSO) [21]. New approaches in metaheuristics to solve the fixed TP 

in a fuzzy environment developed by Sadeghi-Moghaddamm et al. [22]. Gupta et al. design a hybrid 

GA-PSO algorithm to solve Traveling Salesman Problem (TSP) [23]. Last but not least, Singh and 

Singh, 2021, suggested an extension of PSO for solving FTP [24]. Their research, though, focused on 

solutions presented in a crisp form from fuzzy sets.  

Motivated by the aforementioned applications of metaheuristic algorithms, this study focuses 

on the effective application of PSO to solve the FTP. Twenty eight distinct instances are tacked using 

ten well-established methods found in existing literature. The spotlight will be on the Trigonometric 

Acceleration Coefficients-PSO (TrigAC-PSO) algorithm, a variation of the classical PSO algorithm, 

introduced by Aroniadi and Beligiannis, in 2023 [25]. Extensive experimentation was carried out to 

assess the stability and the performance of the proposed algorithm in navigating transportation 

problems with fuzzy costs.  

Furthermore, various particle configurations were examined to evaluate the TrigAC-PSO’s 

capacity to achieve optimal results, demonstrating its superior performance.  

The contribution of the paper is as follows:  

 According to our knowledge, PSO has already been applied for solving the FTP. However, the 

conducted experiments lack depth in their data analysis, as they predominantly focus on 

individual problem instances rather than a diverse range of scenarios. Introducing a novel 

approach, the TrigAC-PSO is applied for the first time for solving the FTP, highlighting 

exceptional performance across a comprehensive set of instances.  

 Nevertheless, the selected problem instances encompass various types of fuzzy numbers such 

as triangular and trapezoidal fuzzy sets. Moreover, the fuzzy numbers extend beyond 

conventional representations, encompassing both classic fuzzy numbers and fuzzy generalized 

numbers, thereby adding depth and complexity to the study. It is the first time that fuzzy 

generalized numbers are applied to a particle swarm optimization variation.  

 The evaluation of results, from each method, is not based entirely on their attainment of the 

optimal solution. Instead, this study estimates the method’s performance according to the 

degree of membership in which their solutions approach optimality as determined by 

membership functions. Once more, the TrigAC-PSO method demonstrates remarkable 

completeness against other methods.  

The remainder of the paper is organized as follows: Section 2 presents the mathematical 

formulation of TP. Definitions for fuzzy logic and fuzzy numbers are briefly described in Section 3. 

Section 4 presents the FTP. The PSO as well as TrigAC-PSO are represented in detail in section 5. An 

extensive and intriguing study case is conducted in section 6, solving the FTP by using the TrigAC-

PSO algorithm. Subsequently, a comparative analysis is presented, comparing results obtained by 

the application of TrigAC-PSO against well-established methods documented in the respective 

literature. Lastly, conclusive remarks and future recommendations are presented in section 7.   

2. Transportation Problem (TP) 

The Transportation Problem (TP) is a classic optimization problem in the field of operation 

research and logistics. It deals with the optimal allocation of goods or resources from multiple 

suppliers to multiple consumers, in an effort to minimize the overall cost while satisfying supply and 

demand constraints. The TP is formulated as a liner programming problem.  

Let’s denote the following: 

 � = ������ �� ��������� 

 � = ������ �� ��������� 

 �� = �ℎ� �������� �� �������� �, � = 1,2, … � 

 �� = �ℎ� �������� �� �������� �, � = 1,2 … � 

 ��� = ������ �� ����� �� �� ����������� ���� �������� � �� �������� � 

 ��� = ���� �� ������������ 
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The mathematical model of the TP can be formulated as follows 

���� = � � ���

�

���

�

���

∙ ���    (1)

� ���

�

���

≥ �� ��� � = 1, 2, ⋯ , �                                  (2)

� ���

�

���

≤ �� ��� � = 1, 2, ⋯ , �               (3)

��� ≥ 0 ��� � = 1,2, ⋯ , � , � = 1,2, ⋯ , � (4)

Equation (1) outlines the objective function that needs to be minimized. Equation (2) 

encompasses the supply constraints, ensuring that the available quantity at the source points is 

greater than or equal to the demanded quantity at the destination points. Similarly, equation (3) 

ensures that the sum of the quantities transferred from source �� to destination �� does not exceed 

the available quantity. Equation (4) introduces a necessary condition, specifying that the units ��� 

must be positive integers. For the sake of simplicity, we assume a balanced condition model, where 

supplies and demands are equal in this paper. 

As already mentioned, various algorithms and methods, such as the NorthWest Corner Method, 

the Least Cost Method and the Vogel’s Approximation Method have been developed for finding a 

basic feasible solution. In addition, extensions and variations of TP have emerged to enhance the 

model’s relevance across diverse scenarios.  

3. Fuzzy Logic Definitions 

In this section, fundamental definitions will be provided about fuzzy numbers, fuzzy sets and a 

variation of fuzzy numbers known as generalized fuzzy numbers. This variation will be explored in 

greater detail using specific examples in section 6. 

3.1. Fuzzy Sets and Membership Functions 

Definition 1. A fuzzy set �� in the universe of discourse � could be defined as a set of ordered pairs. 

�� = {(�, ���(�) )|� ∈ �} 

where �
�� (�) is called membership function of ��. The membership function  ���(�) defines all the 

information contained in a fuzzy set.  

Definition 2. The fuzzy number � is an extension of a regular number in the sense that it does not refer to 

one single value but rather to a connected set of possible values, where each possible value has each own degree 

of membership between 0 and 1. The membership function �
�� (�) satisfies the following condition [5]: 

i) ���(�) is piecewise continuous. 

ii) ���(�) is convex fuzzy subset. 

iii) ���(�): � → [0,1],  where     

 ���(�)  = 1 �� � �� ������� �� �. 

 ���(�)  = 0 �� � �� ��� �� �. 

 0 < ���(�) < 1 �� � �� ������ �� �. 

Definition 3. A fuzzy number �� = (�, �, �), is said to be a triangular fuzzy number if its membership 

function is given by [5] 
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���(�)  =

⎩
⎪
⎨

⎪
⎧

0, �� � ≤ �              
� − �

� − �
, �� � ≤ � ≤ �

� − �

� − �
, �� � ≤ � ≤ �   

0 , �� � ≥ �             

 

Definition 4. A fuzzy number �� = (�, �, �, �) is said to be a trapezoidal fuzzy number if its membership 

function is given by 

���(�) =

⎩
⎪
⎨

⎪
⎧

� − �

� − �
, � ≤ � < �   

1, � ≤ � ≤ �          
� − �

� − �
, � < � ≤ �    

0,   ��ℎ������      

 

3.2. Generalized fuzzy numbers  

In our comprehensive investigation of the TP involving a broad spectrum of fuzzy numbers, the 

exploration of generalized fuzzy numbers comprises an indispensable aspect of our research. Kaur 

and Kuman [17], had the idea of implying the generalized fuzzy numbers in the TP using exact 

algorithms. In our study, in some of the presented problems the transportation cost will be illustrated 

by generalized fuzzy numbers. Our basic aim is to assess their effectiveness following the 

implementation of TrigAC-PSO algorithm.  

But how are generalized fuzzy numbers defined? Generalized fuzzy numbers extend the 

concept of classical fuzzy numbers by providing more specific details through additional parameters.  

In [19], Chen represented a generalized trapezoidal fuzzy number �� as �� = (�, �, �, �; �),   

where 0 < � ≤ 1 and �, �, �, � are real numbers.  

According to Chen, the membership function of a fuzzy set ��, has the following properties.  

 ���: ℝ → [0, �] is continuous. 

 ���(�) = 0 for all � ∈ (−∞, �]�[�, ∞). 

 ���(�) is strictly increasing on [�, �] and strictly decreasing on [�, �]. 

 ���(�) = �, for all � ∈ [�, �] where 0 < � ≤ 1. 

Definition 5. A fuzzy number �� = (�, �, �, �; �) is said to be a generalized trapezoidal fuzzy number if its 

membership function is provided by    

���(�) =

⎩
⎪
⎨

⎪
⎧� ∙

� − �

� − �
, � ≤ � < �   

�,      � ≤ � ≤ �             

� ∙
� − �

� − �
, � < � ≤ �    

0,   ��ℎ������            

 

3.3. Arithmetic Operations  

In this subsection, the method for defining the two basic mathematical operations, addition and 

multiplication, is provided. The following table (Table 1) defines these operations for triangular fuzzy 

numbers and trapezoidal fuzzy numbers, as well as generalized fuzzy numbers. The operator ⊕ 

denotes addition in fuzzy sets, while the operator ⊗ denotes multiplication [17]. 

Table 1. Arithmetic Operations. 
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Triangular Fuzzy Numbers Trapezoidal Fuzzy Numbers 
Generalized Trapezoidal 

Fuzzy Numbers 

 

Let  ��� = (�� , ��, ��) and ��� =

(��, ��, ��) be two triangular 

fuzzy numbers then  

 

 

 ��� ⊕ ��� = (�� + ��  , �� +
��  , �� + ��  ) 

 

 � ⊗ ��� = (��� , ��� , ��� ) 

 

 

Let  ��� = (�� , ��, ��, ��) and ��� =

(��, ��, ��, ��) be two trapezoidal 

fuzzy numbers then  

 

 

 ��� ⊕ ��� = (�� + ��, �� +

��  , �� + ��  , �� + ��  ) 

 

 � ⊗ ��� = (��� , � �� , ��� , ��� ) 

 

 

Let  ��� = (�� , ��, ��, ��;  ��) 

and ��� = (��, ��, ��, ��;  ��) be 

two generalized trapezoidal 

fuzzy numbers then  

 

 ��� ⊕ ��� = (�� + ��  , �� -
+ ��  , �� + ��  , �� +

��  ; min (��, ��)) 

 

 � ⊗ ��� =
(��� , � �� , ��� , ��� ; ��) 

 

These arithmetic operations offer a systematic approach to combining and manipulating 

different types of fuzzy numbers, preserving their essential attributes of fuzziness and uncertainty 

that are fundamental to fuzzy logic. By performing addition and multiplication on fuzzy numbers, 

we generate new fuzzy numbers that encapsulate the collective or altered characteristics of the 

original fuzzy sets, as defined by their membership functions. This method empowers us to flexibly 

handle and analyze uncertain or imprecise data, enhancing our ability to model complex systems and 

make informed decisions across various domains. The numbers ��� and ��� are elements of the set of 

fuzzy numbers, while λ belongs to the set of real numbers. 

4. Fuzzy Transportation Problem 

The Fuzzy Transportation Problem (FTP) is an extension of the classical TP which introduces 

fuzzy sets and fuzzy numbers for representing transportation cost, supplies and demands [26]. 

Solving the FTP involves developing mathematical models and algorithms, which could affectively 

deal with the fuzzy nature of the input data.  

In our study, we treat the supply and demand values as crisp numbers, whereas the 

transportation costs are represented as fuzzy sets. The solution of the objective function �� is also 

depicted as a fuzzy number.  

Let ���� be the fuzzy cost of transporting one unit of product from warehouse � to consumer �. 

Under changing circumstances, the mathematical model of the FTP could be structured is the 

following. 

����� = � � �̃��

�

���

�

���

⨂���  (5)

    � ���

�

���

≥ �� ��� � = 1, 2, ⋯ , � (6)

 � ���

�

���

≤ �� ��� � = 1, 2, ⋯ , � (7)

��� ≥ 0 ��� � = 1, ⋯ , � , � = 1, ⋯ , � (8)

5. Particle Swarm Optimization (PSO) 

The Particle Swarm optimization (PSO) algorithm stands out as a contemporary and innovative 

heuristic approach, gaining widespread popularity over the years due to its straightforward 

implementation and ability to yield satisfactory solutions [27]. PSO algorithm is inspired from the 
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collective behavior of animals, studying their interactions to function as a strong approach handling 

optimization challenge in various applications [28].  

In the PSO framework, every potential solution is represented as a particle, and the complete set 

of particles constitutes the algorithm’s population, known as swarm. The optimization process 

heavily relies on collaboration and exchange of information, with the particles improving their 

effectiveness through active cooperation within the swarm. Sharing information within the swarm, 

particles are empowered to consistently enhance their performance, striving towards the optimal 

efficiency. In finer detail, each particle modifies its movement according to its own experience and 

its neighboring particle experience.   

A particle is defined by three essential parameters: 

 Position, which indicates its location in the search space 

 Velocity, which dictates the direction and extent of particles movement 

 Its previous best position, which operates as a memory mechanism for the positions that the 

particle has already “visited”  

Consequently, in n-dimensional search space, each particle of the swarm is represented by ��� =

����,,���, ⋯ , ���� and the equation of its position is as follows: 

���(� + 1) = ���(�) + ���(� + 1), � = 1, 2, � and � = 1,2, … �   (9)

where 

 ���(� + 1) is its current position 

 ���(�) is its previous position 

 ���(� + 1) is the velocity in the current iteration (� + 1) 

In sequence, the particle’s velocity is represented as ���  and its expression is determined by the 

following equation: 

���(� + 1) = ����(�) +  ���� ������� � (�) − ��� (�)� +

���� ������� � (�) − ��� (�)� , 

� = 1,2, … � and � = 1,2, … �  

(10)

 where ���(� + 1) represents the velocity of the particle in the current iteration, while �(�) is the 

velocity in the previous iteration.   

 � denotes the inertia weight, balancing global and local exploitation by incorporating memory 

of the previous particles direction to prevent major changes in suggested directions.  

 �� and �� are variables, randomly generated from uniform distribution, in range [0, 1]. 

 �� and �� are defined as acceleration coefficients, impacting the efficiency of the PSO method. 

More precisely, �� signifies the particle’s confidence in itself while �� expresses the particle’s 

confidence in the swarm. 

 ������� (�) denotes the best position of the particle up to iteration �, while ������� (�) is the 

finest position of the entire swarm up to the same iteration.  

 The term  ���� ��������(�) − ��� (�)� is known as the cognitive component, acting as a form of 

memory storing the particle’s best previous positions. The cognitive component reflects the 

tendency of the particles to return to their best positions.  

 The term ����  ��������(�) − ��� (�)� is known as the social component. In this context, particles 

follow the guidance of the swarm’s best position, incorporating knowledge acquired from the 

swarm.   

The acceleration coefficients �� and ��, along with random variables �� and ��, significantly 

influence the evolution of the cognitive and social components, determining the velocity value, which 

is crucial for the search direction of the particles and the convergence of the algorithm. Furthermore, 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 May 2024                   doi:10.20944/preprints202405.0157.v1

https://doi.org/10.20944/preprints202405.0157.v1


 8 

 

inertia weight plays a key role in the process of providing balance between exploration and 

exploitation. Periodically, several variations have been developed and introduced, successfully 

attaining a dynamic approach to the optimal solution by striking a balance between algorithm’s 

exploration and exploitation searches.  

In our previous research [25], we introduced two new variations. They succeeded in finding the 

optimal solution under extensive experimental analysis and testing of different combinations of 

values for variables ��, �� and �.  

5.1. Trigonometric Acceleration Coefficient – Particle Swarm Optimization (TrigAC-PSO) 

Trigonometric Acceleration Coefficient – Particle Swarm Optimization (TrigAC-PSO), has been 

proved to be the variant yielding the most favorable outcomes in solving the Transportation Problem 

[25]. In fact, the TrigAC-PSO variation underwent testing across a set of 32 instances, and the 

outcomes were compared with widely recognized exact methods and some preceding variations of 

the PSO algorithm. In comparison to all other methods, the TrigAC-PSO variation achieved the best 

results [25]. 

In TrigAC-PSO, initially, each particle is guided by the collective knowledge and experience 

acquired by the swarm, were the value of �� significantly exceeds the value of ��. Subsequently, 

leveraging the learning mechanism, each particle formulates its unique strategy and accumulates 

individual experience, with the value of ��  decreasing while the value of ��  increases (refer to 

Equations 11 and 12). The adjustment of �� and �� continues until both parameters are equalized to 

2 in the algorithm’s last generation.  

The subsequent equations are employed to compute the cognitive and social acceleration 

parameters [25] :  

�� =
���

2
+ sin

2��� ∙ �

����

 ∙
�

2
 (11)

�� = ��� + ���
��� ∙ � ∙ �

2 ∙ ����

−
1

2
    (12)

 In the initial iteration, the personal acceleration value ��� , is set to 0.5, while the social 

acceleration value ���, is set to 3.5. 

 In the last iteration of the algorithm, both the personal ��� and social ��� acceleration values 

are adjusted to 2.  

 The inertia weight (w) is dynamic and depends on the current iteration t and the maximum 

number of iterations t��� and is defined by the following equation: 

� =
���� − �

����

 (13)

6. Case Studies and Experimental Results 

In this section, the TrigAC-PSO algorithm will be utilized to solve the Fuzzy Transportation 

Problem. A total of twenty-eight numerical examples will be resolved with results derived from four 

other established methods. To ensure a thorough investigation, the numerical examples encompass 

both triangular and trapezoidal fuzzy numbers. Moreover, the inclusion of generalized fuzzy 

numbers in our domain adds a distinctive dimension, making the application of our variation 

particularly intriguing in this context.  

Initially, the problems will be evaluated in comparison to methods whose reliability remains 

consistent over the years. In this context, the TrigAC-PSO algorithm will be assessed alongside the 

NorthWest Method, the Least Cost Method, the Vogel’s Approximation Method and the Maximum 

Supply with Minimum Cost Method (MOMC) which was introduced in 2015 by Giancarlo de Franca 

Aguiar et al. [29]. Their classification technique showed spectacular computation advantage 

characterized by higher processing speed and less use of memory. Both MOMC and the previously 

mentioned methods have been employed in attempting to solve the fuzzy transportation problem. 
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This poses a challenge for us, as we strive to optimize the values of the given problems using the 

TrigAC-PSO.  

At this stage, it would be beneficial to make a reference to the initialization process.  

In the initial steps of Algorithm 1, two vectors, namely ������ and ������, are created as 

input (line 1 and 2). Subsequently, variables � and � are calculated, representing the values of 

parameters ������  and ������  respectively. Then, a matrix is generated containing random 

Monte Carlo real numbers (line 7). Line 10 rounds the elements of the candidate solution matrix to 

the nearest integer, as the commodity quantities must be non-negative integers. The Subsequent lines 

of the algorithm commerce a process of realignment and redistribution of matrix � to align with the 

specified supply and demand amounts. In lines 11 and 12, the sum of all elements in each row of 

matrix L is stored in vector ������, and similarly, the sum of all elements in each column is stored 

in vector ������ . Then, two new vectors, �  and � , are created by subtracting ������  from 

������ and ������ from ������, respectively. Following this, for each cell in the final matrix, any 

discrepancies are identified and adjusted accordingly, ensuring that the excess amounts in vectors s 

and d are zeroed out. 

Algorithm 1: Initialization algorithm 

1. Define Supply = [��, ��, … , ��] 

2. Define Demand = [��, ��, … , ��] 

3. Define m = length (Supply) 

4. Define n = length (Demand) 

5. Initialize a solution matrix I = zeros (m, n) 

6. Initialize a supporting table B = zeros (� × �) 

7. Generate a new random number x, x=-log (rand(m*n, 1) 

8. Set x=x / Sum(x) 

9. Take a matrix L=reshape (B*x, [m, n]) 

10. Set solution as a matrix to round each element of L to the nearest 

    integer less than or equal to that element of L as Solution = floor [L] 

11. Set Sumrow as the sum of the elements of all the rows. 

12. Set Sumcol as the sum of the elements of the Columns. 

13. Set s=Supply-Sumrow and d=Demand-Sumcol 

14. for i=1 to m do 

15.   for j=1 to n do 

16.     if s(i) smaller or equal to d(j) 

17.       ww=min (d(i), d (j) ) 

18.       main (i,1)=main (i, j)+ww 

19.       d (j)=d(j)-S(i) 

20.     else if d (j) smaller than S(i) 

21.       ww=min (s(i), d(j)) 

22.       main(i,j)=main (i,j)+ww 

23.       s(i)=s(i)-d(j) 

24.     end 

25.   end 

26. end 

27. Return L =Solution 

The output of Algorithm 1 is a matrix comprising the initial solution, known as Initial Basic 

Feasible Solution (IBFS). Subsequently, the PSO algorithm is employed to find the particle achieving 
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the optimal position and its corresponding optimal transportation cost. The supply and demand 

values are crisp values, whereas transportation cost is depicted using fuzzy sets. However, the 

expanded positions of the particles, while adhering to demand and supply constraints, exhibited 

negative or fractional values. Such values are incompatible with the nature of the solution, which 

necessitates quantities represented solely by positive integers. Consequently, necessary adjustments 

were implemented to ensure the integrity of the particle’s positions. These sub-algorithms were 

presented in 2023 by Aroniadi and Beligiannis [25]. To derive the final solution, fuzzy operations 

outlined in Table 1, will be applied, culminating in the representation of the final iteration cost as a 

fuzzy number.  

The entire algorithmic approach is implemented utilizing MATLAB R2021b.  TrigAC-PSO, was 

tested on a set of different dimensional problems, both triangular and trapezoidal fuzzy sets as 

classical and generalized fuzzy numbers. Table 2, presents the 28 test instances that are examined in 

our research [16,18,26,30–40].  

Table 2. Details of the 28 test instances of the FTP. 

N

o 
From Journal 

Nam

e 

Problem 

Size 
Type 

Optimal 

Solution 

1 Ebrahimnejad (2014) 
Pr. 

01 
3·3 

Generalized Trapezoidal Fuzzy 

Number 
64.35 

2 
Kumar and Subramanian 

(2018) 

Pr. 

02 
4·4 Classic Triangular Fuzzy Number 853.35 

3 Farikhin et al. (2020) 
Pr. 

03 
3·4 Classic Triangular Fuzzy Number 817.17 

4 
Mathur and Srivastava 

(2020) 

Pr. 

04 
3·4 

Generalized Trapezoidal Fuzzy 

Number 
196 

5 Srivastava and Bisht (2018) 
Pr. 

05 
3·3 Classic Triangular Fuzzy Number 166 

6 Srivastava and Bisht (2018) 
Pr. 

06 
3·4 Classic Triangular Fuzzy Number 101 

7 Sam'an et al. (2018) 
Pr. 

07 
3·3 

Classic Trapezoidal Fuzzy 

Number 
1770 

8 
Pandian and Natarajan 

(2011) 

Pr. 

08 
3·4 

Classic Trapezoidal Fuzzy 

Number 
199 

9 Mathur et al. (2016) 
Pr. 

09 
3·3 

Classic Trapezoidal Fuzzy 

Number 
155.25 

10 Singh and Saxena (2017) 
Pr. 

10 
3·4 

Classic Trapezoidal Fuzzy 

Number 
126 

11 
Ekanayake and Ekanayake 

(2023) 

Pr. 

11 
4·4 Classic Triangular Fuzzy Number 294 

12 
Ekanayake and Ekanayake 

(2023) 

Pr. 

12 
3·4 Classic Triangular Fuzzy Number 65.8 

13 
Ekanayake and Ekanayake 

(2023) 

Pr. 

13 
2·3 Classic Triangular Fuzzy Number 7735.5 

14 
Ekanayake and Ekanayake 

(2023) 

Pr. 

14 
4·4 Classic Triangular Fuzzy Number 130.68 

15 Srinivasan et al. (2020) 
Pr. 

15 
6·6 Classic Triangular Fuzzy Number 2170 

16 
Ekanayake and Ekanayake 

(2023) 

Pr. 

16 
3·3 

Classic Trapezoidal Fuzzy 

Number 
951.25 

17 
Ekanayake and Ekanayake 

(2023) 

Pr. 

17 
4·3 

Classic Trapezoidal Fuzzy 

Number 
821.25 
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18 
Ekanayake and Ekanayake 

(2023) 

Pr. 

18 
3·4 Classic Triangular Fuzzy Number 149 

19 
Ekanayake and Ekanayake 

(2023) 

Pr. 

19 
3·4 

Classic Trapezoidal Fuzzy 

Number 
67.25 

20 
Hussain and Jayaraman 

(2014) 

Pr. 

20 
3·3 Classic Triangular Fuzzy Number 3640.56 

21 
Hussain and Jayaraman 

(2014) 

Pr. 

21 
4·4 

Classic Trapezoidal Fuzzy 

Number 
3844 

22 
Ekanayake and Ekanayake 

(2023) 

Pr. 

22 
3·3 Classic Triangular Fuzzy Number 295.9 

23 
Ekanayake and Ekanayake 

(2023) 

Pr. 

23 
3·3 Classic Triangular Fuzzy Number 551.03 

24 Ebrahimnejad (2014) 
Pr. 

24 
4·6 

Generalized Trapezoidal Fuzzy 

Number 
4300.2 

25 Kumar (2016) 
Pr. 

25 
3·4 

Classic Trapezoidal Fuzzy 

Number 
68 

26 Kumar(2016) 
Pr. 

26 
3·4 

Classic Trapezoidal Fuzzy 

Number 
141 

27 Thota and Raja (2020) 
Pr. 

27 
3·3 

Generalized Trapezoidal Fuzzy 

Number 
91.45 

28 Thota and Raja (2020) 
Pr. 

28 
3·4 

Generalized Trapezoidal Fuzzy 

Number 
75.6 

In Τable 3 and Figure 1, provided bellow, the performance of both exact methods and Trig-PSO 

approach across 20 Monte Carlo runs is showcased. In every cell, the best value of each method is 

depicted using bold for the cases where the algorithms achieved the optimal solution. The last column 

provides the optimal solution for each numerical instance. The values highlighted in bold correspond 

to the optimal ones. 

 

Figure 1. Triangular Fuzzy number. 

 

Figure 2. Trapezoidal Fuzzy number. 

Table 3. The optimal solution of each method for the 28 test instances. 

Pr NWC LCM VAM MOMC TrigAC-PSO Optimal  
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01 64.35 67.6 67.6 67.6 65.1 64.35 

02 1046.67 870.05 853.35 855 853.35 853.35 

03 861.53 894.66 817.17 1000.67 817.17 817.17 

04 233 266.5 268 266.5 196 196 

05 166 190 172 172 166 166 

06 125 120.5 101 105 101 101 

07 2025 1790 1770 1800 1770 1770 

08 233 223 203 199 199 199 

09 155.25 178.25 159.25 164.5 155.25 155.25 

10 144.25 140 130 126 126 126 

11 376 294 294 375 294 294 

12 110.67 65.8 65.8 66 65.8 65.8 

13 7736.67 7735.5 7735.5 7736.67 7735.5 7735.5 

14 196 130.68 130.68 130.68 130.68 130.68 

15 4285 2.455 2.310 2620 2261 2170 

16 1035 971.25 951.25 951.25 951.25 951.25 

17 967.5 887.5 821.25 826.25 821.25 821.25 

18 176 152 149 150 149 149 

19 93 67.25 67.25 77 67.25 67.25 

20 5070.33 3740.58 3644.58 3944.34 3640.56 3640.56 

21 4172 4172 4091 3932 3844 3844 

22 486.67 339.92 295.9 340 295.9 295.9 

23 592.67 557.71 557.71 581 551.03 551.03 

24 6549.9 7567.8 4414.95 4452.9 4386.45 4300.2 

25 93 73 70 68 68 68 

26 169 148 141 141 141 141 

27 108.8 97.5 97.45 97.5 91.45 91.45 

28 134.175 95 75.6 95 82.5 75.6 

 

Figure 3. The number of equal solutions that every method achieved. 

As illustrated, the NW method attains optimal solutions in 3 out of 28 test instances (10.71%). 

LCM achieved the optimal solution in 5 out of 28 instances (17.86%). VAM surpasses the previous 

methods, securing optimal solution in 15 out of 28 instances (53.57%). Despite being introduced later 

than the preceding methods, MOMC fell short of exceeding Vogel’s method, as it succeeded in 
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identifying the optimal solution in 6 instances (21.43%). Notably, TrigAC-PSO method emerges as 

the most efficient, achieving optimal results in 24 out of 28 instances (81.71%). 

The deviation measurement qualities the extent of variation between observed values and 

expected or target values. It provides a numerical representation of how much individual data values 

differ from the average or desired outcome and comprises a metric of each algorithm’s stability. 

Deviation is given by the following formula: 

��� =
��� − �������

�������
 (14)

where ���  is the current solution. 

Table 4. The deviation (dev) of the methods for the 28 test instances. 

 NWM LCM VAM MOMC TrigAC-PSO 

Pr.01 0 0.05050505 0.05050505 0.05050505 0.011655011 

Pr.02 0.22654245 0.01956993 0 0.001933556 0 

Pr.03 0.05428491 0.094827269 0 0.224555478 0 

Pr.04 0.18877551 0.359693877 0.36734694 0.359693877 0 

Pr.05 0 0.014457831 0.03614458 0.036144578 0 

Pr.06 0.237623762 0.193069306 0 0.03960396 0 

Pr.07 0.144067796 0.011299435 0 0.016949152 0 

Pr.08 0.170854271 0.120603015 0.0201005 0 0 

Pr.09 0 0.148148148 0.0257649 0.05958132 0 

Pr.10 0.144841269 0.111111111 0.03174603 0 0 

Pr.11 0.278911564 0 0 0.275510204 0 

Pr.12 0.681914893 0 0 0.003039514 0 

Pr.13 0.000151251 0 0 0.000151251 0 

Pr.14 0.499846954 0 0 0 0 

Pr.15 0.974654377 0.131336405 0.06060606 0.207373271 0.041935483 

Pr.16 0.088042049 0.021019442 0 0 0 

Pr.17 0.178082192 0.080669711 0 0.00608828 0 

Pr.18 0.181208054 0.020134228 0 0.006711409 0 

Pr.19 0.382899628 0 0 0.144981413 0 

Pr.20 0.392733535 0.027523238 0.00110423 0.083443207 0 

Pr.21 0.085327784 0.085327784 0.06425598 0.02289282 0 

Pr.22 0.644711051 0.148766475 0 0.149036837 0 

Pr.23 0.075567573 0.012122752 0.01212275 0.054389053 0 

Pr.24 0.501813869 0.73852379 0.00533696 0.035509976 0.020057207 

Pr.25 0.367647059 0.073529412 0.02941176 0 0 

Pr.26 0.177304965 0.04964539 0 0 0 

Pr.27 0.189721159 0.06615637 0.06560962 0.06615637 0 

Pr.28 0.774801587 0.256613757 0 0.256613757 0.091269841 

Average 0.27294034 0.101237633 0.02750198 0.075030869 0.005889912 

Based on the data presented in Table 4, it is apparent that VAM, MOMC and TrigAC-PSO appear 

to be more efficient than the other methods. Therefore, the solutions achieved by NWC differ from 

the optimal solution by 27.3%, the results of LCM by 10.12% and MOMC by 7.5%. Vogel’s 

approximation method presented higher levels of efficiency since the average of the export solutions 

differ from the optimal solutions by 2.7%. TricAC-PSO method is now highlighted as the most 

efficient method, surpassing all other methods, with a percentage close to zero. This indicates its 

remarkable stability and accuracy in predicting the optimal value with near-perfect precision.  
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In Boolean (Classical) logic, transportation costs are represented as precise, fixed values. In fuzzy 

logic, transportation costs as supply and demand quantities are represented as approximate values, 

allowing for gradual transitions between costs and shipments.  

The pivotal aspect of our study was the visual representation of the final solution using fuzzy 

numbers. In classical logic, a solution is deemed optimal only if its value aligns precisely with that of 

the optimal solution. However, the scientific quandary arises: How equitably is to discard other 

solutions even when their deviation from the optimal one is infinitesimal? 

This quandary sparked our original concept: to represent the costs incurred by exact methods 

using fuzzy sets and to ascertain the degree of truth, inherent in each algorithm’s solution belonging 

to this set. Consequently, every solution is now endowed with its unique value, irrespective of its 

optimality status. The binary classification of classical logic, where 0 signifies non-optimality and 1 

denotes optimality, is supplanted by a continuum with the interval [0,1], wherein each number 

signifies the solution’s degree of belongingness to the fuzzy set. In this study, the Gaussian 

membership function will be employed to ascertain the truthfulness of each solution.  

The Gaussian membership function, is defined by a bell-shaped curve characterized by its mean 

(�) and standard deviation (�). The function assigns a degree of membership to each element in a 

fuzzy set, based on its proximity to the mean. Mathematically, the Gaussian membership function is 

given by the formula: 

�(�) = �
�(���)�

���  (15)

where: 

 � is the input value. 

 μ is the mean of the fuzzy numbers. 

 σ is the standard deviation of the fuzzy numbers. 

The following table (Table 5) shows the degree of truth for each solution of the 28 problems.  

Table 5. The Gaussian Membership Function for the 28 test instances. 

No NWM LCM VAM MOMC TrigAC-PSO 

Pr. 01 1 0.9767 0.9767 0.9767 0.995 

Pr. 02 0.7115 0.9985 1 0.9999 1 

Pr. 03 0.6022 0.3488 1 0.0304 1 

Pr. 04 0.7844 0.4699 0.4553 0.4699 1 

Pr. 05 1 0.9137 0.9944 0.9944 1 

Pr. 06 0.614 0.7183 1 0.9862 1 

Pr. 07 0.7561 0.9983 1 0.9961 1 

Pr. 08 0.8319 0.8319 0.9949 1 1 

Pr. 09 1 0.9981 0.9697 0.9868 1 

Pr. 10 0.7483 0.8445 0.9862 1 1 

Pr. 11 0.6045 1 1 0.6139 1 

Pr. 12 0 1 1 1 1 

Pr. 13 0.998 1 1 0.998 1 

Pr. 14 0.2271 1 1 1 1 

Pr. 15 0 0.1311 0.6147 0.006 0.987 

Pr. 16 0.9947 0.9951 1 1 1 

Pr. 17 0.9974 0.9709 1 0.9995 1 

Pr. 18 0.4868 0.9911 1 0.9999 1 

Pr. 19 0.7559 1 1 0.9692 1 

Pr. 20 0.4762 0.9924 0.9999 0.9665 1 

Pr. 21 0.9999 0.9999 0.9999 0.9999 1 

Pr. 22 0.9718 0.9921 1 0.992 1 

Pr. 23 0.9093 0.9967 0.9967 0.9514 1 
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Pr. 24 0 0 0.9995 0.993 0.9999 

Pr. 25 0.2235 0.9893 1 1 1 

Pr. 26 0.259 0.975 1 1 1 

Pr. 27 0.019 0.9998 0.9998 0.9997 1 

Pr. 28 0 0 1 0 0.993 

Average 0.606125 0.826146 0.963846 0.854621 0.999103571 

We notice that among the methods that were unable to precisely identify the optimal solution, 

they achieved values that were remarkably close to the optimal cost. The degree of truth studies how 

closely the solution obtained by each method approaches our optimal solution offering a clearer 

perspective. When the degree of truth is 1, the  The NWM solutions exhibited optimality with a 

degree of truth 0.6061 (equivalent to 60.61% optimality). In contrast, both LCM and MOMC attained 

optimality with a substantially higher degree, scoring 0.8261 (82.61% optimality) and 0.8546 (85.46% 

optimality) respectively, surpassing the NWM. While VAM succeeded in discovering the optimal 

solution in half of the instances, its remaining solutions were notably proximal, as VAM achieved the 

optimal with degree of truth as high as 0.9638 (96.38%). Yet again, TrigAC-PSO stands out 

significantly, having achieved the optimal solution in 24 out of 28 problems. However, in instances 

where TrigAC-PSO didn’t achieve the desired results, its attained solution diverged slightly from the 

optimal one, as indicated by the Gaussian membership function. TrigAC-PSO’s precision is evident, 

reaching the optimal solution with a remarkable truth score of 0.9991 (99.91% optimality).  

The selection of these methods was deliberate, guided by two principal factors. Firstly, they were 

chosen because they have been established for years verified their reliability. Secondly, our intention 

was to demonstrate a compelling narrative: that despite their perceived obsolescence and occasional 

failure to attain optimality, these methods possess the potential for resurgence and redemption 

through the fuzzy sets, transcending the boundaries of classical logic to reclaim their erstwhile 

prominence.  

Upon culmination of the exhaustive comparative analysis involving the aforementioned 

methods, it become apparent that TrigAC-PSO appeared as the best choice, distinguishing itself as 

the quintessential option. In a quest to examine further its rustiness and precision, TrigAC-PSO 

underwent additional tests against contemporaneous methods introduced concurrently. Firstly, the 

proposed algorithm is tested on twelve instances, from Table 2, against the algorithm introduced by 

Ekanayake and Ekanayake, in 2023 [16]. This algorithm was based on the Yager’s robust ranking 

method [17].  

But how is a ranking function defined? 

An efficient approach for comparing the fuzzy numbers is by the use of the racking function 

ℜ: �(�) → ℝ where �(ℜ) is a set of fuzzy numbers defined on a set of real numbers, which convents 

a fuzzy number into a crisp value, under specific circumstances [17].  

The following table (Table 6) gives the formula of the ranking functions, which have been 

applied in this manuscript.  

Table 6. The formula of Ranking Functions. 

 

Ranking function for two classical fuzzy 

numbers [7] 

Ranking function for generalized trapezoidal 

fuzzy numbers [18] 

 Let �� = (�, �, �) a triangular fuzzy number 

then, 

����� =
� + � + �

�
 

 

 Let � = (�, �, �, �) a trapezoidal fuzzy 

number 

then, 

 Let  

       ��� = (��, ��, ��, ��; ��)  

and 

       ��� = (��, ��, ��, ��; ��) 

 

be two generalized trapezoidal fuzzy numbers 

and � = min(��, ��). 

Then  
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����� =
� + � + � + �

�
 

 

 

ℜ����� =
� ∙ (�� + �� + �� + ��)

4
 

and 

ℜ����� =
� ∙ (�� + �� + �� + ��)

4
 

The subsequent table (Table 7), presents the outcomes of the solutions derived from both 

TrigAC-PSO and the research conducted by Ekanayake and Ekanayake [16].  

Table 7. Comparison between Ekanayake and TrigAC-PSO method. 

Pr. 
Ekanayake Optimal 

Solution 

TrigAC-PSO Optimal 

Solution 

Ekanayake 

Membership Value 

TrigAC-PSO 

Membership Value 

Pr. 

02 
(400, 845, 1315) (400, 845, 1315) 1 1 

Pr. 

11 
(144, 285, 453) (144, 285, 453) 1 1 

Pr. 

12 
(20, 89, 89) (20, 89, 89) 1 1 

Pr. 

13 
(5960, 7620, 9630) (5960, 7620, 9630) 1 1 

Pr. 

14 
(64, 124, 206) (64, 124, 206) 1 1 

Pr. 

16 
(370, 735, 1145, 1595) (370, 715, 1085, 1635) 0.9951 1 

Pr. 

17 
(400, 640, 875, 1370) (400, 640, 875, 1370) 1 1 

Pr. 

18 
(105, 150, 195) (104, 149, 194) 0.9999 1 

Pr. 

22 
(148, 322, 418) (148, 322, 418) 1 1 

Pr. 

23 
(347, 566, 760) (347, 554, 752) 0.995 1 

Pr. 

25 
(12, 55, 88, 117) (12, 55, 88, 117) 1 1 

Pr. 

26 
(52, 106, 176, 230) (52, 106, 176, 230) 1 1 

Once more, TrigAC-PSO algorithm stands out by attaining the optimal solution with a 

membership degree of 1, demonstrating its superiority. Similarly, the method of Ekanayake and 

Ekanayake yield impressive outcomes, with an aggregated membership degree reaching 0.9995.  

At this juncture, it is intriguing to delve into the realm of generalized fuzzy numbers, where the 

application of a metaheuristic approach to the FTP marks a pioneering endeavor. Five problems, from 

Table 2, will be subjected to comparison against TrigAC-PSO, shedding light at the algorithm’s 

adaptability and efficacy in undertaking challenges modelled by fuzzy generalized numbers 

[17,18,31,40]. 

Table 8. Comparison TrigAC-PSO among four established methods. 

Pr. Ebrahimnejad Thota and Raja 
Kaur and 

Kuman 
Mathur et al. TrigAC-PSO 

Pr. 01 
(117, 205, 352, 613; 

0.2) 

(117, 205, 35, 613; 

0.2) 

(147, 220, 382, 

603; 0.2) 

(197, 240, 382, 643; 

0.2) 

(147, 220, 382, 553; 

0.2) 

Pr. 04 
(315, 810, 1220, 

1575; 0.2) 

(318, 813, 1220, 

1582; 0.2) 

(315, 810, 1220, 

1575; 0.2) 

(415, 970, 1460, 

1865; 0.2) 

(315, 810, 1220, 

1575; 0.2) 
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Pr. 24 
(5148, 6475, 7802, 

9244; 0.6) 

(5148, 6475, 7802, 

9244; 0.6) 

(5307, 6794, 

7.872, 9460; 0.6) 

(5307, 6794, 7.872, 

9460; 0.6) 

(3170.4, 4052.4, 

4717.2, 5628; 0.6) 

Pr. 27 
(376, 436, 474, 543; 

0.2) 

(376, 436, 474, 

543; 0.2) 

(413, 459, 506, 

572; 0.2) 

(411, 455, 509, 563; 

0.2) 

(404, 460, 502, 559; 

0.2) 

Pr.28 
(294, 348, 408, 462; 

0.2) 

(294, 348, 408, 

462; 0.2) 

(294, 348, 408, 

462; 0.2) 

(294, 348, 408, 462; 

0.2) 

(294, 348, 408, 462; 

0.2) 

The ensuing table (Table 8) illustrates the outcomes generated by four distinct methods applied 

to five of the aforementioned problem sets. These solutions are depicted as fuzzy numbers, 

subsequently subjected to defuzzification through the ranking function (Table 6). This process 

facilitates an in-depth analysis of the deviation from the optimal values, as shown in the Table 9, thus 

enhancing comprehension for the reader. 

Table 9. The deviation (dev) of the methods for 5 numerical examples. 

Pr. Ebrahimnejad Thota and  Raja Kaur and Kuman Mathur et al. TrigAC-PSO 

Pr.01 0 0 0.0505 0.136 0.0117 

Pr.04 0 0.0028 0 0.2015 0 

Pr.24 0 0 0.0278 0.0278 0.0213 

Pr.27 0 0 0.0662 0.6617 0.0524 

Pr.28 0 0 0 0 0 

Average 0 0.00056 0.0289 0.2054 0.01708 

Upon reviewing the table above, the following conclusions can be drawn: 

 Ebrahimnejad, so as Thota and Raja’s approach exhibited zero deviation from the optimal 

solution, establishing it as the preferred method for solving the TP involving fuzzy generalized 

numbers.  

 TrigAC-PSO’s performance in this scenario was exceptional, yet again. This method reached 

almost the ultimate solution with a deviation rate of 1.71%. 

 Kaur and Kuman’s method demonstrated commendable efficiency with a deviation from the 

optimum standing at 2.89% 

 Conversely, the outcomes derived from Mathur’s method exhibited a substantial deviation from 

the optimal solution, amounting to 20.54% 

Based on these assessments it is apparent that our method, TrigAC-PSO algorithm, ensures 

maximum accuracy, completeness and stability, adeptly handling both the classical TP and the more 

intricate FTP with remarkable proficiency. 

Metaheuristic algorithms consistently emerge as optimal solutions for optimization problems 

with the PSO algorithm standing out as particularly advantageous. In our innovative variation, 

TrigAC-PSO, we have methodically designed the cognitive and social component to align with our 

philosophy, prioritizing the particle’s assimilation of swarm behavior and collective experience to 

follow its own decision-making process. Additionally, the inertia weight �, intricately intertwines 

with the number of iterations outlined in our algorithm. The remaining consideration is to assess 

whether the number of particles, comprising our swarm, influences the evolution and quality of our 

solutions. The solutions for 28 problems were figured using 20, 35 and 50 particles, generated by 

Algorithm 1. These solutions are summarized in the table below (Table 10). The highlighted 

indications show the cases where the method failed to identify the optimal solution but achieved a 

value very close to it. 

Table 10. Solutions for 20, 35, 50 particles 

Pr. 20 Particles 35 Particles 50 Particles Optimal 

01 65.1 65.1 65.1 64.35 

02 853.35 853.35 853.35 853.35 

03 817.17 817.17 817.17 817.17 

04 200.5 196 196 196 
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05 166 166 166 166 

06 101 101 101 101 

07 1770 1770 1770 1770 

08 199 199 199 199 

09 155.25 155.25 155.25 155.25 

10 126 126 126 126 

11 294 294 294 294 

12 65.8 65.8 65.8 65.8 

13 7735.5 7735.5 7735.5 7735.5 

14 130.68 130.68 130.68 130.68 

15 2327 2330 2261 2170 

16 951.25 951.25 951.25 951.25 

17 821.25 821.25 821.25 821.25 

18 149 149 149 149 

19 67.25 67.25 67.25 67.25 

20 3640.56 3640.56 3640.56 3640.56 

21 3844 3844 3844 3844 

22 295.9 295.9 295.9 295.9 

23 551.03 551.03 551.03 551.03 

24 4389.6 4386.45 4399.35 4392 

25 68 68 68 68 

26 141 141 141 141 

27 96.25 96.25 96.25 96.25 

28 82.5 82.5 82.5 75.6 

A briefly examination reveals minimal deviation among solutions, often rendering them almost 

identical. However, a more thorough examination was deemed necessary. Each of the 28 problems 

was subjected to runs, with varying number of particles, conducting 20 tests for each instance.  

Table 11. The accuracy of the 28 problems for 20, 35 and 50 particles. 

Pr. 20 Particles 35 Particles 50 particles 

01 0.95 1 1 

02 1 1 1 

03 0.95 1 0.95 

04 0.05 0 0.05 

05 1 1 1 

06 0.15 0.75 0.9 

07 0.4 0.6 0.7 

08 1 0.75 0.9 

09 1 1 1 

10 0.7 0.75 0.9 

11 0.8 0.95 0.95 

12 0.45 0.6 0.8 

13 1 1 1 

14 0.85 0.9 0.95 

15 0 0 0 

16 1 1 1 

17 0.35 0.727273 0.55 

18 0.9 1 0.95 

19 0.75 0.95 1 

20 0.65 0.65 0.7 

21 0.2 0.2 0.2 

22 1 1 0.95 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 May 2024                   doi:10.20944/preprints202405.0157.v1

https://doi.org/10.20944/preprints202405.0157.v1


 19 

 

23 1 1 1 

24 0 0 0 

25 0.55 0.85 0.9 

26 0.75 1 0.8 

27 0.05 0.05 0 

28 1 1 1 

Average 0.6607143 0.74026 0.755357 

Table 11, expands the accuracy rate of each algorithm for 20, 35 and 50 particles. The accuracy 

rate is commonly defined based on the relationship: 

�������� =
���

��
 

where TOR is the total number of runs where optimal solution was found and TR is generally the 

number of runs.  In our scenario, the experiments will be carried out for 20 runs. 

The data represented in table 11, indicates that the algorithm achieves an accuracy rate of 66.07% 

for 20 particles. For 35 particles, the algorithm’s accuracy rate improves to 74.03%. Furthermore, 

solutions obtained using 50 particles exhibit even higher accuracy, reaching 75.54%. This pattern 

indicates that, as the number of particles increases, there is enhanced interaction and information 

exchange within the swarm, resulting in higher solution accuracy rates. Figure 4, also reveals the high 

levels of accuracy. 

 

Figure 4. The accuracy of TrigAC-PSO for 20, 35 and 50 particles. 

In the following table (Table 12), the most important statistical measures for 20 independent runs 

are represented for 20, 35 and 50 particles, respectively. 

Table 12. Statistical measures for 20, 35 and 50 particles. 

  20 particles 35 particles 50 particles 
 Mean 65.225 65.1 65.1 
 St.Dev 0.559016994 0 0 

Pr.01 Min 65.1 65.1 65.1 
 Max 67.6 65.1 65.1 
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 CV% 0.857059401 0 0 
 Mean 853.35 853.35 853.35 
 St.Dev 0 0 0 

Pr.02 Min 853.35 853.35 853.35 
 Max 853.35 853.35 853.35 
 CV% 0 0 0 
 Mean 817.659 817.17 817.49 
 St.Dev 2.186874482 0 1.431083506 

Pr.03 Min 817.17 817.17 817.17 
 Max 826.95 817.17 823.57 
 CV% 0.267455563 0 0.175058228 
 Mean 204.285 203.225 200.765 
 St.Dev 3.305700817 3.247002666 1.578898683 

Pr.04 Min 200.5 196 196 
 Max 210.2 210.1 203.4 
 CV% 1.618180883 1.597737811 0.786441204 
 Mean 166 166 166 
 St.Dev 0 0 0 

Pr.05 Min 166 166 166 
 Max 166 166 166 
 CV% 0 0 0 
 Mean 102.575 101.45 101.2 
 St.Dev 0.712205618 0.809483266 0.615587011 

Pr.06 Min 101 101 101 
 Max 103 103 103 
 CV% 0.694326705 0.79791352 0.608287561 
 Mean 1818.4125 1809.3875 1782.35 
 St.Dev 76.91593476 69.08406754 26.25888321 

Pr.07 Min 1770 1770 1770 
 Max 2020 2020 1870 
 CV% 4.229839751 3.818091345 1.473273106 
 Mean 199 200.5 199.6 
 St.Dev 0 2.66556995 1.846761034 

Pr.08 Min 199 199 199 
 Max 199 205 205 
 CV% 0 1.329461322 0.925230979 
 Mean 155.25 155.25 155.25 
 St.Dev 0 0 0 

Pr.09 Min 155.25 155.25 155.25 
 Max 155.25 155.25 155.25 
 CV% 0 0 0 
 Mean 126.3 126.25 126.1 
 St.Dev 0.470162346 0.444261658 0.307793506 

Pr.10 Min 126 126 126 
 Max 127 127 127 
 CV% 0.37225839 0.351890422 0.24408684 

 Mean 294.55 295.35 295.4 

 St.Dev 1.234376041 6.037383539 6.260990337 

Pr.11 Min 294 294 294 
 Max 298 321 322 
 CV% 0.419071818 2.044145434 2.119495713 
 Mean 69.535 67.64 66.72 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 May 2024                   doi:10.20944/preprints202405.0157.v1

https://doi.org/10.20944/preprints202405.0157.v1


 21 

 

 St.Dev 6.309080757 2.312073574 1.887800168 

Pr.12 Min 65.8 65.8 65.8 
 Max 94.5 70.4 70.4 
 CV% 9.073244779 3.418204574 2.829436702 
 Mean 7735.5 7735.5 7735.5 
 St.Dev 0 0 0 

Pr.13 Min 7735.5 7735.5 7735.5 
 Max 7735.5 7735.5 7735.5 
 CV% 0 0 0 
 Mean 132.418 132.3165 131.4825 
 St.Dev 4.483441582 5.065924631 3.588889104 

Pr.14 Min 130.68 130.68 130.68 
 Max 147.39 148.71 146.73 
 CV% 3.385824874 3.828641652 2.729556484 
 Mean 2703.45 2738.7 2445.35 
 St.Dev 251.6408207 400.1072356 138.7706457 

Pr.15 Min 2327 2330 2261 
 Max 3275 3585 2795 
 CV% 9.308136665 14.60938532 5.674878675 
 Mean 951.25 951.25 951.25 
 St.Dev 0 0 0 

Pr.16 Min 951.25 951.25 951.25 
 Max 951.25 951.25 951.25 
 CV% 0 0 0 
 Mean 829.9 826.775 823.8125 
 St.Dev 15.6005651 11.11983174 3.498002249 

Pr.17 Min 821.25 821.25 821.25 
 Max 878 868 834.75 
 CV% 1.879812641 1.344964681 0.424611456 
 Mean 149.45 149 149.15 
 St.Dev 1.468081455 0 0.670820393 

Pr.18 Min 149 149 149 
 Max 155 149 152 
 CV% 0.98232282 0 0.449762248 
 Mean 68.1 67.4 67.25 
 St.Dev 2.684507208 0.670820393 0 

Pr.19 Min 67.25 67.25 67.25 
 Max 79 70.25 67.25 
 CV% 3.942007647 0.995282483 0 
 Mean 3641.096 3641.297 3641.029 
 St.Dev 0.801645676 1.265647743 0.786771551 

Pr.20 Min 3640.56 3640.56 3640.56 
 Max 3643.24 3644.58 3643.24 
 CV% 0.022016604 0.034758157 0.021608494 
 Mean 3896.4125 3896.4125 3896.4125 
 St.Dev 53.85245896 53.85245896 53.85245896 

Pr.21 Min 3844 3844 3844 
 Max 4020 4020 4020 
 CV% 1.382103639 1.382103639 1.382103639 
 Mean 295.9 298.6665 295.9 
 St.Dev 0 12.37216412 0 

Pr.22 Min 295.9 295.9 295.9 
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 Max 295.9 351.23 295.9 
 CV% 0 4.142467977 0 
 Mean 551.03 551.03 551.03 
 St.Dev 0 0 0 

Pr.23 Min 551.03 551.03 551.03 
 Max 551.03 551.03 551.03 
 CV% 0 0 0 
 Mean 4518.15 4465.515 4446.8775 
 St.Dev 106.2485727 59.47704135 43.52466474 

Pr.24 Min 4389.6 4386.45 4399.35 
 Max 4857.3 4629 4580.55 
 CV% 2.351594629 1.331918969 0.978769142 
 Mean 70.4 68.15 68.2 
 Var 4.159959514 0.366347549 0.695852374 

Pr.25 Min 68 68 68 
 Max 82 69 71 
 CV% 5.909033401 0.537560599 1.020311399 
 Mean 143.5 141 143.2 
 St.Dev 4.442616583 0 4.583724066 

Pr.26 Min 141 141 141 
 Max 151 141 155 
 CV% 3.095900058 0 3.200924627 
 Mean 96.19 96.13 96.55 
 St.Dev 1.198420012 1.343052297 0.53311399 

Pr.27 Min 91.45 91.45 96.25 
 Max 97.45 97.45 97.45 
 CV% 1.245888359 1.397120875 0.552163635 
 Mean 82.5 82.5 82.5 
 St.Dev 0 0 0 

Pr.28 Min 82.5 82.5 82.5 
 Max 82.5 82.5 82.5 
 CV% 0 0 0 

The experimental findings highlight the remarkable stability of our proposed algorithm in 

solving the FTP. Across all scenarios, the mean values closely approximate the optimal solution, 

regardless of whether 20, 35, or 50 particles are utilized. This emphasizes not only the efficiency but 

also the robustness of the TrigAC-PSO method. Notably, the CV value, a crucial metric for measuring 

algorithm’s stability, remains consistently low. Specifically, for 20 particles, the mean CV is 1.82%, 

reducing to 1.53% for 35 particles, and further decreasing to 0.91% for 50 particles. This tendency 

suggests that increasing the number of particles improves algorithm’s stability. The consistently low 

CV values affirm the reliability of our algorithm, establishing it as a robust competitor among 

established methods. 

7. Conclusions 

In summary, the Transportation Problem stands as one of the pivotal challenges within the realm 

of operational research. While numerous methods have successfully solved it through advanced 

algorithms, the question remains: can these solutions be effectively implemented under non-ideal 

conditions in real-world scenarios? This question finds its answer in the realm of the Fuzzy 

Transportation Problem (FTP), where classical logic is supplanted by fuzzy logic. 

In this publication, we solved the FTP using TrigAC-PSO algorithm, a variant of Particle Swarm 

Optimization (PSO), which effectively determined the classical Transportation Problem. Our method 

underwent rigorous testing across a spectrum of problem instances and was subsequently compared 

against well-established techniques documented in the respective literature. Our findings 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 May 2024                   doi:10.20944/preprints202405.0157.v1

https://doi.org/10.20944/preprints202405.0157.v1


 23 

 

unequivocally demonstrate TrigAC-PSO’s superiority in terms of accuracy, negligible deviation from 

optimal solutions, and the quality of its solutions. Moreover, beyond traditional fuzzy numbers, 

TrigAC-PSO was tested under conditions where numbers were classical fuzzy and generalized fuzzy, 

respectively. In this context, TrigAC-PSO showed excellent performance. Based on comprehensive 

experimentation and meticulous research, it becomes noticeable that TrigAC-PSO emerges as the 

ideal option for resolving the complexities in the FTP.  

As we look to the future, embracing and improving TrigAC-PSO presents hopeful opportunities 

for improving transportation logistics and management, thus enabling smoother and more 

productive operations in real-world scenarios, an aspect that presents a challenge for us to explore in 

our future research.  
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