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Abstract: The Fuzzy Transportation Problem (FTP) represents a significant extension of the Classical
Transportation Problem (TP) by introducing uncertainly and imprecision into the parameters
involved. Various algorithms have been proposed to solve the FTP, including fuzzy linear
programming, metaheuristic algorithms and fuzzy mathematical programming techniques
combined with Artificial Neural Networks. This paper presents the application of Trigonometric
Acceleration Coefficients-PSO (TrigAc-PSO), a variation of the Classical Particle Swarm
optimization algorithm, which is an innovative algorithm originally developed for solving the TP.
TrigAC-PSO, has demonstrated remarkable success in optimizing various problem domains in crisp
environments. In this study we explore TrigAc-PSO’s adaptability to handle fuzzy data by solving
the FTP via instances with classic fuzzy numbers and generalized fuzzy numbers. Additionally, we
conduct a comprehensive comparison between Trig AC-PSO and established methods, including the
Northwest Method (NWM), the Least Cost Method (LCM), the Vogel’s Approximation Method
(VAM) and the Maximum Supply with Maximum Cost (MOMC). Furthermore, TrigAC-PSO is
compared with recent state-of-the-art algorithms whose results have shown superior performance
over traditional methods. The comparative analysis demonstrates the efficiency and robustness of
the proposed method in solving FTP across various scenarios. Through experimental results and
performance metrics, the superiority of the proposed method is presented by achieving optimal
solutions. This research contributes to advancing the field of fuzzy optimization while providing
variable insights into the application of TrigAC-PSO in real-world scenarios.

Keywords: transportation problem; particle swarm optimization; fuzzy logic; fuzzy costs; variations
of PSO; fuzzy transportation problem

1. Introduction

In the realm of logistics and supply chain management, the Transportation Problem (TP) stands
as a fundamental challenge, aiming to satisfy the distribution of goods from suppliers to consumers
while minimizing overall transportation costs. Over the years, extensive research has been conducted
to develop efficient algorithms and methods for solving various transportation problems with precise
and deterministic values of supply and demand units such as transportation costs.

The NorthWest corner method (NWC) is one of the methods that discovers a basic feasible
solution to various transportation problems [1]. The method is named after the fact that it stands from
the northwest corner cell of the transportation table and proceeds in a systematic manner. Despite
the fact that is an easy and applicable method, it does not always guarantee an optimal solution [1].
The Least Cost Method (LCM) is an alternative method, which focus on selecting the cell with the
minimum cost during the allocation process [2]. Vogel’s Approximation Method (VAM) is known for
yielding values relatively close to the optimum, often aligning precisely with it [3]. Although, VAM
is more complex than the LCM, since it imposes penalties on cells characterized by high
transportation costs, it tends to achieve more favorable initial solutions than LCM [3].

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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However, in real-world scenarios, it is difficult to predict supply and demand quantities
“apriori” as they are inextricably linked by the season, by the trends, prevailing by consumers and
the financial circumstances of each corporation. Equivalent situation unfolded with the prices of
transportation which usually depends on factors such as fluctuating fuel prices, the weather, dynamic
market conditions and varying transportation routes. To handle with these uncertainties, researchers
have turned to fuzzy logic, a mathematical framework that allows for the representation of vagueness
and ambiguity in decision-making processes. Going into further detail, fuzzy set theory provides a
robust foundation for modeling and analyzing problems with imprecise information, emerged as a
promising avenue to optimize transportation problems.

A Fuzzy Transportation Problem (FTP) is a variation of the traditional Transportation Problem
in which the transportation cost, supply and demand are fuzzy quantities [4]. There are several
researches relied on fuzzy environment, proving that fuzzy decision-making method is becoming
paramount. The inspirers of the idea of decision-making in fuzzy environment were Bellman and
Zadeh in 1970 [5]. Following their study, new findings emerged, with the most recent studies being
noteworthy to be mentioned. Chanas et al., in 1996, introduced the concept of an optimal solution for
the TP with fuzzy coefficients represented as fuzzy numbers and developed an algorithm to attain
the optimal solution [6]. Ahmed, Khan and Uddin presented a new algorithm for finding an initial
basic feasible solution of the TP when the transportation matrix contains both fuzzy and crisp
numbers [7]. Another intriguing respective is offered by Chakraborty and Chakraborty in 2009 [8].
Their method was based on the minimization of transportation cost as well as time of transportation
when the demand, supply and shipping cost per unit of the quantities are fuzzy [8]. Basirzadeh, two
years later, introduced an approach for solving a wide range of transportation problems by
transforming the fuzzy quantities into crisp values using their new method [9]. During the same year,
Nagoor Gani et al. suggested their individual version for solving the fuzzy transportation problem
utilizing the simplex algorithm [10]. Shanmugasundaram also worked on fuzzy exact algorithms. He
successfully developed the fuzzy version of Vogel’s and MODI methods for obtaining the fuzzy
initial basic solution and fuzzy optimal solution, respectively [11]. Balasubramanian and
Subramanian formulated an alternative method for dealing with a special type of FTP, in which the

cost depicted as triangular fuzzy number. In their research, they utilized ranking methods for
numbers to evaluate the fuzzy objective values of the objective function and determine the optimal
alternative [12]. Pandian and Natarajan introduced a novel algorithm known as the Fuzzy Zero Point
method for finding a fuzzy optimal solution for FTP, where the transportation cost, supply and
demand, are represented by trapezoidal fuzzy numbers [13]. Gani and Razak formulated a two-stage-
cost-minimizing FTP, where supplies and demands are trapezoidal fuzzy numbers, while the costs
remain crisp [14]. Malini and Kennedy introduced a method for solving FTP utilizing octagonal fuzzy
numbers [15]. Ekanayake and Ekanayake, based their research, on the Yager’s robust ranking method
[16]. They proposed an alternative algorithm for finding an initial basic solution to the fuzzy
triangular and trapezoidal transportation problem [16].

In the literature, there are many other surveys consisted of problems which are solved by various
methods via generalized trapezoidal fuzzy numbers. Specifically, generalized fuzzy numbers extend
the concept of classical fuzzy numbers by introducing additional parameters to provide a more
versatile representation of uncertainty. Kaur and Kuman, proposed a new approach for solving FTP
using generalized fuzzy numbers, which had not been applied till that point [17]. Building upon the
concept of Kaur and Kuman, Ali Ebrahimnejad, strived to diminish the computational complexity of
the existing method. It was manifested that the technique applied in his study was simpler and
computationally novel efficient than the proposed method by Kaur and Kuman [18]. Chen,
contributed to the previously mentioned research, by proposing the concept of generalized fuzzy
numbers when there are no prescribed limits on the membership function to the normal form [19].

FTP approximation is a crucial aspect in the realm of computational intelligence algorithms.
Various optimization techniques including metaheuristic algorithms and mathematical
programming approaches have been adapted or developed to handle with fuzzy transportation
problems effectively. Lin solved the transportation problem with fuzzy coefficients using Genetic
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Algorithms (GA) [20]. Halder and Jana emphasized on 4-Dimensional multy-item TP through GA
and Particle Swarm Optimization (PSO) [21]. New approaches in metaheuristics to solve the fixed TP
in a fuzzy environment developed by Sadeghi-Moghaddamm et al. [22]. Gupta et al. design a hybrid
GA-PSO algorithm to solve Traveling Salesman Problem (TSP) [23]. Last but not least, Singh and
Singh, 2021, suggested an extension of PSO for solving FTP [24]. Their research, though, focused on
solutions presented in a crisp form from fuzzy sets.

Motivated by the aforementioned applications of metaheuristic algorithms, this study focuses
on the effective application of PSO to solve the FTP. Twenty eight distinct instances are tacked using
ten well-established methods found in existing literature. The spotlight will be on the Trigonometric
Acceleration Coefficients-PSO (TrigAC-PSO) algorithm, a variation of the classical PSO algorithm,
introduced by Aroniadi and Beligiannis, in 2023 [25]. Extensive experimentation was carried out to
assess the stability and the performance of the proposed algorithm in navigating transportation
problems with fuzzy costs.

Furthermore, various particle configurations were examined to evaluate the TrigAC-PSO’s
capacity to achieve optimal results, demonstrating its superior performance.

The contribution of the paper is as follows:

e  According to our knowledge, PSO has already been applied for solving the FTP. However, the
conducted experiments lack depth in their data analysis, as they predominantly focus on
individual problem instances rather than a diverse range of scenarios. Introducing a novel
approach, the TrigAC-PSO is applied for the first time for solving the FTP, highlighting
exceptional performance across a comprehensive set of instances.

e  Nevertheless, the selected problem instances encompass various types of fuzzy numbers such
as triangular and trapezoidal fuzzy sets. Moreover, the fuzzy numbers extend beyond
conventional representations, encompassing both classic fuzzy numbers and fuzzy generalized
numbers, thereby adding depth and complexity to the study. It is the first time that fuzzy
generalized numbers are applied to a particle swarm optimization variation.

e  The evaluation of results, from each method, is not based entirely on their attainment of the
optimal solution. Instead, this study estimates the method’s performance according to the
degree of membership in which their solutions approach optimality as determined by
membership functions. Once more, the TrigAC-PSO method demonstrates remarkable
completeness against other methods.

The remainder of the paper is organized as follows: Section 2 presents the mathematical
formulation of TP. Definitions for fuzzy logic and fuzzy numbers are briefly described in Section 3.
Section 4 presents the FTP. The PSO as well as TrigAC-PSO are represented in detail in section 5. An
extensive and intriguing study case is conducted in section 6, solving the FTP by using the TrigAC-
PSO algorithm. Subsequently, a comparative analysis is presented, comparing results obtained by
the application of TrigAC-PSO against well-established methods documented in the respective
literature. Lastly, conclusive remarks and future recommendations are presented in section 7.

2. Transportation Problem (TP)

The Transportation Problem (TP) is a classic optimization problem in the field of operation
research and logistics. It deals with the optimal allocation of goods or resources from multiple
suppliers to multiple consumers, in an effort to minimize the overall cost while satisfying supply and
demand constraints. The TP is formulated as a liner programming problem.

Let’s denote the following;:

. m = number of suppliers

. n = number of consumers

. s; = the capacity of supplier i,i =1,2,..m

. d; = the capacity of consumer j,j =12..n

. x;j = number of units to be transported from supplier i to consumer j

o cij = cost of transporting
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4
The mathematical model of the TP can be formulated as follows
m n
minZ = Cij . xij (1)
i=1 j=1
m
inj =djforj=12,-,n ()
j=1
m
injﬁsiforizl,z,m,m 3)
j=1
Xij =20 fori=12,,m,j=12,--,n 4)

Equation (1) outlines the objective function that needs to be minimized. Equation (2)
encompasses the supply constraints, ensuring that the available quantity at the source points is
greater than or equal to the demanded quantity at the destination points. Similarly, equation (3)
ensures that the sum of the quantities transferred from source s; to destination d; does not exceed
the available quantity. Equation (4) introduces a necessary condition, specifying that the units x;;
must be positive integers. For the sake of simplicity, we assume a balanced condition model, where
supplies and demands are equal in this paper.

As already mentioned, various algorithms and methods, such as the NorthWest Corner Method,
the Least Cost Method and the Vogel’s Approximation Method have been developed for finding a
basic feasible solution. In addition, extensions and variations of TP have emerged to enhance the
model’s relevance across diverse scenarios.

3. Fuzzy Logic Definitions

In this section, fundamental definitions will be provided about fuzzy numbers, fuzzy sets and a
variation of fuzzy numbers known as generalized fuzzy numbers. This variation will be explored in
greater detail using specific examples in section 6.

3.1. Fuzzy Sets and Membership Functions

Definition 1. A fuzzy set A in the universe of discourse X could be defined as a set of ordered pairs.

A= {(x,pa(x))x € X}

where p;(x) is called membership function of A. The membership function pz(x) defines all the
information contained in a fuzzy set.

Definition 2. The fuzzy number A is an extension of a regular number in the sense that it does not refer to
one single value but rather to a connected set of possible values, where each possible value has each own degree
of membership between 0 and 1. The membership function 5 (x) satisfies the following condition [5]:

i) uz(x) is piecewise continuous.
ii)  uz(x) is convex fuzzy subset.
i) uz(x):x - [0,1], where
e uz(x) =1if xistotallyin A.
e uz(x) =0if xisnotinA.
o 0<pz(x)<1lifxispartlyinA.
Definition 3. A fuzzy number A = (a,b,c), is said to be a triangular fuzzy number if its membership
function is given by [5]
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0,if x<a

xX—a fa<x<b
, ifa<x<

na) =429, .
ifb<x<

c—b’lf <x<c

0,ifx=>c

Definition 4. A fuzzy number A = (a, b, c,d) is said to be a trapezoidal fuzzy number if its membership
function is given by

xX—a < b
b_a,a_x<
1,b<x<c

puz(x) = x—d

,c<x<d
c—d

0, otherwise

3.2. Generalized fuzzy numbers

In our comprehensive investigation of the TP involving a broad spectrum of fuzzy numbers, the
exploration of generalized fuzzy numbers comprises an indispensable aspect of our research. Kaur
and Kuman [17], had the idea of implying the generalized fuzzy numbers in the TP using exact
algorithms. In our study, in some of the presented problems the transportation cost will be illustrated
by generalized fuzzy numbers. Our basic aim is to assess their effectiveness following the
implementation of TrigAC-PSO algorithm.

But how are generalized fuzzy numbers defined? Generalized fuzzy numbers extend the
concept of classical fuzzy numbers by providing more specific details through additional parameters.
In [19], Chen represented a generalized trapezoidal fuzzy number 4 as 4 = (a,b,c,d; w),

where 0 <w <1 and a,b,c,d are real numbers.

According to Chen, the membership function of a fuzzy set 4, has the following properties.

e ui:R —[0,w] is continuous.

e uz(x)=0 forall x € (—oo,alu[d, ).

e ;(x) is strictly increasing on [a, b] and strictly decreasing on [c,d].
e uz(x)=w,forall x € [b,c] where 0 <w < 1.

Definition 5. A fuzzy number A = (a,b,c,d;w) is said to be a generalized trapezoidal fuzzy number if its
membership function is provided by

xX—a
w - ,a<x<b
b—a
w, b<x<c
ra(x) = x—d
w - ,c<x<d

—d
0, otherwise

3.3. Arithmetic Operations

In this subsection, the method for defining the two basic mathematical operations, addition and
multiplication, is provided. The following table (Table 1) defines these operations for triangular fuzzy
numbers and trapezoidal fuzzy numbers, as well as generalized fuzzy numbers. The operator @
denotes addition in fuzzy sets, while the operator @ denotes multiplication [17].

Table 1. Arithmetic Operations.
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Triangular Fuzzy Numbers Trapezoidal Fuzzy Numbers Generalized Trapezoidal
Fuzzy Numbers
) ) Let A, = (a;,by,cq,dy; wy)
Let Ay = (ay,by,¢;) and A, = Let A; = (ay,by,¢1,dy) and A, = and 4, = (ay, by, ¢, dy; wy) be
(az, bz, cz) be two triangular  (ay, by, ¢z, d;) be two trapezoidal  two generalized trapezoidal
fuzzy numbers then fuzzy numbers then fuzzy numbers then

O Al@fi2=(a1 +ay,b;-

(] EIGBZZ:(al +a2,b1+ (] A1®A2=(a1 +a2'b1+ +b2,C1 +C2,d1+
b, ,c; +¢;) by ,c1 +¢;,dy +d;) d, ;min (wy, w,))
e A1®A,=(Aay,Aby,Ac;) o AQ®A; = (Aa,,Aby, ey, d;) e A®A4, =

(/1(11 ,A bl ,/161 ,Adl b Wl)

These arithmetic operations offer a systematic approach to combining and manipulating
different types of fuzzy numbers, preserving their essential attributes of fuzziness and uncertainty
that are fundamental to fuzzy logic. By performing addition and multiplication on fuzzy numbers,
we generate new fuzzy numbers that encapsulate the collective or altered characteristics of the
original fuzzy sets, as defined by their membership functions. This method empowers us to flexibly
handle and analyze uncertain or imprecise data, enhancing our ability to model complex systems and
make informed decisions across various domains. The numbers 4; and A, are elements of the set of
fuzzy numbers, while A belongs to the set of real numbers.

4. Fuzzy Transportation Problem

The Fuzzy Transportation Problem (FTP) is an extension of the classical TP which introduces
fuzzy sets and fuzzy numbers for representing transportation cost, supplies and demands [26].
Solving the FTP involves developing mathematical models and algorithms, which could affectively
deal with the fuzzy nature of the input data.

In our study, we treat the supply and demand values as crisp numbers, whereas the
transportation costs are represented as fuzzy sets. The solution of the objective function Z is also
depicted as a fuzzy number.

Let ¢;; be the fuzzy cost of transporting one unit of product from warehouse i to consumer j.

Under changing circumstances, the mathematical model of the FTP could be structured is the

minZ = i i Cij ®x;j ®)

following.

i=1j=1
m
injzdjforjzl,Z,m,n (6)
j=1
n
inj <s;fori=1,2,---,m (7)
j=1
xij20f0ri=1,-~,m,j=1,-~,n (8)

5. Particle Swarm Optimization (PSO)

The Particle Swarm optimization (PSO) algorithm stands out as a contemporary and innovative
heuristic approach, gaining widespread popularity over the years due to its straightforward
implementation and ability to yield satisfactory solutions [27]. PSO algorithm is inspired from the
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collective behavior of animals, studying their interactions to function as a strong approach handling
optimization challenge in various applications [28].

In the PSO framework, every potential solution is represented as a particle, and the complete set
of particles constitutes the algorithm’s population, known as swarm. The optimization process
heavily relies on collaboration and exchange of information, with the particles improving their
effectiveness through active cooperation within the swarm. Sharing information within the swarm,
particles are empowered to consistently enhance their performance, striving towards the optimal
efficiency. In finer detail, each particle modifies its movement according to its own experience and
its neighboring particle experience.

A particle is defined by three essential parameters:

e DPosition, which indicates its location in the search space
e Velocity, which dictates the direction and extent of particles movement
e Its previous best position, which operates as a memory mechanism for the positions that the

particle has already “visited”

Consequently, in n-dimensional search space, each particle of the swarm is represented by x;; =
(xn,,xzz, s, X j) and the equation of its position is as follows:

xij(t+1) =x;®) +v(t+1),i=12n and j=12,..n 9)

where
e x;;(t+1) isits current position
e x;;(t) isits previous position

e v;;(t +1) is the velocity in the current iteration (¢t + 1)

In sequence, the particle’s velocity is represented as v;; and its expression is determined by the
following equation:

vij(t + 1) = W’l?ij(t) + o (pbestij (t) — Xij (t)) +

10
cor; (gbesti ; (©) = xi; (0)) o

i=12,..nand j=12,..n

e where v;;(t + 1) represents the velocity of the particle in the current iteration, while v(t) is the
velocity in the previous iteration.

e  wdenotes the inertia weight, balancing global and local exploitation by incorporating memory
of the previous particles direction to prevent major changes in suggested directions.

e 1, and n, are variables, randomly generated from uniform distribution, in range [0, 1].

e ¢ and c, are defined as acceleration coefficients, impacting the efficiency of the PSO method.
More precisely, ¢, signifies the particle’s confidence in itself while c, expresses the particle’s
confidence in the swarm.

e pbest;; (t) denotes the best position of the particle up to iteration ¢, while gbest;; (t) is the
finest position of the entire swarm up to the same iteration.

o The term c¢1y (pbesti (@) — x;j (t)) is known as the cognitive component, acting as a form of
memory storing the particle’s best previous positions. The cognitive component reflects the
tendency of the particles to return to their best positions.

o Theterm c,r, (gbesti () — x5 (t)) is known as the social component. In this context, particles
follow the guidance of the swarm'’s best position, incorporating knowledge acquired from the
swarm.

The acceleration coefficients c¢; and c,, along with random variables r; and 1, significantly
influence the evolution of the cognitive and social components, determining the velocity value, which
is crucial for the search direction of the particles and the convergence of the algorithm. Furthermore,
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inertia weight plays a key role in the process of providing balance between exploration and
exploitation. Periodically, several variations have been developed and introduced, successfully
attaining a dynamic approach to the optimal solution by striking a balance between algorithm’s
exploration and exploitation searches.

In our previous research [25], we introduced two new variations. They succeeded in finding the
optimal solution under extensive experimental analysis and testing of different combinations of
values for variables ¢;, ¢, and w.

5.1. Trigonometric Acceleration Coefficient — Particle Swarm Optimization (TrigAC-PSO)

Trigonometric Acceleration Coefficient — Particle Swarm Optimization (TrigAC-PSO), has been
proved to be the variant yielding the most favorable outcomes in solving the Transportation Problem
[25]. In fact, the TrigAC-PSO variation underwent testing across a set of 32 instances, and the
outcomes were compared with widely recognized exact methods and some preceding variations of
the PSO algorithm. In comparison to all other methods, the TrigAC-PSO variation achieved the best
results [25].

In TrigAC-PSO, initially, each particle is guided by the collective knowledge and experience
acquired by the swarm, were the value of ¢, significantly exceeds the value of c;. Subsequently,
leveraging the learning mechanism, each particle formulates its unique strategy and accumulates
individual experience, with the value of ¢, decreasing while the value of c; increases (refer to
Equations 11 and 12). The adjustment of ¢; and ¢, continues until both parameters are equalized to
2 in the algorithm’s last generation.

The subsequent equations are employed to compute the cognitive and social acceleration
parameters [25] :

c 2c;;°t w
o =-L4sin=2 - .2 11)
2 tmax 2
sz Tt 1
Cy =Cy + COST -3 (12)
max

e In the initial iteration, the personal acceleration value c;;, is set to 0.5, while the social
acceleration value c,;, is set to 3.5.

e In the last iteration of the algorithm, both the personal c;; and social ¢, acceleration values
are adjusted to 2.

e  The inertia weight (w) is dynamic and depends on the current iteration t and the maximum
number of iterations tp,, and is defined by the following equation:

t -t
w = Jmax (13)

tm ax

6. Case Studies and Experimental Results

In this section, the TrigAC-PSO algorithm will be utilized to solve the Fuzzy Transportation
Problem. A total of twenty-eight numerical examples will be resolved with results derived from four
other established methods. To ensure a thorough investigation, the numerical examples encompass
both triangular and trapezoidal fuzzy numbers. Moreover, the inclusion of generalized fuzzy
numbers in our domain adds a distinctive dimension, making the application of our variation
particularly intriguing in this context.

Initially, the problems will be evaluated in comparison to methods whose reliability remains
consistent over the years. In this context, the TrigAC-PSO algorithm will be assessed alongside the
NorthWest Method, the Least Cost Method, the Vogel's Approximation Method and the Maximum
Supply with Minimum Cost Method (MOMC) which was introduced in 2015 by Giancarlo de Franca
Aguiar et al. [29]. Their classification technique showed spectacular computation advantage
characterized by higher processing speed and less use of memory. Both MOMC and the previously
mentioned methods have been employed in attempting to solve the fuzzy transportation problem.
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This poses a challenge for us, as we strive to optimize the values of the given problems using the
TrigAC-PSO.

At this stage, it would be beneficial to make a reference to the initialization process.

In the initial steps of Algorithm 1, two vectors, namely Supply and Demand, are created as
input (line 1 and 2). Subsequently, variables m and n are calculated, representing the values of
parameters Supply and Demand respectively. Then, a matrix is generated containing random
Monte Carlo real numbers (line 7). Line 10 rounds the elements of the candidate solution matrix to
the nearest integer, as the commodity quantities must be non-negative integers. The Subsequent lines
of the algorithm commerce a process of realignment and redistribution of matrix L to align with the
specified supply and demand amounts. In lines 11 and 12, the sum of all elements in each row of
matrix L is stored in vector Sumrow, and similarly, the sum of all elements in each column is stored
in vector Sumcol. Then, two new vectors, s and d, are created by subtracting Sumrow from
Supply and Sumcol from Demand, respectively. Following this, for each cell in the final matrix, any
discrepancies are identified and adjusted accordingly, ensuring that the excess amounts in vectors s
and d are zeroed out.

Algorithm 1: Initialization algorithm

1. Define Supply = [s1, S2, ..., Si]
Define Demand = [d4, d5, ..., d;,]
Define m = length (Supply)
Define n = length (Demand)
Initialize a solution matrix I = zeros (m, n)
Initialize a supporting table B = zeros (m X n)
Generate a new random number X, x=-log (rand(m*n, 1)
Set x=x / Sum(x)
Take a matrix L=reshape (B*x, [m, n])
. Set solution as a matrix to round each element of L to the nearest
integer less than or equal to that element of L as Solution = floor [L]
11. Set Sumrow as the sum of the elements of all the rows.
12. Set Sumcol as the sum of the elements of the Columns.
13. Set s=Supply-Sumrow and d=Demand-Sumcol
— 14. fori=1 tom do

L PN LD

—
]

— 15.  forj=1tondo
— 16. if s(i) smaller or equal to d(j)
17. ww=min (d(i), d (j))
18. main (i,1)=main (i, j)+ww
19. d (j)=d(j)-S()
20. else if d (j) smaller than S(i)
21. ww=min (s(i), d(j))
|22 main(ij)=main (i,j)+ww
L 23. s(i)=s(i)-d(j)
— 24 end
25. end
26. end

27. Return L =Solution

The output of Algorithm 1 is a matrix comprising the initial solution, known as Initial Basic
Feasible Solution (IBES). Subsequently, the PSO algorithm is employed to find the particle achieving
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the optimal position and its corresponding optimal transportation cost. The supply and demand
values are crisp values, whereas transportation cost is depicted using fuzzy sets. However, the
expanded positions of the particles, while adhering to demand and supply constraints, exhibited
negative or fractional values. Such values are incompatible with the nature of the solution, which
necessitates quantities represented solely by positive integers. Consequently, necessary adjustments
were implemented to ensure the integrity of the particle’s positions. These sub-algorithms were
presented in 2023 by Aroniadi and Beligiannis [25]. To derive the final solution, fuzzy operations
outlined in Table 1, will be applied, culminating in the representation of the final iteration cost as a
fuzzy number.

The entire algorithmic approach is implemented utilizing MATLAB R2021b. TrigAC-PSO, was
tested on a set of different dimensional problems, both triangular and trapezoidal fuzzy sets as
classical and generalized fuzzy numbers. Table 2, presents the 28 test instances that are examined in
our research [16,18,26,30—40].

Table 2. Details of the 28 test instances of the FTP.

N Nam Problem Optimal
0 From Journal e Size Type Solution
1 Ebrahimnejad (2014) Pr. 33 Generalized Trapezoidal Fuzzy 64.35
01 Number
Kumar and Subramanian  Pr. .
2 (2018) 0 4-4 Classic Triangular Fuzzy Number 853.35
3 Farikhin et al. (2020) I;; 34 Classic Triangular Fuzzy Number 817.17
4 Mathur and Srivastava  Pr. 34 Generalized Trapezoidal Fuzzy 196
(2020) 04 Number
5 Srivastava and Bisht (2018) I(;; 33 Classic Triangular Fuzzy Number 166
Pr.
6 Srivastava and Bisht (2018) 02 3-4 Classic Triangular Fuzzy Number 101
, Pr. Classic Trapezoidal Fuzzy
7 Sam'an et al. (2018) 07 33 Number 1770
g Pandian and Natarajan ~ Pr. 34 Classic Trapezoidal Fuzzy 199
(2011) 08 Number
9 Mathur et al. (2016) Pr. 33 Classic Trapezoidal Fuzzy 155.25
09 Number
. Pr. Classic Trapezoidal Fuzzy
10 Singh and Saxena (2017) 10 34 Number 126
11 Ekanayake( ;51;)’)]3 kanayake 1;; 4-4 Classic Triangular Fuzzy Number 294
Ekanayake and Ekanayake Pr. R
12 (2023) 1 3-4 Classic Triangular Fuzzy Number 65.8
13 Ekanayake( ;512(13)]3 kanayake 1;; 2:3 Classic Triangular Fuzzy Number 7735.5
Ekanayake and Ekanayake Pr. R
14 (2023) 14 4-4 Classic Triangular Fuzzy Number 130.68
Pr.
15  Srinivasan et al. (2020) 1; 66 Classic Triangular Fuzzy Number 2170
Ekanayake and Ekanayake Pr. Classic Trapezoidal Fuzzy
16 (2023) 16 33 Number 95125
17 Ekanayake and Ekanayake Pr. 43 Classic Trapezoidal Fuzzy 82125

(2023) 17 Number
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Ekanayake and Ekanayake Pr.

18 (2023) 18 3-4 Classic Triangular Fuzzy Number 149
Ekanayake and Ekanayake Pr. Classic Trapezoidal Fuzzy
1 4 7.2
? (2023) 19 3 Number 67.25
20 Hussain and Jayaraman  Pr. 33 Classic Triangular Fuzzy Number 3640.56
(2014) 20 & y ‘
Hussain and Jayaraman  Pr. Classic Trapezoidal Fuzzy
21 (2014) 21 4 Number 3844
Ekanayake and Ekanayake Pr. N
22 (2023) 2 33 Classic Triangular Fuzzy Number 295.9
Ekanayake and Ekanayake Pr. R
23 (2023) 3 33 Classic Triangular Fuzzy Number 551.03
24 Ebrahimnejad (2014) Pr. 46 Generalized Trapezoidal Fuzzy 43002
24 Number
Pr. Classic Trapezoidal Fuzzy
25 Kumar (2016) o5 3-4 Number 68
Pr. Classic Trapezoidal Fuzzy
26 Kumar(2016) 2% 3-4 Number 141
27 Thota and Raja (2020) Pr. 33 Generalized Trapezoidal Fuzzy 91.45
27 Number
28 Thota and Raja (2020) Pr. 3.4 Generalized Trapezoidal Fuzzy 756
28 Number

In Table 3 and Figure 1, provided bellow, the performance of both exact methods and Trig-PSO
approach across 20 Monte Carlo runs is showcased. In every cell, the best value of each method is
depicted using bold for the cases where the algorithms achieved the optimal solution. The last column
provides the optimal solution for each numerical instance. The values highlighted in bold correspond
to the optimal ones.

H(x)

Figure 1. Triangular Fuzzy number.

H(X)

ol 4

a b c d
Figure 2. Trapezoidal Fuzzy number.

Table 3. The optimal solution of each method for the 28 test instances.

Pr NWC LCM VAM MOMC TrigAC-PSO Optimal
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01 64.35 67.6 67.6 67.6 65.1 64.35
02 1046.67 870.05 853.35 855 853.35 853.35
03 861.53 894.66 817.17 1000.67 817.17 817.17
04 233 266.5 268 266.5 196 196
05 166 190 172 172 166 166
06 125 120.5 101 105 101 101
07 2025 1790 1770 1800 1770 1770
08 233 223 203 199 199 199
09 155.25 178.25 159.25 164.5 155.25 155.25
10 144.25 140 130 126 126 126
11 376 294 294 375 294 294
12 110.67 65.8 65.8 66 65.8 65.8
13 7736.67 7735.5 7735.5 7736.67 7735.5 7735.5
14 196 130.68 130.68 130.68 130.68 130.68
15 4285 2.455 2.310 2620 2261 2170
16 1035 971.25 951.25 951.25 951.25 951.25
17 967.5 887.5 821.25 826.25 821.25 821.25
18 176 152 149 150 149 149
19 93 67.25 67.25 77 67.25 67.25
20 5070.33 3740.58 3644.58 3944.34 3640.56 3640.56
21 4172 4172 4091 3932 3844 3844
22 486.67 339.92 295.9 340 295.9 295.9
23 592.67 557.71 557.71 581 551.03 551.03
24 6549.9 7567.8 4414.95 4452.9 4386.45 4300.2
25 93 73 70 68 68 68
26 169 148 141 141 141 141
27 108.8 97.5 97.45 97.5 91.45 91.45
28 134.175 95 75.6 95 82.5 75.6
Number of Optimal Solutions Found
30
25

N
o

Number of test instances
) o

)]

15
5 I-

3
NWM mLCM VAM

mMOMC H TrigAC-PSO

Figure 3. The number of equal solutions that every method achieved.

As illustrated, the NW method attains optimal solutions in 3 out of 28 test instances (10.71%).
LCM achieved the optimal solution in 5 out of 28 instances (17.86%). VAM surpasses the previous
methods, securing optimal solution in 15 out of 28 instances (53.57%). Despite being introduced later
than the preceding methods, MOMC fell short of exceeding Vogel's method, as it succeeded in


https://doi.org/10.20944/preprints202405.0157.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 May 2024

13

identifying the optimal solution in 6 instances (21.43%). Notably, TrigAC-PSO method emerges as
the most efficient, achieving optimal results in 24 out of 28 instances (81.71%).

The deviation measurement qualities the extent of variation between observed values and
expected or target values. It provides a numerical representation of how much individual data values
differ from the average or desired outcome and comprises a metric of each algorithm’s stability.
Deviation is given by the following formula:

X;j — optimal

Dev = optimal (14)
where x;; is the current solution.
Table 4. The deviation (dev) of the methods for the 28 test instances.

NWM LCM VAM MOMC TrigAC-PSO
Pr.01 0 0.05050505 0.05050505 0.05050505 0.011655011
Pr.02 0.22654245 0.01956993 0 0.001933556 0
Pr.03 0.05428491 0.094827269 0 0.224555478 0
Pr.04 0.18877551 0.359693877 0.36734694 0.359693877 0
Pr.05 0 0.014457831 0.03614458 0.036144578 0
Pr.06 0.237623762 0.193069306 0 0.03960396 0
Pr.07 0.144067796 0.011299435 0 0.016949152 0
Pr.08 0.170854271 0.120603015 0.0201005 0 0
Pr.09 0 0.148148148 0.0257649 0.05958132 0
Pr.10 0.144841269 0.111111111 0.03174603 0 0
Pr.11 0.278911564 0 0 0.275510204 0
Pr.12 0.681914893 0 0 0.003039514 0
Pr.13 0.000151251 0 0 0.000151251 0
Pr.14 0.499846954 0 0 0 0
Pr.15 0.974654377 0.131336405 0.06060606 0.207373271 0.041935483
Pr.16 0.088042049 0.021019442 0 0 0
Pr.17 0.178082192 0.080669711 0 0.00608828 0
Pr.18 0.181208054 0.020134228 0 0.006711409 0
Pr.19 0.382899628 0 0 0.144981413 0
Pr.20 0.392733535 0.027523238 0.00110423 0.083443207 0
Pr.21 0.085327784 0.085327784 0.06425598 0.02289282 0
Pr.22 0.644711051 0.148766475 0 0.149036837 0
Pr.23 0.075567573 0.012122752 0.01212275 0.054389053 0
Pr.24 0.501813869 0.73852379 0.00533696 0.035509976 0.020057207
Pr.25 0.367647059 0.073529412 0.02941176 0 0
Pr.26 0.177304965 0.04964539 0 0 0
Pr.27 0.189721159 0.06615637 0.06560962 0.06615637 0
Pr.28 0.774801587 0.256613757 0 0.256613757 0.091269841

Average 0.27294034 0.101237633 0.02750198 0.075030869 0.005889912

Based on the data presented in Table 4, it is apparent that VAM, MOMC and TrigAC-PSO appear
to be more efficient than the other methods. Therefore, the solutions achieved by NWC differ from
the optimal solution by 27.3%, the results of LCM by 10.12% and MOMC by 7.5%. Vogel's
approximation method presented higher levels of efficiency since the average of the export solutions
differ from the optimal solutions by 2.7%. TricAC-PSO method is now highlighted as the most
efficient method, surpassing all other methods, with a percentage close to zero. This indicates its
remarkable stability and accuracy in predicting the optimal value with near-perfect precision.
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In Boolean (Classical) logic, transportation costs are represented as precise, fixed values. In fuzzy
logic, transportation costs as supply and demand quantities are represented as approximate values,
allowing for gradual transitions between costs and shipments.

The pivotal aspect of our study was the visual representation of the final solution using fuzzy
numbers. In classical logic, a solution is deemed optimal only if its value aligns precisely with that of
the optimal solution. However, the scientific quandary arises: How equitably is to discard other
solutions even when their deviation from the optimal one is infinitesimal?

This quandary sparked our original concept: to represent the costs incurred by exact methods
using fuzzy sets and to ascertain the degree of truth, inherent in each algorithm’s solution belonging
to this set. Consequently, every solution is now endowed with its unique value, irrespective of its
optimality status. The binary classification of classical logic, where 0 signifies non-optimality and 1
denotes optimality, is supplanted by a continuum with the interval [0,1], wherein each number
signifies the solution’s degree of belongingness to the fuzzy set. In this study, the Gaussian
membership function will be employed to ascertain the truthfulness of each solution.

The Gaussian membership function, is defined by a bell-shaped curve characterized by its mean
(u) and standard deviation (o). The function assigns a degree of membership to each element in a
fuzzy set, based on its proximity to the mean. Mathematically, the Gaussian membership function is
given by the formula:

—(x-p)?
u(x) = e 207 (15)

where:

e x istheinput value.
e uisthe mean of the fuzzy numbers.
e 0 is the standard deviation of the fuzzy numbers.

The following table (Table 5) shows the degree of truth for each solution of the 28 problems.

Table 5. The Gaussian Membership Function for the 28 test instances.

No NWM LCM VAM MOMC TrigAC-PSO
Pr. 01 1 0.9767 0.9767 0.9767 0.995
Pr. 02 0.7115 0.9985 1 0.9999 1
Pr. 03 0.6022 0.3488 1 0.0304 1
Pr. 04 0.7844 0.4699 0.4553 0.4699 1
Pr. 05 1 0.9137 0.9944 0.9944 1
Pr. 06 0.614 0.7183 1 0.9862 1
Pr. 07 0.7561 0.9983 1 0.9961 1
Pr. 08 0.8319 0.8319 0.9949 1 1
Pr. 09 1 0.9981 0.9697 0.9868 1
Pr. 10 0.7483 0.8445 0.9862 1 1
Pr. 11 0.6045 1 1 0.6139 1
Pr. 12 0 1 1 1 1
Pr. 13 0.998 1 1 0.998 1
Pr. 14 0.2271 1 1 1 1
Pr. 15 0 0.1311 0.6147 0.006 0.987
Pr. 16 0.9947 0.9951 1 1 1
Pr. 17 0.9974 0.9709 1 0.9995 1
Pr. 18 0.4868 0.9911 1 0.9999 1
Pr. 19 0.7559 1 1 0.9692 1
Pr. 20 0.4762 0.9924 0.9999 0.9665 1
Pr. 21 0.9999 0.9999 0.9999 0.9999 1
Pr. 22 0.9718 0.9921 1 0.992 1
Pr. 23 0.9093 0.9967 0.9967 0.9514 1
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Pr. 24 0 0 0.9995 0.993 0.9999
Pr. 25 0.2235 0.9893 1 1 1
Pr. 26 0.259 0.975 1 1 1
Pr. 27 0.019 0.9998 0.9998 0.9997 1
Pr. 28 0 0 1 0 0.993
Average 0.606125 0.826146 0.963846 0.854621 0.999103571

We notice that among the methods that were unable to precisely identify the optimal solution,
they achieved values that were remarkably close to the optimal cost. The degree of truth studies how
closely the solution obtained by each method approaches our optimal solution offering a clearer
perspective. When the degree of truth is 1, the The NWM solutions exhibited optimality with a
degree of truth 0.6061 (equivalent to 60.61% optimality). In contrast, both LCM and MOMC attained
optimality with a substantially higher degree, scoring 0.8261 (82.61% optimality) and 0.8546 (85.46%
optimality) respectively, surpassing the NWM. While VAM succeeded in discovering the optimal
solution in half of the instances, its remaining solutions were notably proximal, as VAM achieved the
optimal with degree of truth as high as 0.9638 (96.38%). Yet again, TrigAC-PSO stands out
significantly, having achieved the optimal solution in 24 out of 28 problems. However, in instances
where TrigAC-PSO didn’t achieve the desired results, its attained solution diverged slightly from the
optimal one, as indicated by the Gaussian membership function. TrigAC-PSO’s precision is evident,
reaching the optimal solution with a remarkable truth score of 0.9991 (99.91% optimality).

The selection of these methods was deliberate, guided by two principal factors. Firstly, they were
chosen because they have been established for years verified their reliability. Secondly, our intention
was to demonstrate a compelling narrative: that despite their perceived obsolescence and occasional
failure to attain optimality, these methods possess the potential for resurgence and redemption
through the fuzzy sets, transcending the boundaries of classical logic to reclaim their erstwhile
prominence.

Upon culmination of the exhaustive comparative analysis involving the aforementioned
methods, it become apparent that TrigAC-PSO appeared as the best choice, distinguishing itself as
the quintessential option. In a quest to examine further its rustiness and precision, TrigAC-PSO
underwent additional tests against contemporaneous methods introduced concurrently. Firstly, the
proposed algorithm is tested on twelve instances, from Table 2, against the algorithm introduced by
Ekanayake and Ekanayake, in 2023 [16]. This algorithm was based on the Yager’s robust ranking
method [17].

But how is a ranking function defined?

An efficient approach for comparing the fuzzy numbers is by the use of the racking function
R:F(R) » R where F(R) isaset of fuzzy numbers defined on a set of real numbers, which convents
a fuzzy number into a crisp value, under specific circumstances [17].

The following table (Table 6) gives the formula of the ranking functions, which have been
applied in this manuscript.

Table 6. The formula of Ranking Functions.

Ranking function for two classical fuzzy Ranking function for generalized trapezoidal
numbers [7] fuzzy numbers [18]
. Let A= (a,b,c) a triangular fuzzy number . Let
then, Ay = (ag, by, cq,dy;wy)
~ at+b+c and
ER(A) -3 Az = (az, by, c3,dy; wy)
e Let A= (a b,c,d) atrapezoidal fuzzy = be two generalized trapezoidal fuzzy numbers
number and w = min(w,,w,).

then, Then
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~ a+b+c+d - w-(a; +by+c¢ +dy)
w(z) = 2o retd R(4,) = :
and
W'(a2+b2+62+d2)

ER(1‘12) =

4

The subsequent table (Table 7), presents the outcomes of the solutions derived from both
TrigAC-PSO and the research conducted by Ekanayake and Ekanayake [16].

Table 7. Comparison between Ekanayake and TrigAC-PSO method.

Pr Ekanayake Optimal TrigAC-PSO Optimal Ekanayake TrigAC-PSO
) Solution Solution Membership Value Membership Value

I(;; (400, 845, 1315) (400, 845, 1315) 1 1
11)1; (144, 285, 453) (144, 285, 453) 1 1
Pr.

" (20, 89, 89) (20, 89, 89) 1 1
Il); (5960, 7620, 9630) (5960, 7620, 9630) 1 1
Pr.

14 (64, 124, 206) (64, 124, 206) 1 1
11)2 (370, 735, 1145, 1595) (370, 715, 1085, 1635) 0.9951 1
Pr.

1r7 (400, 640, 875, 1370) (400, 640, 875, 1370) 1 1
11)15; (105, 150, 195) (104, 149, 194) 0.9999 1
Pr.

9 (148, 322, 418) (148, 322, 418) 1 1
Pr.

2; (347, 566, 760) (347, 554, 752) 0.995 1
Pr.

o5 (12, 55, 88, 117) (12, 55, 88, 117) 1 1
Pr.

22 (52, 106, 176, 230) (52, 106, 176, 230) 1 1

Once more, TrigAC-PSO algorithm stands out by attaining the optimal solution with a
membership degree of 1, demonstrating its superiority. Similarly, the method of Ekanayake and
Ekanayake yield impressive outcomes, with an aggregated membership degree reaching 0.9995.

At this juncture, it is intriguing to delve into the realm of generalized fuzzy numbers, where the
application of a metaheuristic approach to the FTP marks a pioneering endeavor. Five problems, from
Table 2, will be subjected to comparison against TrigAC-PSO, shedding light at the algorithm’s
adaptability and efficacy in undertaking challenges modelled by fuzzy generalized numbers

[17,18,31,40].
Table 8. Comparison TrigAC-PSO among four established methods.
. . . Kaur and .
Pr.  Ebrahimnejad Thota and Raja Mathur et al. TrigAC-PSO
Kuman
Pr. 01 (117, 205, 352, 613; (117, 205, 35, 613; (147,220,382, (197, 240, 382, 643; (147, 220, 382, 553;
' 0.2) 0.2) 603; 0.2) 0.2) 0.2)

(315, 810, 1220, (318, 813, 1220, (315, 810, 1220, (415, 970, 1460, (315, 810, 1220,

Pr. 04
: 1575; 0.2) 1582; 0.2) 1575; 0.2) 1865; 0.2) 1575; 0.2)


https://doi.org/10.20944/preprints202405.0157.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 May 2024

17

(5148, 6475, 7802, (5148, 6475,7802, (5307, 6794, (5307, 6794,7.872, (3170.4, 4052.4,

P24 9044;0.6) 9244;0.6)  7.872, 9460; 0.6) 9460; 0.6) 4717.2, 5628; 0.6)

by o7 (376,436,474, 543; (376,436,474, (413,459, 506, (411,455, 50, 563; (404, 460, 502, 559;
0.2) 543; 0.2) 572;0.2) 0.2) 0.2)

prog (294 348,408, 462; (294,348,408, (294,348,408, (294, 348, 408, 462; (294, 348, 408, 462;
0.2) 462; 0.2) 462;0.2) 0.2) 0.2)

The ensuing table (Table 8) illustrates the outcomes generated by four distinct methods applied
to five of the aforementioned problem sets. These solutions are depicted as fuzzy numbers,
subsequently subjected to defuzzification through the ranking function (Table 6). This process
facilitates an in-depth analysis of the deviation from the optimal values, as shown in the Table 9, thus
enhancing comprehension for the reader.

Table 9. The deviation (dev) of the methods for 5 numerical examples.

Pr. Ebrahimnejad Thotaand Raja Kaur and Kuman Mathuretal. TrigAC-PSO
Pr.01 0 0 0.0505 0.136 0.0117
Pr.04 0 0.0028 0 0.2015 0
Pr.24 0 0 0.0278 0.0278 0.0213
Pr.27 0 0 0.0662 0.6617 0.0524
Pr.28 0 0 0 0 0

Average 0 0.00056 0.0289 0.2054 0.01708

Upon reviewing the table above, the following conclusions can be drawn:

e  Ebrahimnejad, so as Thota and Raja’s approach exhibited zero deviation from the optimal
solution, establishing it as the preferred method for solving the TP involving fuzzy generalized
numbers.

e TrigAC-PSO’s performance in this scenario was exceptional, yet again. This method reached
almost the ultimate solution with a deviation rate of 1.71%.

e Kaur and Kuman’s method demonstrated commendable efficiency with a deviation from the
optimum standing at 2.89%

e  Conversely, the outcomes derived from Mathur’s method exhibited a substantial deviation from
the optimal solution, amounting to 20.54%

Based on these assessments it is apparent that our method, TrigAC-PSO algorithm, ensures
maximum accuracy, completeness and stability, adeptly handling both the classical TP and the more
intricate FTP with remarkable proficiency.

Metaheuristic algorithms consistently emerge as optimal solutions for optimization problems
with the PSO algorithm standing out as particularly advantageous. In our innovative variation,
TrigAC-PSO, we have methodically designed the cognitive and social component to align with our
philosophy, prioritizing the particle’s assimilation of swarm behavior and collective experience to
follow its own decision-making process. Additionally, the inertia weight w, intricately intertwines
with the number of iterations outlined in our algorithm. The remaining consideration is to assess
whether the number of particles, comprising our swarm, influences the evolution and quality of our
solutions. The solutions for 28 problems were figured using 20, 35 and 50 particles, generated by
Algorithm 1. These solutions are summarized in the table below (Table 10). The highlighted
indications show the cases where the method failed to identify the optimal solution but achieved a
value very close to it.

Table 10. Solutions for 20, 35, 50 particles

Pr. 20 Particles 35 Particles 50 Particles Optimal
01 65.1 65.1 65.1 64.35
02 853.35 853.35 853.35 853.35
03 817.17 817.17 817.17 817.17

04 200.5 196 196 196
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05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

166
101
1770
199
155.25
126
294
65.8
7735.5
130.68
2327
951.25
821.25
149
67.25
3640.56
3844
295.9
551.03
4389.6
68
141
96.25
82.5

166
101
1770
199
155.25
126
294
65.8
7735.5
130.68
2330
951.25
821.25
149
67.25
3640.56
3844
295.9
551.03
4386.45
68
141
96.25
82.5

166
101
1770
199
155.25
126
294
65.8
7735.5
130.68
2261
951.25
821.25
149
67.25
3640.56
3844
295.9
551.03
4399.35
68
141
96.25
82.5

166
101
1770
199
155.25
126
294
65.8
7735.5
130.68
2170
951.25
821.25
149
67.25
3640.56
3844
295.9
551.03
4392
68
141
96.25
75.6

A briefly examination reveals minimal deviation among solutions, often rendering them almost
identical. However, a more thorough examination was deemed necessary. Each of the 28 problems
was subjected to runs, with varying number of particles, conducting 20 tests for each instance.

Table 11. The accuracy of the 28 problems for 20, 35 and 50 particles.

Pr. 20 Particles 35 Particles 50 particles
01 0.95 1 1
02 1 1 1
03 0.95 1 0.95
04 0.05 0 0.05
05 1 1 1
06 0.15 0.75 0.9
07 04 0.6 0.7
08 1 0.75 0.9
09 1 1 1
10 0.7 0.75 0.9
11 0.8 0.95 0.95
12 0.45 0.6 0.8
13 1 1 1
14 0.85 0.9 0.95
15 0 0 0
16 1 1 1
17 0.35 0.727273 0.55
18 0.9 1 0.95
19 0.75 0.95 1
20 0.65 0.65 0.7
21 0.2 0.2 0.2
22 1 1 0.95
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23 1 1 1

24 0 0

25 0.55 0.85 0.9

26 0.75 1 0.8

27 0.05 0.05 0

28 1 1 1

Average 0.6607143 0.74026 0.755357

Table 11, expands the accuracy rate of each algorithm for 20, 35 and 50 particles. The accuracy
rate is commonly defined based on the relationship:

TOR

TR
where TOR is the total number of runs where optimal solution was found and TR is generally the
number of runs. In our scenario, the experiments will be carried out for 20 runs.

The data represented in table 11, indicates that the algorithm achieves an accuracy rate of 66.07%
for 20 particles. For 35 particles, the algorithm’s accuracy rate improves to 74.03%. Furthermore,
solutions obtained using 50 particles exhibit even higher accuracy, reaching 75.54%. This pattern
indicates that, as the number of particles increases, there is enhanced interaction and information
exchange within the swarm, resulting in higher solution accuracy rates. Figure 4, also reveals the high
levels of accuracy.

Accuracy =

Accuracy of TrigAc-PSO for 20, 35, 50 particles

2,5 n a1 b 5 i1 ; 1 3 ; 095 1 i
3,95
09 0,85 095 1

0,8

0,9

0,7
- = -
0.8 |
09 07 ] 3,55
5
278727
&

0 b

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

09

peo—

® 20 Particles  m 35 Particles 50 particles
Figure 4. The accuracy of TrigAC-PSO for 20, 35 and 50 particles.

In the following table (Table 12), the most important statistical measures for 20 independent runs
are represented for 20, 35 and 50 particles, respectively.

Table 12. Statistical measures for 20, 35 and 50 particles.

20 particles 35 particles 50 particles
Mean 65.225 65.1 65.1
St.Dev 0.559016994 0 0
Pr.01 Min 65.1 65.1 65.1

Max 67.6 65.1 65.1
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CV% 0.857059401 0 0
Mean 853.35 853.35 853.35
St.Dev 0 0 0
Pr.02 Min 853.35 853.35 853.35
Max 853.35 853.35 853.35
CV% 0 0 0
Mean 817.659 817.17 817.49
St.Dev 2.186874482 0 1.431083506
Pr.03 Min 817.17 817.17 817.17
Max 826.95 817.17 823.57
CV% 0.267455563 0 0.175058228
Mean 204.285 203.225 200.765
St.Dev 3.305700817 3.247002666 1.578898683
Pr.04 Min 200.5 196 196
Max 210.2 210.1 203.4
CV% 1.618180883 1.597737811 0.786441204
Mean 166 166 166
St.Dev 0 0 0
Pr.05 Min 166 166 166
Max 166 166 166
CV% 0 0 0
Mean 102.575 101.45 101.2
St.Dev 0.712205618 0.809483266 0.615587011
Pr.06 Min 101 101 101
Max 103 103 103
CV% 0.694326705 0.79791352 0.608287561
Mean 1818.4125 1809.3875 1782.35
St.Dev 76.91593476 69.08406754 26.25888321
Pr.07 Min 1770 1770 1770
Max 2020 2020 1870
CV% 4.229839751 3.818091345 1.473273106
Mean 199 200.5 199.6
St.Dev 0 2.66556995 1.846761034
Pr.08 Min 199 199 199
Max 199 205 205
CV% 0 1.329461322 0.925230979
Mean 155.25 155.25 155.25
St.Dev 0 0 0
Pr.09 Min 155.25 155.25 155.25
Max 155.25 155.25 155.25
CV% 0 0 0
Mean 126.3 126.25 126.1
St.Dev 0.470162346 0.444261658 0.307793506
Pr.10 Min 126 126 126
Max 127 127 127
CV% 0.37225839 0.351890422 0.24408684
Mean 294.55 295.35 295.4
St.Dev 1.234376041 6.037383539 6.260990337
Pr.11 Min 294 294 294
Max 298 321 322
CV% 0.419071818 2.044145434 2.119495713
Mean 69.535 67.64 66.72
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St.Dev 6.309080757 2.312073574 1.887800168
Pr.12 Min 65.8 65.8 65.8
Max 94.5 70.4 70.4
CV% 9.073244779 3.418204574 2.829436702
Mean 7735.5 7735.5 7735.5
St.Dev 0 0 0
Pr.13 Min 7735.5 7735.5 7735.5
Max 7735.5 7735.5 7735.5
CV% 0 0 0
Mean 132.418 132.3165 131.4825
St.Dev 4.483441582 5.065924631 3.588889104
Pr.14 Min 130.68 130.68 130.68
Max 147.39 148.71 146.73
CV% 3.385824874 3.828641652 2.729556484
Mean 2703.45 2738.7 2445.35
St.Dev 251.6408207 400.1072356 138.7706457
Pr.15 Min 2327 2330 2261
Max 3275 3585 2795
CV% 9.308136665 14.60938532 5.674878675
Mean 951.25 951.25 951.25
St.Dev 0 0 0
Pr.16 Min 951.25 951.25 951.25
Max 951.25 951.25 951.25
CV% 0 0 0
Mean 829.9 826.775 823.8125
St.Dev 15.6005651 11.11983174 3.498002249
Pr.17 Min 821.25 821.25 821.25
Max 878 868 834.75
CV% 1.879812641 1.344964681 0.424611456
Mean 149.45 149 149.15
St.Dev 1.468081455 0 0.670820393
Pr.18 Min 149 149 149
Max 155 149 152
CV% 0.98232282 0 0.449762248
Mean 68.1 67.4 67.25
St.Dev 2.684507208 0.670820393 0
Pr.19 Min 67.25 67.25 67.25
Max 79 70.25 67.25
CV% 3.942007647 0.995282483 0
Mean 3641.096 3641.297 3641.029
St.Dev 0.801645676 1.265647743 0.786771551
Pr.20 Min 3640.56 3640.56 3640.56
Max 3643.24 3644.58 3643.24
CV% 0.022016604 0.034758157 0.021608494
Mean 3896.4125 3896.4125 3896.4125
St.Dev 53.85245896 53.85245896 53.85245896
Pr.21 Min 3844 3844 3844
Max 4020 4020 4020
CV% 1.382103639 1.382103639 1.382103639
Mean 295.9 298.6665 295.9
St.Dev 0 12.37216412 0
Pr.22 Min 295.9 295.9 295.9
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Max 295.9 351.23 295.9
CV% 0 4142467977 0
Mean 551.03 551.03 551.03
St.Dev 0 0 0
Pr.23 Min 551.03 551.03 551.03
Max 551.03 551.03 551.03
CV% 0 0 0
Mean 4518.15 4465.515 4446.8775
St.Dev 106.2485727 59.47704135 43.52466474
Pr.24 Min 4389.6 4386.45 4399.35
Max 4857.3 4629 4580.55
CV% 2.351594629 1.331918969 0.978769142
Mean 70.4 68.15 68.2
Var 4.159959514 0.366347549 0.695852374
Pr.25 Min 68 68 68
Max 82 69 71
CV% 5.909033401 0.537560599 1.020311399
Mean 143.5 141 143.2
St.Dev 4.442616583 0 4.583724066
Pr.26 Min 141 141 141
Max 151 141 155
CV% 3.095900058 0 3.200924627
Mean 96.19 96.13 96.55
St.Dev 1.198420012 1.343052297 0.53311399
Pr.27 Min 91.45 91.45 96.25
Max 97.45 97.45 97.45
CV% 1.245888359 1.397120875 0.552163635
Mean 82.5 82.5 82.5
St.Dev 0 0 0
Pr.28 Min 82.5 82.5 82.5
Max 82.5 82.5 82.5
CV% 0 0 0

The experimental findings highlight the remarkable stability of our proposed algorithm in
solving the FTP. Across all scenarios, the mean values closely approximate the optimal solution,
regardless of whether 20, 35, or 50 particles are utilized. This emphasizes not only the efficiency but
also the robustness of the TrigAC-PSO method. Notably, the CV value, a crucial metric for measuring
algorithm’s stability, remains consistently low. Specifically, for 20 particles, the mean CV is 1.82%,
reducing to 1.53% for 35 particles, and further decreasing to 0.91% for 50 particles. This tendency
suggests that increasing the number of particles improves algorithm’s stability. The consistently low
CV values affirm the reliability of our algorithm, establishing it as a robust competitor among
established methods.

7. Conclusions

In summary, the Transportation Problem stands as one of the pivotal challenges within the realm
of operational research. While numerous methods have successfully solved it through advanced
algorithms, the question remains: can these solutions be effectively implemented under non-ideal
conditions in real-world scenarios? This question finds its answer in the realm of the Fuzzy
Transportation Problem (FTP), where classical logic is supplanted by fuzzy logic.

In this publication, we solved the FTP using TrigAC-PSO algorithm, a variant of Particle Swarm
Optimization (PSO), which effectively determined the classical Transportation Problem. Our method
underwent rigorous testing across a spectrum of problem instances and was subsequently compared
against well-established techniques documented in the respective literature. Our findings
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unequivocally demonstrate TrigAC-PSO’s superiority in terms of accuracy, negligible deviation from
optimal solutions, and the quality of its solutions. Moreover, beyond traditional fuzzy numbers,
Trig AC-PSO was tested under conditions where numbers were classical fuzzy and generalized fuzzy,
respectively. In this context, TrigAC-PSO showed excellent performance. Based on comprehensive
experimentation and meticulous research, it becomes noticeable that TrigAC-PSO emerges as the
ideal option for resolving the complexities in the FTP.

As we look to the future, embracing and improving TrigAC-PSO presents hopeful opportunities
for improving transportation logistics and management, thus enabling smoother and more
productive operations in real-world scenarios, an aspect that presents a challenge for us to explore in
our future research.
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