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Abstract: The general theory of relativity (GR) is known to be invariant under smooth coordinate 
transformations (diffeomorphism). This group has a subgroup known as the Lorentz group of 
symmetry which is manifested in the weak field approximation to GR. The dominant operator in 
the weak field equation of GR is thus the d’Alembert (wave) operator which has a retarded potential 
solution. Galaxies are huge physical systems having dimensions of many tens of thousands of light 
years. Thus any change at the galactic center will be noticed at the rim only tens of thousands 
of years later. Those retardation effects are neglected in present day galactic modelling used to 
calculate rotational velocities of matter in the rims of the galaxy and surrounding gas. The significant 
differences between the predictions of Newtonian instantaneous action at a distance and observed 
velocities are usually explained by either assuming dark matter or by modifying the laws of gravity 
(MOND). In this paper we will show that taking general relativity seriously without neglecting 
retardation effects one can explain the radial velocities of galactic matter in the M33 galaxy without 
postulating dark matter.
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1. Introduction

GR is known to be invariant under smooth coordinate transformations (diffeomorphism). This
group has a subgroup known as the Lorentz group of symmetry which is manifested in the weak field
approximation to GR. The dominant operator in the weak field equation of GR is thus the d’Alembert
(wave) operator which has a retarded potential solution.

From the observational point of view it is well known that GR is verified by many observations.
Nevertheless, some observations seems not to fit GR and observed matter. As soon as 1933 Fritz
Zwicky realized that the velocities of the Galaxies within the Comma Cluster are way larger than
those predicted by the virial theorem in Newtonian theory [1]. He remarked that the amount of
matter needed to account for the velocities could be 400 times that of the visible matter. Which led to
postulating an unseen form of matter permeating the cluster. Volders in 1959 remarked that stars in
the periphery of the neighbor spiral galaxy M33 do not move as expected [2]. The virial theorem in
Newtonian Gravity predicts that MG/r ∼ Mv2, that is to say, the rotation curve should increase and
at some point bend down and the velocity should drop off as 1/

√
r. In the seventies Rubin and Ford

[3,4] showed for a very large sample of spiral galaxies that this behavior is a general feature: velocities
at the periphery of the galaxies do not bend down, attain a plateau at some velocity for each galaxy.
In what follows we will show that such effects can be deduced from GR if retardation effects are not
neglected. The derivation of the retardation force described in previous publications [7–9] is repeated
for completeness. However, a fit of the theory to the M33 rotation galaxy is given for the first time.
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2. General Relativity

The general theory of relativity is based on two fundamental equations, Einstein equations [10–13]:

Gµν = −8πG
c4 Tµν (1)

in which Gµν is the Einstein tensor, Tµν is the stress-energy tensor, G ' 6.67 10−11 m3kg−1s−2 is the
gravitational constant and c ' 3 108 ms−1 is the velocity of light in vacuum (Greek indices are in the
range 0− 3). And the geodesic equation:

d2xα

ds2 + Γα
µν

dxµ

ds
dxν

ds
=

duα

ds
+ Γα

µνuµuν = 0 (2)

in which xα(s) are the four dimensional coordinates of the particle in space-time, s is a parameter
along the trajectory that for massive particles can be the length of the trajectory, uµ = dxµ

ds and Γα
µν is

the affine connection (Einstein summation convention is assumed). The stress-energy tensor of matter
is usually taken in the form:

Tµν = (p + ρc2)uµuν − p gµν (3)

In the above p is the pressure, ρ is the density. Lowering and raising indices is done through the metric
gµν and the inverse metric gµν, that is uµ = gµνuν. The same metric serves to calculate s:

ds2 = gµνdxµdxν, (4)

and the affine connection:

Γα
µν =

1
2

gαβ
(

gβµ,ν + gβν,µ − gµν,β
)

, gβµ,ν ≡
∂gβµ

∂xν
(5)

The affine connection serves to calculate the Riemann and Ricci tensors and the curvature scalar:

Rµ
ναβ = Γµ

να,β − Γµ
νβ,α + Γσ

ναΓµ
σβ − Γσ

νβΓµ
σα, Rαβ = Rµ

αβµ, R = gαβRαβ (6)

which in turn serves to calculate the Einstein tensor:

Gαβ = Rαβ −
1
2

gαβR. (7)

Hence matter distribution determines the metric through equation (1) and metric determines
trajectories through equation (2) as is well known. Those equations are well known to be symmetric
under smooth coordinate transformations (diffeomorphism).

x′α = x′α(xµ). (8)

3. Linear Approximation of GR

Except for the extreme cases of compact objects (black holes and neutron stars) and the very early
universe (big bang) one need not consider the full non-linear Einstein equation [7]. In most other cases
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of astronomical interest (galactic dynamics included) one can linearize those equations around the flat
Lorentz metric ηµν such that1:

gµν = ηµν + hµν, ηµν ≡ diag (1,−1,−1,−1),

|hµν| � 1 (9)

One than defines the quantity:

h̄µν ≡ hµν −
1
2

ηµνh, h = ηµνhµν, (10)

h̄µν = hµν for non diagonal terms. For diagonal terms:

h̄ = −h⇒ hµν = h̄µν −
1
2

ηµν h̄. (11)

The general coordinate transformation symmetry of equation (8) has a subgroup of infinitesimal
transformations which are manifested in the gauge freedom of hµν in the weak field approximation. It
can be shown ([10] page 75 exercise 37, see also [11–13]), that one can choose a gauge such that the
Einstein equations are:

2h̄µν ≡ h̄µν,α
α = −16πG

c4 Tµν, h̄µα,
α = 0. (12)

The d’Alembert operator 2 is clearly invariant under the Lorentz symmetry group (another subgroup
of the general coordinate transformation symmetry described by equation (8)) of which the Newtonian
Laplace operator ~∇2 is not, but this comes with the price that "action at a distance" solutions are
forbidden and only retarded solutions are allowed.

Equation (12) can always be integrated to take the form [14]2:

h̄µν(~x, t) = −4G
c4

∫ Tµν(~x′, t− R
c )

R
d3x′,

t ≡ x0

c
, ~x ≡ xa a, b ∈ [1, 2, 3],

~R ≡ ~x−~x′, R = |~R|. (13)

The factor before the integral is small: 4G
c4 ' 3.3 10−44 hence in the above calculation one can take Tµν

which is zero order in hαβ. Let us now calculate the affine connection in the linear approximation:

Γα
µν =

1
2

ηαβ
(
hβµ,ν + hβν,µ − hµν,β

)
. (14)

The affine connection has only first order terms, hence for a first order approximation of Γα
µνuµuν

appearing in the geodesic, uµuν is zeroth order. In the zeroth order:

u0 =
1√

1− v2

c2

, ua = ~u =
~v
c√

1− v2

c2

,~v ≡ d~x
dt

, v = |~v|. (15)

For non relativistic velocities:

u0 ' 1, ~u ' ~v
c

, ua � u0 for v� c. (16)

1 Private communication with the late Professor Donald Lynden-Bell
2 For reasons why the symmetry between space and time is broken see [15,16]
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Hence, we will not be considering in this paper a post Newtonian approximation in which matter
travels at nearly relativistic speeds, but we will be considering the retardation effects and finite
propagation speed of the gravitational field. Inserting equation (14) and equation (16) in the geodesic
equation we arrive at the approximate form:

dva

dt
' −c2Γa

00 = −c2
(

ha
0,0 −

1
2

h00,
a
)

(17)

Let us now look at Tµν = (p + ρc2)uµuν − p gµν. In the current case ρc2 � p, combining this with
equation (16) we arrive at T00 = ρc2 while all other components of the tensor Tµν are significantly
smaller. This implies that h̄00 is significantly larger than other components of the tensor h̄µν. Of course
one should be careful and not deduce from the different magnitudes of quantities that such a difference
exist between their derivatives. In fact by the gauge condition in equation (12):

h̄α0,
0 = −h̄αa,

a ⇒ h̄00,
0 = −h̄0a,

a, h̄b0,
0 = −h̄ba,

a. (18)

Hence the zeroth derivative of h̄00 (contains a 1
c factor) is the same order as the spatial derivative of h̄0a

and like wise the zeroth derivative of h̄0a (which appears implicitly in equation (17)) is the same order
of the spatial derivative of h̄ab. However, it is safe to compare spatial derivatives of h̄00 and h̄ab and
conclude that the former is significantly larger than the later. Using equation (11) and taking the above
consideration into account we write equation (17) as:

dva

dt
' c2

4
h̄00,

a ⇒ d~v
dt

= −~∇φ = ~F, φ ≡ c2

4
h̄00 (19)

Thus φ is a gravitational potential of the motion which can be calculated using equation (13):

φ =
c2

4
h̄00 = −G

c2

∫ T00(~x′, t− R
c )

R
d3x′

= −G
∫

ρ(~x′, t− R
c )

R
d3x′ (20)

and ~F is the force per unit mass. If ρ is static we are in the realm of the Newtonian instantaneous
action at a distance theory. However, it is unlikely that ρ is static as a galaxy will attract mass from the
intergalactic medium.

4. Beyond the Newtonian Approximation

The retardation time R
c which may be a few tens of thousands of years is short with respect to the

time that the galactic density changes significantly. This means that we can write a Taylor series for the
density:

ρ(~x′, t− R
c
) =

∞

∑
n=0

1
n!

ρ(n)(~x′, t)(−R
c
)n, ρ(n) ≡ ∂nρ

∂tn . (21)

Inserting equation (21) into equation (20) and keeping the first three terms we will obtain:

φ = −G
∫

ρ(~x′, t)
R

d3x′ +
G
c

∫
ρ(1)(~x′, t)d3x′

− G
2c2

∫
Rρ(2)(~x′, t)d3x′ (22)
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The first term will provide the Newtonian potential, the second term does not contribute, the third
term will result in the lower order correction to the Newtonian theory:

φr = −
G

2c2

∫
Rρ(2)(~x′, t)d3x′ (23)

The total force per unit mass:

~F = ~FN + ~Fr

~FN = −~∇φN = −G
∫

ρ(~x′, t)
R2 R̂d3x′, R̂ ≡

~R
R

~Fr ≡ −~∇φr =
G

2c2

∫
ρ(2)(~x′, t)R̂d3x′ (24)

While the Newtonian force ~FN is always attractive the retardation force ~Fr can be either attractive
or repulsive. Also notice that while the Newtonian force decreases as 1

R2 , the retardation force is
independent of distance as long as the Taylor approximation of equation (21) is valid. For short
distances the Newtonian force is dominant but as the distances increase the retardation force becomes
dominant. Newtonian force can be neglected for distances significantly larger than the retardation
distance:

R� Rr ≡ c∆t (25)

∆t is the typical duration in which the density ρ changes. Of course for R� Rr the retardation effect
can be neglected and only Newtonian forces should be considered. For large distances r = |~x| → ∞
such that R̂ ' ~x

|~x| ≡ r̂ we obtain:

~Fr =
G

2c2 r̂
∫

ρ(2)(~x′, t)d3x′ =
G

2c2 r̂M̈, M̈ ≡ d2M
dt2 . (26)

Now as the galaxy attracts intergalactic gas its mass increases thus Ṁ > 0, however, as the intergalactic
gas is depleted the rate at which the mass increases must decrease hence M̈ < 0. Thus in the galactic
case:

~Fr = −
G

2c2 |M̈|r̂ (27)

and the retardation force is attractive.

5. Dark Matter

In what circumstances can one confuse retardation with the effect of a non existent "dark matter"?
Let us ignore retardation effects and suppose that radial velocities are a result of some mysterious dark
matter. In this case we can write for a spherically symmetric mass distribution [17]:

− v2
c

r
r̂ = ~Fd = −GMd(r)

r2 r̂ (28)

vc is the speed of a test particle of constant radius r and Md(r) is the amount of dark matter inside
the radius r. Comparing equation (28) and equation (27) we see that the "dark matter" mass can be
calculated as follows:

Md(r) =
r2|M̈|

2c2 (29)

Now since:

Md(r) = 4π
∫ r

0
r′2ρd(r′)dr′,

dMd(r)
dr

= 4πr2ρd(r) (30)
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it follows:

ρd(r) =
|M̈|

4πc2r
(31)

This is consistent with observational data of [5] who concluded that the "dark matter" density decreases
as r−1.3 for M33.

6. MOND

Another approach to explaining galactic rotation curves is the claim that either the laws of
dynamics (Newton’s second law) or the laws of Gravitation (GR) should be modified. This approach
championed by Milgrom is denoted "MOND" (Modified Newtonian dynamics) [18]. In one version of
this approach Newton’s law of gravity is modified:

~FM = − GM
µ( a

a0
)r2 r̂ (32)

In the above µ is the interpolation function that should be 1 for a0 � a. Let us assume:

µ(
a
a0
) =

1
1 + ( a0

a )
2 (33)

If a0 � a, µ ' ( a
a0
)2. A test particle revolving in a constant radius will have centrifugal acceleration

a = v2

r and thus:

~FM = −
GMa2

0
v4 r̂ (34)

For v constant at a far away distance this expression is similar to the retardation force and thus:

|M̈| =
2Ma2

0c2

v4 . (35)

Milgrom found a0 = 1.2 10−10ms−2 to be most fitting to the data. The baryonic mass of the M33
galaxy is 2 1040kg [6] and the velocity far away from the galaxy is 140, 000 ms−1. We thus obtain
|M̈| ' 1.34 1017kgs−2 and a ratio:

1
∆t2 =

|M̈|
M
' 6.74 10−24 s−2 ⇒ ∆t ' 3.85 1011 s (36)

This amounts to a typical accumulation acceleration time scale of ∆t ' 12, 206 years and retardation
distance of:

Rr = c∆t ' 12, 206 light years. (37)

In young galaxies the effect of retardation seems insignificant [19], while for older galaxies it seems
like somebody is pressing hard on the brakes of mass accumulation. The change of many order of
magnitudes in |M̈| suggest exponential growth (see [9] for a more detailed explanation), hence the
following model is suggested:

M(t) = M(0) +
(

Ṁ(0)− M̈(0)
α

)
t +

M̈(0)
α2

(
eαt − 1

)
(38)

Ṁ(t) = Ṁ(0) +
M̈(0)

α

(
eαt − 1

)
(39)

M̈(t) = M̈(0)eαt, α > 0. (40)
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At the present epoch t = T:

M̈(T) = M̈(0)eαT ⇒ M̈(0) = M̈(T)e−αT , (41)

Ṁ(0)− M̈(0)
α

= Ṁ(T)− M̈(T)
α

(42)

This leads to the following expression for galactic mass at t = T:

M(T) = M(0) +
(

Ṁ(T)− M̈(T)
α

)
T

+
M̈(T)

α2

(
1− e−αT

)
. (43)

Let us assume that M(0) = 0 and αT >> 1⇒ α >> 1
T ' 2.4 10−18 s−1. In this case:

M(T) ' T
(

Ṁ(T)− M̈(T)
α

)
. (44)

Thus we have one equation but two unknowns: α, Ṁ(T), hence exact values cannot be deduced.
However, since Ṁ(T) > 0 it follows that:

Ṁ(T) ' M
T
− |M̈(T)|

α
≡ ṀL(T)−

|M̈(T)|
α

> 0 (45)

The linear accumulation rate is: ṀL(T) = M
T ' 4.9 1022 kg s−1. The inequality leads to a lower bound

on α:

α > αc ≡
|M̈(T)|
ṀL(T)

' 2.77 10−6 s−1 (46)

In the case α >> αc the mass accumulation rate is approximately linear Ṁ(T) ' ṀL(T) and the effect
of the second derivative M̈(T) on the rate of mass accumulation is negligible. However, the effect of
M̈(T) on galactic rotation curves is significant.

7. A Dynamical Model

The mass accumulation model described in the previous section is based on a fitting of the second
derivative of the galactic mass to the galactic rotation curve. It is intuitively obvious that as mass is
accumulated in the galaxy it must be depleted in the intergalactic medium. This is due to the fact that
the total mass is conserved still it is of interest to see if this intuition is compatible with a model of
gas dynamics. For simplicity we assume that the gas as a barotropic ideal fluid and its dynamics is
described by the Euler and continuity equations as follows:

∂ρ

∂t
+ ~∇ · (ρ~v) = 0 (47)

d~v
dt
≡ ∂~v

∂t
+ (~v · ~∇)~v = −

~∇p(ρ)
ρ
− ~∇φ (48)

In which the pressure p(ρ) is assumed to be a given function of the density, ∂
∂t is a partial temporal

derivative, ~∇ has its standard meaning in vector analysis and d
dt is the material temporal derivative.

We have neglected viscosity terms due to the gas low density. The system is described by cylindrical
coordinates r̄, θ, z in which z = 0 is the galactic plane. For simplicity we assume axial symmetry, hence
all variables are independent of θ. Moreover, the mass influx coming from above and below the galaxy
is much more significant as compared to the influx coming from the galactic edge. This is due to the
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Figure 1. An idealized cylindrical galaxy from different perspectives. (a) from above (b) tilted edge
perspective.

large difference of the galaxy surfaces perpendicular to the z axis compared to the area of its edge. The
area of the surface of the galaxy which is perpendicular to the z axis is:

Sz = Sz+ + Sz− = πr2
m + πr2

m = 2πr2
m (49)

in which Sz is the total surface area of the galaxy perpendicular to the z axis, Sz+ is the upper area
of the surface of the galaxy perpendicular to the z axis, Sz− is the lower area of the surface of galaxy
perpendicular to the z axis and rm is the galactic radius (see figure 1).

The area of the surface of the galactic edge with thickness ∆z is:

Se = 2πrm∆z. (50)

And thus the ratio of the surfaces area is:
Se

Sz
=

∆z
rm

. (51)

Typical values of ∆z is about 0.4 kilo parsec and rm is about 17 kilo parsec (for M33) giving an area
ratio of about 1%. In such circumstances the edge mass influx is less important and we can assume a
velocity field of the form:

~v = vz(r̄, z, t)ẑ + vθ(r̄, z, t)θ̂. (52)

ẑ and θ̂ are unit vectors in the z and θ directions respectively. The influx is described schematically in
figure 2. In this case the continuity equation (47) will take the form:

∂ρ

∂t
+

∂(ρvz)

∂z
= 0 (53)

Defining the quantity:

γ ≡ ρvz ⇒ ρ =
γ

vz
(54)

and using the above definition equation (53) takes the form:

∂( γ
vz
)

∂t
+

∂γ

∂z
= 0 (55)
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Figure 2. A schematic view of the galactic influx from a side view.

Assuming for simplicity that vz is stationary and defining the auxiliary variable tz:

tz ≡
∫ dz

vz
(56)

we arrive at the equations:
∂γ

∂t
+

∂γ

∂tz
= 0. (57)

This equation can be solved easily as follows:

γ(r̄, z, t) = f (t− tz), f (−tz) = γ(r̄, z, 0) = vzρ(r̄, z, 0) (58)

for the function f (x) which is fixed by the density initial conditions and the velocity profile. Let us
now turn our attention to the Euler equation (48), for stationary flows it takes the form:

(~v · ~∇)~v = −
~∇p(ρ)

ρ
− ~∇φ (59)

According to equation (52) :

~v · ~∇ = vz
∂

∂z
+

vθ

r̄
∂

∂θ
(60)

Now writing equation (59) in terms of its components we arrive at the following equations:

vz
∂vz

∂z
= −1

ρ

∂p
∂z
− ∂φ

∂z
(61)

−
v2

θ

r̄
= −1

ρ

∂p
∂r̄
− ∂φ

∂r̄
,

(
∂θ̂

∂θ
= − ˆ̄r

)
. (62)
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It is usually assumed that the radial pressure gradients are negligible with respect to the gravitational
forces and thus we arrive at the equation:

v2
θ

r̄
' ∂φ

∂r̄
, (63)

As for the z component equation it can be easily written in terms of the specific enthalpy w(ρ) =
∫ dP

ρ

in the form:
∂

∂z

(
1
2

v2
z + w(ρ) + φ

)
= 0⇒ 1

2
v2

z + w(ρ) + φ = C(r, t). (64)

We recall that ρ depends on vz through equation (54) and equation (58):

ρ(r, z, t) =
γ

vz
=

f (t−
∫ dz

vz
)

vz
(65)

As both the specific enthalpy and the gravitational potential are dependent on the density, equation
(64) turns into a rather complicated nonlinear integral equation for vz. However, many galaxies are
flattened structures, hence it can thus be assumed that the pressure z gradients are significant as
one approaches the galactic plane. We will thus assume for the sake of simplicity that the pressure
gradients balance the gravitational pull of the galaxy and thus vz is just a function of r in which case
the convective derivative of vz vanishes. The above assumption holds below and above the galactic
plane but not at the galactic plane itself. This suggests the following simple model for the velocity vz

(see figure 2):

vz =

{
−|vz| z > 0
|vz| z < 0

(66)

in which |vz| is a known function of r̄. The velocity field is discontinuous at the galactic plane due to
our simplification assumptions, but of course need not be so in reality. We also assume for simplicity
that the velocity field |vz| is constant for r̄ < rm and vanishes for r̄ > rm. According to equation (58)
the time dependent density profile is fixed by the density initial conditions. In this section we will deal
with the density profile outside the galactic plane and will leave the discussion of the density profile in
and near the galactic plane to the next section. We consider an initial density profile as follows:

ρo(r̄, z, 0) = re(z)
[
ρ1(r̄) + ρ2(r̄)ek|z|

]
,

re(z) =

{
1 |z| < zi
0 |z| ≥ zi

(67)

in which the rectangular function re(z) keeps the exponential function from diverging. The density
profile is depicted in figure 3. We assume that ρ2 is negative and thus the density becomes dilute at
distances far from the galactic plane. As vz is constant both above and below the galactic plane, tz =

z
vz

up to a constant. And now it is easy to deduce from equation (58) the functional form of f (β):

f (β) = vzre(−vzβ)[ρ1 + ρ2ek|vz β|] (68)

And hence according to equation (69) the time dependent density function for matter outside the
galactic plane is obtained:

ρo(r̄, z, t) =
γ

vz
= re(z− vzt)[ρ1(r̄) + ρ2(r̄)ek|z−vzt|] (69)

The density of matter outside the galactic plane will vanish for t > tm = zi
|vz | , hence we will discuss

only the duration of t < tm. Let us look at the mass contained in the cylinder defined by the galaxy
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Figure 3. An initial density profile out side the galactic plane. In which ρ0 = ρ1 + ρ2, ρ2
ρ1

= −0.2 and

zi = 5 (kpc) and k = 0.32 (kpc−1).

(see figure 4) and let us assume that the total mass in that cylinder is MT . Now the mass outside the
galactic disk will be:

Mo(t) = 2π

[∫ − 1
2 ∆z

−zi

dz
∫ rm

0
dr̄r̄ρo(r̄, z, t)

+
∫ zi

1
2 ∆z

dz
∫ rm

0
dr̄r̄ρo(r̄, z, t)

]
(70)

Hence the mass in the galactic disk is:

M(t) = MT −Mo(t) (71)

And the galactic mass derivatives are:

Ṁ(t) = −Ṁo(t), M̈(t) = −M̈o(t) (72)

Inserting equation (69) into equation (70) we may calculate Mo(t):

Mo(t) = 2
[

λ1

(
zi − |vz|t−

1
2

∆z
)

+
λ2

k

(
ekzi − ek(|vz |t+ 1

2 ∆z)
)]

(73)

in which:
λ1 ≡ 2π

∫ rm

0
dr̄r̄ρ1(r̄), λ2 ≡ 2π

∫ rm

0
dr̄r̄ρ2(r̄). (74)

Now calculating the second derivative of Mo(t) and using equation (72) leads to the result:

M̈(t) = −M̈o(t) = 2k|vz|2e
1
2 ∆zkλ2ek|vz |t. (75)
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Figure 4. The mass column defined by the galaxy (a) Side view (b) Three dimensional view.

Comparing equation (75) with equation (40) leads to the following identification:

α = k|vz|, M̈(0) = 2k|vz|2e
1
2 ∆zkλ2 (76)

which means that we must have λ2 < 0 according to equation (27) in order to assure an attractive force.
Next we calculate Ṁ(t), using equation (72) and equation (73) we will obtain:

Ṁ(t) = −Ṁo(t) = 2|vz|λ1 + 2|vz|e
1
2 ∆zkλ2ek|vz |t. (77)

Hence:

Ṁ(0) = 2|vz|λ1 + 2|vz|e
1
2 ∆zkλ2 = 2|vz|λ1 +

M̈(0)
α

(78)

Thus λ1 is:

λ1 =
1

2|vz|

[
Ṁ(0)− M̈(0)

α

]
(79)

Inserting equation (79) and equation (76) into equation (77) leads back to equation (39). Finally,
combining equations (71,73,76, 79) and noticing that:

M(0) = MT −
zi − 1

2 ∆z
|vz|

(
Ṁ(0)− M̈(0)

α

)
− M̈(0)

α2

(
ek(zi− 1

2 ∆z) − 1
)

(80)

we arrive back at equation (38). Hence the dynamical model presented in this section is compatible
with the mass model of the previous one.
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Figure 5. Rotation curve for a sphere with a Gaussian density profile. The author wishes to thank his
PhD student Ms. Michal Wagman for supplying the data points of this curve

8. M33

Consider a spherical Gaussian density profile:

ρ(r) = ρce
− r2

R2
G . (81)

in which ρc is the central density and RG the galactic scale. This was fitted to the M33 galactic rotation
curve (see figure 5) using the total gravitational force due to both the Newtonian and retardation terms
given in equation (24) (Further details can be found in [9]).

The fit is excellent taking into account the crude model.

9. Conclusion

The need to satisfy the Lorentz symmetry group prevents the weak field approximation of GR
from allowing action at a distance potentials and thus only retarded solutions are allowed. Retardation
is manifested more strongly when large distances and large second derivatives are involved.

We show that "dark matter" and "MOND" effects are explained in the framework of standard
GR as effects due to retardation without assuming any exotic matter or modifications of the theory of
gravity.

What will happen if the mass out side the galaxy is totally depleted? In this case M̈ = 0 and
retardation force should vanish. This was indeed reported recently [19] for the galaxy NGC1052-DF2.

Retardation effects in electromagnetic theory were discussed in [20–22].
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