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Abstract: Accurate detection of forest restoration sites using deep learning is crucial for effective 
ecosystem management, optimizing reforestation efforts, and ensuring environmental 
sustainability. While various deep learning-based systems have been developed for this purpose, 
the influence of different neural network architectures on model performance during the 
identification of forest restoration sites remains underexplored. This study aimed to address this 
gap by exploring the optimal methodology for extracting and classifying candidate sites for forest 
restoration based on Convolutional Neural Networks (CNNs), specialized for image recognition. 
Four categories—arable land, road and barren, quarry, and forest—were defined as candidate sites 
for forest restoration. A dataset comprising 17,043 samples was divided into training (11,929) and 
validation (5,114) sets at a ratio of 7:3 for model learning. Model accuracy was evaluated using pixel 
accuracy (PA) and mean intersection over union (mean IoU). The Resnet152-U-Net model 
demonstrated a pixel accuracy of 95.2% and a mean IoU of 61.3%, indicating excellent performance 
in extracting candidate sites for forest restoration. This approach offers spatial and temporal 
advantages over conventional field surveys or aerial image-based assessments, potentially serving 
as valuable data for selecting future forest restoration sites. 

Keywords: semantic segmentation; forest restoration; aerial images; deep learning; convolutional 
neural network; U-Net 

 

1. Introduction 

Forest conservation is essential for biodiversity preservation, managing air and water quality, 
and mitigating climate change [1,2]. In recent years, forests have faced significant losses due to 
climate change and human activities, including deforestation and forest degradation, which have 
substantial impacts on climate, biodiversity, and society. Various factors contribute to forest loss, 
including natural disasters such as wildfires and landslides, as well as human-induced land use 
changes like urbanization and small-scale agriculture [3]. 

Given the diverse nature and extent of deforestation along with limited financial resources for 
restoration, prioritizing degraded forest areas for restoration is essential [4]. For effective 
environmental conservation, it's crucial to classify forest restoration sites based on their types and 
assess their current conditions to facilitate appropriate restoration efforts. 

Traditional methods for forest monitoring, such as ground surveys using the Global Navigation 
Satellite System (GNSS) and remote sensing techniques, have been widely used. Remote sensing, in 
particular, enables the detection of various land disturbances over time [5–12]. However, remote 
sensing methods may be limited in early-stage detection when ground access is restricted [13]. 
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Advancements in high-resolution satellite and aerial imagery, along with deep learning techniques, 
have enhanced geospatial analysis capabilities for change detection. 

The development of computer vision, especially with the rapid advancement of artificial 
intelligence, has revolutionized various fields, including biometrics, medical imaging, and 
autonomous driving [14]. Among these, convolutional neural networks (CNNs) have shown 
promising results, particularly in image recognition tasks. Semantic segmentation, a technique based 
on CNNs, enables simultaneous segmentation and classification of various objects. In forestry, deep 
learning analysis has been applied to detect forest fires, landslides, pest infestation, tree species 
classification, and land cover classification [15–23]. 

Additionally, deep learning algorithms have been utilized in change detection research, which 
observes differences in objects or phenomena over time [24]. Change detection methods can be 
categorized into pixel-based and object-based approaches. While pixel-based change detection is 
suitable for medium- and low-resolution images, object-based approaches are preferred for high-
resolution imagery due to spectral and registration errors [25]. 

This study evaluates the potential of CNN models in forestry applications and change detection. 
The methodology involves acquiring a large dataset through annotation and open-source images, 
preprocessing datasets from forest areas in South Korea, fine-tuning the ResNet152-U-Net model for 
segmenting five categories, and assessing model performance using time-series aerial images of 
forest degradation areas. 

2. Materials and Methods 

2.1. Overview 

The overall research system can be divided into three main stages: training data preparation, 
deep learning model training, and model evaluation (Figure 1). During the training data preparation 
phase, activities such as research data collection, data pre-processing, and dataset segmentation are 
conducted to prepare for deep learning model training. In the deep learning model training phase, 
we perform tasks such as input data pre-processing, data augmentation, U-Net deep learning model 
training, and adjustment of training settings for efficient learning. During the model evaluation 
phase, time-series analysis and assessment are carried out to identify deforested regions by 
semantically segmenting spatial data from two different time periods. This process also includes 
analyzing the features of potential sites for forest restoration. 
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Figure 1. The schema of proposed approach. 
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2.2. Study Area and Dataset Description  

We utilized manually annotated datasets as well as those provided by the National Information 
Society Agency (NIA) for training our deep learning model. For acquiring annotated datasets, we 
selected aerial images from 2011 and 2020 of Gangwon Province, which hosts the largest number of 
candidate sites for forest restoration according to the Korea Forest Service [26]. Figure 2 illustrates an 
example of the training dataset, which comprises a TIFF file containing an aerial image in RGB bands 
and corresponding ground truth data in the same area and size. 

This study focuses on forests in Gangwon Province, South Korea, chosen for their significant 
areas of degradation observed in aerial images from the Forest Restoration Site Survey [27]. 
Specifically, Gochang, Byeonggok, Samcheok, Doam, and Yeongwol were identified as the main 
degraded areas in Gangwon Province. Consequently, we manually annotated 31 aerial images of 
these areas for model training. 

Moreover, this study utilized the open data source platform AI-Hub, developed by the National 
Information Agency (NIA), for detecting changes in forest regions using a deep learning model. AI-
Hub provides datasets for machine learning research, applications, and education across various 
fields, including the land environment. Airborne imagery capturing the forest region from 2018 to 
2019 with a spatial resolution of 0.51 m and RGB format in the Gangwon area is available in the land 
environment datasets. Additionally, AI-Hub provides label images with the same location, resolution, 
and number as the airborne images, encompassing various categories such as roads, paddy fields, 
fields, forests, and barren lands, which is all pertinent to the forest restoration target area. 

To ensure the quality of AI-Hub data, the National Geographic Information Institute (NGII) of 
South Korea supervised the management and monitoring of image data quality, including 
radiometric calibration and geometric correction, while KOFPI managed the quality of label image 
data [28]. 

 

Figure 2. Combined view of NIA dataset and manually annotated data. 

The dataset consists of 17,043 images, divided into a 7:3 ratio of training (11,929) and validation 
(5,114) images. Additionally, we constructed datasets with a resolution of 0.5 meters and a size of 
256x256 pixels (Table 1). 

Table 1. Dataset composition overview. 

Source Usage Number of Images Size Resolution (m) Format 

Aerial image 
Train 11,929 

256×256 0.5 Tiff. 
Validation/Test 5,114 

Ground Truth 
Train 11,929 

Validation/Test 5,114 

This study aimed to classify four categories (arable land, road and barren, quarry, and forest) in 
aerial images using deep learning techniques. To extract features from the aerial images, we 
employed a convolutional neural network (CNN), a deep learning model specialized in image 
recognition. 
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Arable land consists of paddy fields and general fields. Road and barren areas include highways, 
general roads, forest roads, and barren lands. Quarry areas encompass mining and quarry lands, 
while forest areas include afforestation lands. Non-target areas comprise various other regions, such 
as urban areas, shadows, and cemeteries. Roads, especially forest roads in mountainous regions, 
exhibit similar RGB spectral characteristics to barren lands, hence they are grouped into a single 
category. 

The spectral features of aerial images were compared based on annotation items by analyzing 
the variations in spectral values throughout the red, green, and blue bands. Comparing spectral 
values is crucial for training deep learning models as it helps determine the distribution features of 
each item. The spectral values of arable land, road and barren, quarry, forest, and non-target areas 
were analyzed to determine the minimum, maximum, and average values (Table 2). 

Table 2. RGB band detail of annotated area. 

Class 
Red Green Blue 

Min Max Mean Min Max Mean Min Max Mean 
 Arable land 13 208 94 22 222 108 19 198 91 
 Road·Barren 15 158 80 25 179 102 22 152 85 
 Quarry 29 218 135 39 231 157 34 218 138 

 Forest 90 127 104 109 152 127 96 133 111 
 Background 6 231 100 14 244 122  12 232 113 

2.3. Pre-Processing 

In this section, we conducted normalization of the RGB bands, cropping of images, and data 
augmentation. 

Data pre-processing is the initial stage in machine learning where the data is changed or encoded 
to a state that allows the machine to efficiently analyze the input. Data pre-processing significantly 
impacts the generalization performance of a supervised machine learning algorithm. Enhancing data 
quality is crucial for optimizing performance[29]. 

2.3.1. Normalizing RGB Band and Cropping Images 

In the pre-processing step, the RGB channels of two datasets are normalized using Min-Max 
normalization. Normalization is a scaling technique, mapping technique or pre-processing stage [30]. 
Min-Max normalization is a simple technique where the technique can specifically fit the data in a 
pre-defined boundary with a pre-defined boundary [31]. They are divided into 256 × 256 patches and 
finally, the patches which contain the higher portion of the target in forest areas are chosen. Moreover, 
the ground truth is converted into 256 × 256 patches so that it is suitable as an input of the ResNet152-
Unet. 

The selected aerial images and label images were cropped to the size of 256 × 256 for feeding to 
the deep learning model because this study adopted a pre-trained deep learning model architecture 
that allowed for the aforementioned image size in terms of the input. Each image of 512 × 512 size 
produced 4 cropped images. The labels for arable land, road and barren, quarry, and forest are each 
assigned by one-hot-encoding. On the other hand, the label for non-target regions was assigned to 0. 
If more than 50% of the areas in the label data were background, both the aerial and label image data 
were deleted from the training and validation dataset to prevent ambiguity in the performance of the 
deep learning model (Figure 3). 
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Figure 3. Cropping images by 256×256 and removal condition on the dataset. 

2.3.2. Data Augmentation 

When training with a limited training dataset, underfitting or overfitting can occur [32]. 
Underfitting and overfitting affect the ability to accurately generalize models to both the observed 
training data and unknown testing data. To solve these problems, pre-training each layer of deep 
learning, dropout, and data augmentation methods have been proposed to randomly train some 
nodes [33–35]. Deep artificial neural networks require a large amount of training data to successfully 
learn a process that is sometimes costly and labor-intensive. Data augmentation addresses this 
problem by artificially increasing the size of the training dataset [36]. 

Common data augmentation techniques for image data are Horizontal/Vertical Flips, Random 
Crops/Scales, and Color Jittering. In this study, we used horizontal filps and vertical filps to increase 
the amount and diversity of training data in order to preserve the pixel-by-pixel image information 
as much as possible and apply it to training (Figure 4). ImageDataGenerator from the Python Keras 
library is used to augment the input data.  

 
Figure 4. The schema of data augmentation. (a) indicates the original dataset, (b) present horizontal 
flip, (c) present vertical flip. 
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2.4. The Architecture Proposed in this Paper ResNet152-UNet 

Convolutional Neural Network (CNN) is a deep learning neural network model inspired by the 
structure of animal visual cortex. It can be divided into the first half, which extracts features by 
performing convolutional operations, and the second half, which classifies using features. CNN is a 
model that performs well in recognition problems such as image classification and character 
recognition [37]. U-Net is a fully convolutional neural network based on FCN (Fully Convolution 
Network). The original purpose of U-Net's development was to segment biological images [38]. In 
order to classify the human cells, this model demonstrated strong semantic segmentation 
performance. As shown in Figure 5, the network model has a U-shape and consists of a total of 23 
convolutional layers, which can be divided into an encoder part and a decoder part, i.e., a contracting 
path to extract image features and an expanding path to reproduce the extracted image features as 
the original input [39]. 

For large images, U-Net uses the overlap-tile strategy, which divides the image into tiles instead 
of using the entire image. For segmenting pixels at the boundary of the image, it uses an extrapolation 
method using mirroring of the image boundary instead of using arbitrary padding values. With this 
structure, it performs well on many image segmentation problems using data augmentation even 
with a small amount of training data. Although it was developed for biomedical image segmentation, 
it has also been used for land cover classification using various images because it segments images 
with less information [38,40–42]. 

In this study, U-Net with a ResNet152 backbone model pre-trained on the ImageNet dataset. 
Transfer learning is a widely used technique in computer vision for efficiently constructing precise 
models [43]. Transfer learning in computer vision typically involves utilizing pre-trained models. A 
pre-trained model is a model that has been trained on a substantial benchmark dataset to address a 
problem akin to the one we aim to solve. Due to the high computational cost of training these models, 
it is typical to import and utilize models from published literature such as VGG, Inception, 
ResNet and MobileNet [44]. 

ResNet introduces the concept of residual learning. Residual learning solves the problem of 
gradient vanishing in deep neural networks by using shortcut connections to skip one or more layers 
and learn to minimize the residual (F (x) = H (x)-x. In addition, a 1×1 convolutional layer was added 
before and after the 3×3 convolutional layer through a bottleneck structure to reduce and expand the 
dimensionality of the feature map and reduce computation [45]. This ResNet152-U-Net model 
comprises approximately 67.2 million parameters.  

 
Figure 5. Schematic diagram of the U-Net network structure (Source: Adapted from Figure 5 in 
Ronneberger et al., 2015). 
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3. Results and Discussions 

3.1. Experimental Settings 

The initial learning rate for model training is set to 0.001, with a decay rate of 1e-2. The Adam 
optimizer is employed with a beta_1 value of 0.9 and a beta_2 value of 0.999. Additionally, an 
exponential decay learning rate schedule is implemented, reducing the learning rate by 5% every ten 
epochs, and the total number of epochs is set to 200. One of the most renowned optimization 
algorithms, Adam, is chosen to enhance the model's capabilities. For the loss function, we utilize the 
categorical focal jaccard loss. The reason is that the foreground has taken a much smaller place than 
the background, and this disproportion will lead to more missing detection problems. The Focal loss 
focuses training on a sparse set of hard examples and prevents the vast number of easy negatives 
from overwhelming the detector during training [46]. The Jaccard loss measures the similarity 
measures the similarity between finite sample sets A,B as the Intersection over Union  (IoU) [47]. 

In addition, this experiment uses data augmentation methods, which can play an important role 
in avoiding overfitting, improving the robustness of the model, and improving the expression ability 
of the model. The overall experiments are conducted on two RTX 3070 GPUs (64 GB memory). 

3.2. Accuracy Evaluation 

Assessing accuracy is an integral component of every remote sensing task. This study compares 
the end outcomes of the suggested strategy with the aerial images and ground truth using 
quantitative and qualitative measures. The quantitative comparison is based on the metrics which 
are described subsequently. 

The test dataset prediction results typically include four categories of pixels: truly positive (TP), 
false negative (FN), truly negative (TN), and false positive (FP), as illustrated in Table 3. We assess 
the outcomes by using four well-established accuracy evaluation measures, each derived using 
distinct methodologies based on the 4 types of pixels mentioned above. The Precision is the ratio of 
predicted real-change pixels to predicted overall change pixels. The Recall is the ratio of projected 
real-change pixels to actual overall change pixels. The Pixel Accuracy (PA) is calculated by measuring 
the percentage of correctly classified pixels in relation to the total number of pixels in the image. The 
Intersection over Union (IoU) represents the ratio of the intersection to the union of the real-change 
pixels and the predicted change pixels, which measures the similarity between the predicted situation 
and the actual situation. Each index may emphasize distinct performances using diverse 
methodologies, thus requiring a comprehensive evaluation. 

Table 3. Formulas for accuracy assessment metrics. 

Metric Formula 

Precision  
TP

TP + 𝐹𝐹𝐹𝐹
  

Recall  
TP

TP + 𝐹𝐹N
  

Pixel Accuracy  
TP + 𝑇𝑇𝑇𝑇

TP + TN + FP + 𝐹𝐹𝐹𝐹
  

IoU  
TP

TP + TN + FP
  

3.3. Segmentation of Forest Region 

The model showed a reliable level of performance with an overall accuracy of 95.2% and mean 
IoU 61.3% (Table 4). The accuracy of each segmentation item showed excellent performance in the 
arable land, road and barren, quarry, forest. It indicates that the CNN model can efficiently determine 
the target site for forest restoration using aerial images. 
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Table 4. Overall accuracy of ResNet152-U-Net. 

Model PA mIoU 
ResNet152-U-Net 95.2 61.3 

Table 5 shows the classification accuracy for each category calculated as a result of the model's 
inference. The accuracy is calculated as the mean Intersection over Union (mIoU), and the highest 
classification accuracy was obtained for forest, arable land, road and barren, and quarry. Among the 
classification categories, Forest had the highest accuracy of all categories at 94.6%. Arable land was 
second with 87.4% accuracy, followed by road and barren with 68.3%, and quarry with a mean IoU 
of 42.8%.  

When comparing the ground truth and the inferred results of each model, it can be concluded 
that all models can predict the outline of the deforested area relatively accurately, although there are 
differences in the detailed shape (Figure 6). In addition, the model inference results showed good 
detection results, such as identifying areas with forest but not labeled in the ground truth data as 
forest, or identifying non-target areas in the background as items if there is a corresponding area. 
However, for confusing items such as quarry and arable land, the model prediction results were 
mixed or fragmented.  

Table 5. mIoU (%) of ResNet152-U-Net for 4 class. 

Class mIoU 
Arable land 87.4 
Road·Barren 68.3 

Quarry 42.8 
Forest 94.6 

 

Figure 6. (a, d, g) indicate Aerial image, (b,e,h) indicate Ground truth, (e, f, i) indicate U-Net prediction 
result. 

Table 6 displays a confusion matrix generated by assessing a ResNet152-U-Net model using test 
data. The confusion matrix arranges the model's predictions in a tabular style, comparing the actual 
labels with the anticipated labels. Every column in the matrix represents the number of occurrences 
categorized into a certain combination of expected and actual labels. The classes being considered 
include arable land, road and barren, quarry, and forest. 

The model accurately predicts arable land 80% of the time based on these metrics. The model 
has a high recall rate of 95.5% for identifying actual arable land cases. In the road and barren class, 
the model exhibited similar precision but a poorer recall compared to arable land. The model has a 
precision of 76.3% for predicting road and barren pixels but a recall of 81.8% indicates that it may 
miss some actual instances. The model demonstrates excellent predictive accuracy (96.0%) for 
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identifying quarries. The model's lower recall rate of 61.9% indicates that it fails to identify a 
considerable amount of real quarry events. The model's precision of 99.2% and recall of 93.8% 
indicate its strong ability to identify forested regions. This could be beneficial for tasks such as land 
cover mapping, environmental monitoring, and related areas. 

Table 3. Confusion matrix for U-Net model using test data. 

Class 
True labels 

Total Precision 
Arable land Road·Barren Quarry Forest 

Predicted 

labels 

Arable land 13,577,664  1,280,209  232,831  1,872,599  16,963,303  80.0  

Road·Barren 476,340  6,909,885  325,833  1,348,608  9,060,666  76.3  

Quarry 63  30,296  925,855  8,520  964,734  96.0  

Forest 165,390 224,255  12,302  48,867,163  49,269,110  99.2  

Total  14,219,457  8,444,645  1,496,821  52,096,890  Total Accuracy 

Recall 95.5  81.8  61.9  93.8  92.2 

3.4. Change Detection of Forest Region 

To detect forest degradation, we utilized aerial photographs not employed during the training 
phase. Comparisons between images from 2011 and those from 2019-2020 facilitated the 
identification of changes in forested regions. Model prediction outputs stored as raster files were 
vectorized using Raster to Polygon Vectorizing for quantitative analysis, enabling the utilization of 
additional spatial analysis and Geographic Information System (GIS) functionalities. Additionally, 
the Clip function was employed to analyze change areas between the two time periods. To ensure 
alignment in the time-series imagery, a uniform coordinate system of Korea 2000 / Central Belt 2010 
(EPSG:5186) was adopted. For instance, in the case of map index number 377112047, visually 
discernible changes such as newly constructed roads and land use conversions were observed. This 
analysis was conducted using the open-source software QGIS (Figure 7). 

 

Figure 7. Time series analysis to identify forest restoration targets (index number 377112047). 

Table 7 compares the 2011 and 2020 classes and their changes. The model's projections for 50 
aerial images from 2011 indicated that there were 744 ha (2.2%) of arable land, 412 ha (1.2%) of road 
and barren, 585 ha (1.7%) of quarry, 21,394 ha (62.7%) of forest, and 11,010 ha (32.2%) of non-target 
regions. Model forecasts for 50 aerial images taken between 2019 and 2020 1,468 hectares (4.3%) of 
arable land, 1,524 hectares (4.5%) of road and barren land, 380 hectares (1.1%) of quarry, 21,799 
hectares (64.0%) of woodland, and 8,912 hectares (26.1%) of non-target areas were seen. 
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Area changes from 2011 to 2020: Arable land increased by 97%, road and barren areas increased 
by 270%, quarry decreased by 35%, woodland increased by 2%, and non-targeted areas decreased by 
19%. The quarry area was reduced while the forest, arable land, road and barren areas rose. The 
reduction in Non-target area was owing to the prediction that forest shadows will appear as forest in 
2020 because of variations in time-of-year and seasonal spectral characteristics.  

Table 4. Result of Change detection in Gangwon province (2011, 2020). 

Class 
2011 2019~2020 2011~2020 

Area (ha) Rate (%) Area (ha) Rate (%) ΔArea (ha) ΔRate (%) 

Arable land 744 2.2 1,468 4.3 724 97% 

Road·Barren 412 1.2 1,524 4.5 1,112 270% 

Quarry 585 1.7 380 1.1  (205) -35% 

Forest 21,394 62.7 21,799 64.0 405 2% 

Non-target 11,010 32.2 8,912 26.1  (2,098) -19% 

Figure 8 shows the model's prediction findings on a picture of Gangwon Province. The 
presentation includes a sequence of time-series aerial photos together with forecasts produced by 
ResNet152-U-Net. The display features eight pairs of photographs, each showing a comparison 
between a photograph from 2011 and images from 2019 and 2020. This setup clarifies how the model 
analyzes and forecasts land use changes over time, offering insights into the evolving landscape of 
the area. 

Our results provide for alternative restoration site detection approaches that have a 
Spatiotemporal advantage over the existing field survey or manual detection of aerial images. These 
results can contribute to appropriate decisions on forest restoration. Hence, the integration of open-
source data, manually annotated data, and deep learning models not only bolstered the viability of 
change detection but also extended its applicability to diverse domains such as land use classification, 
tree species classification and biomass estimation [19,48–52].  

Furthermore, our study demonstrated the robust efficacy of open-source data, manually 
annotated data, and deep learning methodologies in forest change detection. However, it also 
underscored the potential drawback of delayed image acquisition, which could lead to overlooking 
crucial change occurrences. Image acquisition is time-consuming and costly because it requires the 
labor of forest experts to create a dataset of forest restoration sites [53,54]. 

Consequently, further research is imperative to enable real-time detection of forest area 
transformations induced by phenomena such as floods, landslides, and earthquakes, possibly 
facilitated by promptly acquiring image data from aerial platforms like drones. 
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 (a) before image  (b) after image  (c) before image  (d) after image 

 

Figure 8. Time series aerial images and ResNet152-U-Net prediction. (a, c) indicates before image (b, 
d) indicates after image. 

4. Conclusions 

This study evaluated the practicality of utilizing open-source aerial pictures and a manually 
annotated dataset along with the U-Net model to analyze forest change detection in Gangwon 
Province, South Korea. Using open-source data helped overcome the limitations of remote sensing 
acquisition and improved the overall effectiveness of the data-driven approach. The enhancement of 
the pre-trained U-Net model further optimized the performance of the deep learning model. The 
ResNet152-U-Net model did a great job of separating forest and arable land, roads and barren, and 
quarry at the pixel level in images, both during training and validation. The training stages and the 
exclusion of more than 50 percent of the background label were crucial for improving the semantic 
segmentation performance of U-Net, specifically in forest regions. U-Net and RGB-based aerial 
images were used to perform forest restoration site segmentation based on four classes in Gangwon 
Province, South Korea, with an accuracy value of 95.2%. The accuracy values for 4 classes forest had 
the highest accuracy of all categories, at 94.6%. arable land came in second with 87.4% accuracy, then 
road and barren came in third with 68.3%, and quarry came in fourth with a mean IoU of 42.8%. It 
has been established that the ResNet152-U-Net model is effective in identifying potential places for 
forest restoration. This will likely be better than both the field survey, which can be expensive, and 
the visual reading method, which can make mistakes due to the reader's experience and personal 
thoughts. In the future, if the diversity of data secured by collecting aerial images by various seasonal 
and types of forest restoration target sites and technical conditions is further supplemented through 
model optimization research, it is believed that it will be able to contribute to more precise and 
efficient classification and change monitoring of candidate sites for forest restoration. 
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