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Article 
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Abstract: High-Grade Serous Ovarian Carcinoma (HGSOC) is a highly heterogeneous disease. 
Machine learning-based cellular morphometric biomarkers (CMB-ML) have been identified across 
multiple tumor types, capturing tissue heterogeneity, predicting tumor microenvironments (TME) 
and clinical outcomes. We aimed to identify ethnicity-specific CMBs in African American and White 
HGSOC patients using whole-slide images (WSIs) and assess their associations with overall survival 
(OS). Analysis of 109 patients from The Cancer Genome Atlas Ovarian Cancer (TCGA-OV) cohort 
was validated in WSIs from 22 patients in the Loma Linda University (LLU) cohort. We linked 
immune checkpoint markers (ICM) to CMB scores and confirmed via immunohistochemistry. We 
identified and validated three ethnicity-specific CMBs — 73,  80, and 215 with significant frequency 
differences. Higher CMB 73 and 80 frequencies correlated with shorter OS in African Americans 
(p=0.022, p=0.023), while higher CMB 215 frequency was linked to improved OS in White patients 
(p=0.051). Molecular analysis of TCGA-OV cohort revealed lower immune infiltration in African 
Americans and higher ICM expression in Whites (PDCD1: p=0.033, PDCD1LG2: p=0.014, CD8A: 
p=0.014). Immunohistochemistry in the LLU-OV cohort showed expression of predicted markers 
CD3, CD8, and PDCD1. Although there were no significant differences between the two ethnic 
groups, CMB-ML explores a new avenue for understanding health disparities.  

Keywords: High-grade serous ovarian cancer; Ethnicity; Cellular Morphometric Biomarkers; Tumor 
microenvironment; Immunohistochemistry; Overall survival  
 

1. Introduction 

Ovarian carcinoma (OC) is rare but remains the deadliest gynecological cancer, often presenting 
with poor prognosis and drug resistance [2]. Among its histotypes, HGSOC accounts for ~75% of 
epithelial OCs [3]and is characterized by late detection due to unreliable diagnostic markers [4],  a 
low five-year survival rate (~47.5%) [5], and high recurrence due to platinum resistance [6]. This 
resistance is linked to HGSOC’s heterogeneous cellular architecture, leading to varied patient 
outcomes after standard chemotherapy [7]. 

HGSOC displays significant morphological diversity within and between tumors, compounded 
by racial disparities that necessitate precise, timely diagnosis [8]. Cellular Morphometric Biomarkers 
(CMBs) offer valuable insights into diagnosis, prognosis, and treatment response [1]. While molecular 
biomarkers such as TP53, BRCA1/2 mutations, HRD, gene expression subtypes, and circulating 
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tumor DNA have been extensively studied [2, 9, 10], the link between CMBs and molecular, 
immunological, and quantitative profiles from whole slide histopathology images (WSIs) remain 
underexplored due to technological limitations [1]. Developing an AI-driven Machine Learning 
framework (CMB-ML) for analyzing CMBs from WSIs could enable early prediction of platinum 
resistance and enhance precision oncology [11].  

Racial Disparities in HGSOC 

Ovarian cancer disproportionately affects African American women, who experience worse 
survival rates than White women [12]. Mortality rates have risen among Black women compared to 
other ethnic groups, with disparities most pronounced in developing regions [13]. While HGSOC 
phenotypes often exhibit higher disease burden and mortality among Black populations, variations 
in CMB levels across ethnicities may contribute to these disparities [1]. Genomic research on HGSOC 
has primarily focused on non-African populations [14]. Underscoring the need for WSI-based CMB 
analysis to explore the intersection of histopathology, race, and treatment outcomes [15].   

CMBs have been linked to molecular alterations, immune microenvironment differences, and 
treatment responses in cancers like gliomas and squamous cell carcinoma [16]. In HGSOC, leveraging 
CMBs from routine Hematoxylin and Eosin (H&E)-stained WSIs may offer an unbiased approach to 
biological stratification and disparity analysis [1]. A CMB-ML framework tailored for ovarian cancer 
could reveal ethnic-specific tumor microenvironment differences, guiding precision therapies. 

The Tumor Microenvironment in HGSOC 

The immune landscape of HGSOC plays a critical role in prognosis and therapy response [17]. 
Ovarian cancer cells interact with the microenvironment to promote tumor progression and immune 
evasion [18].  Cancer-associated fibroblasts (CAFs), the dominant stromal component, drive 
immunosuppression through inflammatory signaling, DNA damage responses, and extracellular 
matrix remodeling [19, 20]. CAFs also express immune checkpoint ligands like PD-L1, impairing 
tumor-infiltrating lymphocyte function [19].  

Immune cell composition within the tumor microenvironment (TME) influences survival and 
systemic therapy response, with immunosuppressive phenotypes correlating with lower overall 
survival [21, 22].  Black women with HGSOC exhibit worse outcomes than White women, 
potentially due to both healthcare access disparities and immune TME differences [23]. Integrating 
immune-modulating strategies with standard therapies could improve survival rates [18].   

As AI-driven morphometric analyses evolve, leveraging CMBs to study TME heterogeneity in 
diverse populations could yield novel biomarkers, enhance treatment stratification, and address 
racial disparities in HGSOC outcomes. In this study, we have identified AI-generated differential 
CMB frequencies and predicted immune subpopulations in the TME between African and White 
Americans using the TCGA-OV cohort. We validated these findings in the LLU-OV cohort using 
immunohistochemistry and correlated them to overall survival.  

2. Materials and Methods 

Patient cohort information  

The patient data from the LLU-OV cohort, which includes H&E-stained diagnostic slides and 
clinical information from 22 patients, were retrieved from the Loma Linda Medical (LMM) Center 
repository between 2010 and 2022 (Table 1). The inclusion criteria were high-grade serous ovarian 
cancer, with African American patients randomly matched to an equal number of White patients. 
Patient data included diagnostic, staging, treatment, and overall survival information. All 22 patients 
were diagnosed with high-grade serous ovarian cancer, with 11 African American and 11 White 
patients. The average age at diagnosis was 62.3 years, with the youngest patient being 39.5 years old 
and the oldest 81.3 years old. The average overall survival was 39.5 months. This study was approved 
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by the Institutional Review Board (IRB) of Loma Linda University Medical Center. Clinical and 
histopathological data were obtained from patient charts, and whole slide images (WSIs) of H&E-
stained slides were scanned using the AperioCs2 Leica Biosystems scanner at the California Tumor 
Tissue Registry (CTTR) center at Loma Linda University. These images were quantitatively analyzed 
for  Cellular Morphometric Biomarkers by Machine Learning (CMB-ML) pipeline (Figure 1). We 
then compared our CMB data with the TCGA-OV cohort, which included 109 patients with H&E-
stained diagnostic slides and complete clinical information, using the criteria outlined by [1]. 

Table 1. LLU Cohort Patient cohort information (n=22). 

 
African American     

(N=11) 
White 
(N=11) 

P-value 

Age of diagnosis    
Mean (SD) 62.5 (9.74) 62.2 (12.8) 0.847 

Median [Min, Max] 63.5 [50.5, 76.8] 62.9 [39.5, 81.3]  
Stage    

I 2 (18.2%) 4 (36.4%) 0.254 
II 2 (18.2%) 0 (0%)  
III 6 (54.5%) 4 (36.4%)  
IV 1 (9.1%) 3 (27.3%)  

All 22 patients were diagnosed with high-grade serous ovarian cancer (HGSOC). 11 patients were African 
American while 11 were White. All patients had an average age of 62.3 years at diagnosis. The youngest and 
oldest patients were 39.5 years old and 81.3 years old, respectively. Overall survival was 39.5 months. 

Ethnic-specific CMB identification and validation 

Using the stacked predictive sparse decomposition technique [24-26] on our cellular 
morphometric biomarker machine learning (CMB-ML) pipeline, we identified 256 CMBs from 
cellular objects extracted from the whole slide images (WSI) of H&E-stained diagnostic slides from 
22 high-grade serous ovarian cancer (HGSOC) patients enrolled in the LLU-OV cohort. The patient 
demographics and descriptive statistics for all 22 cases, including ethnicity, stage at diagnosis, age at 
diagnosis, overall survival, and overall status, are summarized in Supplementary Table 1. In the 
CMB-ML pipeline, we used a single network layer with 256 dictionary elements (i.e., CMBs) and 
applied a sparsity constraint of 30, with a fixed random sampling rate of 1000 cellular objects per WSI 
across the cohort. The pre-trained CMB-ML model then reconstructed each cellular region as a sparse 
combination of the 256 predefined CMBs and represented each patient as an aggregate of all cellular 
objects belonging to that patient. Ethnicity-specific CMBs were defined as those with significantly 
different relative abundances between African American and Caucasian patients, and these were 
validated in the TCGA-OV cohort (Figure 1).  
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Figure 1. Study design: A schematic illustration for the study design. This study employed an advanced 
unsupervised cellular morphometric biomarker by machine learning (CMB-ML) pipeline for effective biomarker 
mining and extraction, ensuring the optimal integration of reconstructable individual biomarkers (method 
adopted from [1]. 

Exploration of the underlying association between tumor microenvironments (TMEs) and CMBs in TCGA-
OV. 

The TME (i.e., abundances of member cell types in a mixed cell population) was assessed using 
Consensus ME (version: 0.0.1.9000) [27] based on the stacked predictive sparse decomposition [24-
26] technique and our cellular morphometric biomarkers identified by the machine learning (CMB-
ML) pipeline. The association between CMBs and TMEs was calculated using Spearman rank 
correlation and represented by a heatmap (Complex Heatmap package in R, version 3.18).  

Exploration of the underlying association between genomic instability and CMBs in TCGA-OV 

Genomic instability in terms of aneuploidy score and fraction of genome altered, mutation 
counts, mutation burden, and prognosis (i.e., overall survival and progression-free survival) were 
downloaded from the cBioPortal website (www.cbioportal.org). The association between CMBs and 
genomic instability parameters was calculated using the Spearman correlation and represented by a 
heatmap (Complex Heatmap package in R, version 3.18).  

Exploration of differences in immune checkpoints across ethnic groups in TCGA-OV 

Gene expression of various immune checkpoints in terms of PD-1, PD-L1, PD-L2, CTLA4, CD8A, 
and CD80 were downloaded from cBioPortal (www.cbioportal.org), and the differences between 
African Americans and Caucasians were calculated by Mann-Whitney Nonparametric test. 
Differences in immune checkpoint expression, immune cell infiltration, and genomic instability 
between groups in the TCGA cohort were analyzed using the Mann-Whitney non-parametric test 
(for continuous variables) or the Chi-square test (for categorical variables). A p-value (FDR corrected 
if applicable) < 0.05 was considered statistically significant.   
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TME analysis by Immunohistochemistry 

Immunohistochemistry staining was performed at the California Tumor Tissue Registry (CCTR) 
using the Leica Biosystems Bond Automated Stainer, following the manufacturer’s protocol. Slides 
were dewaxed for 10 minutes with Bond Dewax Solution (Leica, Buffalo, IL), then hydrated with 
ethanol and Bond Wash Solution for 3 minutes. Antigen retrieval was conducted for 27 minutes using 
Bond Epitope Retrieval Solution 1. Following this, slides were washed for 2 minutes in Bond Wash 
Solution and then incubated with Peroxidase Block for 5 minutes, followed by a 6-minute wash in 
Bond Wash Solution. Primary antibodies against CD3, CD8, and PDCD1 were diluted in Bond 
Antibody Diluent (Leica, Buffalo, IL) at concentrations of 1:200 and 1:500, respectively. Detection was 
performed using the Polymer Refine Detection System (Leica, Buffalo, IL), and visualization was 
achieved using 3,3′-Diaminobenzidine (DAB) Refine chromogen. Lymph node tissue samples, used 
as positive external controls, were placed on slides alongside the ovarian cancer samples. These 
controls were microscopically evaluated concurrently with the tumor samples to confirm appropriate 
immunopositivity. The negative control involved omitting the primary antibody. After staining, the 
slides were counterstained with hematoxylin for contrast, rehydrated with deionized water, and 
mounted under coverslips. 

The percentage of cells expressing CD3, CD8, or PDCD1 in tumor tissues was quantified from 
whole slide scanned images using QuPath software [28]. Additionally, slides were independently 
evaluated by a gynecologic pathologist, blinded to patient cohort information, through direct light 
microscopy. The manual evaluation included hotspot analysis, where five high-power fields (HPF, 
defined as 400x magnification using an Olympus BX50 microscope) with the highest number of 
tumor-infiltrating cells expressing each marker were counted, and results were averaged using both 
median and mean modalities. Tumor sections were classified into one of three categories based on 
combined CD3 and CD8 expression: (1) T-cell inflamed, characterized by abundant tumor-infiltrating 
cells expressing CD3/8; (2) T-cell excluded, defined by a peritumoral stroma rich in CD3/8-expressing 
cells but few within the tumor itself; and (3) T-cell devoid, characterized by very few cells expressing 
CD3 or CD8 in either the tumor or peritumoral stroma. 

Statistical analysis for immunohistochemistry on selected markers 

Statistical analyses were conducted using SAS 9.4 (SAS Institute Inc., Cary, NC) and R (version 
4.42). We performed linear regression analyses to assess the associations between the immune 
markers CD3, CD8, and PDCD1 and key independent variables, including Ethnicity, Stage at 
Diagnosis, Age at Diagnosis, Overall Survival (OS_ Months), and OS_ Status (Supplementary Table 
1). Since linear regression assumes that the residuals of the dependent variable are normally 
distributed, we assessed the normality of Average CD3, Average CD8, and Average PDCD1 before 
performing the regression. The normality of continuous quantitative variables was tested using the 
Shapiro-Wilk test, and statistical significance was defined as a p-value of less than 0.05. A Wilcoxon 
test was used to assess survival differences between ethnic groups. The association between two 
categorical variables was assessed using Fisher’s exact test. To examine factors associated with overall 
survival, the Cox regression model and log-rank test were employed. 

3. Results 

3.1. Qualitative and quantitative clinical and pathological characterization of the patients in the LLU cohort. 

All patients in the LLU cohort were diagnosed with high-grade serous ovarian cancer 
(Supplementary Table 1). Of these, 6 patients were diagnosed with stage I, 2 with stage II, 10 with 
stage III, and 4 with stage IV disease. All 22 patients underwent debulking surgery (optimal 
cytoreduction) followed by chemotherapy with carboplatin/paclitaxel. Sixteen patients were 
classified as treatment-sensitive. The overall survival was 39.5 months. During the study period, 
some patients relapsed, 6 patients died, and 4 were lost to follow-up.   
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3.2. CMB frequency assessment among different ethnicities in TCGA-OV and LLU-OV cohort 

To evaluate differences in CMB frequency in the LLU-OV cohort, we analyzed H&E-stained 
diagnostic slides and clinical data from 22 patients retrieved from the Loma Linda Medical (LMM) 
Center repository between 2010 and 2022. These whole-slide images were processed using a 
computer algorithm, the pre-trained CMB-ML pipeline, which utilized a single network layer with 
256 dictionary elements (i.e., CMBs) and a sparsity constraint of 30. A fixed random sampling rate of 
1000 cellular objects per slide was applied. The pre-trained CMB-ML model reconstructed each 
cellular region on the slide, capturing a sparse combination of the 256 predefined CMBs. These CMBs 
were aggregated to represent each patient as a collection of all delineated cellular objects from that 
individual. Ethnicity-specific CMBs were defined as those with significantly different relative 
abundances between African American and Caucasian patients and were validated in the TCGA-OV 
cohort (Figure 2). 

 
Figure 2. CMB frequency among different ethnicities: This study revealed that there were significantly different 
relative frequencies in ethnic-specific (A)CMB73, (B)CMB80, and (C)CMB21(p=0.038, p=0.0052, and p=0.045 
respectively) as compared to overall survival between African American and White patients in the Loma Linda 
University cohort.  These results from the LLU cohort (n=22) were validated in the TCGA-OV cohort (n=106) 
for CMB 73, CMB 80, and CMB 215, producing similar results (p=0.04, p=0.0005, and p=0.024) respectively). 

3.3. Association of CMB Frequency with Overall Survival 

To establish whether ethnic-specific CMBs (73, 80, and 215) were associated with overall 
survival, we performed a Kaplan-Meier analysis on the selected CMBs in relation to the number of 
patients at risk in both ethnic groups as shown in Figure 3. 
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Figure 3. Association of CMBs with Overall Survival: This study revealed distinct associations of  CMB73, 
CMB80, and CMB215 frequencies to overall survival between the two ethnic groups. Kaplan-Meier analysis 
showed that a higher frequency of CMB 73 and CMB 80 correlated to significantly shorter overall survival (OS) 
(p = 0.022 (CMB 73) and (p = 0.023(CMB 80)  in African Americans compared to White patients. A higher 
frequency of CMB 215 correlated to significantly higher overall survival (OS) (p = 0.051) in White patients 
compared to African Americans. 

3.4. Association between CMBs and TME 

To assess the association between the established ethnic-specific CMBs 70, 80, and 215 with the 
tumor microenvironment, we evaluated our selected TCGA_OV cohort (n=106) using the  
ConsensusTME method (version: 0.0.1.9000) [27]. We tested the abundance of individual immune cell 
types in our cohort that correlated to ethnic-specific CMBs 70, 80, and 215. The association between 
CMBs and TMEs was calculated using Spearman rank correlation and represented by a heat map, as 
shown in Figure 4. 

 

Figure 4. TCGA - Association between CMBs and TME: This study revealed distinct associations of ethnic-
specific CMB73, CMB80, and CMB215 frequencies compared to individual immune cell types in the TME.  CMB 
association with immune cell types was as follows, CMB 215>73>80. 

3.5. Association of Immune Check Points across ethnic groups in TCGA-OV  

To evaluate gene expression of predicted immune checkpoints in our TCGA_OV cohort, we 
compared the expression of the Immune Checkpoint markers PDCD-1, CD274, PDCD1LG2, CTLA4, 
CD8A, and CD80 in African American Versus White patients, as shown in Figure 5. 
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Figure 5. TCGA Immune Check Points among RACE groups: A molecular association study with immune 
checkpoint markers PDCD1(p=0.033), PDCD1LG2(p=0.014), and CD8A (0.014) in the TCGA-OV cohort indicated 
significantly lower immune infiltration in African Americans and significantly higher immune checkpoints in 
White patients. 

3.6. Tissue immunohistochemistry expression of CD3, CD8 and PDCD1   
 

 

Figure 6. a-f: Tissue immunoexpression of CD3, CD8, and PDCD1 in high-grade serous ovarian carcinoma., (a-
c) CD3,CD8 and  PDCD1immunoexpression in AA patient, (d-f)-CD3, CD8 and PDCD1 immunoexpression in 
White patient. Brown staining represents tissue immunopositivity for the immunohistochemical reaction with 
the monoclonal antibodies anti-CD3, anti-CD8, and anti-PDCD1, demonstrating the presence of the respective 
T-cells in the surface of the high-grade serous ovarian carcinoma cells. Photomicrograph at 20× magnification. 

To determine the correlation of CMB data with TME, we performed immunohistochemistry to 
evaluate the percentage and number of tumor-infiltrating cells expressing CD3, CD8, and PDCD1 in 
our patient samples from both ethnic groups in the LLU cohort (n=22), performed through Qupath 
analysis, and independently validated by manual counts. The cells expressing CD3, CD8, and 
PDCD1, respectively, stain brown in these photomicrographs (Figure 6a-f, 200× magnification). 
Whole slide images (WSIs) for these two patient samples are provided in Supplemental Figures 1 
and Figure 2. 
  

b c 

d f 

a 
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3.7. Immunophenotyping based on T-cell infiltration 

To determine the patient immune phenotypes in the LLU cohort, each tumor tissue  WSI was 
categorized into one of three categories based on a combined assessment of CD3 and CD8 expression: 
T-cell inflamed, defined as rich in tumor-infiltrating cells expressing CD3/8; T-cell excluded, defined 
as having peritumoral stroma rich in cells expressing CD3/8, but with few expressing cells in the 
tumor; and T-cell devoid, defined as having very few cells expressing CD3 or CD8 within either the 
tumor cells or peritumoral stroma. The representative samples of each immune phenotype are shown 
in these photomicrographs (Figure 7a-c,200× magnification). Whole slide images (WSIs) are provided 
in Supplemental Figure 3. 

 

Figure 7. a) T-cell inflamed tumor tissue (Hot): Tissue rich in tumor-infiltrating cells expressing high counts of 
CD3/8 in both Tumor and stroma  b) T-cell excluded tumor tissue: Tissue rich in tumor-infiltrating cells 
expressing high counts of CD3/8 in the stroma but few cells in the tumor c) T-cell devoid tumor tissue (cold/ 
immune dessert): Tissue lacking tumor-infiltrating cells ex-pressing CD3/8 in both Tumor and stroma. 

3.7. Tissue immunohistochemistry statistical analysis  

Average cell counts of CD3, CD8, and PDCD1 are represented in the Supplementary Table 1. To 
assess differences between the two ethnic groups in the LLU cohort, we performed regression 
analysis using R version 4.42, on average CD3, CD8, and PDCD1 T_ cell expression in LLU Cohort 
patients (Table 2a and 2b). Our results showed that none of the T-cells were statistically significant 
after adjusting for all other variables. Concluding that there is no strong evidence to suggest a 
difference in the distribution of T-cell counts (either CD3  or CD8 ) between the two ethnic groups. 
The lack of statistical significance indicates that, in this dataset, the differences in T-cell counts 
between African American and White participants were insufficient to conclude a meaningful 
difference in their distributions. 

Table 2. a: Regression analysis for Average CD3, CD8, and PDCD1 cell counts. 

 Coefficient    Exp (coef)       se (coef)             z    Pr(>|z|) 
Ethnicity                           -0.049207                  0.951984           0.775087         -0.063              0.949 

Age of  diagnosis           0.056786                 1.058429          0.035697      1.591           0.112 
CD3 -0.004826                0.995185               0.021725      -0.222       0.824 
CD8 0.007829                  1.007860            0.020224        0.387                0.699 

PDCD1 -0.035621                  0.965006            0.047307      -0.753               0.451 

Table 2. b: Regression analysis for Average CD3, CD8, and PDCD1 cell counts. 

 Exp(coef)           Exp(-coef)        Lower .95                 Upper .95 
Ethnicity     0.9520                 1.0504              0.2084                          4.349 

Age of diagnosis                        1.0584                  0.9448              0.9869                          1.135 
CD3      0.9952                  1.0048              0.9537                         1.038 
CD8    1.0079                   0.9922              0.9687                         1.049 

PDCD1   0.9650                  1.0363 0.8796                         1.059 

 

 

Concordance   = 0.748  (se = 0.079 )            Likelihood ratio test    = 7.84  on 5 df,   p=0.2 

Wald test         = 4.27  on 5 df,   p=0.5          Score (logrank) test    = 6.74  on 5 df,   

b  c a 
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4. Discussion 

Biomarkers are naturally occurring molecules that serve as indicators of normal biological 
processes or disease states [29]. Recently, cellular morphometric biomarkers identified through 
machine learning (CMB-ML) have been developed and validated across various tumor types, 
capturing cellular-level tissue heterogeneity and enabling patient stratification based on distinct 
tumor microenvironments (TME) and clinical outcomes [1]. 

In this study, we extracted 30 distinct CMBs from whole slide images (WSIs) of high-grade 
serous ovarian cancer (HGSOC) patients in our LLU cohort. Among these, three CMBs—73, 80, and 
215—exhibited ethnic-specific differences. African American patients had significantly higher levels 
of CMBs 73 and 80, while White patients showed higher frequencies of CMB 215. Further analysis 
revealed that the frequencies of these CMBs were associated with overall survival in a manner 
specific to each ethnic group, findings that were confirmed through correlation with patient data. 
These results align with the morphological characteristics of HGSOC, which is composed of highly 
proliferative and markedly atypical cells [30]. Understanding cellular morphometric variations in 
HGSOC patients may provide insights into health disparities and inform strategies to mitigate them 
[31]. 

Currently, the most morphometric characterization of ovarian cancer focuses on malignant 
epithelial cells, primarily through light microscopy [32]. However, AI-powered morphometric 
analysis enables a more detailed evaluation of additional cell types within the TME—such as ovarian 
cortical fibroblasts, immune cells, and vascular cells—offering a more comprehensive understanding 
of factors influencing cancer progression and patient outcomes. These findings are consistent with 
previous studies highlighting the role of CMBs in cancer diagnosis and therapeutics based on tissue 
histology [26]. 

Further investigation into the relationship between CMBs and TME composition revealed that 
patients with higher frequencies of CMBs 73 and 80 exhibited fewer immune cells within their TME, 
suggesting an immune desert or "cold" tumor phenotype. In contrast, CMB 215 was associated with 
a higher abundance of immune cells, indicating a "hot" tumor with robust T-cell infiltration. To 
validate these findings, we performed immunohistochemical analysis of CD3, CD8, and PDCD1 
expressions within the TME. Although the results were not statistically significant, a clear trend 
emerged linking CMBs to immune cell presence. Prior studies have associated CD3, CD8, and PDCD1 
expression in the TME with improved survival outcomes [33, 34]. PDCD1, in particular, is highly 
expressed in several advanced carcinomas and has been identified as a favorable prognostic marker 
[35]. 

Consistent with previous reports on racial disparities in HGSOC, robust immune infiltration has 
been linked to improved survival in White patients, whereas African American patients did not 
experience the same survival advantage despite similar levels of CD3, CD8, and PDCD1 expression 
[36]. Our study corroborated these findings, demonstrating that immune expression correlated with 
survival in White patients but was attenuated and not statistically significant in African American 
patients. These results highlight the potential value of ethnic-specific TME profiling in identifying 
patients with poor prognostic features who may benefit from immunomodulatory treatments [22]. 

HGSOC is the most aggressive and lethal subtype of ovarian cancer, with patients typically 
presenting at an advanced stage and frequently developing chemotherapy-resistant recurrent 
disease, leading to poor prognosis [37, 8]. Historically, ovarian carcinomas have been classified based 
on primary histology alone [31]. However, our analysis demonstrated that applying CMB-ML to 
digital H&E-stained images enables an unbiased approach to biological stratification, offering 
insights that may guide patient care. Biomarkers are critical for managing the complexities of HGSOC 
treatment. In this study, we identified significant differences in CMB 73, 80, and 215 frequencies in 
relation to overall survival across ethnic groups. Specifically, CMBs 73 and 80 were significantly 
higher in African American patients and associated with lower immune cell presence, while CMB 
215 was significantly elevated in White patients, suggesting differential immune activity between the 
two populations. These findings were consistent across both the LLU and TCGA cohorts. 
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Our study underscores the potential of CMBs as predictors of the TME in HGSOC, opening new 
avenues for understanding health disparities and developing personalized treatment strategies. 
Immunostaining for CD3, CD8, and PDCD1 expression validated the predicted associations between 
CMBs and the TME identified through machine learning. A limitation of this study was the small 
sample size, particularly for minority populations, which may have reduced statistical power to fully 
assess environmental, genetic, and clinical contributions to ovarian cancer risk and survival. 
However, by incorporating data from the TCGA cohort, we were able to validate our observations. 
A larger dataset is needed to further elucidate disparities in HGSOC and develop targeted 
interventions to improve survival across all racial and ethnic groups. 

In conclusion, analyzing CMBs and their associated immune-expression markers in paraffin-
embedded HGSOC samples is feasible and may enhance prognostic assessments while advancing 
our understanding of health disparities in cancer research. Furthermore, we successfully developed 
a pathology image-based subtyping method that stratifies patients based on CMBs, linking them to 
treatment responses, TME composition, overall survival, and immunohistochemical expression of 
CD3, CD8, and PDCD1. This approach provides a cost-effective, scalable solution with potential 
applications in clinical settings worldwide. 
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The following abbreviations are used in this manuscript: 
AI Artificial intelligence 
CMB Cellular Morphometric Biomarkers  
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DAB         3,3′-Diaminobenzidine 
LLU Loma Linda University Cohort 
ML Machine Learning 
TCGA The Cancer Genome Atlas 
TME         Tumor Microenvironment 
WSIs        Whole Slide Images 
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