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Abstract: Does semantic communication require a semantic information theory parallel to Shannon's
information theory, or can Shannon's work be generalized for semantic communication? This paper
advocates for the latter and introduces the semantic information G theory (with "G" denoting
generalization). The core approach involves replacing the distortion constraint with the semantic
constraint, achieved by utilizing a set of truth functions as a semantic channel. These truth functions
enable the expression of semantic distortion, semantic information measures, and semantic
information loss. Notably, the maximum semantic information criterion is shown to be equivalent to
the maximum likelihood criterion and parallels the Regularized Least Squares criterion. The G theory
is compatible with machine learning methodologies, offering enhanced capabilities for handling
latent variables, often addressed through Variational Bayes. This paper systematically presents the
generalization of Shannon's information theory into the G theory and its wide-ranging applications.
The applications involve semantic communication, machine learning, constraint control, Bayesian
confirmation, portfolio theory, and information value. Furthermore, insights from statistical physics
are discussed: Shannon information is equated to free energy, semantic information to the free energy
of local equilibrium systems, and information efficiency to the efficiency of free energy in performing
work. The paper also proposes refining Friston's minimum free energy principle into the maximum
information efficiency principle. Lastly, it discusses the limitations of the G theory in representing
the semantics of complex data.

Keywords: semantic information theory; semantic information measure; information rate-distortion;
information rate-fidelity; variational Bayes; minimum free energy; maximum information efficiency;
portfolio; information value; constraint control

1. Introduction

Although Shannon's information theory [1] has achieved remarkable success, it faces three
significant limitations that restrict its semantic communication and machine learning applications.
First, it cannot measure semantic information. Second, it relies on the distortion function to evaluate
communication quality, but the distortion function is subjectively defined and lacks an objective
standard. Third, it is challenging to incorporate model parameters into entropy formulas. In contrast,
machine learning often requires cross-entropy and cross Mutual Information (MI) involving model
parameters (Appendix A lists all abbreviations with original texts). Moreover, the minimum
distortion criterion resembles the philosophy of "absence of fault is a virtue," whereas a more
desirable principle might be "merit outweighing fault is a virtue." Why did Shannon's information
theory use the distortion criterion instead of the information criterion? This is intriguing.

The study of semantic information gained attention soon after Shannon's theory emerged.
Weaver initiated research on semantic information and information utility [2], and Carnap and Bar-
Hillel proposed a semantic information theory [3]. Thirty years ago, the author of this article extended
Shannon's theory to a semantic information framework [4-7], now known as the semantic
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information G theory (abbreviated as the G theory) [8]. Here, "G" stands for generalization, reflecting
the G theory's role as a generalized form of Shannon's information theory. Earlier contributions to
semantic information theories include works by Carnap and Bar-Hillel, Dretske [9], Wu [10], and
Zhong [11], while more recent contributions after the author's generalization include those by Floridi
[12,13] and others [14]. These theories primarily address natural language information and semantic
information measures (upstream problems). In contrast, newer approaches have focused on
electronic semantic communication over the past decade, particularly semantic compression
(downstream problems) [14-17]. These explorations are highly valuable.

Researchers hold two extreme views on semantic information theory. One view argues that
Shannon's theory suffices, rendering a dedicated semantic information theory unnecessary; at most,
semantic distortion needs consideration; the opposing view advocates for a parallel semantic
information theory alongside Shannon's framework. Among parallel approaches, some researchers
(e.g., Carnap and Bar-Hillel) use only logical probability, avoiding statistical probability, while others
incorporate semantic sources, semantic channels, semantic destinations, and semantic information
rate distortion [17].

The G theory offers a compromise between these extremes. It fully inherits Shannon's
information theory, including its derived theories. Only the semantic channel composed of truth
functions is newly added. Based on Davidson's truth-conditional semantics [18], truth functions
represent the extensions and semantics of concepts or labels. By leveraging the semantic channel, the
G theory can:

1. derive the likelihood function from the truth function and source, enabling semantic probability
predictions, thereby quantifying semantic information, and

2. replace the distortion constraint in Shannon's theory with semantic constraints, which include
semantic distortion, semantic information quantity, and semantic information loss constraints.

The semantic information measure does not replace Shannon's information measure but
supplants the distortion metric used to evaluate communication quality. Truth functions can be
derived from sample distributions using machine learning techniques with the maximum semantic
information criterion, addressing the challenges of defining classic distortion functions and
optimizing Shannon channels with an information criterion. A key advantage of generalization over
reconstruction is that semantic constraint functions can be treated as new or negative distortion
functions, allowing the use of existing coding methods without additional electronic semantic
communication coding considerations.

In addition to Shannon's ideas, the G theory integrates Popper's views on semantic information,
logical probability, and factual testing [19,20]; Fisher's maximum likelihood principle [21]; and
Zadeh's fuzzy set theory [22,23]. To unify Popper's logical probability with Zadeh's fuzzy sets, the
author proposed the P-T probability framework [8,24], simultaneously accommodating both
statistical and logical probabilities.

Thirty years ago, the G theory was applied to image data compression based on visual
discrimination [5,7]. In the past decade, the author has introduced model parameters into truth
functions, utilized truth functions as learning functions [7,25], and optimized them with sample
distributions. The G theory has also been employed to optimize semantic communication for machine
learning tasks, including multi-label learning, maximum MI classification, mixture models [8],
Bayesian confirmation [26,27], semantic compression [28], constraint control [29], and latent variable
solutions [30]. The concept of mutually aligning semantic and Shannon channels aids in
understanding decentralized machine learning and reinforcement learning methods.

The main motivations and objectives of this paper are as follows:

Semantic communication urgently requires a semantic compression theory analogous to the
information rate-distortion theory [31-33]. The author extends the information rate-distortion
function to derive the information rate fidelity function R(G)(where R is the minimum Shannon MI
for a given semantic MI G), which provides a theoretic foundation for semantic compression theory.
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Estimated MI (a specific case of semantic MI) [25,34,35] and Shannon MI minimization [36] have
been utilized in deep learning. However, researchers often conflate estimated MI with Shannon MI
and remain unclear about which should be maximized or minimized [37-39]. The G theory can clarify
these distinctions.

The G theory has undergone continuous refinement, with many results scattered across more
than 20 articles by the author. This paper aims to provide a comprehensive overview, helping future
researchers avoid redundant efforts.

The remainder of this paper is organized as follows: Section 2 introduces the G theory; Section 3
discusses electronic semantic communication; Section 4 explores goal-oriented information and
information value (in conjunction with portfolio theory); and Section 5 examines the G theory's
applications to machine learning. The final section provides discussions and conclusions, including
comparing the G theory with other semantic information theories, exploring the concept of
information, and identifying the G theory's limitations and areas for further research.

2. From Shannon's Information Theory to the Semantic Information G Theory

2.1. Semantics and Semantic Probabilistic Predictions

Popper stated in his 1932 book The Logic of Scientific Discovery [19] (p. 102): the significance of
scientific hypotheses lies in their predictive power, and predictions provide information; the smaller
the logical probability and the more it can withstand testing, the greater the amount of information
it provides. He also explicitly emphasized the necessity of distinguishing between two types of
probability: statistical probability and logical probability. The G theory incorporates two kinds of
probabilities and probability predictions, with T representing logical probability and truth value.
Statistical probability predictions are expressed using Bayes' formula, and semantic probability
predictions follow a similar approach.

The semantics of a word or label encompass both its connotation and extension. Connotation
refers to an object's essential attributes, while extension denotes the range of objects the term refers
to. For example, the extension of "adult" includes individuals aged 18 and above, while its
connotation is "over 18 years old." Extensions for some concepts, like "adult," may be explicitly

"non

defined by regulations, whereas others, such as "elderly,” "heavy rain," "excellent grades," or "hot
weather," are more subjective and evolve through usage. Connotation and extension are
interdependent; one can often infer one from the other.

According to Tarski's truth theory [40] and Davidson's truth-conditional semantics [9], a
concept's semantics can be represented by a truth function, which reflects the concept's extension. For
a crispy set, the truth function acts as the characteristic function of the set. For example, x is age, and
y1is the label of the set {adult}, we denote the truth function as T(y:1x), which is also the characteristic
function of the set {adult}.

In 1931, Popper put forward in the book "The Logic of Scientific Discovery” [39] (P.96) that the
smaller the logical probability of a scientific hypothesis, the greater the amount of (semantic)
information if it can stand the test. We can say that Popper is the earliest researcher of semantic
information [19]. Later, he proposed a logical probability axiom system. He emphasized that there
are two kinds of probabilities, statistical and logical probabilities, at the same time ([39] (pp. 252-258).
But he had not established a probability system that includes both.

The truth function serves as the tool for semantic probability predictions (illustrated in Figure
1). The formula is:

P(x] y, is true) = P()T(y, | x)/ Y PO)T (3] %)

! : )

If "adult" is changed to "elderly", the crispy set becomes a fuzzy set, the truth function is equal

to the membership function of the fuzzy set, and the above formula remains unchanged.
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Figure 1. The semantic probability prediction according to that "x is adult" is true.

The extension of a sentence can be regarded as a fuzzy range in a high-dimensional space. For
example, an instance described by a sentence with a subject, object, and predicate structure can be
regarded as a point in the Cartesian product of three sets, and the extension of a sentence is a fuzzy
subset in the Cartesian product. For example, the subject and the predicate are two people in the same
group, and the predicate can be selected as one of "bully”, "help", etc. The extension of "Tom helps
Jone" is an element in the three-dimensional space, and the extension of "Tom helps an old man" is a
fuzzy subset in the three-dimensional space. The extension of a weather forecast is a subset in the
multidimensional space with time, space, rainfall, temperature, wind speed, etc., as coordinates. The
extension of a photo or a compressed photo can be regarded as a fuzzy set, including all things with
similar characteristics.

Floridi affirms that all sentences or labels that may be true or false contain semantics and provide
semantic information [26]. The author agrees with this view and suggests converting the distortion
function and the truth function T(y;lx) to each other. To this end, we define:

T(yilx) = exp[-d(yi|x)], d(yilx)=-logT(y;ilx). 2

where exp and log are a pair of inverse functions; d(yjl x) means the distortion when yjrepresents
xi. We use d(yjl x) instead of d(x, yj) because the distortion may be asymmetrical.

For example, the pointer on a Global Positioning System (GPS) map has relative error or
distortion; the distortion function can be converted to a truth function or similarity function:

T(yilx)=exp[-d(y;! x)]=exp[-(x—xj}*/(207)], ®)

where o is the standard deviation; the smaller it is, the higher the precision. Figure 2 shows the
mobile phone positioning seen by someone on a train.

o N
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\

> \
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A
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N
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Figure 2. A GPS device's positioning with a deviation. The round point is the pointed position with a deviation,

and the place with the star is the most possible.

According to the semantics of the GPS pointer, we can predict that the actual position is an
approximate normal distribution on the high-speed rail, and the red five-star indicates the maximum
possible position. If a person is on a specific highway, the prior probability distribution P(x) will
change, and the maximum possible position is the place closest to the small circle on that highway.
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Clocks, scales, thermometers, and various economic indices are similar to the positioning
pointers and can all be regarded as estimates (=%, ), with error ranges or extensions, so they can all

be used for semantic probability prediction and provide semantic information. Color perception can
also be regarded as an estimate of color or color light. The higher the discrimination of the human
eye (similar to the smaller o), the smaller the extension. A Gaussian function can also express its truth
function or discrimination function.

2.2. The P-T Probability Framework

Carnap and Bar-Hillel only use logical probability. We use logical probability, truth value, and
statistical probability in the above semantic probability prediction. The truth value is conditional
logical probability. The G theory is based on the P-T probability framework.

Why do we need a new probabilistic framework? Because a hypothesis or label, such as "adult",
has two probabilities simultaneously. One is the probability of the set represented by the label, which
is defined by Kolmogorov [41]; it is not normalized. Another is the probability in which the label is
selected. It is defined by Mises [42]; it is normalized. The P-T probability framework attempts to unify
the two probabilities and generalize the set to the fuzzy set.

We define:

1. Xand Y are two random variables, taking x € U={x1, x2, ...} and y € V={y1, 2, ...} as their values.
For machine learning, x: is an instance, and y; is a label or hypothesis; yj(xi) is a proposition, and
yi(x) is a proposition function.

2. The 0jis a fuzzy subset of the domain U, whose elements make yjtrue. We have yj(x) = "x € 6;".
The 0jcan also be understood as a model or a set of model parameters.

3. Probability defined by “=", such as P(y;)=P(Y = y;), is a statistical probability; probability defined
by “€”, such as P(X € 0j), is a logical probability. To distinguish P(Y = i) and P(X € 0;), we define
the logical probability of yj as T(yj)= T(0j)= P(X € 0j).

4. T(yjlx)=T(6ilx)= P(X € 0j1 X = x)€[0,1] is the truth function of yjand also the membership function
mej(x) of the fuzzy set 0; that is,

T(yi1%) = T(6;1x)=mo; (x). (4)

The logical probability of a label is generally not equal to its statistical probability. The logical
probability of a tautology is 1, while its statistical probability is close to 0. We have P(y1) + P(y2) + ...
+ P(yn) = 1, but it is possible that T(y1) + T(y2) + ... + T(y») > 1. For example, the age labels include
"adult", "non-adult", "child", "youth", "elderly”, etc., and the sum of their statistical probabilities is 1,
while the sum of their logical probabilities is greater than 1 because the sum of the logical probabilities
of "adult" and "non-adult" alone is equal to 1.

According to the above definition, we have:

T(y)=T(6,)=P(Xe6)=2 P(x)I(6]x) 5

This is the probability of a fuzzy event defined by Zadeh [23].

We can put T(6jlx) and P(x) into the Bayesian formula to obtain the semantic probability
prediction formula:

T, | x)P(x

P(x|6) :%

To P(x16)) is the likelihood function P(xly; 0) in the popular method. We use P(x|0;) here
because the j-th parameter is bound to y;. We call the above formula the semantic Bayesian formula:

, 7(6)=2.T(6; |x)P(x)

Because the maximum value of T(yjlx) is 1, from P(x) and P(x|6;), we derive a new formula:
P(x|6.

(x16)) max D19

P(x) « P(x) T @)

7(6, %)=

2.3. Semantic Channel and Semantic Communication Model
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Shannon calls P(X), P(Y1X), and P(Y) the source, the channel, and the destination. Just as a set
of transition probability functions P(yjlx)( j=1, 2, ...) constitutes a Shannon channel, a set of truth
value functions T(0jlx) (=1,2,...) constitutes a semantic channel. The comparison of the two channels
is shown in Figure 3. For convenience, we also call P(x), P(y|x), and P(y) the source, the channel, and
the destination, and we call T(y|x) the semantic channel.

X PYX) Y X mxy v
X1

X2

Xm

(a) (b)

Figure 3. The Shannon channel (a) and the semantic channel (b).

The semantic channel reflects the semantics or extensions of labels, while the Shannon channel
indicates the usage of labels. The comparison between the Shannon and the semantic communication
models is shown in Figure 4. The distortion constraint is usually not drawn, but it actually exists.

Source P(x) »| Channel P(y|x) »| Destination P(y)
X 54
matching
E Distortion constraint d(x, y) i
(@)
Source P(x) »| Channel P(y|x) > Destination P(y)

(b)

Figure 4. Communication models. (a) The Shannon communication model where the channel needs to match

the distortion function. (b) The semantic communication models where two channels need to match mutually.

The semantic channel contains information about the distortion function, and the semantic
information represents the communication quality, so there is no need to define a distortion function
anymore. Optimizing the model parameters is to make the semantic channel match the Shannon
channel, that is, T(0jlx)xP(yjlx) or P(x16)) = P(xlyj) (j=1,2,...), so that the semantic MI reaches its
maximum value and is equal to the Shannon information. Conversely, when the Shannon channel
matches the semantic channel, the information difference reaches the minimum, or the information
efficiency reaches the maximum.

2.4. Generalizing Shannon Information Measure to Semantic Information G Measure

Shannon MI can be expressed as.
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P(x. |y.
106) = 2T POIP(] 3 og g2 = H(X) = HOX|T)

" / (®)
where H(X) is the entropy of X, reflecting the minimum average code length. H(X 1Y) is the
posterior entropy of X, reflecting the minimum average code length after predicting x based on Y.
Therefore, Shannon MI means the average code length saved due to the prediction.
We replace P(xilyj) on the right side of the log with the likelihood function P(xil 6). Then we get
the semantic MI:

I(X;Y,)= ZZP(X )P(x, | y,)log———L=

7, |x,)
T,
= H(X)=H(X|Y,) = H(Y,)=H(Y,| X)=H(¥,)~d, )

where H(XYb) is the semantic posterior entropy of x:

H(X|Y,)=-3 3 P(x,y,)log P(x,|6,)

S . (10)

H(X1Y0) is the free energy F in the Variational Bayes method (VB) [44,45] and the Minimum Free
Energy (MFE) principle [46]. The smaller it is, the greater the amount of semantic information.
H(Yo!X) is called the fuzzy entropy, equal to the average distortion d . Because according to
Equation (2), there is:

H(Y, | X)==)> P(x,y)1ogT(8,|x)=d

Joi

P(x;16))
P(x;)

—ZZP(X )P(x; | y;)log———

(11)

H(Yb) is the semantic entropy:

H) ==X P(3)logT(6)

(12)

Note that P(xlyj) on the left 51de of the log is used for averaging and represents the sample
distribution. It can be a relative frequency and may not be smooth or continuous. P(x|6j) and P(x|y;)
may differ, reflecting that obtaining information needs factual testing. It is easy to see that the
maximum semantic MI criterion is equivalent to the maximum likelihood criterion and is similar to
the Regularized Least Squares (RLS) criterion. Semantic entropy is the regularization term. Fuzzy
entropy is a more general average distortion than the average square error.

Semantic entropy has a clear coding meaning. Assume that the sets 01, 05, ... are crispy sets; the
distortion function is:

oo, X. 2 6,

d(y, |x,-)={0’x’e o
A (13)

We regard P(Y) as the source and P(X) as the destination, then the parameter solution of the
information rate-distortion function is [31]:

R(D)=sD(s)—- Y P(y,)log,

2, =3 P(x)expl-d(x, y 1=3 P(x)T(6, | ) =T(8,).
i ; (14)

It can be seen that the minimum Shannon MI is equal to the semantic entropy, that is,
R(D=0)=H(Yeo).

The following formula indicates the relationship between Shannon MI and semantic MI and the
encoding significance of semantic MI:
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PO 1y,) _
P(x,)
3P, Jlog X 18) +zz PGy, %

P(
= I(X;%)+ZP(y,-)KL(P(X |y P(x]6))),

1(X;Y)=ZZP(xi,yj)log

(15)

where KL(...) is the Kullbak-Leibler (KL) divergence with a likelihood function, which Akaike
[43] first used to prove that the minimum KL divergence criterion is equivalent to the maximum
likelihood criterion. The last term in the above formula is always greater than 0, reflecting the average
code length of residual coding. Therefore, the semantic MI is less than or equal to the Shannon MI; it
reflects the average code length saved due to semantic prediction.

From the above formula, the semantic MI reaches its maximum value when the semantic channel
matches the Shannon channel. According to Equation (15), letting P(x | 0j)= P(x|y;), we can obtain the
optimized truth function from the sample distribution:

T*(9j|x)_ |yf)/ (P(XIy)j: P(y; %)

P(x) ) max(P(y,|x))
x (16)
When Y=y, the semantic MI becomes the semantic KL information:
T6,1%)
1066) =L P [ log A5 P, |3, log - )

The KL divergence cannot usually be interpreted as information because the smaller it is, the
better. But I(X; 0j) above can be said to be information because the larger it is, the better.

Solving T*(0jlx) with equation (16) requires that the sample distributions P(x) and P(x|yj) are
continuous and smooth. Otherwise, by using Equation (17), we can obtain:

7(6, |x)
*(6,|x)= argmaXZP(x | y;)log—2 == 5 :
6 ©) (18)

The above method for solving T*(6jlx) is called Logical Bayesian Inference (LBI) [8] and can be
called the random point falling shadow method. This method inherits Wang's idea of random set
falling shadow [47,48].

Suppose the truth function in (10) becomes a similarity function. In that case, the semantic MI
becomes the estimated MI [25], which has been used by deep learning researchers for Mutual
Information Neural Estimation (MINE) [34] and Information Noise Contrast Estimation (InfoNCE)
[35].

In the semantic KL information formula, when X=x;, I(X; 6;) becomes the semantic information
between a single instance xi and a single label y;:

1(x;6,)=log T(Te(’;?) =log P;f(’lé;")

| i

. (19)

The above formula reflects Popper's idea about factual testing. Figure 5 illustrates the above
formula. It shows that the smaller the logical probability, the greater the absolute value of the
information; the greater the deviation, the smaller the information; wrong assumptions convey
negative information.
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Figure 5. Semantic information yj conveys about xi decreases with the deviation or distortion increasing.

Bring Equation (2) into (19), we have

I(xi; 0)=log[1/T(0))] — d(yjlx), (20)

which means I(X; 6j) equals Carnap and Bar-Hillel's semantic information minus distortion. If
T(0jlx) is always 1, the two amounts of information become equal.

2.5. From the Information Rate-distortion Function to the Information Rate-fidelity Function

Shannon defines that given a source P(x), a distortion function d(y|x), and the upper limit D of
the average distortion o, we change the channel P(yx) to find the minimum MI R(D). R(D) is the
information rate-distortion function, which can guide us in using Shannon information economically.

Now, we replace d(y;| xi) with I(x;; 0)), replace d with I(X; Yo), and replace D with the lower limit
G of the semantic MI to find the minimum Shannon MI R(G). R(G) is the information rate-fidelity
function. Because G reflects the average code length saved due to semantic prediction, Using G as the
constraint is more consistent in shortening the code length, and G/R can better reflect information
efficiency.

The author uses the word "fidelity" because Shannon originally proposed the information rate-
fidelity criterion [12], and later used minimum distortion to express maximum fidelity. The author
has previously referred to R(G) as "the information rate of keeping precision” [16] or "information
rate-verisimilitude" [25].

The R(G) function is defined as

R(G)= min 1(X;Y)

P(YX):L(X;6)2G ) 1)
We use the Lagrange multiplier method to find the minimum MI. The Lagrangian function is:
L(P(y|x),P(y))=I1(X;Y)=sI(X;Y,)—pt, > P(x,|y,)—a). P(y,)
; g (22)

Using P(y|x) a variation, we let dL/dP(y, |x,) =0 . Then, we obtain:

P(y, |x)=P(y)m [A, A= P(y)m,i=12,.;j=12,..
/ (23)
where mi=P(xi0))/P(x:)=T(6j1 x:)/T(6y). Using P(y) a variation, we let dL/dP(y;)=0. Then, we

obtain:
PH(y,-) = z P(xi)P(yj | x; )
i (24)
where P*(yj) means the next P(y;). Because P(ylx) and P(y) are interdependent, we can first
assume a P(y) and then repeat the above two formulas to obtain convergent P(y) and P(y | x) (see [33]
(P. 326)). We call this method the Minimum Information Difference (MID) iteration.
The parameter solution of the R(G) function (as illustrated in Figure 6) is:

d0i:10.20944/preprints202502.0799.v1
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G(s)= 2,3 PP, |5)1,=3 D 1P P, 1 Z,

R(s)=5G(s) —ZP(xl.)log Z, Z,= ZP(yk )ml.js.

(25)
Runax(Gmin) A RG) Ronax( Gnax)
s—simax
G- G+
s mcrem/’
5<0 R=G
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5=0 __/
I

a 0 br(;

Figure 6. The information rate-fidelity function R(G) for binary communication. Any R(G) function is a bowl-
like function. There is a point at which R(G) = G (s = 1). For given R, two anti-functions exist: G(R) and G*(R).

Any R(G) function is bowl-shaped (possibly not symmetrical) [6], with the second derivative
greater than 0. The s = dR/dG is positive on the right. When s =1, G equals R, meaning the semantic
channel matches the Shannon channel. G/R represents information efficiency; its maximum is 1. G
has a maximum value G* and a minimum value G- for given R. G- means how small the semantic
information the receiver receives can be when the sender intentionally lies.

We can apply the R(G) function to image compression based on visual discrimination [5,6],
maximum MI classification of unseen instances, the convergence proof of mixture models [7], and
semantic compression [28].

It is worth noting that, given a semantic channel T(y | x), matching the Shannon channel with the
semantic channel, i.e., letting P(yjlx) « T(yjlx) or P(x|y) = P(x|6j), does not maximize the semantic
MI, but minimizes the information difference between R and G or the information efficiency G/R.
Then, we can increase G and R simultaneously by increasing s. When s-->e in Equation (23), P(y;j! x)
(j=1,2, ..., n) only takes the value 0 or 1, becoming a classification function.

We can also replace the average distortion with fuzzy entropy H(YelX) (using semantic
distortion constraints) to obtain the information rate truth function R(0) [28]. In situations where
information rather than truth is more important, R(G) is more appropriate than R(D) and R(®). P(y)
and P(ylx) obtained for R(®) are different from those obtained for R(G) because the optimization
criteria are different. Under the minimum semantic distortion criterion, P(y | x) becomes:

P(y;[x)=Py)ITO, Iy.,-)]s/zp(y,-)[T(@,- [y i=12,.j=12,...

g (26)

where T(0xily) is a constraint function so that the distortion function d(xily) =log T(0xily).
R(®) becomes R(D). If T(0j) is small, the P(y;) required for R(G) will be larger than the P(yj) required
for R(D) or R(O).

2.6. Semantic Channel Capacity

Shannon calls the maximum MI obtained by changing the source P(x) for the given Shannon
channel P(ylx) the channel capacity. Because the semantic channel is also inseparable from the
Shannon channel, we must provide both the semantic and Shannon channels to calculate the semantic
MI. Therefore, after the semantic channel is given, there are two cases: 1) the Shannon channel is
fixed; 2) we must first optimize the Shannon channel according to a specific criterion.

When the Shannon channel is fixed, the semantic M1 is less than the Shannon MI, so the semantic
channel capacity is less than or equal to the Shannon channel capacity. The difference between the
two is shown in Equation (15).

If the Shannon channel is variable, we can use the MID iteration to find the Shannon channel for
R=G after each change of the source P(x), and then use s—> to find the Shannon channel P(y|x) that
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makes R and G reach their maxima simultaneously. At this time, P(ylx)€{0,1} becomes the
classification function. Then, we calculate the semantic MI. For different P(x), the maximum semantic
Ml is the semantic channel capacity. That is

C, arg max I(X;Y,)=argmax G,

P(x);P(y|x) for R(G,s—>e0) P(x) 27)

7

O

where Gmax is G* when s —>c (see Figure 6). Hereafter, the semantic channel capacity only refers
to Cryiv in the above formula.

Practically, to find Cryix, we can look for x(1), x(2), ..., x(j) € U, which are instances under the
highest points of T(yilx), T(y21x), ..., T(y»|x) respectively. Let P(x(j))=1/n, j=1, 2, ..., n, and the
probability of any other x equals 0. Then we can choose the Shannon channel: P(yjl x(j))=1, j=1, 2, ...,
n. At this time, I(X; Y))=H(Y)=logn, which is the upper limit of Crwix). If there is x; among the n x(j)s,
which makes more than one truth function true, then either T(y;)>P(y;) or the fuzzy entropy is not 0.
Crorix) will be slightly less than logn in this case.

According to the above analysis, the encoding method to increase the capacity of the semantic

channel is:
1. .Try to choose x that only makes one label's true value 1 (avoid ambiguity and reduce the logical
probability of y);

2. Encoding should make P(y;lxj)=1 as much as possible (to ensure that Y is used correctly).
3. Choose P(x) so that each Y's probability and logical probability are as equal as possible (close to
1/n, thereby maximizing the semantic entropy).

3. Electronic Semantic Communication Optimization

3.1. Electronic Semantic Communication Model

The previous discussion of semantic communication did not consider conveying semantic
information by electronic communication. Assuming that the time and space distance between the
sender and the receiver is very far, we must transmit information through cables or disks. At this
time, we need to add an electronic channel based on the previous communication model, as shown
in Figure 7:

Electric channel P(3 | y)

R W Y
Label selection » Ecodder [—% Decoder [ Restoring
7y S , -
X ﬂ matching X
S p e T i 5
ource P(x) ! Semantic information ! Destination P(x)
1 1
1 1

loss Lx(Y) |):') constraint

Figure 7. The electronic semantic communication model. The distortion constraint is replaced with the semantic

information loss constraint.

Electronic semantic communication is still electronic communication, in essence. The difference
is that we need to use semantic information loss instead of distortion as the optimization criterion.
The choice of Y includes the optimization of the semantic channel P(y!x) and the Shannon channel
T(yx) between x and y.

3.2. Optimization of Electronic Semantic Communication with Semantic Information Loss as Distortion

Consider electronic semantic communication. If there is no distortion, that is, j=y;, the semantic
information about x transmitted by both is the same, and there is no semantic information loss. If jjj#
yj, there is semantic information loss. Farsad et al. call it the semantic error and propose the
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corresponding formula [49,50]. Papineni et al. also proposed a similar formula for translation [51].
For more discussion, see [52].
According to the G theory, the semantic information loss caused by using fjjinstead of y;is:

Ly, 119)=1(X;Y,) - [(X;¥,)=> P(x,| y )1 P(x,16,)
A )= 2 2 1g) = X | y)0g————
x ;1Y ; Y gP(xi|¢9])‘

(28)

Lx(yjl 19j) is a generalized KL divergence because there are three functions. It indicates the
average code length of residual coding.

Since the loss is generally asymmetric, there may be Lx(y;! | )#Lx(y;! | 7). For example, when
"motor vehicle" and "car" are substituted for each other, the information loss is asymmetric. The
reason is that there is a logical implication relationship between the two. Using "motor vehicle" to
replace "car", although it reduces information, it is not wrong; while using "car" to replace "motor
vehicle" may be wrong, because the actual may be a truck or a motorcycle. When an error occurs, the
semantic information loss is enormous. An advantage of using the truth function to generate the
distortion function is that it reflects concepts' implications or similarity relationships.

Assuming that y;is the correct label used, it comes from sample learning, so P(x|6;)=P(x1y;), and
Lx(y;! 19)=KL(P(x10))| | P(x| 6})). The average semantic information loss is:

Ly (Y[[Y)=2. > P(r)P(F; | v KL(P(x|6)) || P(x|6)))

s (29)

Consider using P(y) as the source and P(Y) as the destination to encode y. Let d(fx| y;)=Lx(y;! | jx);
we can obtain the information rate-distortion function R(D) for replacing Y with Y. We can code Y
for data compression according to the parameter solution of the R(D) function.

In the electronic communication part (from Y to Y), other problems can be resolved by classical
electronic communication methods, except for using semantic information loss as distortion.

If finding I(x;6)) is not too difficult, we can also use I(x;6)) as a negative distortion function.
Minimizing I(X; Y) for given when G= I(X; Yo), we can get the R(G) function between x and Y and
compress the data accordingly.

3.3. Experimental Results: Compress Image Data According to Visual Discrimination

The simplest visual discrimination is the discrimination of human eyes to different colors or gray
levels. The nest is the spatial discrimination of points. Suppose the movement of a point on the screen
is not detected. In that case, the fuzzy movement range can represent the spatial position
discrimination, which can be represented by a truth function (such as the Gaussian function). What
is more complicated is to distinguish whether two figures are the same person. Advanced image
compression needs to extract image features like Autoencoder and use features to represent images.
The following methods need to be combined with the feature extraction method in deep learning to
get better applications.

The simplest gray-level discrimination is taken as an example to illustrate digital image
compression.

1) Measuring Color Information

A color can be represented by a vector (B, G, R). For convenience, we assume that the color is
one-dimensional (or we only consider the gray level), expressed in x, and the color sense Y is the
estimation of x, similar to the GPS indicator. The universes of x and Y are the same, and y="x is about
x;". If the color space is uniform, the distortion function can be defined by distance, that is, d(yjlx) =
exp[—(x—xj)?/(20?)]. Then there is the average information of color perception, I(X; Yo)=H(Yo)— d.

Given the source P(x) and the discrimination function T(y | x), we can solve P(y | x) and P(y) using
the SVB method. The Shannon channel is matched with the semantic channel to maximize the
information efficiency.

2) Gray Level Compression
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We use an example to illustrate color data compression. Assuming that the original gray level is
256 (8-bit pixels) and is now compressed into 8 (3-bit pixels), we can define eight constraint functions,
as shown in Figure 8a.

Considering that human visual discrimination varies with the gray level (the higher the gray
level, the lower the discrimination), we use the eight truth functions shown in Figure 8a, representing
eight fuzzy ranges. Appendix C in Reference [28] shows how these curves are generated. The task is
to use the Maximum Information Efficiency (MIE) criterion to find the Shannon channel P(y|x) that
makes R close to G (s=1).

Tyilx)  Th3lx)

Tov2lx)  Tiydlx)  TlySIx) Tly6|x) Tly7[x) T(y8Ix)
!
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Figure 8. The iteration results of Example 2. (a) 8 truth value functions or the semantic channels T(y!x) (see
Appendix C in [28] for the Data generation method). (b) Convergent Shannon channel P(y|x). (c) The variation
of I(X; Ye) and I(X; Y) during iteration.

The convergent P(y | x) is shown in Figure 8b. Figure 8c shows that Shannon MI and semantic MI
gradually approach in the iteration process. Comparing figures 8a and 8b, we find it easy to control
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P(ylx) by T(ylx). However, defining the distortion function without using the truth function is
difficult. It is also difficult to predict the convergent P(y1x) by d(y | x).

If we use s to strengthen the constraint, we get the parametric solution of the R(G) function. As
s>, P(yjlx) (j=1,2,...) display as rectangles and becomes classification functions.

3) Influence of Discrimination and Quantization Level on the R(G) Function

Consider the semantic information of gray pixels. The discrimination function determines the
semantic channel T(y|x), and the source entropy H(X) increases with the quantization level b=2" (n is
the number of quantization bits). Figure 9 shows that when the quantization level is enough, the R
and G variation range increases with the discrimination increasing (i.e., with ¢ decreasing). The
discrimination determines the semantic channel capacity.

RG) 4 o=3/64 o=1/64

b=63 R=G

Figure 9. Variation of R(G) function with discrimination (0=1/64 or 0=3/64) for a given quantization level b=63.

For more discussion on visual information, see Section 6 in [6].

4. Goal-Oriented Information, Information Value, Physical Entropy and Free
Energy

4.1. Three Kinds of Information Related to Value

We call the increment of utility the value. Information involves utility and value in three aspects:

1) Information about utility. For example, the information about university admission or the
bumper harvest of grain is about utility.

The measurement of this information is the same as the previous semantic information
measurement. Before providing information, we have the prior probability distribution P(x) of grain
production. The information is provided in the form of range, such as "about 2000 kg per acre", which
can be expressed by a truth function. The previous semantic information formula is also applicable.

2) Goal-oriented information. It is also purposeful information or constraint control feedback
information.

For example, a passenger and a driver watch GPS maps in a taxi. Assume that the probability
distribution of the taxi position without looking at the positioning map (or without some control) is
P(x), and the destination is a fuzzy range, which a truth function can represent. The actual position is
the probability distribution P(xlaj) (conditioned on action ;). The positioning map provides
information. For the passenger, this is purposeful information (about how the control result comforts
the purpose); for the driver, this is the control feedback information. We call both goal-oriented
information. This information involves constraint control and reinforcement learning. The following
section discusses the measurement and optimization of this information.

3) Information that brings value. For example, Tom made money by buying stocks based on
John's prediction of stock prices. The information provided by John brings Tom increased utility, so
John's information is valuable to Tom.

The value of information is relative. For example, weather forecast information is different for
workers and farmers, and forecast information about stock markets is worth 0 to people who do not
buy stocks. The value of information is often difficult to judge. For example, defining value losses
due to missed reporting and false reporting is difficult regarding medical cancer tests. In most cases,
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missed reporting of low-probability events often causes more loss than false reporting, such as for
medical tests and earthquake forecasts. In these cases, the semantic information criterion can be used
to reduce missed reporting of low-probability events.

For investment portfolios, quantitative analysis of information value is possible. Section 4.3
focuses on the information value of portfolios.

4.2. Goal-Oriented Information

4.2.1. Similarities and Differences Between Goal-Oriented Information and Prediction Information

Previously, we used the G measure to measure prediction information, requiring the prediction
P(x10)) to conform to the fact P(x|y;). Goal-oriented information is the opposite, requiring the fact to
conform to the purpose.

An imperative sentence can be regarded as a control instruction. We need to know whether the
control result conforms to the control purpose. The more consistent the result is, the more information
there is.

A truth function or a membership function can represent a control target. For example, there are
the following targets:

1. "Workers' wages should preferably exceed 5000 dollars";
2. "The age of death of the population had better exceed 80 years old";
3. "The cruising distances of electric vehicles should preferably exceed 500 kilometers";
4. "The error of train arrival time had better be less than one minute".
The semantic KL information formula can measure purposeful information:

I(X:a,/16,)=> P(x,| aj)log%;x’)

; ©) (30)

In the formula, 6jis a fuzzy set, indicating that the control target is a fuzzy range. yj here becomes

a;, indicating the action corresponding to the j-th control task y;. If the control result is a specific xi, the
above formula becomes the semantic information I(x; 4;! 6)).

If there are several control targets y1, y2,... we can use the semantic MI formula to express the

purposeful information:

I(X;A4/6)=) P(a,)) P(x,]| aj)logM
=4 7)) an

where A is a random variable taking a value a or g;. Using SVB, the control ratio P(a) can be
optimized to minimize the control complexity (i.e., Shannon MI) when the purposive information is

the same.

4.2.2. Optimization of Goal-Oriented Information

Goal-oriented information can be regarded as the cumulative reward in constraint control.
However, the goal here is a fuzzy range, which is expressed by a plan, command, or imperative
sentence. The optimization task is similar to the active inference task using the MFE principle [46].

The semantic information formulas of imperative and descriptive (or predictive) sentences are
the same, but the optimization methods differ (see Figure 10). For descriptive sentences, the fact is
unchanged, and we hope that the predicted range conforms to the fact, that is, fix P(yjlx) so that
T(Ojlx)xP(yjl x), or fix P(x|y)) so that P(x|6;)=P(x1y)). For imperative sentences, we hope that the fact
conforms to the purpose, that is, fix T(6jlx) or P(x10;), and minimize the information difference or
maximize the information efficiency G/R by changing P(yjix) or P(xlyj), or balance between the
purposiveness and the efficiency.
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weue- fOr goal-oriented information
=== for predictive information
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Figure 10. The optimization methods of the two types of semantic information are different. For predictive
information, we hope that P(x10;) is close to P(x|yj) (see white arrow); while for Goal-oriented information, we

hope that P(x|a)) is close to P(x|6j) (see black arrow).

For multi-target tasks, the objective function to be minimized is:

£=1(X; A) - sICGA/0). (32)

When the actual distribution P(xlaj) is close to the constrained distribution P(x|6)), the
information efficiency (not information) reaches its maximum value of 1. To further increase the two
types of information, we can use the MID iteration formula to obtain:

P(a;|x)=P(a,)m; |4, (33)

PGy |a))=Pla; |x)P(x)| Pla))=PGqym [ 3 Plxm,
C (34)
Compared with VB [47,48], the above method is simpler and can change the constraint strength
by s.
Because the optimized P(x14j) is a function of §jand s, we write P*(x|aj=P(x 10, s). It is worth
noting that many distributions P(x | 4)) satisfy the constraint and maximize I(X; aj/0j), but only P*(x|a))
minimizes I(X; g)).

4.2.3. Experimental Results: Trade-Off Between Maximizing Purposiveness and MIE

Figure 11 shows a two-objective control task, with objectives represented by the truth functions
T(Oolx) and T(O1lx). We can imagine these as two pastures with fuzzy boundaries where we need to
herd sheep. Without control, the density distribution of the sheep is P(x). We need to solve an
appropriate distribution P(a).
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T(6o|x) T(6:]x)
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0.6 P(x|ao)= P(x|a1)=
P(x|6o, s=5) P(x|0,, s=5)
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VANS
I/ \

0.2 1 Px) j \

Probability P or Truth Value T
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Position x
(b)
Figure 11. A two-objective control task. Dashed lines show P(x|aj)=P(x16j, s) (j=0, 1), and dash-dotted lines
representing P(x |6, s) (=0,1). (a) For the case with s=1; (b) For the case with s=5. P(x |}, s) is a normal distribution

produced by action a;.

For different s, we set the initial proportions: P(a0)=P(a1)=0.5. Then, we used (33) and (34) for the
MID iteration to obtain proper P(ajlx) (=0,1). Then, we got P(x|aj=P(x|0j,s) by using (33). Finally, we
obtained G(s), R(s), and R(G) by using (25).

The dashed line for R1(G) in Figure 12 indicates that if we replace P(x | 2j)=P(x | 0j, s) with a normal
distribution, P(x!8j, s), G and G/Ri do not obviously become worse.

~N w B w
1 L s L

Shannon information R (bits)

0 - T T T : T
-6 -4 -2 0 2 4

Semantic information G (bits)

Figure 12. The R(G) for constraint control. G slightly increases when s increases from 5 to 40, meaning s=5 is good

enough.
4.3. Investment Portfolios and Information Values

4.3.1. Capital Growth Entropy

Markowitz's portfolio theory [53] uses a linear combination of expected income and standard
deviation as the optimization criterion. In contrast, the compound interest theory of portfolios uses
compound interest, i.e., geometric mean income, as the optimization criterion.

The compound interest theory began with Kelley [54], followed by Latanne and Tuttle [55],
Arrow [56], Cover [57], and the author of this article. The famous American information theory
textbook "Elements of Information Theory" [58] co-authored by Cover and Thomas, introduced
Cover's research. Arrow, Cover, and the author of this article also discussed the value of information.
The author published a monograph, "Entropy Theory of Portfolios and Information Value" [59] 1997,
and obtained many different conclusions.

The following is a brief introduction to the Capital Growth entropy proposed by the author.
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Assuming that the principal is A, the profit is B, and the sum of principal and interest is C. The
investment income is r=B/A, and the rate of return on investment (i.e., output ratio: output/input) is
R=C/A=1+r.

N security prices form an N-dimensional vector, and the price of the k-th security has nx possible
prices, k=1, 2, ..., N. There are W=mixn2x...xnn possible price vectors. The i-th price vector is xi = (xi1, «i
2, ... xiN), i=1, 2, ..., W; the current price vector is xo=(xo1, x0, ..., xon). Assuming that one year later, the
price vector xioccurs, then the rate of return of the k-th security is Ra=xi/xor, and the total rate of return
is:

N
R, = Z‘h R, (35)
=0

where g is the investment proportion in the k-th security, qo is the proportion of cash (or risk-
free assets) held by the investor; Ru=Ro=(1+r0), o is the risk-free interest rate.

Suppose we conduct m investment experiments to get the price vectors, and the number of times
xior rioccurs is mi. The average multiple of the capital growth after each investment period or the
geometric mean output ratio is

W
m;/m
Rg - H R, ’ (36)
i=l
When m—seo, mi/m=P(xi), we have the capital growth entropy

w w N
H,=logR, = P(x)logR =Y P(x)log) q,R,
i=1 i=1 k=0 (37)

If the log is base 2, Hy represents the doubling rate.

If the investment turns into betting on horse racing, where only one horse (the k-th horse) wins
each time. The winner's return rate is R, and the others lose their wagers. Then, the above formula
becomes

H, =logR, = ZP(xk)log[qo +q, R, —(1-q,—q,)]

g . (38)
where qo is the proportion of funds not betted, and 1-go—qx is the proportion of funds paid.

4.3.2. Generalization of Kelley's Formula

Kelley, a colleague of Shannon, found that the method used by Shannon's information theory
can be used to optimize betting, so he proposed the Kelley formula [54].

Assume that In a gambling game, if you lose, you will lose #1=1 time; if you win, you will earn r2
>0 times. The probability of winning is P, then the optimal ratio is:

q*=P—(1-P)/r>. (39)

Using the capital growth entropy can lead to more general conclusions. Let 71 < 0. The capital

growth entropy is:
g*=argmax H, = K log(1—qn)+ P, log(1+4gr,).
! (40)
Letting dHg/dg=0, we derive:
q*=E/(rir2), 41)

where E is the expected income. For example, for a coin toss bet, if one wins, he earns twice as
much; if he loses, he loses 1 time; the probabilities of winning and losing are equal. Then E is 0.5, and
the optimal investment ratio is 4%=0.5/(1*2)=0.25.
Assuming r0=0 above, if we consider the opportunity cost or the risk-free income, then ro>0. At
this time, the optimal ratio is:
g*=argmax H,
q
=argmax{f log[r,(1-¢)+ ¢ —gn ]+ B, log[r,(1-q) + g +qn, ]}
! (42)
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Letting dHy/dg=0, we can get:
— hd, - Rd,
ady )

where Ro=1+r0, di=r1+ro, d2=r2>—ro.

*

The book [59] also discusses optimizing the investment ratio when short selling and leverage are
allowed (see Section 3.3) and optimizing the investment ratio for multi-coin betting. The book derives
the limit theorem of diversified investment: If the number of coins increases infinitely, the geometric
mean income equals the arithmetic mean income.

4.3.3. Risk Measurement, Investment Channels, and Investment Channel Capacity

Markowitz uses expected income E and standard deviation ¢ to represent the income and risk
of a portfolio. Similarly, we use R; and R to represent the return and risk of a portfolio. R is defined
in the following formula:

R} =R}-R;, (44)

where R~=1+E. Assuming that the geometric mean return of any portfolio is equivalent to the
geometric mean return of a coin toss bet with an equal probability of gain or loss, then

Hg=logRs= 0.5log(R—Rr)+0.5log(R«+Rr) . (45)

Let sina=R./R. €[0,1], which represents the bankruptcy risk better. When sina is close to 1, the
investment may go bankrupt (see Figure 3.9).

Ra

Y

Rg

Rr

Figure 14. Relationship between relative risk sina and R, Rs, and Rg.

We call the pair (P, R) the investment channel, where P=(P1, P, ... Pwm) is the future price vector,
R=(R#) is the return matrix, and the set of all possible investment ratio vectors is qc. Then, the capacity
of the investment channel (abbreviated as investment capacity) is defined as

H *=maxH(P,R,q)=H(P,R,q")

9e4c , (46)

where q*= q*(R, P) is the optimal investment ratio.

For example, for a typical coin toss bet (with equal probabilities of winning and losing, and ro=0),
q*=E/(rir2), the investment capacity is:

1 1

H*=Zlog—0p—+
2 C1-E’/R’ )

Since 1/(1-x)=1+x+x2+...~1+x, when E/R<<1, there is an approximate formula:
1 E?

H *=—log(l+—). 48

7

In comparison with the Gaussian channel capacity formula for communication:

C= 1 log(1+ £)
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we can see that the investment capacity formula is very similar to the Gaussian channel capacity
formula. This similarity means that investment needs to reduce risk, just as communication needs to
reduce noise.

4.3.4. Information Value Formula Based on Capital Growth Entropy

Weaver, who co-authored the book "A Mathematical Theory of Communication” [30] with
Shannon, proposed three communication levels related to Shannon' 's information, semantic
information, and information value.

According to the common usage of "information value", information value mentioned in the
academic community does not refer to the value of information on markets but to the utility or utility
increment generated by information. We define the information value as the increment of
capital growth entropy [59].

Assume that the prior probability distribution of different returns is P(x), and the return matrix
is (R«), then the expected capital growth entropy is Hy(X). The optimal investment ratio vector g* is
7=q*(P(x),(Rik)). When the probability distribution of the predicted return becomes P(x|6)), the
capital growth entropy becomes

H, *(X|6)= P(x|6)ogR(q*) RG=D g, *R,
i k (50)
The optimal investment ratio becomes g**=¢**(P(x10;), (Ri)). We define the increment of the

capital growth entropy obtained after the semantic KL information I(X; 6)) is provided as the
information value (i.e., the average information value):

R(g**)
V(X;6,)= E P(x;|y;)log———= "

It can be seen that V(X; 60)) and I(X; 6)) have similar structures. For the above formula, when xiis
determined to occur, the information value of yj becomes

R(q**)
R(q%) 52)

Information value also needs to be verified by facts; wrong predictions may bring negative
information value.

v, =v(x;;0,) =log————=

4.3.5. Comparison with Arrow's Information Value Formula

The utility function defined by Arrow is [56]:
U= ZBU(%RI') = ZE log(qz'Ri) = ZB log q; + ZE log Ri
i i i i , (53)
where U(giRi) is the utility obtained by the investor when the i-th return occurs.
Under the restriction of }ig=1, g=Pi(i=1,2,...) maximizes U so that
U*=> PlogP+) PlogR
i . (54)

After receiving the information, the investor knows which income will occur and thus invests

all his funds in it. Hence, there is

U**:ZBlogRl.. (55)

The information value is defined as the difference in utility between investment with and
without information and is equal to Shannon entropy, that is

V:U**_U*:_ZPilogP,:H(X). (56)

The optimal investment ratio obtained from the above formula is inconsistent with the Kelley
formula and the conclusion of the author of this article. For example, according to the Kelley formula,
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the optimal ratio is 25% for the coin toss bet above. The compound interest is 0.061%, and the
investment capacity is 0.084<<1 bit.

According to Arrow's theory, how does one bet? Should one bet 50% on each of the profit and
loss?

Arrow seems to confuse the k-th security with the i-th return. He uses U(giRi)=log(giR:), while the
author uses

U(quk) = log[‘]() +q.R, -(1- 90 — 4 )] ) (57)

Arrow does not consider the non-bet proportion qo, nor the paid proportion 1-go—gk. The utility
calculated in this way is puzzling.

Cover and Thomas inherited Arrow's method and concluded that when there is information, the
optimal investment doubling rate increment equals Shannon MI [57] (see Section 6.2). Their
conclusion has the same problem.

4.4. Information, Entropy, and Free Energy in Thermodynamic Systems

To clarify the relationship between information and free energy in physics, we discuss
information, entropy, and free energy in thermodynamic systems.

According to Stirling's formula, InN! = NInN — N (when N—<), there is a simple connection
between Boltzmann entropy and Shannon entropy [60]:

|
S’ =KW =kIn—>— = —kND " P(x, | T)In P(x, | T)=kNH (X | T)

[~

i s (58)
where S'is entropy, k is the Boltzmann constant, xi is the i-th microscopic state, N is the number

of molecules, and T is the absolute temperature, which equals a molecule's average translational
kinetic energy. P(xil T) represents the probability density of molecules in state xi at temperature T.
The Boltzmann distribution is:

e PR e,
P(x,|T)=exp(-—)/Z', Z'=) exp(-—)
kT ; kT
(59)

where Z is the partition function.

Considering the information between temperature and molecular energy, we use xi as energy ei.
Let Gidenote the number of microscopic states with energy eiand G denote the number of all states.
Then P(xi) = Gi/G is the prior probability of xi. So, Equation (58) becomes:

|
S =klnLN‘=—kNZP(xi 7y 251D

| J ARE

i

_ P(x,|T)
kNZi:P(xl. |T)In ) +kNIn G

=kN[InG - KL(P(x|T)|| P(x)]. (60)

Under the energy constraint, when the system reaches equilibrium, Equation (59) becomes:

P(x, |T) = P(x)exp(— L) Z, Z= P(x)exp(~-L)
kT - kT D
Now, we can interpret exp[-ei/(kT)] as the truth function T(6;!x), Z as the logical probability T(6;),
and Equation (61) as the semantic Bayesian formula.
S and S’ differ by a constant ¢ (which does not change with temperature). There is S'=5+c, c=Yi
P(x:)InG.. If c is ignored, there is InG=H(X)+c=H(X), and
S/ (kN)=H(X)=KL(P(x|T) || P(x)) 62)

Consider a local non-equilibrium system. Different regions yi(j = 1, 2, ...) of the system have
different temperatures Tj(j =1, 2, ...), so we have
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2 POKLP(x, | y) | P(x) =2 P(y JIH(X) =S, / (kN,)]
J J (63)

Since P(yj)=Nj/N, we can get:

I(X;Y)=H(X)-S/(kN). ”

This formula shows the relationship between Shannon MI and physical entropy. It shows that
the physical entropy S is similar to the posterior entropy H(XY) of x. The above formula shows that
the Maximum Entropy (ME) law in physics can be equivalently expressed as the minimum MI law.

According to (47) and (48), when the local equilibrium is reached, there is

161 =33 P,y P E

=H(Yy)—H(¥, [ X)=1(X;1p).

(65)
The above formula shows that for a local equilibrium system, the minimum Shannon MI can be
expressed by the semantic MI formula.
Helmholtz's free energy formula is:
F=E—TS, (66)
where F is free energy, and E is the system's internal energy. When the internal energy and
temperature remain unchanged, the increase in free energy is
AF =-A(TS)=TS - ZTij =kNTH(X)- kNZ TH(X|Y)
j J (67)
Comparing the above equation with Equations (63) and (64), we can find that Shannon Ml is like
the increase in free energy; semantic MI is like the increase in local equilibrium systems, which is
smaller than Shannon M, just as work is smaller than free energy. We can also regard kNT and kNT;
as the unit information values [5], so the increase in free energy is similar to the increase in
information value.

5. The G Theory for Machine Learning

5.1. Basic Methods of Machine Learning: Learning Functions and Optimization Criteria

The most basic machine learning method is:

1. First, we use samples or sample distributions to train the learning functions with a specific
criterion, such as maximum likelihood or RLS criterion;

2. Then, we make probability predictions or classifications utilizing the learning function with
minimum distortion, minimum loss, or maximum likelihood criteria.

When learning, we generally use maximum likelihood or RLS criteria; the criteria may differ for
different tasks when classifying. For prediction tasks where information is important, we generally
use maximum likelihood and RLS criteria. To judge whether a person is guilty or not, where
correctness is essential, we may use the minimum distortion (or loss) criterion. The maximum
semantic information criterion is equivalent to the maximum likelihood criterion, similar to the RLS
criterion. Compared with the minimum distortion criterion, the maximum semantic information
criterion can reduce the underreporting of small probability events.

We generally do not use P(x|y;) to train P(x|06)), because if P(x) changes, the originally trained
P(x10j) will become invalid. Using parameterized transition probability function P(60;|x) as a learning
function is unaffected by P(x) changes. However, using P(0jlx) as a learning function also has
essential defects. When category n >2, it is difficult to construct P(6jlx)(j=1,2,...) because of the
normalization restriction, that is, }’j P(6jlx)=1 (for each x). As we will see below, there is no restriction
when using truth or membership functions as learning functions.

5.2. For Multi-Label Learning and Classification
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Consider multi-label learning, a supervised learning task. From the sample {(xk, yk), k=1,2,...,
N}, we can get the sample distribution P(x, y). Then, use formula (16) or (18) for the optimized truth

functions.
Assume that a truth function is a Gaussian function, there should be:
P(x|y;)
76, %) o — =2 P(y, )
(x) , (68)

So, we can use the expectation and standard deviation of P(x |y;)/P(x) or P(yjl x) as the expectation
and standard deviation of T(0jlx). If the truth function is like a dam cross-section, we can get it
through some transformation.

=
o

T*(6j|x) with parameters

Plxlyy) P(xly)
160 =/ M =]

o
®

o
o

o
>

o
N

o
o

Probability, Frequency, or Truth Valuc

20
Agex

Figure 15. Using prior and posterior distributions P(x) and P(x | ) to obtain the optimized truth function T*(6;! x).
For details, see Appendix B in [8].

If we only know P(yjlx) but not P(x), we can assume that P(x) is equally probable, that is,
P(x)=1/1UI, and then optimize the membership function using the following formula:

P(yj|x) T, |x)
10X:6) =3 P(x | ) log— Zz POk E ST (6),)

] +log|U
T ( 9 ) g|U|

(69)
For multi-label classification, we can use the classifier:

e o 76, |x)
y,*=argmax [(x;6,)=arg max logW
Vi Vi ( j) (70)

If the distortion criterion is used, we can use —log T(6jlx) as the distortion function or replace
I(X; 6j) with T(6jlx).

The popular binary relevance method (Binary Relevance [61]) converts an n-label learning task
into an n-pair label learning task. In comparison, the channel matching method is much simpler.

5.3. Maximum MI Classification for Unseen Instances

This type of classification belongs to semi-supervised learning. We take the medical test and the
signal detection as examples (see Figure 16).

X VA Y
Infected X1 G Y1 Positive
Binary code 0 Prediction "0"
2’
Uninfected Xo Co Yo Negative
Binary code 1 Prediction "1"
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Figure 5. Illustrating the medical test and the signal detection. We choose y; according to z€C;. The task is to find
the dividing point z' that results in MaxMI between X and Y.

The following algorithm is not limited to binary classifications. Let C; be a subset of C and y; =
f(z1z€C)); hence S={Cy, C;, ...} is a partition of C. Our task is to find the optimized S, which is
T(6,|x)

7(6))
First, we initiate a partition. Then we do the following iterations.

Matching I: Let the semantic channel match the Shannon channel and set the reward function.
First, for given S, we obtain the Shannon channel:

P(y,|x)= Y P(z|x), j=12,...,n

zeC;

S*=argmax /(X;Y,|S) =argmax E E P(C)P(x;|C,)log
s s I
(71)

. (72)
Then we obtain the semantic channel T(y|x) from the Shannon channel and T(6)) (or me(x,y) =
m(x, y)). Then we have I(x;; 0j). For given z, we have conditional information as the reward function:
1(X;6,|z)=Y P(x,| 2)I(x;;6,) » JFOL...m, (73)

Matching II: Let the Shannon channel match the semantic channel by the classifier:
y*= f(z)=argmax I(X;0,|z), 70, 1,...1. (74)
Vi
Repeat Matching I and Matching II until S does not change. Then, the convergent S is 5* we
seek. The author explained the convergence with the R(G) function (see Section 3.3 in [13]).
Figure 6 shows an example. The detailed data can be found in Section 4.2 of [13]. The two lines
in Figure 6a represent the initial partition. Figure 6d shows that the convergence is very fast.
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Figure 7. The maximum MI classification. (a) A very bad initial partition; (b) after the first iteration; (c) after the
second iteration; (d) the MI changes with the iteration number.

However, this method is unsuitable for maximum MI classification in high-dimensional space.
We need to combine neural network methods to explore more effective approaches.

5.4. Explanation and Improvement of the EM Algorithm for Mixed Models

The EM algorithm [45,62,63] is usually used for mixed models or clustering, an unsupervised
learning method.

We know that P(x)=); P(y;)P(x | yj). Given a sample distribution P(x), we use Pa(x)=Y; P(y;)P(x | 6j)
to approximate P(x) so that the relative entropy or KL divergence KL(PIIP0) is close to 0. P(y) is the
probability distribution of the latent variable to be sought.

The EM algorithm first presets P(x|6;) and P(yj), j=1, 2, ..., n. E-step obtains:

Py, 1%)= P(y))P(x|6))/ By(x), B, (x)= Y P(y)P(x],)
k . (75)

Then, in the M-step, the log-likelihood of the complete data (usually represented by Q) is
maximized. The M-step can be divided into two steps: M1-step for

P"(y,)= Y P(x)P(y, ] x)

" (76)
and M2-step for
P(x|6) P(y,)
@ PO

which optimizes the likelihood function. For Gaussian mixture models, we can use the
expectation and standard deviation of P(x)P(y;j| x)/P+1(y;) as the expectation and standard deviation of
P(x10).

From the perspective of the G theory, the M2-step is to make the semantic channel match the
Shannon channel, the E-step is to make the Shannon channel match the semantic channel, and the
M1-step is to make the destination P(y) match the source P(x). Repeating the above three steps can
make the mixture model converge. The converged P(y) is the required probability distribution of the
latent variable. According to the derivation process of the R(G) function, the E-step and M1-step

minimize the information difference R-G; the M-step maximizes the semantic MI. Therefore, the
optimization criterion used by the EM algorithm is the MIE criterion.

P(x|6")= PPy, | )/ P (y,) = P(x)

doi:10.20944/preprints202502.0799.v1
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However, there are two problems with the above method to find the latent variable: 1) P(y) may
converge slowly; 2) If the likelihood functions are also fixed, how do we solve P(y)?

Based on the R(G) function analysis, the author improved the EM algorithm to the EnM
algorithm [64]. The EnM algorithm includes the E-step for P(y|x), n-step for P(y), and M-step for
P(x16)(7=1,2,...). The n-step repeats the E-step and M1-step in the EM algorithm # times so that P*I(y)
= P(y). The EnM algorithm also uses the MIE criterion. The n-step can speed up the solution of P(y).
M2-step only optimizes the likelihood functions. Because P(y;)/P+\(y;) is approximately equal to 1, we
can use the following formula to optimize the model parameters:

P(x|6")=P(x)P(x|0)/ B(x) (78)

Without n-step, there will be P(y;) # P*(y;), and Y. i P(xi)P(x 1 6;)/Pe(xi) # 1. When solving the mixed
model, we can choose a smaller 1, such as n=3. When solving P(y) specifically, we can select a larger
n until P(y) converges. When n=1, the EnM algorithm becomes the EM algorithm.

The following mathematical formula proves that the EnM algorithm converges. After the M-
step, the Shannon MI becomes:

P(x;16)) P(y;1x)
R=2.2 P(x)———=P(y))log—=—=,
i J ]):9(xi) P (y]) (79)
We define:
Y P(x,16.) P(x,16.)
R"=%> P(x)———=P(y)log———"=
i Fy(x) Fy(x,) ] (80)
Then, we can deduce that after E-step, there is
KL(P”Pe):R"_G:R_G-i_KL(PYHHPY), (81)

where KL(P||Ps) is the relative entropy or KL divergence between P(x) and Po(x); the right KL
divergence is:

KL(B™IR) =X P (v log[P" (v,)/ P(y))]

J . (82)

It is close to 0 after the n-step.

Equation (81) can be used to prove that the EnM algorithm converges. Because the M-step
maximizes G, and the E-step and the n-step minimize R—-G and KL(Py*") Il Py), H(PIlPo) can be close to
0. We can also use the above method to prove that the EM algorithm converges.

In most cases, the EnM algorithm performs better than the EM algorithm [64], especially when
P(y) is hard to converge.

Some researchers believe that EM makes the mixture model converge because the complete data
log-likelihood Q =-H(X,Ye) continues to increase [39], or negative free energy F'= H(Y)+Q continues
to increase [45]. However, we can easily find counterexamples where R-G continues to decrease, but
Q and F' do not necessarily continue to increase. Figure 18 shows the example used by Neal and
Hinton [45], but the mixture proportion in the true model is changed from 0.3:0.7 to 0.7:0.3.
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Figure 18. The convergent process of the mixture model from Neal and Hinton [45]. The mixture proportion is
changed from 0.7:0.3 to 0.3:0.7. (a) The iteration starts; (b) the iteration converges; (c) the iteration process. P(x,
6)=P(yj)P(x16)) (=0, 1).

This experiment shows that the decrease in R-G, not the increase in Q or F/, is the reason for the
convergence of the mixture model.

The free energy of the true mixture model (with true parameters) is the Shannon conditional
entropy H(X1Y). If the standard deviation of the true mixture components is large, H(X1Y) is also
large. If the initial standard deviation is small, F is small initially. After the mixture model converges,
F must be close to H(XY). Therefore, F increases (i.e., F’ decreases) during the convergence process.
Many experiments [25,64] have shown that this is indeed the case.

Equation (77) can also explain pre-training in deep learning, where we need to maximize the
model's predictive ability and minimize the information difference R—G (or compress data).

5.5. Semantic Variational Bayes: A Simple Method for Solving Hidden Variables
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Given P(x) and constraints P(x18)), j=1,2,..., we need to solve P(y) that produces P(x)=);
P(yj)P(x16;). P(y) is the probability distribution of the latent variable y, sometimes called the latent
variable. The popular method is the Variational Bayes method (VB for short) [65]. This method
originated from the article by Hinton and Camp [44]. It was further discussed and applied in the
articles by Neal and Hinton [45], Beal [66], and Koller [67] (ch.11). Gottwald and Braun's article "Two
Free Energy and the Bayesian Revolution" [68] discusses the relationship between the MFE principle and
ME principle in detail.

VB uses P(y) (usually written as g(y)) as a variation to minimize the following function:

F=2 Pl 2 POl -~ ) P, =0+ H)
Fy(x,y,) 3

It is equal to the semantic posterior entropy H(X|Yo) of X. The smaller F is, the larger the
semantic MI I(X; Y))=H(X)-H(X | Yo) is.

It is easy to prove that when the semantic channel matches the Shannon channel, that is,
T(0j1 x)xP(yjl x) or P(x|0j)=P(xyj) (j=1,2,...), F is minimized and the semantic MI is maximized. This
can optimize the prediction model P(x|6;)(j=1,2,...), but it cannot optimize P(y). For optimizing P(y),
the mean field approximation [45,65] is usually used; that is, P(y|x) instead of P(y) is used as the
variation. Only one P(yjlx) is optimized at a time, and the other P(y«lx) (k#/) remains unchanged.
Minimizing F in this way is actually maximizing the log-likelihood of x or minimizing KL(P| | Pe). In
this way, optimizing P(y|x) also indirectly optimizes P(y).

Unfortunately, when optimizing P(y) and P(y|x), F may not decrease (see Figure 18). So, VB is
good as a tool and is imperfect as a theory.

Fortunately, it is easier to solve P(y|x) and P(y) using the MID iteration in solving R(D) and R(G)
functions. The MID iteration plus LBI for optimizing the prediction model is the Semantic Variational
Bayes' method (abbreviated as SVB) [30]. It uses the MIE criterion.

When the constraint changes from likelihood functions to truth functions or similarity functions,
P(yjlxi) in the MID iteration formula is changed from

(9 6’
P(y|x,-)=P<y> ul )/Z (k> PO | )}

P( ) B(x) ”

to

(6, | x)
P -
(v]x)= (y) T(e) /Z(k) T(e)} .

From P(x) and the new P(y|x), we can get the new P(y). Repeating the formulas for P(y|x) and

P(y) will lead to convergence of P(y). Using s allows us to tighten the constraints for increasing R and

G. Choosing proper s enables us to balance between maximizing semantic information and

maximizing information efficiency.

The main tasks of SVB and VB are the same: using variational methods to solve latent variables
based on observed data and constraints. The differences are:

1. Criteria: In the definition of VB, it adopts the MFE (i.e.,, minimum semantic posterior entropy)
criterion, whereas, for solving P(y), it uses P(y|x) as the variation, actually uses the maximum
likelihood criterion that makes the mixture model converge. In contrast, SVB uses the MID
criterion, equal to the maximum likelihood criterion (optimizing model parameters) plus the ME
criterion.

2. Variational method: VB only uses P(y) or P(y|x) as the variation, while SVB alternatively uses
P(y1x) and P(y) as the variation.

3. Computational complexity: VB uses logarithmic and exponential functions to solve P(y | x) [65];
the calculation of P(y|x) in SVB is relatively simple (for the same task, i.e., when s=1).

4. Constraints: VB only uses likelihood functions as constraint functions. In contrast, SVB allows
using various learning functions (including likelihood, truth, membership, similarity, and
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distortion functions) as constraints. In addition, SVB can use the parameter s to enhance

constraints.

Because SVB is more compatible with the maximum likelihood criterion and the ME principle,
it should be more suitable for many occasions in machine learning. However, because it does not
consider the probability of parameters, it may not be as applicable as VB in some occasions. See [30]
for more details of SVB.

5.6. Bayesian Confirmation and Causal Confirmation

Logical empiricism was opposed by Popper's falsificationism [19,20], so it turned to confirmation
(i.e., Bayesian confirmation) instead of induction or positivism [69,70]. Bayesian confirmation was
previously a field of concern for researchers in the philosophy of science [61,72], and now many
researchers in natural sciences have also begun to study it [26,73,74]. The reason is that uncertain
reasoning requires major premises, which need to be confirmed.

The main reasons why researchers have different views on Bayesian confirmation are:

1.  There are no suitable mathematical tools; for example, statistical and logical probabilities are not
well distinguished.

2. Many people do not distinguish between the confirmation of the relationship (i.e. ) in the
major premise y=>x and the confirmation of the consequent (i.e., x occurs);

3. No confirmation measure can reasonably clarify the Raven Paradox.

To clarify the Raven paradox, the author wrote the article "Channels' confirmation and
predictions' confirmation: from medical tests to the Raven paradox" [26].

In the author's opinion, the task of Bayesian confirmation is to evaluate the support of the sample
distribution for the major premise. For example, for the medical test (see Figure 16), a major premise
is "If a person tests positive (y1), then he is infected (x1)", abbreviated as y1—x1. For a channel's
confirmation, a truth (or membership) function can be viewed as a combination of a clear truth
function T(y:1x)€{0,1} and a tautology's truth function (always 1):

T(O1lx) =b1T(y1lx) + br'. (82)

A tautology's proportion bi' is the degree of disbelief. The credibility is b1, and its relationship
with b1” is bi’=1-1b11. See Figure 19.

| 1(61] x1) =1

b1
7(8, | x0)

b1
M

Xo n

Figure 19. A truth function includes a believable proportion b1 and unbelievable proportion b1'=1 - |b11.

We change b1 to maximize the semantic KL information I(X; 01), the optimized b1, denoted as b1*,
is the confirmation degree:
P(y1 |x1)_P(y1 |xo) — R -1

O ) PO PO 30) (R D)

(87)

where R*=P(y1!xi)/P(y1lxo) is the positive likelihood ratio, indicating the reliability of the test-
positive. This conclusion is compatible with medical test theory.

Considering the prediction confirmation degree, we assume that P(x | 01) is a combination of the
0-1 part and the equal probability part. The ratio of the 0-1 part is the prediction credibility, and the
optimized credibility is the prediction confirmation degree:

c*=c*(y, >x)= P(x | y)=Px | 1) _ a-c
1 1 1 max(P(x, | y,), P(x,, 1)) max(a,c),

(88)
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where g is the number of positive examples, and c is the number of negative examples.

Both confirmation degrees can be used for probability predictions, that is, to calculate
P(x101)[26].

Hemple proposed a confirmation paradox, namely the raven paradox [61]. According to the
equivalence condition in classical logic, "if x is a raven, then x is black" (Rule 1) is equivalent to "if x
is not black, then x is not a raven" (Rule 2). According to this, white chalk supports Rule 2; therefore,
it also supports Rule 1. However, according to common sense, a black crow supports Rule 1, and a
non-black Raven opposes Rule 1; something that is not a Raven, such as a black cat or a white chalk,
is irrelevant to Rule 1. Therefore, there is a paradox between the equivalence condition and common
sense. Using the confirmation measure c1*, we can be sure that common sense is correct and the
equivalence condition is wrong (for fuzzy major premises), thus eliminating the Raven paradox.
However, other confirmation measures cannot eliminate the Raven paradox [26].

Causal probability is used in causal inference theory [75]:

Py %) =Py, |x0)] = max(0 R+_1)

P(y, 1x) R*

P, = max|0,
(89)

It indicates the necessity of the cause x1 replacing x0 to lead to the result yl. Where
P(y1lx)=P(y1ldo(x)) is the posterior probability of y1 caused by intervention x. The author uses the
semantic information method to obtain the channel causal confirmation degree [27]:

Py, [x)— PO [ x) _ R -1
InaX(P(yl | xl)’ P(yl | XO)) maX(R+91) . (90)

It is compatible with the above causal probability but can express negative causal relationships,

Ce(x, I x,=>y)=b*=

such as the necessity of vaccines inhibiting infection.

5.7. Emerging and Potential Applications

1) About self-supervised Learning

Applications of estimated MI have emerged in the field of self-supervised learning. The
estimated MI is a special case of semantic MI. Both MINE proposed by Belghazi et al. [34] and
InfoNCE proposed by Oord et al. [35] use estimated MI.

MINE and InfoNCE are essentially the same as the semantic information methods. Their
common features are:
1. The membership function T(6;lx) or similarity function S(x, yj) proportional to P(y;| x) is used as

the learning function. Its maximum value is generally 1, and its average is the partition function

Zj.

2. The estimated information or semantic information between x and y; is log[ (6| x)/Zj] or log[S(x,
v Zi].

3. The statistical probability distribution P(x, y) is still used when calculating the average
information.

However, many researchers are still unclear about the relationship between estimated MI and
Shannon MI. The G theory's R(G) function can help readers understand this relationship.

2) About Reinforcement Learning

Goal-oriented information introduced in Section 4.2 can be used as a reward for reinforcement
learning. Assuming that the probability distribution of x in state sk is P(x | ax-1), which becomes P(x | ax)
in state sk+1. The reward of ax is:
7(9,1x)

n=1(X;a,10,)-1(X;a, /Hj):Z[P(xi |a,) = P(x; | a,_,)]log T(6)

(1)
Reinforcement learning is to find the optimal action sequence a1, a2, ..., so that the sum of rewards
ritr2t... is maximized.
Like constraint control, reinforcement learning also needs the trade-off between maximum
purposefulness and minimum control cost. The R(G) function should be helpful.


https://doi.org/10.20944/preprints202502.0799.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 February 2025 d0i:10.20944/preprints202502.0799.v1

31 of 39

3) About the Truth function and Fuzzy Logic for Neural Networks

When we use the truth, distortion, or similarity function as the weight parameters of the neural
network, the neural network contains semantic channels. Then, we can use semantic information
methods to optimize the neural network. Using the truth function T(6;lx) as weight is better than
using the parameterized inverse probability function P(0jlx) because there is no normalization
restriction when using truth functions.

However, unlike the clustering of points on the plane, a point becomes an image for the
clustering of graphics, and the similarity function between images needs different methods. A
common method is to regard an image as a vector and use cosine similarity between vectors.
However, cosine similarity may have negative values, which require activation functions and biases
to make necessary conversions. Combining existing neural network methods and channel-matching
algorithms needs further exploration.

Fuzzy logic, especially fuzzy logic compatible with Boolean algebra, seems to be useful in neural
networks; for example, the activation function Relu(a—b) = max(0, a-b) commonly used in neural
networks is the logical difference operation f(al; )=max(0, a-b) used in the author's color vision
mechanism model [76-78]. Truth functions, fuzzy logic, and the semantic information method used
in neural networks should make neural networks easier to understand.

4) Explaining Data Compression in Deep Learning

To explain the success of deep neural networks such as AutoEncoders [36] and Deep Belief
Networks [79], Tishby et al. [39] proposed the information bottleneck explanation, arguing that when
optimizing deep neural networks, we maximize the Shannon MI between some layers and minimize
the Shannon MI between other layers. However, from the perspective of the R(G) function, each
coding layer of the Autoencoder needs to maximize the semantic MI G and minimize the Shannon
MI R; pre-training is to let the semantic channel match the Shannon channel so that G=R and
KL(P11Pe)=0 (as if for mixture models to converge). Fine-tuning increases R and G at the same time
by increasing s (making the partition boundaries steeper).

Not long ago, researchers at OpenAl [80,81] explained General Artificial Intelligence by lossless
(actually, loss-limited) data compression, similar to the explanation of using MIE.

6. Discussion and Summary

6.1. Why Is the G Theory a Generalization of Shannon’s Information Theory?

First, the semantic information G measure is a generalization of Shannon's information measure.
The methods are:

1. In addition to the probability prediction P(xlyj), the semantic probability prediction

P(x16;)=P(x)T(6j1x)/T(6)) is also used;

2. The G measure also has coding meaning, which means the average code length saved by the
semantic probability prediction.

Second, the semantic communication model is essentially the Shannon communication model;
the difference is that it changes the distortion constraint to the semantic constraint, including
semantic distortion constraint (for R(®)), semantic information constraint (for the R(G) function) and
the semantic information loss constraint (for electronic communication, see Section 3.2).

Third, the G theory adheres to Shannon's concept of information: information is reduced
uncertainty.

6.2. What Is Information?

What is information? This question has many answers [82]. According to Shannon's definition,
information is uncertainty reduced. Shannon information is the uncertainty reduced due to the
increase of probability, while semantic information is the uncertainty reduced due to the narrowing
of concepts' extensions.
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From a common-sense perspective, information refers to something previously unknown or
uncertain, which encompasses:

Information from natural language: information provided by answers to interrogative
sentences (e.g., sentences with "Who?", "What?", "When?", "Where?", "Why?", "How?", or "Is this?").

Perceptual or observational information: information obtained from material properties or
observed phenomena.

Symbolic information: information conveyed by various symbols like road signs, traffic lights,
and battery polarity symbols.

Quantitative indicators' information: information provided by data such as time, temperature,
rainfall, stock market indices, and inflation rates.

Associated information: information derived from event associations, such as the crowing of a
rooster signaling dawn and a positive medical test indicating disease.

Items 2, 3, and 4 can also be viewed as answers to questions in item 1, thus providing
information. These forms of information involve concept extensions and truth-falsehood
considerations and should be semantic information. Associated information in item 5 can be
measured using Shannon's or the semantic information formula. When probability predictions are
inaccurate (i.e., P(x10))#P(x yj)), the semantic information formula is more appropriate. Thus, the G
theory is consistent with the concept of information in everyday life.

In computer science, information is often defined as useful, structured data. What qualifies as
"useful"? This utility arises because the data can answer various questions or provide associated
information. Therefore, the definition of information in data science also ties back to reduced
uncertainty and narrowed concept extensions.

6.3. Relationships and Differences Between the G Theory and Other Demantic Information Theories

6.3.1. Carnap and Bar-Hillel's Semantic Information Theory

The semantic information measure of Carnap and Bar-Hillel is [3]:

Ip=log(1/my], (8)

where I, is the semantic information provided by the proposition set p, and m, is the logical
probability of p. This formula reflects Popper's idea that smaller logical probabilities convey more
information. However, as Popper noted, this idea requires the hypothesis to withstand factual testing.
The above formula does not account for such tests, implying that correct and incorrect hypotheses
provide the same information.

Additionally, the G theory differs in calculating logical probability with statistical probability,
unlike Carnap and Bar-Hillel's approach.

6.3.2. Dretske's Knowledge and Information Theory:

Dretske [9] emphasized the relationship between information and knowledge, viewing
information as content tied to facts and knowledge acquisition. Though he did not propose a specific
formula, his ideas about information quantification include:

1. The information must correspond to facts and eliminate all other possibilities.
2. The amount of information relates to the extent of uncertainty eliminated.
3. Information used to gain knowledge must be true and accurate.

The G theory aligns with these principles by providing semantic information formulas and

mathematically implementing Dretske's concepts.

6.3.3. Florida's Strong Semantic Information Theory:

Florida's theory [12] emphasizes:
1.  The information must contain semantic content and be consistent with reality:
2. False or misleading information cannot qualify as true information.
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Floridi elaborated on Dretske's ideas and introduced a strong semantic information formula.
However, this formula is more complex and less effective at reflecting factual testing compared to
the G theory. For instance, Floridi's approach ensures tautologies and contradictions yield zero
information but fails to penalize false predictions with negative information.

6.3.4. Other Semantic Information Theories:

In addition to the semantic information theories mentioned above, other well-known ones
include the theory based on fuzzy entropy proposed by Zhong [11] and the theory based on
synonymous mapping proposed by Niu and Zhang [17]. Zhong advocated the combination of
information science and artificial intelligence, which had a great influence on China's semantic
information theory research. He employed fuzzy entropy to define the semantic information
measure. However, this approach yielded identical maximum values (1 bit) for both true and false
sentences [11], which is counterintuitive. Other people's semantic information measures using
DeLuca and Termini's fuzzy entropy also encounter similar problems.

Other authors who discussed semantic information measure and semantic entropy include
D'Alfonso [84], Basu et al. [85], and Melamed [86]. These authors improved semantic information
measures by improving Carnap and Bar-Hillel's logical probability. The semantic entropy used is
mainly in the form of Shannon entropy. The semantic entropy H(Ye) in G theory differs from these
semantic entropies. It contains statistical and logical probabilities and reflects the average code length
of lossless coding (see Section 2.3).

Niu and Zhang [17] and Guo et al. [87] proposed the semantic information rate-distortion
function R«(D), where Rs represents minimum semantic information. In contrast, R(G) in the G theory
still represents the minimum Shannon M], reflecting the lower limit of data compression. Why do we
minimize semantic MI? The reason seems to be that researchers want to establish a semantic
information theory parallel to Shannon's information theory. Liu et al. [88] used the dual-constrained
rate-distortion function R(Ds, Dx); Guo et al. [87] also used R(Ds, Dx), which is meaningful. In contrast,
G in R(G) already contains dual constraints because G means fidelity and semantic information.

In addition, fuzzy information theory [89,90] and generalized information theory [91] also
involve semantics. However, these theories are further from Shannon's information theory.

6.4. Relationship Between the G Theory and Kolmogorov Complexity Theory

Kolmogorov [92] defined the complexity of a string of data as the shortest code length under the
requirement of lossless recovery. The information provided by knowledge is defined as the
complexity reduced by knowledge. Shannon's information measured can be understood as the
average information, while Kolmgorov's information is the information provided by knowledge
about a data string. Shannon's information theory does not consider the complexity of individual
data, while Kolmogorov's theory does not consider statistical averages. It can be said that
Kolmogorov defined the amount of information in microdata, while Shannon provided the mutual
information formula for measuring the information of macrodata. The two theories are
complementary.

Because knowledge includes the extensions of concepts and the logical relationships between
concepts, as well as the correlations (including causality) between things, the information defined by
Kolmogorov contains semantic information. However, Kolmogorov did not provide a specific
formula for measuring information. The G theory provides semantic Bayesian prediction, semantic
information measure, and the R(G) function, which should supplement the above two theories.

The relationship between the G theory and Kolmogorov complexity needs further study.

6.5. Comparison of the MIE Principle and the MFE Principle

Friston proposed the MFE principle, which he believed was a universal principle organisms use
to perceive the world and adapt to the environment (including transforming the environment). The
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core mathematical method he uses is VB. A similar principle used by the G theory is the MIE
principle.
The main differences between the two are:
1. The G theory regards Shannon's MI I(X; Y) as free energy, while Friston's theory regards the
semantic posterior entropy H(X|Ys) as free energy.
2. The methods for finding the latent variable P(y) and the Shannon channel P(y|x) are different.
Friston uses VB, and the G theory uses SVB.
When optimizing the prediction model P(x|0;)(j=1,2,...), the two are consistent; when optimizing
P(y) and P(y|x), the results of the two are similar, but the methods are different. SVB is simpler. The
reason why the results are similar is that VB uses the mean-field approximation when optimizing
P(y!x), which is equivalent to using P(y|x) instead of P(y) as a variation and actually uses the MID
criterion. So, the two results are almost the same. Figure 18 shows that in a mixture model's
convergence process, information difference R—G instead of free energy F continuously decreases.
In physics, free energy is energy that can be used to do work; the more, the better. Why should
it be minimized? In physics, there are two situations in which free energy is reduced. One is passive
reduction because of the increase in entropy. The other reason is to save the consumed free energy
while doing work. This is for considering thermal efficiency, which is a conditional reduction.
Reducing the consumed free energy conforms to Jaynes' maximum entropy principle. Therefore,
from a physics perspective, it is not easy to understand that one would actively minimize free energy.
MIE is like the maximum doing-work efficiency W/F when using free energy F to do work W.
The MIE principle is easier to understand.
The author will discuss these two principles further in other articles.

6.6. Limitations and Areas That Need Exploration

The G theory is still a basic theory. It has limitations in many aspects, and many elements need
improvement.

1) Semantics and Distortion of Complex Data

Truth functions can represent the semantic distortion of labels. However, it is difficult to express
the semantics, semantic similarity, and semantic distortion of complex data (such as a sentence or an
image). Many researchers have made valuable explorations [15,93]. The author's research is
insufficient.

The semantic relationship between a word and many other words is also very complex.
Innovations like Word2Vec [94,95] in deep learning have successfully modeled these relationships,
paving the way for advancements like Transformer [96] and ChatGPT. Future work in the G theory
should aim to integrate such developments to align with the progress in deep learning.

2) Feature Extraction

The features of images encapsulate most semantic information. There are many efficient feature
extraction methods in deep learning, such as Convolutional Neural Networks and AutoEncoders.
These methods are ahead of the G theory. Whether the G theory can be combined with these methods
to obtain better results needs further exploration.

3) The Channel-matching Algorithm for Neural Networks

Establishing neural networks to enable mutual alignment of Shannon and semantic channels
appears feasible. Current deep learning practices, relying on gradient descent and backpropagation,
demand significant computational resources. If the channel matching algorithm can reduce reliance
on these methods, it would save computational power and physical free energy.

4) Neural Networks Utilizing Fuzzy Logic

Using truth functions or their logarithms as network weights facilitates the application of fuzzy
logic. The author previously used a fuzzy logic method compatible with Boolean algebra to set up a
symmetrical color vision mechanism model: the 3-8 decoding model [76-79]. Combining the G theory
with fuzzy logic and neural networks holds promise for further exploration.

5) Optimizing Economic Indicators and Forecasts:
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Forecasting in weather, economics, and healthcare domains provides valuable semantic
information. Traditional evaluation metrics, such as accuracy or average error, can now be enhanced
by converting distortion into truth. Using truth functions to represent semantic information offers a
novel method for evaluating and optimizing forecasts, which merits further exploration.

6.7. Conclusion

The G theory's validity is supported by its broad applications across multiple domains,
particularly in solving problems related to semantic communication, semantic compression theory,
multi-label learning, maximum mutual information classification, mixture models, latent variable
resolution, Bayesian confirmation, constraint control, investment portfolios and information value.
Particularly, the G theory allows us to utilize the existing coding methods for semantic
communication. The crucial approach is to replace distortion constraints with semantic constraints,
where the information rate-distortion function becomes the information rate-fidelity function.

However, the G theory's primary limitation lies in the semantic representation of complex data.
In this regard, it has lagged behind the advancements in deep learning. Bridging this gap will require
learning from and integrating insights from other studies and technologies.
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Appendix A. Abbreviations

Abbreviation Original text
EM Expectation-Maximization
EnM Expectation-n-Maximization
GPS Global Positioning System
G theory Semantic information G theory (G means generalization)
InfoNCE Information Noise Contrast Estimation
KL Kullback-Leibler
LBI Logical Bayes' Inference
ME Maximum Entropy
MI Mutual Information
MIE Maximum Information Efficiency
MID Minimum Information Difference
MINE Mutual Information Neural Estimation
SVB Variational Byes
VB Semantic Variational Byes
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