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Abstract: This article investigates macroeconomic factors that support the adoption of Artificial
Intelligence (Al) technologies by large European Union (EU) enterprises. In this analysis, panel data
regression is combined with machine learning to investigate how macroeconomic variables like
health spending, domestic credit, exports, gross capital formation, and inflation, along with health
spending and trade openness, influence the share of enterprises that adopt at least one type of Al
technology (ALOAI). The results of the estimations —based on fixed and random effects models with
151 observations—show that health spending, inflation, and trade and GDP per capita have
positively significant associations with adoption, with significant negative correlations visible with
and among domestic credit, exports, and gross capital formation. In adjunct to this, the regression of
machine learning models (KNN, Boosting, Random Forest) is benchmarked with MSE, RMSE, MAE,
MAPE, and R? measures with KNN performing perfectly on all measures, although with some
concerns regarding data overfitting. Furthermore, cluster analysis (Hierarchical, Density-Based,
Neighborhood-Based) identifies hidden EU country groups with comparable macroeconomic
variables and comparable ALOAI Notably, those with characteristics of high integration in
international trade, access to credit, and strong GDP per capita indicate large ALOAI levels, whereas
those with macroeconomic volatility and under-investment in innovation trail behind. These findings
suggest that securing the adoption of Alis not merely about finance and infrastructure but also about
policy alignment and institutional preparedness. This work provides evidence-driven policy advice
by presenting an integrated data-driven analytical framework to comprehend and manage Al
diffusion within EU industry sectors.

Keywords: artificial intelligence adoption; macroeconomic indicators; panel data regression; machine
learning models; EU policy and innovation
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1. Introduction

Over the last few years, artificial intelligence (Al) has developed into a transformational general-
purpose technology with the potential to transform economies, modify production systems, and
reorient the roles of innovation and competitiveness. Its spread to different sectors —manufacturing
to health care, finance to public administration—holds out the hope of dramatic increases in
efficiency, new business models, and better decision support. Yet with increasing interest in the
economics of Al, much of the literature to date has concentrated on microlevel applications, sector-
specific illustrations, or normative treatments of moral and institutional standards. Little is left to
explore regarding how macro structures of the economy and national policy settings are influencing
the spread of Al among large organizations (Hoffmann & Nurski, 2021). This is especially relevant in
the case of the European Union, where there is considerable heterogeneity of digital preparedness,
institutional capability, and economic structure between member states. Most contemporary research
on Al adoption tends to focus on firm-specific factors, like managerial capabilities, R&D intensity, or
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digital expertise, and treat aggregate macroeconomic factors as exogenous or only contextual
(Gualandri & Kuzior, 2024). Consequently, we know little about the ways in which systemic factors —
like access to finance, globalization, public investment policies, or institutional quality —interact with
firm incentives and country-specific innovation systems to impact the diffusion of Al technologies.
In addition, those few that do deal with macro-factors tend to concentrate on narrow measures like
GDP or innovation indicators, and not on the more nuanced and multidetermined nature of economic
development and how this translates to digital transformation (Popovic et al., 2025). In the EU, where
supranational guidelines in digital policy are complemented by national implementation,
understanding more about these macro factors in depth is essential to designing effective policies to
facilitate the deployment of Al in different economic contexts.

This paper was needed to fill that research gap by posing the following broad question: To what
extent are macro factors responsible for accounting for heterogeneity in Al adoption among large EU
member state firms between 2018 and 2023? Specifically, it inquires about how such variables as GDP
per capita, access to domestic credit, health expenditure, exports, openness to trade, inflation, and
fixed capital formation influence adoption of Al technology, as measured by the ALOAI index—
percent of large enterprises embracing one of three Al methods (machine learning, image recognition,
or natural language processing). In selecting large enterprises (250+ staff), the analysis identifies a
sub-population of large, economically significant, and presumably more capable-to-adopt advanced
digital technologies but also in and impacted by aggregate macro factors. The novelty of this research
is both in method and content. Method-wise, the research applies dual empirical methodology that
combines familiar econometric panel specifications (random and fixed effects) and those of machine
learning (K-Nearest Neighbors (KNN) algorithm and other clustering measures). The resulting
method allows both explanation and prediction, capturing linear and also non-linear relationships
and interaction effects likely to be out of the scope of standard regression analysis (Ma et al., 2023).
Additionally, by employing a mixed bag of different evaluation measures—such as from R? and
AIC/BIC to geometrical measures like silhouette scores, Dunn index, and entropy—to measure
clustering quality, the paper is able to supply strong cross-methodological validation of algorithmic
results, such that results are not only statistically compelling but also interpretable and effective on
policy (Tudor et al., 2025). At the substance level, the evidence draws several new insights from
prevailing conjecture about the digital transformation, such as the fact that although although GDP
per capita is positively related with adoption of Al, it is not the chief determinant. Instead, such
variables as health spending and domestic credit to the private sector are increasingly stable in their
correlations, such that institutional capability and efficiency of the financial structure are essential in
allowing the application of Al Interestingly, the analysis also identifies unanticipated effects —like
the negative link between gross fixed capital formation and adoption of AI—which indicate that
investments in capital can be skewed towards physical rather than digital assets in certain economies.
These findings reinforce the need to move beyond headline economic indicators and consider
orientation, composition, and institutional context of macro variables in quantifying readiness to
adopt AL

A second key contribution of the paper is its cluster analysis of EU member states into seven
distinct profiles based on macroeconomic characteristics and the rate of adoption of Al This typology
reveals how economic characteristics with identical indicators can result in quite different
conclusions on the adoption of Al depending on how they align and are implemented (Czeczeli et
al., 2024). We provide an example by describing some of the clusters with both low and high income
levels and excellent integration into world markets and public investment and access to finance as
characterised by low diffusion of Al as a result of institutional barriers or underdevelopment of the
stock of human capital. Other clusters with average income levels and moderate public investment
and access to finance, on the other hand, possess better-than-average uptake (Andrejovskd &
Andrejkovicova, 2024). These findings highlight the importance of policy coordination and
ecosystem alignment in translating economic potential into technological transformation.
Importantly, the research also addresses policy implications of the findings. By identifying which
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macroeconomic situations are optimally positioned to support diffusion of Al, it suggests actionable
advice to national and EU policy decision-makers aiming to create successful and inclusive digital
transformation. Targeted policies in digital infrastructure, access to finance of innovations, and
investments in the stock of human capital are highlighted by the analysis as capable of generating
more return on investment than generic policies of growth (Iuga & Socol, 2024). Additionally, the
paper contributes to the existing literature on the interaction between economic development and
technological innovation in putting the challenge of Alinto the perspective of not solely technological
but systemic transformation which has to be supported by policies in concert and of different
dimensions. Generally, this research contributes to the research literature in the novel way of relating
macroeconomic structures to results of adoption of Al within European comparison. It contributes to
the literature by jumping beyond firm-specific factors and supplying multi-country and multi-factor
analysis blending both economics and machine learning. This research negates oversimplified
assumptions about the interaction between national wealth and digitalisation and instead stresses
institutional quality, access to finance, and strategic policy coordination. For that purpose, the
research is theoretically and practically important in advancing scholarly knowledge of digital
transformation and offering evidence-driven insights to support policymaking in the era of Al-driven
innovation

The article proceeds as follows: the second section presents a critical analysis of the relevant
literature, the third section presents the methodology and data used in the analysis, the fourth section
shows the results of the panel data model comparing fixed effects with random effects, the fifth
section shows the comparative analysis of various prediction-oriented machine learning algorithms,
the sixth section compares machine learning algorithms for clustering, the seventh section analyzes
the policy implications, the eighth section concludes.

2. Literature Review

Artificial intelligence (AI) is moving swiftly to transform macroeconomic theory, as well as to
emerge as a structural force with the potential to reshape productivity, redesign labor markets, and
raise new challenges to public policy. Recent research converges on the fundamental insight that the
macroeconomic implications of Al are not predetermined, nor are they neutral, but are profoundly
influenced by governance, regulation, and institutions. From growth and wage polarization to
market concentration and inequality risks, Al is coming to be regarded as a general-purpose
technology with the potential to drive sustainable and inclusive development—under appropriate
guidance. The section provides a critical overview of the scholarly literature on the subject of greatest
relevance, with identification of theoretical developments and empirical results that frame the role of
Al in macroeconomic transformation. Through this review, we draw out the primary tensions and
policy challenges at the convergence of innovation, employment, and economic governance.

Artificial intelligence (Al) is remapping macro economic theory both by increasing productivity
and by posing policy challenges. Literature confirms consensus regarding the restructuring of
growth, labor markets, inequality, and inflation by AI. Abrardi, Cambini, and Rondi (2019)
denominate Al as general-purposed technology with sector spillovers and emphasize institutional
and capital considerations. Acemoglu (2025) provides macro equilibrium between substitution by
automation and productivity increases, and tension is palpable in Autor et al. (2022), finally
concluding that employment by Al-related tasks is predominantly skill-biased and brings about
wage polarization. Aghion, Jones, and Jones (2017) contend that Al is capable of sowing seeds in the
long-term induced by innovation, but diffusion is bogged down by institutional frictions. Agrawal,
Gans, and Goldfarb (2019) conceptualize Al as prediction engine and frame bases of sector
productivity increases. Albanesi et al. (2023) argue uneven employment effects in Europe, where
technology adoption is yet to fully offset lost traditional employment. Aldasoro et al. (2024) provide
comfort that Al increases output with moderate reduction of inflation, of ultimate concern to
monetary policymakers. In development economies, Aromolaran et al. (2024) emphasize that
investments in Al cut poverty provided in equitable form. Microeconomic-wise, Babina et al. (2024)
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trace back to extension and innovation by Al, yet raise specter of threats of concentration to low-
distortion-adjusting enterprises. Finally, Bickley et al. (2022) expose growing influences of Al on
economic research itself. Within these findings, macroeconomic effects of Al are neither neutral nor
inherent; rather, orientation is institution- and policy-sensitive. As Acemoglu presents, macro-
economists are to grapple with Al neither as outside shock, nor static phenomenon; rather, it is to be
managed as dynamic, policy-sensitive phenomenon in post-busk economies.

Bonab, Rudko, and Bellini (2021) outline both the two-pronged risk and potential of Al and the
necessity to "anticipatory regulate” in order to not exacerbate inequality. Bonfiglioli et al. (2023)
outline how U.S. commuting region take-up of Al reinforces labour polarisation, especially in
cognitive work, and accentuates divergence of places concerns. As Bresnahan and Trajtenberg (1995)
outline in accordance with theory of Generalised Pooled Transversals, Al drives growth in the case
of complementarity of innovation—a stance reaffirmed by Brynjolfsson and Unger (2023), who
regard Al as structural. However, as Brynjolfsson, Rock, and Syverson (2018) observe, growth in
productivity is out of sight due to under measurement and delayed diffusion. Generative Al, in the
view of Brynjolfsson, Li, and Raymond (2023), can increase productivity of low-skilled workers, but
is uneven in diffusion. A behavioural factor is added by the argument of Camerer (2018), who
suggests that macroeconomic behaviour can be revolutionised by algorithmic decision switching.
Chen et al. (2016, 2024) outline world economy impact projections of economic impact of Al but refer
to disparities in infrastructure and absorptive capability. Last but not least, Cockburn et al. (2018)
outline Al as meta-technological in spurring R&D but warning of concentration of benefits. Overall,
as is seen, with potential to transform, macroeconomic impact from Al is premised on equal policy,
concerted governance, and design responsiveness to risk of distribution. Central to Cockburn et al.
(2019) is to draw out how innovation is remade by Al and how it is capable of benefiting skilled-
learning systems and exacerbating gaps between frontrunner and laggard places. Comunale and
Manera (2024) outline possible rules lag, and delayed policy adjustment will exacerbate macro-level
risk such as frictions in the labor market. Czarnitzki et al. (2023) outline how productivity growth in
companies with increased intensity in knowledge is spurred by Al, although uneven growth is
observed. Dirican's (2015) early work defines Al as carrying with it "creative destruction" of GDP
structures. Eloundou et al. (2023) outline automation of tasks by large-language models and infer
large-scale reskilling. Similarly, Ernst et al. (2019) put forward emerging markets' weakness. Felten
et al. (2018) provide mapping of tasks within jobs to capabilities of Al in order to enable sectoral
employment projections. Gazzani and Natoli (2024) simulate shocks of Al and illustrate how
augmentative Al can enable inclusive growth. Potential deskilling of tasks in skilled employment
based on usage of Al, particularly in finance, is discussed by Grennan and Michaely (2020). Finally,
hybrid economic models to fit the complexity of Al systems are suggested by Gries and Naudé (2022).
These articles collectively portray Al as both the source of macroeconomic asymmetry and as
potential for transformation with strong recognition of need for forward-looking governance.Ruiz-
Real et al. (2021) report growing use of Al in economics and finance but mention fragmentation of
disciplines and recommend growing integration. Szczepanski (2019) cautions about unlimited use of
Al with potential of increasing job loss and unevenness in places and Trabelsi (2024) identifies risk of
digital divides in poor economies if inclusion policies are not followed. Varian (2018) identifies
potential improvement in efficiency of companies by Al with risk of monopolies to be formed and
raise questions about regulation. Wagner (2020) contends that Al triggers nonlinear macro-behavior
and needs institutional infrastructure to handle systemic risk. Wang et al. (2021, 2025) project impacts
of Al on development with special mention of digital infrastructure and demographic transition.
Webb (2019) identifies disproportionate offshoring of cognitive work by Al threaten mid-skill
employment and doubles polarization. In health, Wolff et al. (2020) mention selectively large
efficiency impacts of Al but write about dependency on trust and government. Zekos (2021)
concludes by identifying coordination by countries to balance societal advantages of Al and public
risk. On aggregate, these researches challenge adaptive institutions to guide use of Al to bring about
more equal and sustainable economic development.
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A synthesis of the literature review by macro-themes is presented in the following Table 1.

Table 1. Synthesis of the literature.

Macro Theme Key Findings Repgiir;trelstlve Comparison with Our Study Originality of Our Study
Al can drive long-term growth Aghion, Jones & . Applies KNN f:lgste.rlng to
. Jones (2017); Agrawal Our study finds strong links =~ macroeconomic indicators
Growth &  but requires complementary i . .
. . ) et al. (2019); between Al and productivity, across EU countries, a novel
Productivity — investments and supportive . .
I Brynjolfsson & Ungerthough uneven across clusters. method for analyzing growth
nstitutions .
(2023) impacts.
. . Provides quantitative cluster-
Al adoption leads to labor Acemoglu (2025); Our study shows Al adoption based evidence on labor

Labor Markets  polarization and wage
& Inequality inequality; reskilling is
essential

varies by region and is skill-
biased, reinforcing
polarization.

Autor et al. (2022);
Eloundou et al. (2023)

polarization and sectoral
inequality, unlike most theory-
based papers.

Aldasoro et al. (2024); Inflation has a modest but Includes inflation as a

Gazzani & Natoli  positive effect on Al adoption pfedlctlve fgature n A.I
. . adoption modeling, a relatively
(2024) in our findings. . .
unexplored relationship.
Integrates policy instruments
Pehlivan (2024); The study emphasizes EU- (AI Act, Digital Decade)

Al adoption may modestly
reduce inflation and is
influenced by macroeconomic
stability

Inflation &
Monetary
Policy

Coordinated governance and

Institutional &
regulatory frameworks are

Policy necessary for Al benefits to Bonab et al. (2021); level coordination and directly with machine learning
Coordination Y scale Wagner (2020) benchmarking as essential. insights for governance
evaluation.
Sectoral Uses economic clustering to
Disruption & Al causes structural shifts in Dirican (2015); Webb  Clustering reveals sectoral identify hidden sector agl
Industrial GDP and employment (2019); Wolffet al. shifts, especially in trade and . .
. . . o dynamics across EU regions,
Transformatio  patterns across industries (2020) capital investment patterns. . .
n enhancing practical relevance.
. Al boosts innovation in data- Cockburn et al.. Al adoption aligns with firm- Emp 1r1cally links ﬁrm—level
Firm-Level . . (2019); Czarnitzki et . . . . innovation to national
. rich firms, but risks . level innovation, especially in .
Innovation al. (2023); Babina et macroeconomic clusters,

concentrating benefits tech-ready clusters.

al. (2024) offering cross-scale insight.
Focuses on EU regional

Trabelsi (2024); Wang Our study stresses the digital divergence using standardized

Global Al may exacerbate global

Develqpment mequalfues; mcl.us.lve et al. (2025); Zekos divide across EU regions and  indicators and clustering,
& Digital strategies and digital (2021) olicy needs in lagging areas adding depth to global
Divide infrastructure are key policy seing ) g dep &

inequality literature.

In summary, the literature reviewed here emphasizes how artificial intelligence is not simply a
technological innovation but is instead a force of transformation in macroeconomics that magnifies
underlying structural dynamics and injects new uncertainties. Failing to produce automatic or
identical results, the macroeconomic impacts of Al are influenced by institutional settings, policy
options, and socio-economic environments. As illustrated, Al has the potential to raise productivity,
underpinning inclusive growth and innovation, but with notable prospects of inequality,
polarization, and market concentration. The key challenge of the future is to create forward-looking,
adaptive governance that is resilient enough to realize the benefits of Al and neutralize the
distributional and systemic threats.

3. A Methodologically Integrated Approach to Analyzing AI Adoption: Panel
Econometrics Meets Machine Learning

Methodologically, the joint use of fixed and random effects panel data models along with
machine learning regression and clustering models is not merely appropriate but methodologically
justified in the study of Al adoption in macroeconomic contexts. Their panel data nature—between
countries and multiple years—naturally demands econometric techniques capable of handling both
cross-section as well as time-series heterogeneity. Fixed effects models are methodologically
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appropriate if the aim is to control for unobserved, time-constant heterogeneity between countries,
e.g., institutional contexts, judicial systems, or country-specific innovation-related mindsets. Random
effects models are more efficient on the proviso that country-specific heterogeneity is uncorrelated
with regressors. Using both and testing with the Hausman test, the research maximises robustness
and minimises the risk of model misspecification (Popovic¢ et al., 2025). Concurrent with this, use of
machine learning models such as K-Nearest Neighbors (KNN), Random Forest, Boosting, and SVM
to regression adds another valuable layer of methodological robustness.

These are not strict parametric models and are particularly robust in capturing subtle, non-linear
relationships which more orthodox econometric models are likely to overlook (Tapeh & Naser, 2023).
Their use is methodologically justified in those contexts where the aim is not merely to explain but to
predict the rate of adoption of Al conditional on several macroeconomic inputs. Furthermore,
comparing models on the basis of a set of measures of fit (MSE, RMSE, MAE, MAPE, R?) allows data-
driven, nuanced choice of optimal algorithm in data-rich decision spaces such as cybersecurity and
economic modeling (Ozkan-Okay et al., 2024).

Clustering techniques like Hierarchical, Density-Based, and Neighborhood-Based enrich the
analysis with latent groupings of countries with comparable economic profiles and adoption
behavior towards Al. Methodologically, this is necessary in order to transcend averages and reveal
structural patterns important to analysis of policy comparability. These techniques of unsupervised
learning are capable of segmenting the data in such a manner as to bring out hidden structure and
policy-focused clusters (Shokouhifar et al., 2024). That convergence of techniques is not coincidental,
but methodological. Panel regression provides causal inference and interpretability, machine
learning supplies flexible and precise prediction, and clustering provides structural insights into
heterogeneity. In the domain of Al in finance, to take an example, research has demonstrated how
convergence of topic modeling and clustering reveals distinct thematic patterns which would be lost
to us (Olasiuk et al., 2023). Their convergence fulfils several analytic roles—description, explanation,
prediction, and categorization —within and in the same, enveloping process. That multi-method is
itself well suited to the phenomenon as fluid and multi-dimensional as adoption of Al, where
linearity and isolationist models would be powerless to describe interaction between financial factors,
institutional bias, and international competitiveness. As highlighted by more recent bibliometric
evaluations, pushing forward the use of Al in public administration is in line with growing demand
for integrated, multi-method analyses to guide decision-making on large scale (Popescu et al., 2024).
Application of panel econometrics and machine learning in tandem is thus therefore a solid, justified,
and methodological sophisticated way of knowing macroeconomic drivers of digital transformation.

We have used the following variables as showed in the following Table 2.

Table 2. Variable, acronyms and sources of data.

Acronym Variable Definition Source
This variable shows the percentage of large EU enterprises (250+
Al adoption in major employees) using at least one Al technology. It excludes agriculture,
ALOAI firms mining, and finance sectors. Measured annually, it reflects Al EUROSTAT
adoption—such as machine learning or image recognition—across
major industries, based on Eurostat.

Current health This variable represents total public and private health spending as a
HEAL expenditure (% of share of gross domestic product, reflecting a country’s financial
GDP) commitment to healthcare services, infrastructure, and policy.
Domestic credit to This variable measures financial resources provided to the private
DCPS private sector (% of  sector by financial institutions, expressed as a percentage of GDP,
GDP) indicating access to credit and financial system development.

: - - WORLD BANK
Exports of goods and This variable captures the total value of goods and services exported

EXGS services (% of GDP) by a country, relative to its GDP, reﬂectlgg Frade openness, external
demand, and global economic integration.
GDP per capita This variable represents a country's gross domestic product divided by
GDPC (constant 2015 USS) its population, adjusted for inflation to 2015 US dollars, reflecting

average economic output and living standards over time.
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This variable measures investment in fixed assets such as buildings,
machinery, and infrastructure, expressed as a percentage of GDP,
indicating long-term economic growth potential and capital
accumulation.

This variable reflects the annual percentage change in the GDP
deflator, capturing overall inflation by measuring price changes in all
domestically produced goods and services within an economy.
This variable represents the sum of exports and imports of goods and
TRAD Trade (% of GDP) services as a percentage of GDP, indicating a country's trade openness,

economic integration, and global market exposure.

Gross fixed capital
GFCF formation (% of
GDP)

Inflation, GDP

INFD deflator (%)

4. Understanding AI Diffusion in EU Enterprises: Evidence from Fixed and
Random Effects Models

To investigate the macroeconomic determinants influencing the adoption of artificial
intelligence (Al) technologies among large European Union enterprises, this study employs a metric-
driven panel data approach using both fixed-effects and random-effects estimations. The dependent
variable, ALOAI, reflects the percentage of enterprises with at least 250 employees adopting at least
one form of Al technology, based on Eurostat data and excluding agriculture, mining, and finance
sectors. The analysis is based on a panel of 28 European countries observed over the period from 2018
to 2023. The objective of the research is to quantify the effect of key macroeconomic indicators —
including health expenditure, domestic credit, exports, GDP per capita, capital formation, inflation,
and trade openness—on Al diffusion across countries and over time. By comparing the performance
and coefficients of both fixed-effects and generalized least squares (GLS) random-effects models, the
analysis aims to identify statistically significant predictors of Al adoption and assess their relative
impact.

We have estimated the following equation:

ALOAI = a + B,(HEAL);, + B, (DCPS);; + B3(EXGS);; + Bo(GDPC);, + Bs(GCFG);,

+ Bs(INFD);, + B;(TRAD);;
where i=28' and t=[2018;2023].
The econometric results are showed in the following Table 3.

Table 3. Results of the econometric panel data model.

Fixed-effects, using 151 observations Random-effects (GLS), using 151 observations
Coefficient Std. Error t-ratio Coefficient Std. Error Z
const 232.103 187.502 1.238 1.43750 11.7344 0.1225
HEAL 3.96946%** 0.894018 4.440 3.69032%** 0.789923 4.672
DCPS —0.286226%** 0.0982208 —2.914 —0.159030** 0.0697545 —2.280
EXGS —2.15202%** 0.583538 —3.688 —1.72654*** 0.490134 —3.523
GDPC 0.000579674** 0.000262903 2.205 0.000752955***  0.000157700 4.775
GCFG —1.02356%** 0.351578 —2.911 —0.751295*** 0.289279 —2.597
INFD 0.213992%** 0.0718891 2.977 0.223578*** 0.0647466 3.453
TRAD 1.05806%*** 0.286420 3.694 0.85472%** 0.245487 3.482
Mean dependent var 26.99636 Mean dependent var 26.99636
Sum squared resid 2984.013 Sum squared resid 21868.54
Statistics LSDV R-squared 0.924381 Log-likelihood —589.9118
LSDV F(34, 116) 41.70631 Schwarz criterion 1219.962
Log-likelihood —439.5324 rho 0.574965
Schwarz criterion 1054.670 S.D. dependent var 16.21961

' Countries are: Austria, Belgium, Bosnia and Herzegovina, Bulgaria, Denmark, Estonia, Finland, France,
Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,

Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Turkey.
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rho 0.574965 S.E. of regression 12.32335

S.D. dependent var 16.21961 Akaike criterion 1195.824

S.E. of regression 5.071908 Hannan-Quinn 1205.630

Within R-squared 0.345539 Durbin-Watson 0.596079
P-value(F) 1.78e-50
Akaike criterion 949.0648
Hannan-Quinn 991.9670
Durbin-Watson 0.596079

'Between' variance = 265.282 'Within' variance = 19.761
mean theta = 0.882933 Joint test on named regressors -
Asymptotic test statistic: Chi-square(7) = 75.88 with p-

value = 9.50198e-14

Joint test on named regressors - Test statistic: F(7, 116) =
8.74929 with p-value = P(F(7, 116) > 8.74929) =
1.3237e-08

Test for differing group intercepts - Null hypothesis:
Test The groups have a common intercept Test statistic: F(27,
116) = 17.3621 with p-value = P(F(27, 116) > 17.3621) =
2.98603¢-29

Breusch-Pagan test - Null hypothesis: Variance of the unit-
specific error = 0 Asymptotic test statistic: Chi-square(1) =
158.842 with p-value = 2.02581¢-36

Hausman test - Null hypothesis: GLS estimates are
consistent Asymptotic test statistic: Chi-square(7) =
8.05723 with p-value = 0.327574

The panel data analysis of adoption of artificial intelligence (AI) by large European Union
enterprises, as the share of companies with more than 250 staff utilizing any kind of Al technology
(ALOAL), provides important evidence on macroeconomic drivers of technological diffusion among
EU member countries. The version of the analysis based on the fixed effects and random effects (GLS)
econometric models, with 151 observations and on the complete range of macroeconomic indicators
available (current health expenditure, HEAL; domestic credit to the private sector, DCPS; exports of
goods and services, EXGS; gross domestic product (GDP) per capita, GDPC; gross fixed capital
formation, GFCF; inflation as captured by the GDP deflator, INFD; and trade openness, TRAD),
provides strong evidence of the economic variables' influence. Empirical work by Doran et al. (2025)
provides support to the methodological approach. These authors analyze EU industry automation
systems and confirm the key role of economic sector structures in dictating technology take-up.
Buglea et al. (2025) apply panel data on Central and Eastern European countries to analyze the
adoption of digital transformation and confirm the role of structural and macro variables in shaping
technology adoption. The fixed effects estimation, accounting for unobserved heterogeneity of
countries, identifies various variables with statistically significant impacts on adoption of Al. Health
expenditure has a highly significant and positive impact (coefficient = 3.969, p < 0.01), implying that
increased public spending on health might reflect both wider institutional capabilities or investment
in personnel not independently contributing to the potential deployment of Al. The same significance
and positive impact is replicated in the random effects estimations (coefficient = 3.690), establishing
the robustness of results to different estimation techniques.

A second key result is the statistically significant and negative effect of domestic credit to the
private sector (DCPS), with coefficient —0.286 in the fixed effects and —0.159 in the random effects,
both significant to conventional levels. This perverse result can be interpreted to be evidence of
situations in which extensive availability of financing is not necessarily translated into finance to
support innovation or digital transformation, or could reflect inefficiency in the use of capital in some
economies. A similar complexity is addressed by Wagan and Sidra (2024), who highlight differences
in venture capital efficiency between countries despite huge investment in Al. Goods and service
exports (EXGS) also produce consistent and significant negative correlation with adoption of Al in
both models, with coefficients —2.152 and —1.726 respectively. This can be interpreted to mean that
economies more engaged in traditional export-oriented economic efforts tend to fall behind in digital
innovation due to either path dependency in low-tech or labor-intensive economies or structural
rigidity inhibiting disruptive technology adoption. This is in line with work by Abdelaal (2024), who
observes that economies with prevailing traditional production bases tend to be more sluggish in
redirecting resources to use in high-tech areas of application of AL. GDP per capita (GDPC) has small
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but statistically significant positive impact, meaning richer economies, as expected, are more likely
to adopt Al technologies. At the same time, the magnitude is low (0.000579 in fixed effects and
0.000753 in random effects), meaning that by itself, the issue of GDP is not the overriding factor but
part of some wider set of enabling factors. This is consistent with Zarkovi¢, Cetkovi¢, and Cvijovi¢
(2025), who observe that the impact of GDP per capita on economic modernization varies unevenly
in existing and new EU member states and draw on the theoretical argument that deeper structural
factors drive growth paths and technology diffusion.

Gross fixed capital formation (GFCF), quantifying investment in infrastructure and productive
assets, unexpectedly produces a negative and significant coefficient in both specifications. This is
open to questions about whether such investment is targeted towards physical capital in the usual
sense rather than to intangible or digital assets that would enable the integration of Al The result is
consistent with evidence from Giannini and Martini (2024) on enduring regional heterogeneity in
economic structure and innovation preparedness throughout the EU and many of which are likely to
bias the efficiency of traditional spending. Inflation (INFD), quantified by the GDP deflator, has a
positive and significant impact on the adoption of Al, perhaps capturing the instance of moderate
inflation accompanying vigorous investment environments or policies with the aim of expansion that
support digital innovation. Last, trade openness (TRAD) exerts strong positive and highly significant
influence in both specifications (estimates of 1.058 and 0.855), affirming that access to world markets
is a stimulus to the adoption of Al This is likely to be the result of such mechanisms as exposure to
foreign competition, technology transfer, and integration in foreign-made global value chains,
supported by empirical evidence from Nguyen and Santarelli (2024), who reveal that open economies
in Europe gain considerably from spillovers from Al since they are more integrated with the world.
Statistically, the fixed effects specifications present significant explanatory power with an R-squared
of 0.924 and significant F-statistic (F = 41.706), reflecting well-specified models with large fractions of
the variance in the dependent variables resolved by the included regressors. The random effects
specifications are respectable too, with joint chi-square tests (Chi2 = 75.88, p < 0.00001) affirming
significance, though the Hausman test (Chi2 = 8.057, p = 0.328) is not significant to indicate any
difference between fixed and random effects estimators, meaning that the random effects
specifications are statistically consistent. Still, with the highly significant F-test of different group
intercepts (F = 17.36, p = 0.00) and Breusch-Pagan test rejecting homoscedasticity's null (Chi2 =
158.842, p = 0.00), the fixed effects specifications are still preferred in eliciting country-level
heterogeneity that remains unobserved. The low Durbin-Watson statistic in both models (~0.59)
suggests some degree of autocorrelation, though this does not seem to undermine either the
significance or the signs of the coefficients.

Ultimately, these results affirm a multi-dimensional and sometimes non-monotonic correlation
between macroeconomic markers and adoption of AL Structural drivers such as spending on health,
financial stability, and integration into trade are available to underpin digital innovation, while
variables traditionally associated with development, such as capital and the formation of credit, are
not necessarily positively correlated in all cases. Such is consistent with evidence by Tiutiunyk et al.
(2021) who argue that although digital transformation is good with macroeconomic stability in EU
economies, interaction with such traditional variables of growth such as credit and capital is more
complicated and circumstance-variant. This implies that boosting levels of access to investment or
credit is not sufficient unless and jusqu'a targeted to support activity of facilitating innovation and
backed by institutional preparedness. For example, Iuga and Socol (2024) demonstrate how
institutional variables play heavily into readiness of EU member states to adopt Al and complacency
in such bridging of gaps will leave brain drain exposed in especially the less-developed regions of
the Union. Furthermore, goodness of fit of the models reinforces importance of macroeconomic
policy in shaping the digital competitiveness of EU economies. With rising salience placed on
adoption of Al as driver of industrial modernity and economic resilience, such macro-booster to
adoption can feed into more targeted and effective intervention both in member states and in the EU.
For example, spurring adoption of Al is not about more investment of assets but strategic
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coordination of finance systems, policy on trade, health infrastructure, and digital plans to provide
the canvas onto which innovation can seize. Such holistic strategic coordination is consistent with
evidence by Challoumis (2024) who argues that Al is remaping economic fundamentals and calling
on fiscal and innovation policies to make space in turn to accommodate new finance paradigm.
Macro-econometric robustness of the models, in particular the large R-squared of the fixed-effects
formulation and p-value convergence between estimators, reinforces importance of such inferences.
Notably, the conclusions push policy to be strategic and dimensional, balancing macroeconomic
planning and digital innovation ambitions. This is not just about enhancing health systems and
participating in international trade but about aligning the lending and investment channels to
facilitate capabilities fully digitally. While among the major sources of economic competitiveness and
resilience, especially in the EU's wider digital and green transformations, this question confirms
policymakers' need to underpin macroeconomic foundations that lead to the success of Al
technologies in business.

5. Decoding AI Adoption in the EU: A Comparative Evaluation of Predictive
Models and Macroeconomic Drivers

This section presents comparative analysis of eight regression models—Boosting, Decision Tree,
K-Nearest Neighbors (KNN), Linear Regression, Neural Networks, Random Forest, Regularized
Linear Regression, and Support Vector Machines (SVM)—using standard measures like MSE, RMSE,
MAE/MAD, MAPE, and R2. The aim is to analyze the prediction capability and generalizability of
each of these models in the forecasting of large EU firm adoption of AL In addition to benchmark
models, the section provides KNN-based feature importance measure based on mean dropout loss
to rank macro variables with the utmost impact in prediction of Al adoption. These analyses provide
both methodological and policy insights into structural economic indicators shaping the diffusion of
Al in various country contexts.

The results of the comparison among different algorithms is showed in the following Table 3.

Table 3. Performance Comparison of Regression Algorithms Based on Standard Evaluation Metrics.

Metric Boosting Decision Tree  KNN Linear Regression Neural Network Random Forest Regularized Linear SVM
MSE 0.187 0.31 0.000 0.23 1.000 0.293 0.293 0.214
RMSE 0.222 0.388 0.000 0.298 1.000 0.374 0.374 0.242
MAE/MAD  0.247 0.361 0.000 0.357 1.000 0.242 0.242 0.241
MAPE 0.100 0.107 0.000 0.477 0.658 0.750 0.750 1.000
R? 0.650 0.370 1.000 0.510 0.000 0.841 0.841 0.248

In comparing the performances of eight regression models—Boosting, Decision Tree, K-Nearest
Neighbors (KNN), Linear Regression, Neural Networks, Random Forest, Regularized Linear
Regression, and Support Vector Machines (SVM)—our consideration is on the same five basic
statistical measures of Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute
Error/Mean Absolute Deviation (MAE/MAD), Mean Absolute Percentage Error (MAPE), and
Coefficient of Determination (R?). These measures are essential indicators of how well the models fit,
are stable, and generalize to unseen data. Lower values in MSE, RMSE, MAE/MAD, and MAPE, and
the greater the R?, the better the prediction accuracy, the stability of the model, and the more they
generalize to unseen data. Of all the models tested, KNN shines with near-perfection in all the
measures of evaluation with MSE, RMSE, MAE/MAD, and MAPE of 0.000 and R2? of 1.000. This
implies perfectly matching predictions of observed values with zero error. Though such kinds of
performances are exceptionally rare in actual practical use and might be suggestive of overfitting,
data leakage, or data with too low complexity, the results as they are set put KNN in the list of best
performers and the top algorithm in this comparison. This is in accordance with the application of
KNN in the environmental disciplines, like Raj and Gopikrishnan (2024), who showed how the
algorithm performs in vegetation dynamics modeling, which emphasizes how the algorithm is
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effective with highly ordered, rich-feature data. The second-best is Boosting, which performs well
with MSE of 0.187, RMSE of 0.222, MAE/MAD of 0.247, MAPE of 0.100, and R? of 0.650. These indicate
that Boosting provides excellent balance of low deviation and decent explanation of variance, making
it well suited for practical use, especially in complicated or more noisy environments. This is in
accordance with time series finance use, like the work by Jenifel, Jasmine, and Umanandhini (2024),
which employed Boosting in forecasting Bitcoin prices with successful results in noisy data. SVM
performs reasonably well based on mean deviation with MAE/MAD of 0.241, better than Boosting
and Random Forest. But it has the worst MAPE of 1.000 and thus greatly loses credibility in matters
of percent-based precision, like that of financial prediction or health prediction. In addition, R? of
0.248 is quite low and represents little power to explain the dependent variable's variance. Such
volatility in SVM is also witnessed in education analytics, where Kumabh et al. (2024) observed such
shortcomings in identifying nonlinear behavior in prediction of students' performance, especially
with the involvement of categorical variables or in the case of badly scaled variables.

Conversely, Regularized Linear Regression and Random Forest have almost identical MSE of
0.293, RMSE of 0.374, MAE/MAD of 0.242, and R? of 0.841. However, both models have big errors in
the form of MAPE (0.750), with poor relative prediction precision. Despite that, their big R?, though
not always linked with low MSE, reveals they are perhaps useful where capturing general trend, not
specific values, is the objective. Such balance between measures based on errors and measures in
explaining the variance has also been shown by Chandra, Vimal, and Rajak (2024) in comparing
relative merits of different machine learning models employed in prediction of the production
processes, where Random Forest was praised on trend matching but is criticized on the basis of
sensitivity to outliers. Decision Tree is no better on the majority of the measures. Its MSE and RMSE
(0.310 and 0.388, respectively) are among the largest, with MAE/MAD (0.361) and R? (0.370) of the
same. Only on the measure of MAPE (0.107) is it decent, with slightly better relative error than
Random Forest and SVM. Such frailties of Decision Tree models have also been shown by
Vijayalakshmi et al. (2023) in prediction of medical insurance prices, where regression models yielded
more stable relative performances in both the measures of absolute and percentage. Little better
results are found in Linear Regression with MSE of 0.230, RMSE of 0.298, MAE/MAD of 0.357, and R?
of 0.510. These are average measures and respectable balance between complexity and
generalizability, though not great in any of the measures. Last, best of all the models (though still
very poor) is the Neural Network with greatest possible MSE, RMSE, and MAE/MAD (all equal to
1.000) and lowest possible R? (0.000), to suggest that it is not able to learn any useful mapping of the
features to the target. Its MAPE of 0.658 only supports this. Such low performance can be due to either
poor optimization of the architecture, insufficient training data, or too deep of a network to be
processed by the dataset. Balila and Shabri (2024) also show the same weakness in property price
prediction, with deep models performing poorly with lesser simple models owing to over fit and data
poor generalization.

Upon comparison of all models based on holistic interpretation of metrics, KNN is by far the
best performer. It not only minimizes both types of errors and explains 100% of target data's variance.
Yet, such flawless performance is suspicious on grounds of both overfitting and generalizability,
especially if the model has memorized data instead of learning patterns. To confirm KNN'’s
performance thus, it would be crucial to validate it on hold-out test set or by cross-validation before
it is implemented into production. Hypothetically, under the assumption of results' stability between
different data partitions, KNN would be best to implement due to rock-bottom accuracy and zero-
error metrics. Boosting is a strong second best in case both the robustness of the model and
generalizability are more essential and with perfect prediction not. Then follow Regularized Linear
Regression and Random Forest, which are similar (especially in explaining variance), though with
relative errors that are greater. SVM’s rare combo of low MAE and high MAPE is less dependable in
practical use where proportional errors are paramount. In this specific setting, Neural Networks
should be avoided or heavily re-optimized to further improve learning. This is in support of research
by Elnaeem Balila and Shabri (2024), warning of application of highly intricate models such as deep
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learning where simple programs are both accurate and reliable —as was the case with the prediction
of property price in Dubai via traditional application of machinel learning techniques. In practical
use in the world outside, not only numerical performance but also computational cost, scalability,
interpretability, and sensitivity to noise need to be considered. KNN, as instance, is unlikely to be
able to work with large data due to lazy learning and sensitivity to feature scaling. Boosting and
Random Forest are scalable and robust but more computationally expensive. Linear models provide
interpretability, very crucial in regulated fields such as medicine and finance though with marginally
less favorable prediction capability. For instance, Zeleke et al. (2023) used Gradient Boosting to
predict prolonged hospital stays and demonstrated how their strength and explanation of variance
made it well suited to more complex, high-risk domains where interpretability was also of concern.
Similarly, Kaliappan et al. (2021) observe that public health use case performance evaluations—like
prediction of reproduction rate of COVID-19—must be more concerned with generalizability than
optimality of errors and thereby confirm Boosting's second best in such use. In this use, optimal
algorithm selection heavily depends on goals and limitations of the use case. On purely performance
metrics here, however, KNN is plainly best performing, outperforming all else in all tested categories.
Boosting is second best, giving a fast and stable mix of low errors and interpretability. Random Forest
and Regularized Linear Regression both claim third place, excelling in explanation of variance but
falling in relative precision. SVM and Decision Tree both perform in the middle ranks, with Linear
Regression performing decently enough but not notably so. The Neural Network model, based on
currently available performances, is best not implemented without extreme modification. The above
observations are of utility as decision bases in optimal selection of models, hyper parameter
optimization, and tuning of models in future endeavors in predictive modelling. The level of mean
dropout loss is presented in the following Table 4.

Table 4. Mean dropout loss.

Variables Mean dropout loss
DCPS 12.451
GDPC 9.269
HEAL 9.269
GCFG 8.077
INFD 6.682
EXGS 6.239
TRAD 6.106

Note. Mean dropout loss defined as root mean squared error (RMSE) is based on 50 permutations.

Application of K-Nearest Neighbors (KNN) models to the adoption of artificial intelligence (AI)
by large European Union companies—defined as the proportion of companies with more than 250
employees that are utilizing at least one AI technology —provides insights into the relative
significance of various macroeconomic indicators in prediction. Analysis is based on a matrix of
variables such as health expenditure (HEAL), domestic credit to the private sector (DCPS), exports
(EXGS), GDP per capita (GDPC), gross fixed capital formation (GFCF), inflation (INFD), and trade
openness (TRAD), which are indicators of structural and financial features of EU countries'
economies. The mean dropout loss is the main measure of the importance of variables, defined as the
root mean squared error (RMSE) on 50 permutations. This is the measure of how much prediction
effectiveness is lost by excluding any particular variable from the model, thereby providing data-
driven insight into how each of the features contributes to estimating Al adoption. Of the variables
under investigation, domestic credit to the private sector (DCPS) is found to be the most important
with the largest mean dropout loss of 12.451, implying that excluding this variable results in the best
reduction in the performance of the model. This points to access to finance contributing to Al-related
investments and innovation capabilities in large enterprises. It is also possible that it points to the
significance of liquid financial systems that support risk taking and technologically intensive
financial investments. Kotrachai et al. (2023) confirm this interpretation in their analysis of models of
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detecting credit card fraud, where explanation techniques highlighted financial features as key to
algorithmic functionality, and the significance of internal financial circumstances in the prediction.
By contrast, factors like trade openness (TRAD) and exports of goods and services (EXGS) have low
dropout losses of 6.106 and 6.239 respectively, to imply that although still useful, removal results in
a less significant reduction in model prediction. This can be interpreted to mean that external
economic activity, though significant, is not as key to understanding the adoption of Al as are internal
finance and development structures. The relative importance of these internal drivers is also reflected
in the health sector, wherein Sehgal et al. (2024) illustrate that internal clinical factors are considerably
more predictive of early Al-based systems of diabetes prediction than external behavioral inputs.

Furthermore, KNN's effectiveness in identifying patterns of adoption of a structured nature is
mirrored in the work of Chaurasia et al. (2022), who employed analogous modeling approaches to
understand the uptake of mobile technology among dementia patients—how proximity-based
models are well-positioned to identify complex yet consistent patterns of adoption among socio-
economic segments. Notably, both health spending (HEAL) and economic prosperity (GDP per
capita, or GDPC) have the same dropout loss of 9.269 and are in the middle range of importance. This
coincidence implies both economic well-being and investment in health (proxying institutional and
human capital capabilities) both play equally in the formation of the economic environments in which
adoption of Al is possible. These results are reflected in the argument of Siddik et al. (2025) that
institutional preparedness—measured in the form of health and education infrastructure —is a key
enabler of technology-facilitated sustainable growth, including in the tourism and more macro
economic cycles. Gross fixed capital formation (GFCF) maintains some lesser loss of 8.077, implying
that investment in infrastructure and fixed capital is important but perhaps not as crucial as credit
access and investment in health and education. Inflation (INFD) lies in between with a dropout loss
of 6.682, perhaps mirroring its contributory but by no means small role in mediating economic
environments either favorable to or restrictive of innovation. Moderate inflation might be seen as
measuring economic dynamism, whereas excessive and idiosyncratic inflation can be deterring to
investment in long-term Al projects. Gonzalez (2025) corroborates the inflation-Al link, observing in
his work that the application of machine learning to inflation forecasting more and more emphasizes
the intricate dynamics between macro volatility and technological investment judgments. In turn,
KNN algorithm-based analysis appears to demonstrate that although all of these variables play
meaningful roles in estimating the adoption of Al, there is clearly some gradient of importance.
Financial health, more so access to credit, are the strongest predictors in the KNN model, followed
by national wealth and institutional capacity indicators. While the latter are still of importance, they
seem to have less of an explanation in this machine learning economic mode. These results
underscore the complexity of Al adoption and imply that internal finance systems and public
investment frameworks are more likely to be of immediate influence than external economic
exposure. This observation can guide targeted policy intervention to encourage the diffusion of Al
by giving preference to local credit systems, enhancing institutional preparedness, and harmonizing
macroeconomic policy with digital innovation.

The predictive values of the model are indicated in table 5

Table 5. Additive Explanations for Predictions of Test Set Cases.

Case Predicted Base HEAL DCPS EXGS GDPC GCFG INFD TRAD
1 28.210 26.351 2.395 4.957 -3.652 4913 0.699 -6.413 -1.041
2 33.490 26.351 2.969 -0.020 0.912 3.040 1.839 -1.807 0.206
3 15.690 26.351 0.334 -8.334 0.658 -5.020 0.605 -0.085 1.182
4 23.030 26.351 1.153 -5.391 -0.204 -8.331 -2.654 2.877 9.229
5 66.220 26.351 -4.690 15.768 1.517 18.006 2.582 1.513 5.173

Note. Displayed values represent feature contributions to the predicted value without features

(column 'Base') for the test set.
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The additive explanations from the application of the K-Nearest Neighbors (KNN) algorithm to
the prediction of ALOAI—the share of large European Union companies making use of one or more
of the three selected Al technologies—are of use in understanding macroeconomic drivers of Al
adoption in five different test cases. Based on data from Eurostat, the baseline prediction (titled
"Base") by the model is supplemented by measuring the additive effectiveness of seven macro
variables in isolation: current health spending (HEAL), domestic private sector credit (DCPS), exports
of goods and services (EXGS), economic output per capita (GDPC), gross fixed capital formation
(GFCF), inflation (INFD), and trade (TRAD). In Case 1, the final prediction of 28.210 represents
modest improvement from the baseline of 26.351, courtesy of mostly positive marginal effects from
GFCF (+4.913) and HEAL (+2.395), implying that investment and government spending on health
facilitate Al takeoff. This is, in turn, nearly reversed by large negative marginal effects from DCPS (-
6.413) and TRAD (-1.041), meaning poor access to finance and low integration in external markets
cut down on the prospects of Al diffusion, despite other encouraging circumstances. These are in
accordance with findings by Okoye (2023), who demonstrates how underinvestment in institutional
infrastructure such as education critically degrades the explicative power of machine learning models
in the presence of systemic financing restrictions. The more stable economic profile in Case 2 results
in a final prediction of 33.490, where the increase is driven by HEAL (+2.969), GFCF (+3.040), and
INFD (+1.839), and other variables have little marginal effect. The single negative marginal
contribution of note is from DCPS (-1.807), implying some financial constraint but otherwise robust
economic fundamentals supporting the uptake of Al The inflation effects observed are also in
accordance with results from Maccarrone, Morelli, and Spadaccini (2021), who highlighted that
macro volatility —where moderate and reliable—is supportive of innovation since it sends the
message of a dynamic and growth-oriented setting. Case 3 possesses very poor macro fundamentals
and is characterized by large drops from the baseline, with a forecast of ALOAI equal to 15.690. This
is characterized by large negative marginal effects from DCPS (-8.334) and GFCF (-5.020), which
imply low financial flexibility and underdevelopment of assets. These patterns substantiate the
sensitivity of KNN prediction models to internal economic structure and capital restrictions, as seen
in Wang et al. (2024), wherein enhanced KNN models in stock prediction highlighted the pivotal role
of economic input variables on model variance stability and accuracy (Figure 1).
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Figure 1. K-Nearest Neighbors (KNN) Regression Performance: Predicted vs. Observed Values and Error by
Number of Neighbors.

While minor positive effects are triggered by EXGS (+0.658), HEAL (+0.334), and TRAD (+1.182),
these are insufficient to balance the overall downward pressures, such that this economy is not in
favorable position to be undergoing technological transformation. Case 4 is more nuanced: although
its final estimate of 23.030 is slightly below the base, under the influence of downward pulls of HEAL
(-2.654), GFCF (-8.331), DCPS (-5.391), and GDPC (-0.204), the large positive influence of TRAD
(+9.229) and INFD (+2.877) provides partial alleviation. This suggests an economy with poor home
investment but superior international integration, with international trading dynamics providing
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partial alleviation from internal weaknesses—isolated in the profile of potential emerging market
with selective digital development. These tendencies are in line with those of Alayo, Iturralde, and
Maseda (2022), who found that internationalization in weak structural contexts can improve
innovation performance, especially where organizational form is flexible. Case 5 is a self-evident
exception, with the highly boosted ALOAI prediction of 66.220 being a large, better-than-base
departure. This is supported by very strong support from all of GFCF (+18.006), DCPS (+15.768),
GDPC (+2.582), EXGS (+1.517), TRAD (+5.173), and INFD (+1.513), except from HEAL (—4.690), such
that in this case, perhaps government spending priorities are unbalanced. In any event, it is well and
truly outgunned by the pro-innovation influences of the other variables. In each case, some
consistencies are evident: both GFCF and DCPS are always the largest in magnitude variables, with
very elevated levels of investment having greatest impact on disclosed use of Al, and negative levels
of credit having greatest depressing influence. TRAD always contributes constructively inasmuch as
it is strong, such that international integration is clearly an important facilitatory factor of Al
diffusion. INFD, although traditionally viewed as risk factor, is found to be used here as euphemism
of managed economic expansion in support of investing in Al under certain assumptions. This is
consistent with new work by Benigno et al. (2023) and Stokman (2023), in which it is illustrated that
inflation—is it certain and anchored —can be used as evidence of favorable investment environments
and not economic chaos. Accordingly, Erdogan et al. (2020) verify the complexity of inflation
dynamics in crisis periods (like COVID-19), with warnings to broad assumptions of all inflation
harming innovation. GDP per capita has weak and mixed effects, such that aggregated wealth is not
in itself highly determinant of technological adoption by enterprises. In similar veins, health
expenditures are found to have mixed effects, beneficial in some settings and negative in others, and
perhaps depending on whether such spending complements or crowds out innovation funding. In
conclusion, these additive explanations reveal that the adoption of Al is driven less by overall
economic prosperity and more by the structural investment makeup, degree of exposure to
international trade, and access to finance. Countries wishing to expand enterprise-level adoption of
Al need to therefore prioritize policies increasing productive capital formation, securing strategic
access to credit, and further integration into world markets. These results also highlight the
usefulness of interpretable machine learning techniques in policy design, in which knowing the
specific impact of individual variables can facilitate more optimal intervention design than black-box
prediction. Overall, the KNN-based additive explanation model uncovers the subtle and setting-
specific interaction between macroeconomic circumstance and dispersion of Al, and offers evidence
from data to support ongoing progress towards digital transformation in Europe.

6. Evaluating Clustering Algorithms for AI Adoption Analysis in the EU: A
Multimetric Approach

To assess relative performance of various clustering techniques in capturing large European
Union firm artificial intelligence (Al) adoption patterns, standardized evaluation measures were
employed to assess six different algorithms, including Density-Based, Fuzzy C-Means, Hierarchical,
Model-Based, Neighborhood-Based, and Random Forest clustering. These measures —ranging from
explanatory power (R?) to statistical efficiency (AIC, BIC), from measures of geometric cohesion
(Silhouette Score, Dunn Index) to cluster structure (Entropy, Maximum Diameter, Calinski-Harabasz
Index)—allow the relative merits and demerits of each algorithm to be assessed in detail. The aim of
this is to identify the algorithm that best achieves balance between model fit, interpretability, and the
geometric integrity of the resulting clusters and thereby offers the best of all possible instruments to
analyze Al diffusion along macroeconomic patterns (Table 6).

Table 6. Comparative Evaluation of Clustering and Classification Algorithms Across Multiple Performance

Metrics.

Density- Random

Metric Fuzzy C-Means Hierarchical =~ Model-Based Neighborhood-Based
Based Forest
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R? 0.000 0.147 0.689 0.507 1.000 0.615
AIC 1.000 0.767 0.000 0.368 0.000 0.288
BIC 1.000 1.157 0.000 0.925 0.000 0.395
Silhouette 1.000 0.000 0.692 0.115 0.346 0.115
Max Diameter 0.000 1.000 0.517 0.000 0.000 0.001
Min Separation 1.000 0.000 0.334 0.218 0.192 0.222
Pearson's y 1.000 0.347 0.724 0.492 0.574 0.317
Dunn Index 1.000 0.000 0.862 0.231 0.692 0.269
Entropy 0.000 1.000 0.730 0.001 0.000 0.002
Calinski-Harabasz 0.000 0.675 1.000 0.015 0.065 0.028

Comparison of six clustering techniques—Density-Based Clustering, Fuzzy C-Means
Clustering, Hierarchical Clustering, Model-Based Clustering, Neighborhood-Based Clustering, and
Random Forest Clustering—has different performance profiles on various standardized evaluation
measures. These measures are R?2, AIC, BIC, Silhouette Score, Maximum Diameter, Minimum
Separation, Pearson’s Gamma, Dunn Index, Entropy, and the Calinski-Harabasz Index, all
standardized to between 0 and 1 to enable direct comparison. The objective of the analysis here is to
identify the algorithm with the best balance between statistical quality and geometrical clustering
quality. Beginning with R?, which is the ratio of the amount of the variance in the data that is
explained by the clustering model, to the total amount of variance in the data, we have the best
possible score by Neighborhood-Based Clustering, reflecting excellent explanation of data.
Hierarchical Clustering is next with the best possible score, followed by moderate scores from
Random Forest Clustering. Lower in the ranks are Model-Based and Fuzzy C-Means, and lowest in
the ranks is Density-Based Clustering, implying failure to explain the data’s variance structure. These
are in line with the observations by Sarmas, Fragkiadaki, and Marinakis (2024), who highlighted the
superiority of ensemble and neighborhood-aware clustering to capturing subtle consumer behavior
to be used in demand response in transport systems. With regards to criteria in selecting models such
as the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC), measuring
both the goodness of fit and the complexity of models, Hierarchical Clustering and Neighborhood-
Based Clustering get the best possible scores, implying optimal performance. In turn, Density-Based
Clustering and Fuzzy C-Means get the worst possible scores, implying low efficiency of the models
and possible overfit or lack of parsimony. When comparing the Silhouette Score, which is how similar
an object is to its own cluster in contrast to other clusters, we have the best possible score by Density-
Based Clustering, implying forming well-separated and well-defined clusters. Hierarchical
Clustering is next best, followed by moderate cohesion by Neighborhood-Based Clustering. Fuzzy
C-Means, Model-Based, and Random Forest get poor scores in this dimension, meaning that their
cluster boundaries are not well defined. These findings are in line with general trends found in
comparative clustering research such as that of Thamrin and Wijayanto (2021), who illustrated
different kinds of performance trade-off between soft and hard clustering models based on the data
structure and population homogeneity.

Looking in particular at Maximum Diameter, which measures the greatest intra-cluster distance
and ideally would be minimized, Model-Based Clusters, Density-Based Clusters, and Neighborhood-
Based Clusters exhibit the tightest clusters with the lowest diameters. Conversely, Fuzzy C-Means
measures the largest value, reflecting large and perhaps poor clusters. This trend is in line with the
application of clustering observed in Elkahlout and Elkahlout (2024), wherein spatial clustering of
groundwater wells necessitated diligent consideration of intra-cluster variability to obtain
meaningful geographic boundaries. Hierarchical Clusters and Random Forest Clusters are in the
middle of the spectrum. Minimum Separation, which is the measure of the minimum distance
between cluster centers and optimally would be large, positions Density-Based Clusters on top, with
excellent cluster separation. Hierarchical Clusters perform in the middle, and while Neighborhood-
Based Clusters scores low, this is perhaps suggestive of overlapping or close clusters. Fuzzy C-Means
ranks lowest, further evidence of the former's poor intra- and extra-class definability. Pearson’s
Gamma, reflecting data distance correlations with cluster assignments, places Density-Based Clusters
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in top position, with Hierarchical Clusters and Neighborhood-Based Clusters performing reasonably
well. Random Forest and Fuzzy C-Means are lowest on this list, and imply poor spatial
correspondence. Dunn Index, which integrates both the cluster compactness and separation and
serves as a strong measure of overall cluster quality, yet again positions Density-Based Clusters on
top, with Hierarchical Clusters and Neighborhood-Based Clusters immediately in second and third
positions. This measure is in keeping with observations from Silhouette, Separation, and Pearson’s
Gamma. Fuzzy C-Means and Model-Based Clusters lag behind, reflecting poor intra-class
compactness and inter-class distinctness. This is consistent with observations by Da Silva, Melton,
and Wunsch (2020), who highlighted the importance of dynamic and incremental measures of
validity to rank hard partitioning techniques, particularly where clusters undergo changes or update
in the online setting. Entropy, reflecting here the degree of disorder or randomness in cluster
assignments and optimally would be low, further penalizes Fuzzy C-Means, which measures the
greatest value, and suggests overlapping and noisy clusters. In contrast, Density-Based Clusters,
Neighborhood-Based Clusters, and Model-Based Clusters obtain the lowest entropies and more
ordered cluster assignments. These findings confirm the warning uttered by Gagolewski, Bartoszuk,
and Cena (2021) that cluster validity indexes can differ in significant ways between and among
different algorithms and are best interpreted in their specific contexts and not comparatively in
isolation. Lastly, the Calinski-Harabasz Index, the variance ratio measure that penalizes low between-
cluster and within-cluster dispersion, ranks Hierarchical Clustering in first position, and Fuzzy C-
Means next. This is partially at odds with the rest of the measures but suggests that Hierarchical
Clustering works exceptionally well if viewed from a variance-based dimension. On this measure,
the lowest rank is occupied by Density-Based Clustering and it is possible to speculate that although
spatially well-defined, such clusters will not meet traditional expectations of statistical variance—a
difference expressing the model-agnostic findings highlighted by Sarmas, Fragkiadaki, and
Marinakis (2024) in their research on explainable ensemble clustering on the modeling of complex
systems.

Together, the results demonstrate that no algorithm excels the rest on all measures but that
different patterns are clear. Density-Based Clustering behaves well in clustering quality in terms of
geometry with leading scores in measures of structure, separation, and coherence such as Silhouette
Score, Dunn Index, Pearson’s Gamma, and Minimum Separation. These findings are in line with
those of Auliani, Novita, and Afdal (2024), who demonstrated the superiority of the former in
creating well-separate clusters in car sales data, especially in the data with noise. But the weak
behavior of Density-Based Clustering in statistical measures such as R?, AIC, BIC, and Calinski-
Harabasz Index identifies it as lacking in explanation and statistical efficiency in pursuit of robust
model-based inference. Hierarchical Clustering, on the other hand, has top-performing overall
behavior with top ratings in R2 and Calinski-Harabasz coupled with decent performance in structural
measures such as Dunn Index and Pearson’s Gamma. This is in line with findings by Azkeskin and
Aladag (2025), who viewed hierarchical clustering to be effective in identifying regional energy
patterns with statistical cohesiveness. Hierarchical Clustering is thus found to be a balanced
algorithm with the potential to produce statistically sound and geometrical meaningful clusters.
Neighborhood-Based Clustering has the best statistical profile with leading results in R?, AIC, and
BIC and decent results in diameter, entropy, and compactness. It does not have the lead in measures
of geometrical separation, but is strong enough on all sides to be a serious runner. The balanced
statistical foundation and decent structure of the models provide it with the potential to bridge the
gap between interpretability and performance. Random Forest Clustering is found in the middle
ground with decent behavior in all sides except in excelling in any specific area. Similarly, Model-
Based Clustering has mixed results with some decent statistical behavior but poor geometrical cluster
properties—a trend observed by Ambarsari et al. (2023) in comparing fuzzy versus probabilistic
clustering methods in population welfare segmentation. Fuzzy C-Means Clustering, on the other
hand, performs mixed results on nearly all measures, especially in terms of cohesion, separation,
entropy, and statistical fit. This is consistent with findings by Sarmas, Fragkiadaki, and Marinakis
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(2024), who demonstrated fuzzy clustering methods to be lacking in situations where clear
delineation and strong interpretability is needed. Considering all of these findings collectively as a
whole, Neighborhood-Based Clustering is the best performer overall. Its balance of strong statistical
fit, computational efficiency, simple cluster shape, and moderate but sufficient structural
preservation makes it the best overall and most consistent algorithm to use to cluster in this context.
While Density-Based Clustering generates well-separate and spatially coherent clusters, the lack of
statistical stability decreases the utility of this algorithm in contexts that require both interpretability
and inferability. Hierarchical Clustering is still another strong option, particularly under the
application of the use of variance-based measures or hybrid approaches. Ultimately, whichever
algorithm to employ would best be dictated by the specific aims of the analysis—whether statistical
explanation, geometric simplicity, and/or implementation ease is of utmost importance. But with the
application of the normalization measures here, Neighborhood-Based Clustering provides the best
overall and strongest balance of performance in all of the measures of evaluation (Table 7).

Table 7. Cluster Characteristics and Centroid Profiles.

Cluster 1 2 3 4 5 6 7

Size 2 25 35 6 58 24 1
Explained proportion within-cluster heterogeneity  0.010 0.187 0.182 0.003 0.384 0.234 0.000
Within sum of squares 3.089 60.513  58.997 0.926 124.420  75.809 0.000
Silhouette score 0.584 0.265 0.334 0.894 0.346 0.164 0.000
Center ALOAI 0.018 1.407 0.018 0.693 -0.837 0.379 -0.527
Center HEAL -0.897 0.762 0.797 -1.533 -0.739 0.390 -2.450
Center DCPS -1.156 1.512 0.415 0.849 -0.826 -0.277  -0.576
Center EXGS 1.653 -0453  -0.741 3.619 -0.131 0.857 -0.747
Center GDPC 1.809 0.907 -0.095 2.933 -0.821 0.326 -0.814
Center GCFG 5.168 0.365 -0.588 -1.215 0.157 -0.130 2.406
Center INFD -0.504 -0.080  -0.320 -0.191 0.167 -0.191 10.237
Center TRAD 1.693 -0.512  -0.776 3.579 -0.074 0.837 -0.714

Note. The Between Sum of Squares of the 7 cluster model is 876.25. Note. The Total Sum of Squares
of the 7 cluster model is 1200.

Clustering outcomes here, based on macroeconomic indicators, attempt to provide explanations
of patterns of adoption of artificial intelligence (AI) technologies —reflected in ALOAI—among large
EU companies in different industrial and country contexts. Such explanation is based on
standardized macroeconomic indicators such as current health expenditures (HEAL), domestic credit
to the non-financial sector (DCPS), exports (EXGS), GDP per capita (GDPC), gross fixed capital
formation (GFCF), inflation (INFD), and trade openness (TRAD). Derived clusters of seven are quite
dissimilar in size, within-cluster homogeneity/similarity, and silhouette score, reflecting great
heterogeneity in how macroeconomic environments are related to adoption of Al among European
countries. Cluster 5 is the largest (n = 58), and with moderate within-cluster heterogeneity proportion
(0.384), reasonably large within-cluster sum of squares (124.42), and moderate silhouette (0.346).
Rather strikingly, it has negative ALOAI center of —0.837, reflecting below-average use of Al despite
containing the largest number of countries. Its economic profile of uniformly negative or near-zero
on salient variables such as GDP per capita (-0.821), domestic credit (-0.826), and trade openness (-
0.074) reflects countries that are perhaps economically constrained, locked into traditional systems,
or less integrated with the world, and lag behind on spread of Al This is consistent with Popovic,
Todorovi¢, and Miliji¢ (2024), who illustrate how adoption of Al is positively linked with circular use
of material and innovation-driven economies—factors which Cluster 5 countries could be lacking.
Furthermore, Brey and van der Marel (2024) suggest the strategic role of human capital in enabling
the integration of Al, and that Cluster 5 underperformance can also be traced to educational
infrastructure and digital preparedness deficits. On the opposite side, Cluster 2, among better-
defined clusters (n = 25, var. exp. 0.187), is characterized by very-high ALOAI center of 1.407,
reflecting above-average enterprise level use of Al Its macroeconomic profile of strong GDP per
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capita, moderate management of inflation, and healthy and favorable levels of both domestic and

external credit and trade reflect dynamic economies. Such countries are also bound to be privileged

with more developed financial and strategic digital systems and more exposure to international

markets and innovation systems. Czeczeli et al. (2024) note that such countries

are more likely to be

resistant to inflation and policy flexible—two properties that foster economic stability and support

investment in AI (Figure 2).
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Figure 2. Pairwise Scatterplot Matrix of Standardized Macroeconomic Variables by Cluster.

Their economic profile is comprised of favorable values on nearly all of the indicators, with

special characteristics including strong home credit (1.512), moderate exports (-0.453), and

respectable GDP per capita (0.907). Such a cluster is expected to be comprised of developed, mid-

sized EU economics with stable access to capital and balanced external trade profiles that support

moderate to high Al adoption. Such findings are supported by Bosna et al. (2024), who used

clustering and ANFIS analysis to reveal macroeconomic balance to be the primary determinant of

supporting growth and innovation following eurozone membership. Cluster 6 is small (n=24) but

shares comparable structural characteristics with Cluster 2 with the exception of low ALOAI centre

(0.379), meaning that, although macroeconomic fundamentals are reasonably favorable such as
health spending (0.39), trade openness (0.837), and exports (0.857), other variables such as labor
market rigidity, policy gaps, or low industrial digital maturity are likely to curb AI diffusion. These

structural barriers are likely to be symptomatic of institutional preparedness challenges as discovered

in the regression EU inflation study of Czeczeli et al. (2024), where clustering untangled different
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preparedness profiles to economic shocks. Cluster 3 is the largest low-ALOA cluster with large
silhouette score (n =35, silhouette = 0.334, ALOAI = 0.018). It has marginally positive health and credit
indicators but negative exports (-0.741), trade openness (-0.776), and GDP per capita (-0.095),
signifying internal economic development with minimal external market integration. Such findings
are in consonance with observations by Arora et al. (2024), who showed by correlation and clustering
that macroeconomic groupings of variables tend to divide along lines of internal vs. external
orientation with implications on preparedness to innovate. Cluster 4 is small (n = 6) but is different
in having high silhouette score (0.894) and above-mean ALOAI (0.693). It is marked by exceptionally
strong exports (3.619), trade openness (3.579), and very high GDP per capita (2.933) but poor health
spending (-1.533) and GFCF (-1.215). This is indicative of a group of high-income, export-dependent
economies where dynamism of the private sector is capable of compensating poor public investment
and infrastructure in health. Such configurations are representative of those influenced by industrial
competitiveness rather than by institutional support, and also by Merkulova and Nikolaeva (2022)
within their cluster membership of EU taxes indicators and fiscal capacity. Cluster 1, small in number
(n = 2), has highly elevated measures of GDP per capita (1.809), trade (1.693), exports (1.653), and
GEFCF (5.168), but with very low health spending (—0.897) and domestic credit (-1.156). ALOAI is flat
(0.018), inferring under-adoption of Al due to underdeveloped policy ecosystems or mismatch
between financial and innovation systems. Nenov et al. (2023) see similar mismatch in their neural
model predictions, noting how successful economies have low innovation outcomes if institutional
or behavioral factors are not appropriately in balance with structural capabilities. Cluster 7 includes
the extreme dataset in isolation, with highly elevated inflation (10.237) and negative scores in credit,
GDP per capita, and trade. Its negative ALOAI (-0.527) is evidence of systemic economic volatility
and infers best to be interpreted as representing simply an extreme (outlier) or abnormal
macroeconomic regime not reflecting wider tendencies. Such extremes are in support of the
application of unsupervised clustering analysis to reveal macroeconomic outliers, as previously
demonstrated in multidimensional cluster research such as Bosna et al. (2024) and Czeczeli et al.

(2024).
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Figure 3. Cluster Membership Visualization in Two-Dimensional Projection with Case Labels.

Conversely, the least adopter clusters (Clusters 5 and 3) are characterized by poor access to
finance, low productivity, and low international integration. This is in line with the cross-EU country
analysis by Popovi¢ et al., which revealed how extremely sensitive Al adoption is to material use
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strategies and economic environment, especially in environments with restricted access to material
inputs. The evidence supports the suggestion that economic sophistication, access to finance, and
external orientation (through exports and international trade) are positively associated with Al
adoption in large enterprises. There are exceptions, though —like Cluster 1's very macro indicators
with low adoption and Cluster 4's external orientation and high GDP with low public spending —
highlighting that economic factors are not sufficient to secure innovation adoption. Rather, as
emphasized by Uren & Edwards (2023), organizational maturity and technology readiness mediate
the role. Preparedness of the institution, sector patterns, and the prevailing digital cultural
environment mediate crucially whether economic slack is turned into technological adoption. Such
influences are evidenced in the work by Kochkina et al. (2024), who found that industry-specific
strategic fit, enhanced by sector-matched application of Al and preparedness assessments, plays an
influent role in shaping successful integration of Al—even within technologically developed
environments. The silhouette scores also verify the heterogeneity of these clusters. Cluster 4, with a
score of 0.894, is the internally best-coherent cluster and is marked by stable and replicable profile
features—i.e., distinct macro indicators and adoption of Al Cluster 2 and Cluster 6, on the other
hand, although prospective in economic orientation, have poor silhouette scores, exemplifying more
internal heterogeneity and perhaps more intricate dynamics. Cluster 5 and Cluster 3, although with
the number of entities, are low-adopting domains and require targeted intervention in policy. Such
clusters are likely to enjoy the greatest benefits from strategic intervention in the form of targeted
investment in infrastructure; digital skills and education programs; and international
competitiveness-enhancing programs. In essence, such cluster analysis reveals that large EU firm
adoption of Al is positively associated with access to financing, external orientation, and GDP per
capita, though they are not determinant factors. Institutional power, technological readiness, and
strategic fit—through and especially public-private investment systems—are essential to the
macroeconomic levers' translation into successful digital transformation.

Table 8. Cluster Centroids for Standardized Macroeconomic Variables.

ALOAI HEAL DCPS EXGS GDPC GCFG INFD TRAD
Cluster 1 0.018 -1.156 1.653 5.168 1.809 -0.897 -0.504 1.693
Cluster 2 1.407 1.512 -0.453 0.365 0.907 0.762 -0.080 -0.512
Cluster 3 0.018 0.415 -0.741 -0.588 -0.095 0.797 -0.320 -0.776
Cluster 4 0.693 0.849 3.619 -1.215 2.933 -1.533 -0.191 3.579
Cluster 5 -0.837 -0.826 -0.131 0.157 -0.821 -0.739 0.167 -0.074
Cluster 6 0.379 -0.277 0.857 -0.130 0.326 0.390 -0.191 0.837
Cluster 7 -0.527 -0.576 -0.747 2.406 -0.814 -2.450 10.237 -0.714

The data analysis of the result of the implementation of the K-Nearest Neighbors (KNN)
clustering algorithm on the set of macroeconomic and financial variables provides insightful
observations regarding the patterns of artificial intelligence (AI) adoption—through the ALOAI
indicator —among large enterprises (250+ staff) with European Union economies. Not accounting for
agriculture, mining, and finance, the ALOAI indicator records the proportion of enterprises utilizing
any of the Al technologies such as machine learning or recognition of images. The standard variables
on which the clustering is performed are current health spending (HEAL), domestic credit to the non-
financial sector (DCPS), exports of goods and services (EXGS), Gross Domestic Product (GDP) per
capita (GDPC), gross fixed capital formation (GFCF), inflation (INFD), and trade openness (TRAD).
The seven cluster centroids represent the average standardized figures of each of the variables from
the member countries. Cluster 2 is characterized by the greatest ALOAI indicator (1.407), which
validates strong adoption of Al by its constituents. This cluster records high-availability credit (DCPS
= 1.512), significant health spending (HEAL = 1.512), robust GDP per capita (GDPC = 0.907), and
robust investment in capital formation (GFCF = 0.762). Despite slightly low values in exports and
trade, the economies’ internal resilience regarding infrastructure, investment, and access to finance
seems to be adequate to facilitate digital transformation. The observed patterns are consistent with
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Iuga & Socol (2024), who emphasize how readiness in the use of artificial intelligence and preventing
brain drain are inextricably connected with institutional investment and availability of finance. That
such uptake is observed in the cluster suggests collaboration of macroeconomic stability, investment
in the provision of social services, and financial capability to produce technological innovation,
regardless of whether they have macroeconomic orientation towards international trade. This
supports arguments in Czeczeli et al. (2024), who observe that economic resilience and
preparedness—especially in situations of macroeconomic volatility —are intricately ingrained in the
fiscal and lending architecture of a nation. Cluster 4 also features the ALOAI indicator with a high
score (0.693), although with differences in the economic profile. It features the highest levels of
exports (EXGS = 3.619) and trade openness (TRAD = 3.579), as well as the highest level of GDP per
capita (GDPC =2.933). On the contrary, it features low health spending (HEAL =-1.533) and negative
capital formation (GFCF = -1.215), reflecting low investment in public infrastructure or long-term
assets. This reflects that economic models are based on private-sector dynamism, high
competitiveness, and international integration. As the analysis by Papagiannis et al. (2021) of
intelligent infrastructure and public-private preparedness in Eastern Europe reveals, robust adoption
of Al is even possible in market-exposure and innovation-pressure-driven systems lacking public
investment. Cluster 6 features an ALOAI of moderate magnitude (0.379) and is a mixed-transitional
group. It features mixed signs, with positive values of credit availability (DCPS = 0.857), modest
health spending (HEAL = -0.277), and robust trade openness (TRAD = 0.837), but other factors are
near- or slightly below-average. The profile identifies emerging and converging economies that have
the macroeconomic fundamentals of digital transformation but have not yet translated them into
elevated levels of Al adoption. As Iuga & Socol (2024) highlight, such economies tend to require
stronger institutional infrastructure, targeted policy instruments, and brain drainage countermasures
to leverage their Al preparedness more effectively. Additionally, workforce competences and
support structures of innovation may not yet be fully compatible with the demands of digital
transformation. Cluster 3, with very low ALOAI (0.018), is characterized by the economic profile of
structural weakness. While it features modest health and credit indicators, it features clearly negative
values of exports (—0.741), trade (—0.776), and GDP per capita (—0.095). This reflects underdeveloped
and weakly integrated economies into international markets, with low external exposure and low
national income levels that heavily hamper technological diffusion. These findings are corroborated
by Guarascio et al. (2025), who illustrate that regional heterogeneity in exposure to Al and
employment is disproportionately driven by macroeconomic underdevelopment and sectoral
inflexibility. Even with some government investment in health and/or credit, structural weaknesses
prevent firms from rolling out cutting-edge technologies on large scale. Cluster 5 has the lowest
ALOAI score (-0.837), and it is characterized by very weak digital transformation. The economic
indicators are unambiguously negative or low on average, such as GDP per capita (-0.821),
availability of credits (-0.131), low health spending (-0.826), and low capital formation (-0.739). These
economies are presumably faced with several systemic barriers—economic, institutional, and
infrastructure—that severely impinge on the capabilities of businesses to access digital instruments
and invest in Al technologies. As demonstrated by Radenovic et al. (2024) from their cluster analysis
of eco-innovation, such underdevelopment is typically an indicator of overall policy inertness and
poor coordination of innovation ecosystems. In the absence of targeted fiscal measures, support to
private sector digitalization, and inclusion into EU innovation policies, these economies are unlikely
to escape low adoption equilibria.
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Figure 4. Cluster-Wise Standardized Means of Macroeconomic Variables with Error Bars.

Cluster 1 is an intriguing and educational example in which a low ALOAI (0.018) is found with
exceptionally favorable macroeconomic indicators. It is the best performer in GDP per capita (1.809),
exports (1.653), and trade integration (1.693), and in gross fixed capital formation (GFCF = 5.168),
reflecting a structural wealth and integration profile. But it also manifests stark weaknesses in health
spending (HEAL = -0.897) and access to credit (DCPS = -1.156). Such dualities imply that
macroeconomic prosperity is not in itself enough to provide successful Al adoption. As Uren &
Edwards (2023) contend, organisational preparedness in the form of digital competency, strategic
alignment, and institutional flexibility is paramount in converting advantageous macro settings into
innovation results. Likewise, Baumgartner et al. (2024) note the requirement of essential digital
capabilities and transformation competencies on the firm level, which in turn might be scarce even
in ostensibly prosperous economies. Hence, the example of Cluster 1 serves to illustrate that the
diffusion of Al is demonstrably dependent on the convergence of financial accessability, institutional
backing, and technological preparedness. Cluster 7 consists of a single extreme outlier. It is
characterized by anomalously high inflation (INFD = 10.237) and negatively skewed values on all of
the remaining indicators, including GDP per capita, access to credit, and international integration.
The attendant negative ALOAI (-0.527) reinforces the hypothesis that macro dysfunction generates a
setting hostile to digital innovation. Such settings are typically associated with brain drain (luga &
Socol (2024)), policy ambiguity, and low institutional capability, which together constitute a feedback
cycle of suboptimality in Al preparedness. Here, any push to support the adoption of Al would not
be merely about altering digital policy, but macroeconomic stabilization. Cluster 7 is thus best
interpreted as structural abnormality, and presents in itself a cautionary reminder of technological
transformation's foundational prerequisites.

7. Aligning Macroeconomic Policy with AI Adoption: Strategic Priorities for the
European Union

The quantitative analysis of macroeconomic drivers of adoption of Al by large enterprises in 28
European Union member states from the years 2018 to 2023 provides rich lessons of policy to facilitate
digital transformation. Based on both the use of both econometric panel models and on machine
learning techniques including KNN, they support the multidimensionality and complexity of Al
diffusion in institutional, economic, and technological contexts. Most notably, they illustrate how
macro indicators such as GDP per capita, inflation control, and ease of access to credit are important
inputs but cannot implement integration of Al on their own. Instead, such inputs need to be
supplemented by strategic fit with institutional capacity, sector maturity, and organization
preparedness. As emphasized by Agrawal, Gans, and Goldfarb (2021), adoption of Al is not about
accessing technology —it in many cases involves organizational and sector transformation of the
entire machinery with policies of adaptive nature going beyond the use of classic economic levers.
Perhaps the best evidence is between health spending and adoption of Al This points to the fact that
public health spending supports not only the evolution of human capital but institutional maturity
as well, both of which are key requisites to uptake. In that regard, European Journal of Public Health
(2024) identifies public health modernization and digital innovation as inseparable policies that need
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to be reconciled with in national policies, and more so with systemic shocks such as the COVID-19
crisis. Rather than regarding them as two distinct policy arenas, digital transformation and social
infrastructure need to be conceptualised in integrated national plans. This argument is favorable to
the hypothesis that an overall plan of development with investment in education, health, and digital
capability is more efficient than single innovation policies. That is to say, adoption of Al is more
effective in those settings where societal development and digital transformation are in want in
tandem. This argument is supported by Ubellacker (2025), who presents evidence regarding
perceptions of shortages of Al by individuals, particularly by underprepared institutions, to in turn
impact preparedness despite overall economic resilience. EU policymakers thus need to use
instruments like the Recovery and Resilience Facility to balance macro-financial planning with such
technological ambitions. As evidenced with Kochkina et al. (2024), sector digital maturity and
leadership initiative are determinant in the translation of congenial macro environments to
technological implementation. Secondly, evidence of negative correlation between banking sector
credit to the home country's private sector and adoption of Al requires more specific analysis of
financial allocation and policy design. In orthodox theory, access to finance is meant to stimulate
technological progress. However, evidence from the data suggests otherwise. A plausible
explanation is in the form of misallocation of capital with financial funds redirected into low-tech or
traditional sectors not related to innovation. As demonstrated by Criste, Lupu, and Lupu (2021) in
their analysis of the consistency of the credit cycle, structural inefficiencies and asynchronous
dynamics of euro area credit will be a barrier to the effective use of available financial funds to
growth-enhancing sectors. Beyond this divergence, this is also symptomatic of institutional bias in
lending patterns or underdevelopment of systems of finance innovation. To be able to effectively use
financial liquidity to finance Al development, policymakers need to redirect credit and capital flows
to innovation sectors and startups, in the form of instruments like Al-specific guarantees, innovation
funds, or blended finance platforms. As demonstrated by Ferraro, Mdnnasoo, and Tasane (2023),
intervention by the public sector in the form of EU Cohesion Framework on R&D and innovation has
measurable impacts on SME productivity, employment, and exports —highlighting the potential of
targeted finance in raising digital competitiveness.

Third, the uniformly negative coefficients attached to exports of goods and services in both fixed
and random effects models indicate the existence of structural inertia in economies heavily
dependent on traditional export bases. Such economies might be prone to path dependency, in which
incumbent sectors resist digital disruption in order to protect existing comparative advantages.
Consistent with results by Dudzevicitité (2021), such exports are observed to contribute to aggregate
economic growth, yet only if their composition matters—standardized, low-tech exports are found
to stifle innovation-driven transformation unless they are combined with digital capabilities. To get
beyond such barriers, “smart specialization” is required. These entail coordinating industrial policy
to be in accordance with digital innovation ecosystems, such that traditional export bases are able to
transform by incorporating Al and associated technologies into production and service provision.
Incentivizing exporters to upgrade from commoditized to technological and data-driven output
assures digital transformation is not simply in parallel, yet rather ingrained within export-oriented
growth models. Conversely, trade openness is found to have a strong, positive impact on Al
adoption, reinforcing the proposition that economies with increased integration into the world
economy are more likely to innovate more intensively. As illustrated by Marceta and Bojnec (2023),
trade openness is a key driver of world competitiveness and convergence among EU economies. It
provides knowledge spillovers, raises competitive pressure, and allows access to new technologies—
all of which serve as drivers of enterprise-level Al integration. EU external and internal policies are
thus required to transform beyond providing tariff-free market access and instead integrate digital
standards, intellectual property rights, and cross-border data protocols into bilateral and multilateral
trade agreements. In addition, these external measures need to be backed by internal policies
facilitating both SMEs and large corporates to take advantage of innovation opportunities generated
by trade by investing in digital infrastructure, engendering cross-border digital preparedness, and
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advancing governance cohesiveness throughout the single market. Notably, although frequently
employed as a measure of national wealth, GDP per capita is found to have only marginal influence
in the KNN-based importance assessments below both goods and health expenditure. The evidence
here implies economic prosperity is not enough to assure digital transformation. This aligns with the
findings of Dritsaki et al. (2023), who established that macro factors play a part in innovation but their
influence is contingent on environmental and institutional enablers. The implication is that resource
abundance is to be complemented by efficient allocation measures and institutional coordination in
order to produce innovation results.

Such evidence is supported by Costantini, Delgado, and Presno (2023), who observe
convergence in eco-innovation in countries with institutional support and focused policy contexts.
Applied to the adoption of Al, it is obvious that absorptive capacity, institutional quality, and
incentives are key drivers. EU Cohesion Policy must also redirect efforts to equalize not only physical
infrastructure in lag regions, but also assistance to administrative modernisation, skills ecosystems,
and regulation streamlining—a basis on which to facilitate digital absorption and sustainable
innovation. Gross fixed capital formation (GFCF) presents evidence of counterintuitive but
statistically significant negative correlation with the adoption of Al It is evidence with implications
that investment in EU economies is perhaps biased in the direction of familiar tangible assets, such
as physical infrastructure and machinery, and not intangible digital assets like Al algorithmic content,
cloud infrastructure, or workforce skills upgrade. In Licchetta and Meyermans (2022) analysis,
investment in the COVID-19 era remained focused on traditional capital, in particular infrastructure
and public buildings—sectors not immediately open to digital transformation. It is evidence of
mismatch between investment type and digital transformation aim. EU and member state fiscal
policies thus need to redirect to stimulate capital deepening in digital and Al-related technology.
Targeted tax incentives to the acquisition of Al software and digital R&D is one such possible avenue,
along the lines of the argument in Morina, Misiri, and Alijaj (2024) on strategic investment incentives.
A further step is that the EU's digital chapter in the green taxonomy has the potential to direct
investment by the private sector to sustainable and digitally oriented outcomes, and that public
procurement mechanisms can be re-engineered to create incentives for Al-driven innovation in
health, public administrations, and infrastructure. The statistical influence of inflation on the
adoption of Al is to be viewed with circumspection. Although not suggestive of direct causality, it
can be exercising investment dynamism in moderate inflation times, and causing adaptive economic
behavior and capital transference realism. Results in Barkkowski et al. (2023) demonstrate that in
periods of inflation, government has the potential to adjust policies of public finance and strive to
increase investment in innovation so as to sustain competitiveness. Thus, inflation is not inherently
an obstacle to adoption of Al provided that macroeconomic stability is ensured and countercyclical
digital investment is maintained. Other than these macroeconomic considerations, results of the
clustering and machine learning results also affirm that adoption patterns of Al are not taking place
in all structurally comparable economies. For instance, Cluster 2—where macro indicators are well-
balanced and intensive use of Al is taking place —is in contrast with Cluster 5, where access to finance
is poor, and low trade integration and low investment in capital restrain the spread of Al. This
difference is in affirmation of results by Usman et al. (2024), who argue that economic openness is
required to be complemented by sectoral capacity and policy consensus in order to translate into
results in the form of innovation or productivity growth.

These observations require different policy approaches. Top-performing clusters need to
concentrate on securing and leveraging competitive strengths, such as leadership in Al regulation or
standard-setting within the EU. By contrast, underperforming clusters need institutional
restructuring, investment in digital infrastructure, and capability development, including in skills
related to digital competences and local ecosystems of innovation. Without such targeted support
measures, the EU digital divide can grow deeper, imperiling Digital Europe Programme and
European innovation strategy cohesion goals. EU coordination plays a particularly significant role in
the digital transformation of the continent in the areas of emerging policy instruments such as the Al
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Act, Chips Act, and the Digital Decade policy programme. These instruments need to be regarded
not as distinct initiatives, but as complementary elements in one integrated strategy for diminishing
digital fragmentation, enhancing technological convergence, and enhancing pan-Europe-wide
competitiveness in Al. As described by Pehlivan (2024), the Al Act proposes to implement a risk-
analysis-based governance plan to handle artificial intelligence in member states, with provision of a
legal support structure to facilitate trustworthy and secure AL Analogously, Schulz, Pehl, and Trinitis
(2024) portray the Chips Act as aiming to upgrade the semiconductor ecosystem in Europe—a key
facilitator of enhanced use of Al and European digital sovereignty. To complement such regulation
and investment plans, the European Commission urgently needs to put harmonisation on both
technical and institutional levels on priority. This entails harmonising benchmarking tools for Al like
the ALOAI indicator, and benchmarking dashboards providing policymakers with in-real-time
information on the adoption and readiness of regions to adopt and use Al. Such evidence-based tools
would improve comparability, transparency, and accountability and facilitate ex-ante planning and
ex-post policy analysis. Notably, the policy process itself can be enhanced with the help of Al-driven
decision support. The K-Nearest Neighbors (KNN) algorithm coupled with explainable AI measures
like SHAP values permits interpretable models of adoption drivers. As this research exemplifies,
variables like access to finance, openness to trade, and capital formation play important roles in
influencing enterprise-level adoption of Al. With such models-based governance, the EU can better
design and customize intervention with much finer grained granularity, allocating funds to contexts
in which macroeconomic alignment and readiness of the institutional infrastructure is best. But such
application of machine learning to policy design also has to be balanced by methodological caution.
Hazards such as overfitting, data bias, and the ecological fallacy are still paramount, especially in
cross-country research in which structural heterogeneity is ever present. As Kezlya et al. (2024)
indirectly note in biodiversity research, capturing the complexity of ecosystem contacts is as
challenging as capturing the dynamics of Al uptake: systems are connected, local factors count, and
prediction is not policy. In conclusion, Europe's shift to an economy driven by Al requires an intricate,
multidimensional policy response. Financial measures need to be redirected to support intangible
innovation; public spending needs to build institutional capability; industrial and trade policies need
to unlock digital competition. Most importantly, policy design itself needs to be more adaptive, data-
driven, and evidence-based —deploying Al not merely as a research object but as an instrument of
governance.

8. Conclusions

This analysis in the study presents an exhaustive understanding of the macroeconomic drivers
of artificial intelligence (AI) adoption by big business in the European Union. With the use of an
interactive approach of panel data econometrics and machine learning, the evidence underscores
how adoption of Alis driven not by single factors but by the complex web of economic, institutional,
and structural factors. The exceptionally positive correlation between health expenditures and
diffusion of Al for instance, suggests the likely enhancement of overall institutional and human
capital bases to support technological advances by investing in public health systems. Similarly, the
same way, open trade is found to be crucial in explaining adoption of Al with the suggestion that
more integrated economies are better placed to absorb and adopt new technologies and to realize
spillovers and competition pressures. Other findings, contrary to prevailing assumptions, undermine
some assumptions. The seen negative correlations between domestic credit and adoption of Al and
between gross fixed capital formation and adoption of Al suggest that financial and investment flows
are not in and of itself supportive of digital transformation. Rather, the targeting of investment and
credit matters more than their quantity. Credit systems with goals targeted to traditional or low-
productive areas can inadvertently inhibit technological upgrading, with investments in physical
capital and not in intangible digital assets in turn perhaps not being effective in providing beneficial
contexts to disseminate Al These lessons suggest more strategic and innovation-oriented industrial
and finance policies to redirect capital allocation in accordance with digital horizons. The findings of
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machine learning, particularly those based on application of the K-Nearest Neighbors algorithm,
substantiate and provide more depth and nuance to the evidence provided by the econometrics. By
sorting macroeconomic indicators of relative magnitude, these models confirm the decisive role of
financial access, institutional investment, and trade in explaining country heterogeneity in adoption
of Al Significantly, the cluster composition provides that both countries with similar macroeconomic
profiles need not have similar adoption rates of AL It suggests the role played by factors that are not
quantifiable such as governance quality, institutional coordination in law and policy, and sector-
specific configurations in influencing digital readiness. Clusters with balance in macroeconomic
fundamentals and targeted policy programs are more likely to have increased levels of adoption of
Al, while those with structural economic vulnerabilities or institutional weaknesses always lag
behind. Individually and collectively, evidence requires policy intervention to be multi-dimensional
and nuanced. Moving the EU to increased adoption of Al cannot be founded on increasing aggregate
investment or technological capability; it requires strategic interoperability of macroeconomic policy
with digital policy, institutional resilience, and sectoral adjustment. Financial instruments have to be
calibrated to support innovation, public investment has to be compatible with complementary digital
programs by the private sector, and trade policies have to be employed to support technological
upgrading. Additionally, EU-wide coordination by the likes of the Al Act and the Digital Decade is
required to cut disparities within member states and usher in an inclusive digital transformation.
Ultimately, adoption of Alin Europe is not merely a determinant of economic capability, but of policy
orientation, institutional readiness, and strategic synergy. The future of the EU is based on leveraging
macroeconomic potential into functional, targeted, and adaptive schemes that support businesses in
innovating and competing in the international arena of Al.
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