
Article Not peer-reviewed version

Driving AI Adoption in the EU: A

Quantitative Analysis of Macroeconomic

Influences

Carlo Drago , Alberto Costantiello , Marco Savorgnan , Angelo Leogrande *

Posted Date: 9 June 2025

doi: 10.20944/preprints202506.0701.v1

Keywords: artificial intelligence adoption; macroeconomic indicators; panel data regression; machine

learning models; EU policy and innovation

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/1271944
https://sciprofiles.com/profile/2104495
https://sciprofiles.com/profile/4513980
https://sciprofiles.com/profile/2043494


 

 

Article 

Driving AI Adoption in the EU: A Quantitative 

Analysis of Macroeconomic Influences 

Carlo Drago 1, Alberto Costantiello 2, Marco Savorgnan 2 and Angelo Leogrande 2,* 

1 Unicusano University 

2 LUM University Giuseppe Degennaro 

* Correspondence: leogrande.cultore@lum.it 

Abstract: This article investigates macroeconomic factors that support the adoption of Artificial 

Intelligence (AI) technologies by large European Union (EU) enterprises. In this analysis, panel data 

regression is combined with machine learning to investigate how macroeconomic variables like 

health spending, domestic credit, exports, gross capital formation, and inflation, along with health 

spending and trade openness, influence the share of enterprises that adopt at least one type of AI 

technology (ALOAI). The results of the estimations—based on fixed and random effects models with 

151 observations—show that health spending, inflation, and trade and GDP per capita have 

positively significant associations with adoption, with significant negative correlations visible with 

and among domestic credit, exports, and gross capital formation. In adjunct to this, the regression of 

machine learning models (KNN, Boosting, Random Forest) is benchmarked with MSE, RMSE, MAE, 

MAPE, and R² measures with KNN performing perfectly on all measures, although with some 

concerns regarding data overfitting. Furthermore, cluster analysis (Hierarchical, Density-Based, 

Neighborhood-Based) identifies hidden EU country groups with comparable macroeconomic 

variables and comparable ALOAI. Notably, those with characteristics of high integration in 

international trade, access to credit, and strong GDP per capita indicate large ALOAI levels, whereas 

those with macroeconomic volatility and under-investment in innovation trail behind. These findings 

suggest that securing the adoption of AI is not merely about finance and infrastructure but also about 

policy alignment and institutional preparedness. This work provides evidence-driven policy advice 

by presenting an integrated data-driven analytical framework to comprehend and manage AI 

diffusion within EU industry sectors. 

Keywords: artificial intelligence adoption; macroeconomic indicators; panel data regression; machine 

learning models; EU policy and innovation 

JEL: O33; C23; C45; E22; L86 

 

1. Introduction 

Over the last few years, artificial intelligence (AI) has developed into a transformational general-

purpose technology with the potential to transform economies, modify production systems, and 

reorient the roles of innovation and competitiveness. Its spread to different sectors—manufacturing 

to health care, finance to public administration—holds out the hope of dramatic increases in 

efficiency, new business models, and better decision support. Yet with increasing interest in the 

economics of AI, much of the literature to date has concentrated on microlevel applications, sector-

specific illustrations, or normative treatments of moral and institutional standards. Little is left to 

explore regarding how macro structures of the economy and national policy settings are influencing 

the spread of AI among large organizations (Hoffmann & Nurski, 2021). This is especially relevant in 

the case of the European Union, where there is considerable heterogeneity of digital preparedness, 

institutional capability, and economic structure between member states. Most contemporary research 

on AI adoption tends to focus on firm-specific factors, like managerial capabilities, R&D intensity, or 
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digital expertise, and treat aggregate macroeconomic factors as exogenous or only contextual 

(Gualandri & Kuzior, 2024). Consequently, we know little about the ways in which systemic factors—

like access to finance, globalization, public investment policies, or institutional quality—interact with 

firm incentives and country-specific innovation systems to impact the diffusion of AI technologies. 

In addition, those few that do deal with macro-factors tend to concentrate on narrow measures like 

GDP or innovation indicators, and not on the more nuanced and multidetermined nature of economic 

development and how this translates to digital transformation (Popović et al., 2025). In the EU, where 

supranational guidelines in digital policy are complemented by national implementation, 

understanding more about these macro factors in depth is essential to designing effective policies to 

facilitate the deployment of AI in different economic contexts. 

This paper was needed to fill that research gap by posing the following broad question: To what 

extent are macro factors responsible for accounting for heterogeneity in AI adoption among large EU 

member state firms between 2018 and 2023? Specifically, it inquires about how such variables as GDP 

per capita, access to domestic credit, health expenditure, exports, openness to trade, inflation, and 

fixed capital formation influence adoption of AI technology, as measured by the ALOAI index—

percent of large enterprises embracing one of three AI methods (machine learning, image recognition, 

or natural language processing). In selecting large enterprises (250+ staff), the analysis identifies a 

sub-population of large, economically significant, and presumably more capable-to-adopt advanced 

digital technologies but also in and impacted by aggregate macro factors. The novelty of this research 

is both in method and content. Method-wise, the research applies dual empirical methodology that 

combines familiar econometric panel specifications (random and fixed effects) and those of machine 

learning (K-Nearest Neighbors (KNN) algorithm and other clustering measures). The resulting 

method allows both explanation and prediction, capturing linear and also non-linear relationships 

and interaction effects likely to be out of the scope of standard regression analysis (Ma et al., 2023). 

Additionally, by employing a mixed bag of different evaluation measures—such as from R² and 

AIC/BIC to geometrical measures like silhouette scores, Dunn index, and entropy—to measure 

clustering quality, the paper is able to supply strong cross-methodological validation of algorithmic 

results, such that results are not only statistically compelling but also interpretable and effective on 

policy (Tudor et al., 2025). At the substance level, the evidence draws several new insights from 

prevailing conjecture about the digital transformation, such as the fact that although although GDP 

per capita is positively related with adoption of AI, it is not the chief determinant. Instead, such 

variables as health spending and domestic credit to the private sector are increasingly stable in their 

correlations, such that institutional capability and efficiency of the financial structure are essential in 

allowing the application of AI. Interestingly, the analysis also identifies unanticipated effects—like 

the negative link between gross fixed capital formation and adoption of AI—which indicate that 

investments in capital can be skewed towards physical rather than digital assets in certain economies. 

These findings reinforce the need to move beyond headline economic indicators and consider 

orientation, composition, and institutional context of macro variables in quantifying readiness to 

adopt AI. 

A second key contribution of the paper is its cluster analysis of EU member states into seven 

distinct profiles based on macroeconomic characteristics and the rate of adoption of AI. This typology 

reveals how economic characteristics with identical indicators can result in quite different 

conclusions on the adoption of AI depending on how they align and are implemented (Czeczeli et 

al., 2024). We provide an example by describing some of the clusters with both low and high income 

levels and excellent integration into world markets and public investment and access to finance as 

characterised by low diffusion of AI as a result of institutional barriers or underdevelopment of the 

stock of human capital. Other clusters with average income levels and moderate public investment 

and access to finance, on the other hand, possess better-than-average uptake (Andrejovská & 

Andrejkovičova, 2024). These findings highlight the importance of policy coordination and 

ecosystem alignment in translating economic potential into technological transformation. 

Importantly, the research also addresses policy implications of the findings. By identifying which 
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macroeconomic situations are optimally positioned to support diffusion of AI, it suggests actionable 

advice to national and EU policy decision-makers aiming to create successful and inclusive digital 

transformation. Targeted policies in digital infrastructure, access to finance of innovations, and 

investments in the stock of human capital are highlighted by the analysis as capable of generating 

more return on investment than generic policies of growth (Iuga & Socol, 2024). Additionally, the 

paper contributes to the existing literature on the interaction between economic development and 

technological innovation in putting the challenge of AI into the perspective of not solely technological 

but systemic transformation which has to be supported by policies in concert and of different 

dimensions. Generally, this research contributes to the research literature in the novel way of relating 

macroeconomic structures to results of adoption of AI within European comparison. It contributes to 

the literature by jumping beyond firm-specific factors and supplying multi-country and multi-factor 

analysis blending both economics and machine learning. This research negates oversimplified 

assumptions about the interaction between national wealth and digitalisation and instead stresses 

institutional quality, access to finance, and strategic policy coordination. For that purpose, the 

research is theoretically and practically important in advancing scholarly knowledge of digital 

transformation and offering evidence-driven insights to support policymaking in the era of AI-driven 

innovation 

The article proceeds as follows: the second section presents a critical analysis of the relevant 

literature, the third section presents the methodology and data used in the analysis, the fourth section 

shows the results of the panel data model comparing fixed effects with random effects, the fifth 

section shows the comparative analysis of various prediction-oriented machine learning algorithms, 

the sixth section compares machine learning algorithms for clustering, the seventh section analyzes 

the policy implications, the eighth section concludes. 

2. Literature Review  

Artificial intelligence (AI) is moving swiftly to transform macroeconomic theory, as well as to 

emerge as a structural force with the potential to reshape productivity, redesign labor markets, and 

raise new challenges to public policy. Recent research converges on the fundamental insight that the 

macroeconomic implications of AI are not predetermined, nor are they neutral, but are profoundly 

influenced by governance, regulation, and institutions. From growth and wage polarization to 

market concentration and inequality risks, AI is coming to be regarded as a general-purpose 

technology with the potential to drive sustainable and inclusive development—under appropriate 

guidance. The section provides a critical overview of the scholarly literature on the subject of greatest 

relevance, with identification of theoretical developments and empirical results that frame the role of 

AI in macroeconomic transformation. Through this review, we draw out the primary tensions and 

policy challenges at the convergence of innovation, employment, and economic governance. 

Artificial intelligence (AI) is remapping macro economic theory both by increasing productivity 

and by posing policy challenges. Literature confirms consensus regarding the restructuring of 

growth, labor markets, inequality, and inflation by AI. Abrardi, Cambini, and Rondi (2019) 

denominate AI as general-purposed technology with sector spillovers and emphasize institutional 

and capital considerations. Acemoglu (2025) provides macro equilibrium between substitution by 

automation and productivity increases, and tension is palpable in Autor et al. (2022), finally 

concluding that employment by AI-related tasks is predominantly skill-biased and brings about 

wage polarization. Aghion, Jones, and Jones (2017) contend that AI is capable of sowing seeds in the 

long-term induced by innovation, but diffusion is bogged down by institutional frictions. Agrawal, 

Gans, and Goldfarb (2019) conceptualize AI as prediction engine and frame bases of sector 

productivity increases. Albanesi et al. (2023) argue uneven employment effects in Europe, where 

technology adoption is yet to fully offset lost traditional employment. Aldasoro et al. (2024) provide 

comfort that AI increases output with moderate reduction of inflation, of ultimate concern to 

monetary policymakers. In development economies, Aromolaran et al. (2024) emphasize that 

investments in AI cut poverty provided in equitable form. Microeconomic-wise, Babina et al. (2024) 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 June 2025 doi:10.20944/preprints202506.0701.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0701.v1
http://creativecommons.org/licenses/by/4.0/


 4 of 33 

 

trace back to extension and innovation by AI, yet raise specter of threats of concentration to low-

distortion-adjusting enterprises. Finally, Bickley et al. (2022) expose growing influences of AI on 

economic research itself. Within these findings, macroeconomic effects of AI are neither neutral nor 

inherent; rather, orientation is institution- and policy-sensitive. As Acemoglu presents, macro-

economists are to grapple with AI neither as outside shock, nor static phenomenon; rather, it is to be 

managed as dynamic, policy-sensitive phenomenon in post-busk economies. 

Bonab, Rudko, and Bellini (2021) outline both the two-pronged risk and potential of AI and the 

necessity to "anticipatory regulate" in order to not exacerbate inequality. Bonfiglioli et al. (2023) 

outline how U.S. commuting region take-up of AI reinforces labour polarisation, especially in 

cognitive work, and accentuates divergence of places concerns. As Bresnahan and Trajtenberg (1995) 

outline in accordance with theory of Generalised Pooled Transversals, AI drives growth in the case 

of complementarity of innovation—a stance reaffirmed by Brynjolfsson and Unger (2023), who 

regard AI as structural. However, as Brynjolfsson, Rock, and Syverson (2018) observe, growth in 

productivity is out of sight due to under measurement and delayed diffusion. Generative AI, in the 

view of Brynjolfsson, Li, and Raymond (2023), can increase productivity of low-skilled workers, but 

is uneven in diffusion. A behavioural factor is added by the argument of Camerer (2018), who 

suggests that macroeconomic behaviour can be revolutionised by algorithmic decision switching. 

Chen et al. (2016, 2024) outline world economy impact projections of economic impact of AI but refer 

to disparities in infrastructure and absorptive capability. Last but not least, Cockburn et al. (2018) 

outline AI as meta-technological in spurring R&D but warning of concentration of benefits. Overall, 

as is seen, with potential to transform, macroeconomic impact from AI is premised on equal policy, 

concerted governance, and design responsiveness to risk of distribution. Central to Cockburn et al. 

(2019) is to draw out how innovation is remade by AI and how it is capable of benefiting skilled-

learning systems and exacerbating gaps between frontrunner and laggard places. Comunale and 

Manera (2024) outline possible rules lag, and delayed policy adjustment will exacerbate macro-level 

risk such as frictions in the labor market. Czarnitzki et al. (2023) outline how productivity growth in 

companies with increased intensity in knowledge is spurred by AI, although uneven growth is 

observed. Dirican's (2015) early work defines AI as carrying with it "creative destruction" of GDP 

structures. Eloundou et al. (2023) outline automation of tasks by large-language models and infer 

large-scale reskilling. Similarly, Ernst et al. (2019) put forward emerging markets' weakness. Felten 

et al. (2018) provide mapping of tasks within jobs to capabilities of AI in order to enable sectoral 

employment projections. Gazzani and Natoli (2024) simulate shocks of AI and illustrate how 

augmentative AI can enable inclusive growth. Potential deskilling of tasks in skilled employment 

based on usage of AI, particularly in finance, is discussed by Grennan and Michaely (2020). Finally, 

hybrid economic models to fit the complexity of AI systems are suggested by Gries and Naudé (2022). 

These articles collectively portray AI as both the source of macroeconomic asymmetry and as 

potential for transformation with strong recognition of need for forward-looking governance.Ruiz-

Real et al. (2021) report growing use of AI in economics and finance but mention fragmentation of 

disciplines and recommend growing integration. Szczepanski (2019) cautions about unlimited use of 

AI with potential of increasing job loss and unevenness in places and Trabelsi (2024) identifies risk of 

digital divides in poor economies if inclusion policies are not followed. Varian (2018) identifies 

potential improvement in efficiency of companies by AI with risk of monopolies to be formed and 

raise questions about regulation. Wagner (2020) contends that AI triggers nonlinear macro-behavior 

and needs institutional infrastructure to handle systemic risk. Wang et al. (2021, 2025) project impacts 

of AI on development with special mention of digital infrastructure and demographic transition. 

Webb (2019) identifies disproportionate offshoring of cognitive work by AI threaten mid-skill 

employment and doubles polarization. In health, Wolff et al. (2020) mention selectively large 

efficiency impacts of AI but write about dependency on trust and government. Zekos (2021) 

concludes by identifying coordination by countries to balance societal advantages of AI and public 

risk. On aggregate, these researches challenge adaptive institutions to guide use of AI to bring about 

more equal and sustainable economic development. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 June 2025 doi:10.20944/preprints202506.0701.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0701.v1
http://creativecommons.org/licenses/by/4.0/


 5 of 33 

 

A synthesis of the literature review by macro-themes is presented in the following Table 1.  

Table 1. Synthesis of the literature. 

Macro Theme Key Findings 
Representative 

Authors 
Comparison with Our Study Originality of Our Study 

Growth & 

Productivity 

AI can drive long-term growth 

but requires complementary 

investments and supportive 

institutions  

Aghion, Jones & 

Jones (2017); Agrawal 

et al. (2019); 

Brynjolfsson & Unger 

(2023) 

Our study finds strong links 

between AI and productivity, 

though uneven across clusters. 

Applies KNN clustering to 

macroeconomic indicators 

across EU countries, a novel 

method for analyzing growth 

impacts. 

Labor Markets 

& Inequality 

AI adoption leads to labor 

polarization and wage 

inequality; reskilling is 

essential  

Acemoglu (2025); 

Autor et al. (2022); 

Eloundou et al. (2023) 

Our study shows AI adoption 

varies by region and is skill-

biased, reinforcing 

polarization. 

Provides quantitative cluster-

based evidence on labor 

polarization and sectoral 

inequality, unlike most theory-

based papers. 

Inflation & 

Monetary 

Policy 

AI adoption may modestly 

reduce inflation and is 

influenced by macroeconomic 

stability  

Aldasoro et al. (2024); 

Gazzani & Natoli 

(2024) 

Inflation has a modest but 

positive effect on AI adoption 

in our findings. 

Includes inflation as a 

predictive feature in AI 

adoption modeling, a relatively 

unexplored relationship. 

Institutional & 

Policy 

Coordination 

Coordinated governance and 

regulatory frameworks are 

necessary for AI benefits to 

scale  

Pehlivan (2024); 

Bonab et al. (2021); 

Wagner (2020) 

The study emphasizes EU-

level coordination and 

benchmarking as essential. 

Integrates policy instruments 

(AI Act, Digital Decade) 

directly with machine learning 

insights for governance 

evaluation. 

Sectoral 

Disruption & 

Industrial 

Transformatio

n 

AI causes structural shifts in 

GDP and employment 

patterns across industries  

Dirican (2015); Webb 

(2019); Wolff et al. 

(2020) 

Clustering reveals sectoral 

shifts, especially in trade and 

capital investment patterns. 

Uses economic clustering to 

identify hidden sectoral 

dynamics across EU regions, 

enhancing practical relevance. 

Firm-Level 

Innovation 

AI boosts innovation in data-

rich firms, but risks 

concentrating benefits  

Cockburn et al. 

(2019); Czarnitzki et 

al. (2023); Babina et 

al. (2024) 

AI adoption aligns with firm-

level innovation, especially in 

tech-ready clusters. 

Empirically links firm-level 

innovation to national 

macroeconomic clusters, 

offering cross-scale insight. 

Global 

Development 

& Digital 

Divide 

AI may exacerbate global 

inequalities; inclusive 

strategies and digital 

infrastructure are key  

Trabelsi (2024); Wang 

et al. (2025); Zekos 

(2021) 

Our study stresses the digital 

divide across EU regions and 

policy needs in lagging areas. 

Focuses on EU regional 

divergence using standardized 

indicators and clustering, 

adding depth to global 

inequality literature. 

In summary, the literature reviewed here emphasizes how artificial intelligence is not simply a 

technological innovation but is instead a force of transformation in macroeconomics that magnifies 

underlying structural dynamics and injects new uncertainties. Failing to produce automatic or 

identical results, the macroeconomic impacts of AI are influenced by institutional settings, policy 

options, and socio-economic environments. As illustrated, AI has the potential to raise productivity, 

underpinning inclusive growth and innovation, but with notable prospects of inequality, 

polarization, and market concentration. The key challenge of the future is to create forward-looking, 

adaptive governance that is resilient enough to realize the benefits of AI and neutralize the 

distributional and systemic threats. 

3. A Methodologically Integrated Approach to Analyzing AI Adoption: Panel 

Econometrics Meets Machine Learning 

Methodologically, the joint use of fixed and random effects panel data models along with 

machine learning regression and clustering models is not merely appropriate but methodologically 

justified in the study of AI adoption in macroeconomic contexts. Their panel data nature—between 

countries and multiple years—naturally demands econometric techniques capable of handling both 

cross-section as well as time-series heterogeneity. Fixed effects models are methodologically 
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appropriate if the aim is to control for unobserved, time-constant heterogeneity between countries, 

e.g., institutional contexts, judicial systems, or country-specific innovation-related mindsets. Random 

effects models are more efficient on the proviso that country-specific heterogeneity is uncorrelated 

with regressors. Using both and testing with the Hausman test, the research maximises robustness 

and minimises the risk of model misspecification (Popović et al., 2025). Concurrent with this, use of 

machine learning models such as K-Nearest Neighbors (KNN), Random Forest, Boosting, and SVM 

to regression adds another valuable layer of methodological robustness. 

These are not strict parametric models and are particularly robust in capturing subtle, non-linear 

relationships which more orthodox econometric models are likely to overlook (Tapeh & Naser, 2023). 

Their use is methodologically justified in those contexts where the aim is not merely to explain but to 

predict the rate of adoption of AI conditional on several macroeconomic inputs. Furthermore, 

comparing models on the basis of a set of measures of fit (MSE, RMSE, MAE, MAPE, R²) allows data-

driven, nuanced choice of optimal algorithm in data-rich decision spaces such as cybersecurity and 

economic modeling (Ozkan-Okay et al., 2024). 

Clustering techniques like Hierarchical, Density-Based, and Neighborhood-Based enrich the 

analysis with latent groupings of countries with comparable economic profiles and adoption 

behavior towards AI. Methodologically, this is necessary in order to transcend averages and reveal 

structural patterns important to analysis of policy comparability. These techniques of unsupervised 

learning are capable of segmenting the data in such a manner as to bring out hidden structure and 

policy-focused clusters (Shokouhifar et al., 2024). That convergence of techniques is not coincidental, 

but methodological. Panel regression provides causal inference and interpretability, machine 

learning supplies flexible and precise prediction, and clustering provides structural insights into 

heterogeneity. In the domain of AI in finance, to take an example, research has demonstrated how 

convergence of topic modeling and clustering reveals distinct thematic patterns which would be lost 

to us (Olasiuk et al., 2023). Their convergence fulfils several analytic roles—description, explanation, 

prediction, and categorization—within and in the same, enveloping process. That multi-method is 

itself well suited to the phenomenon as fluid and multi-dimensional as adoption of AI, where 

linearity and isolationist models would be powerless to describe interaction between financial factors, 

institutional bias, and international competitiveness. As highlighted by more recent bibliometric 

evaluations, pushing forward the use of AI in public administration is in line with growing demand 

for integrated, multi-method analyses to guide decision-making on large scale (Popescu et al., 2024). 

Application of panel econometrics and machine learning in tandem is thus therefore a solid, justified, 

and methodological sophisticated way of knowing macroeconomic drivers of digital transformation. 

We have used the following variables as showed in the following Table 2.  

Table 2. Variable, acronyms and sources of data. 

Acronym Variable Definition  Source  

ALOAI 

AI adoption in major 

firms 

 

This variable shows the percentage of large EU enterprises (250+ 

employees) using at least one AI technology. It excludes agriculture, 

mining, and finance sectors. Measured annually, it reflects AI 

adoption—such as machine learning or image recognition—across 

major industries, based on Eurostat. 

EUROSTAT 

HEAL 

Current health 

expenditure (% of 

GDP)  

This variable represents total public and private health spending as a 

share of gross domestic product, reflecting a country’s financial 

commitment to healthcare services, infrastructure, and policy. 

WORLD BANK 

DCPS 

Domestic credit to 

private sector (% of 

GDP)  

This variable measures financial resources provided to the private 

sector by financial institutions, expressed as a percentage of GDP, 

indicating access to credit and financial system development. 

EXGS 
Exports of goods and 

services (% of GDP)  

This variable captures the total value of goods and services exported 

by a country, relative to its GDP, reflecting trade openness, external 

demand, and global economic integration. 

GDPC 
GDP per capita 

(constant 2015 US$)  

This variable represents a country's gross domestic product divided by 

its population, adjusted for inflation to 2015 US dollars, reflecting 

average economic output and living standards over time. 
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GFCF 

Gross fixed capital 

formation (% of 

GDP)  

This variable measures investment in fixed assets such as buildings, 

machinery, and infrastructure, expressed as a percentage of GDP, 

indicating long-term economic growth potential and capital 

accumulation. 

INFD 
Inflation, GDP 

deflator (%) 

This variable reflects the annual percentage change in the GDP 

deflator, capturing overall inflation by measuring price changes in all 

domestically produced goods and services within an economy. 

TRAD Trade (% of GDP)  

This variable represents the sum of exports and imports of goods and 

services as a percentage of GDP, indicating a country's trade openness, 

economic integration, and global market exposure. 

4. Understanding AI Diffusion in EU Enterprises: Evidence from Fixed and 

Random Effects Models 

To investigate the macroeconomic determinants influencing the adoption of artificial 

intelligence (AI) technologies among large European Union enterprises, this study employs a metric-

driven panel data approach using both fixed-effects and random-effects estimations. The dependent 

variable, ALOAI, reflects the percentage of enterprises with at least 250 employees adopting at least 

one form of AI technology, based on Eurostat data and excluding agriculture, mining, and finance 

sectors. The analysis is based on a panel of 28 European countries observed over the period from 2018 

to 2023. The objective of the research is to quantify the effect of key macroeconomic indicators—

including health expenditure, domestic credit, exports, GDP per capita, capital formation, inflation, 

and trade openness—on AI diffusion across countries and over time. By comparing the performance 

and coefficients of both fixed-effects and generalized least squares (GLS) random-effects models, the 

analysis aims to identify statistically significant predictors of AI adoption and assess their relative 

impact. 

We have estimated the following equation:  

𝐴𝐿𝑂𝐴𝐼 = 𝛼 + 𝛽1(𝐻𝐸𝐴𝐿)𝑖𝑡 + 𝛽2(𝐷𝐶𝑃𝑆)𝑖𝑡 + 𝛽3(𝐸𝑋𝐺𝑆)𝑖𝑡 + 𝛽4(𝐺𝐷𝑃𝐶)𝑖𝑡 + 𝛽5(𝐺𝐶𝐹𝐺)𝑖𝑡
+ 𝛽6(𝐼𝑁𝐹𝐷)𝑖𝑡 + 𝛽7(𝑇𝑅𝐴𝐷)𝑖𝑡 

where i=281 and t=[2018;2023].  

The econometric results are showed in the following Table 3.  

Table 3. Results of the econometric panel data model. 

 Fixed-effects, using 151 observations Random-effects (GLS), using 151 observations 
 Coefficient Std. Error t-ratio Coefficient Std. Error z 

const 232.103 187.502 1.238 1.43750 11.7344 0.1225 

HEAL 3.96946*** 0.894018 4.440 3.69032*** 0.789923 4.672 

DCPS −0.286226*** 0.0982208 −2.914 −0.159030** 0.0697545 −2.280 

EXGS −2.15202*** 0.583538 −3.688 −1.72654*** 0.490134 −3.523 

GDPC 0.000579674** 0.000262903 2.205 0.000752955*** 0.000157700 4.775 

GCFG −1.02356*** 0.351578 −2.911 −0.751295*** 0.289279 −2.597 

INFD 0.213992*** 0.0718891 2.977 0.223578*** 0.0647466 3.453 

TRAD 1.05806*** 0.286420 3.694 0.85472*** 0.245487 3.482 

Statistics  

Mean dependent var 26.99636 Mean dependent var 26.99636 

Sum squared resid 2984.013 Sum squared resid 21868.54 

LSDV R-squared 0.924381 Log-likelihood −589.9118 

LSDV F(34, 116) 41.70631 Schwarz criterion 1219.962 

Log-likelihood −439.5324 rho 0.574965 

Schwarz criterion 1054.670 S.D. dependent var 16.21961 

 
1 Countries are: Austria, Belgium, Bosnia and Herzegovina, Bulgaria, Denmark, Estonia, Finland, France, 

Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, 

Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Turkey. 
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rho 0.574965 S.E. of regression 12.32335 

S.D. dependent var 16.21961 Akaike criterion 1195.824 

S.E. of regression 5.071908 Hannan-Quinn 1205.630 

Within R-squared 0.345539 Durbin-Watson 0.596079 

P-value(F) 1.78e-50   

Akaike criterion 949.0648   

Hannan-Quinn 991.9670   

Durbin-Watson 0.596079   

Test 

Joint test on named regressors - Test statistic: F(7, 116) = 

8.74929 with p-value = P(F(7, 116) > 8.74929) = 

1.3237e-08 

'Between' variance = 265.282 'Within' variance = 19.761 

mean theta = 0.882933 Joint test on named regressors - 

Asymptotic test statistic: Chi-square(7) = 75.88 with p-

value = 9.50198e-14 

Test for differing group intercepts -  Null hypothesis: 

The groups have a common intercept Test statistic: F(27, 

116) = 17.3621 with p-value = P(F(27, 116) > 17.3621) = 

2.98603e-29 

Breusch-Pagan test - Null hypothesis: Variance of the unit-

specific error = 0 Asymptotic test statistic: Chi-square(1) = 

158.842 with p-value = 2.02581e-36 

 

Hausman test - Null hypothesis: GLS estimates are 

consistent Asymptotic test statistic: Chi-square(7) = 

8.05723 with p-value = 0.327574 

The panel data analysis of adoption of artificial intelligence (AI) by large European Union 

enterprises, as the share of companies with more than 250 staff utilizing any kind of AI technology 

(ALOAI), provides important evidence on macroeconomic drivers of technological diffusion among 

EU member countries. The version of the analysis based on the fixed effects and random effects (GLS) 

econometric models, with 151 observations and on the complete range of macroeconomic indicators 

available (current health expenditure, HEAL; domestic credit to the private sector, DCPS; exports of 

goods and services, EXGS; gross domestic product (GDP) per capita, GDPC; gross fixed capital 

formation, GFCF; inflation as captured by the GDP deflator, INFD; and trade openness, TRAD), 

provides strong evidence of the economic variables' influence. Empirical work by Doran et al. (2025) 

provides support to the methodological approach. These authors analyze EU industry automation 

systems and confirm the key role of economic sector structures in dictating technology take-up. 

Buglea et al. (2025) apply panel data on Central and Eastern European countries to analyze the 

adoption of digital transformation and confirm the role of structural and macro variables in shaping 

technology adoption. The fixed effects estimation, accounting for unobserved heterogeneity of 

countries, identifies various variables with statistically significant impacts on adoption of AI. Health 

expenditure has a highly significant and positive impact (coefficient = 3.969, p < 0.01), implying that 

increased public spending on health might reflect both wider institutional capabilities or investment 

in personnel not independently contributing to the potential deployment of AI. The same significance 

and positive impact is replicated in the random effects estimations (coefficient = 3.690), establishing 

the robustness of results to different estimation techniques. 

A second key result is the statistically significant and negative effect of domestic credit to the 

private sector (DCPS), with coefficient –0.286 in the fixed effects and –0.159 in the random effects, 

both significant to conventional levels. This perverse result can be interpreted to be evidence of 

situations in which extensive availability of financing is not necessarily translated into finance to 

support innovation or digital transformation, or could reflect inefficiency in the use of capital in some 

economies. A similar complexity is addressed by Wagan and Sidra (2024), who highlight differences 

in venture capital efficiency between countries despite huge investment in AI. Goods and service 

exports (EXGS) also produce consistent and significant negative correlation with adoption of AI in 

both models, with coefficients –2.152 and –1.726 respectively. This can be interpreted to mean that 

economies more engaged in traditional export-oriented economic efforts tend to fall behind in digital 

innovation due to either path dependency in low-tech or labor-intensive economies or structural 

rigidity inhibiting disruptive technology adoption. This is in line with work by Abdelaal (2024), who 

observes that economies with prevailing traditional production bases tend to be more sluggish in 

redirecting resources to use in high-tech areas of application of AI. GDP per capita (GDPC) has small 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 June 2025 doi:10.20944/preprints202506.0701.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0701.v1
http://creativecommons.org/licenses/by/4.0/


 9 of 33 

 

but statistically significant positive impact, meaning richer economies, as expected, are more likely 

to adopt AI technologies. At the same time, the magnitude is low (0.000579 in fixed effects and 

0.000753 in random effects), meaning that by itself, the issue of GDP is not the overriding factor but 

part of some wider set of enabling factors. This is consistent with Žarković, Ćetković, and Cvijović 

(2025), who observe that the impact of GDP per capita on economic modernization varies unevenly 

in existing and new EU member states and draw on the theoretical argument that deeper structural 

factors drive growth paths and technology diffusion. 

Gross fixed capital formation (GFCF), quantifying investment in infrastructure and productive 

assets, unexpectedly produces a negative and significant coefficient in both specifications. This is 

open to questions about whether such investment is targeted towards physical capital in the usual 

sense rather than to intangible or digital assets that would enable the integration of AI. The result is 

consistent with evidence from Giannini and Martini (2024) on enduring regional heterogeneity in 

economic structure and innovation preparedness throughout the EU and many of which are likely to 

bias the efficiency of traditional spending. Inflation (INFD), quantified by the GDP deflator, has a 

positive and significant impact on the adoption of AI, perhaps capturing the instance of moderate 

inflation accompanying vigorous investment environments or policies with the aim of expansion that 

support digital innovation. Last, trade openness (TRAD) exerts strong positive and highly significant 

influence in both specifications (estimates of 1.058 and 0.855), affirming that access to world markets 

is a stimulus to the adoption of AI. This is likely to be the result of such mechanisms as exposure to 

foreign competition, technology transfer, and integration in foreign-made global value chains, 

supported by empirical evidence from Nguyen and Santarelli (2024), who reveal that open economies 

in Europe gain considerably from spillovers from AI since they are more integrated with the world. 

Statistically, the fixed effects specifications present significant explanatory power with an R-squared 

of 0.924 and significant F-statistic (F = 41.706), reflecting well-specified models with large fractions of 

the variance in the dependent variables resolved by the included regressors. The random effects 

specifications are respectable too, with joint chi-square tests (Chi2 = 75.88, p < 0.00001) affirming 

significance, though the Hausman test (Chi2 = 8.057, p = 0.328) is not significant to indicate any 

difference between fixed and random effects estimators, meaning that the random effects 

specifications are statistically consistent. Still, with the highly significant F-test of different group 

intercepts (F = 17.36, p ≈ 0.00) and Breusch-Pagan test rejecting homoscedasticity's null (Chi2 = 

158.842, p ≈ 0.00), the fixed effects specifications are still preferred in eliciting country-level 

heterogeneity that remains unobserved. The low Durbin-Watson statistic in both models (~0.59) 

suggests some degree of autocorrelation, though this does not seem to undermine either the 

significance or the signs of the coefficients. 

Ultimately, these results affirm a multi-dimensional and sometimes non-monotonic correlation 

between macroeconomic markers and adoption of AI. Structural drivers such as spending on health, 

financial stability, and integration into trade are available to underpin digital innovation, while 

variables traditionally associated with development, such as capital and the formation of credit, are 

not necessarily positively correlated in all cases. Such is consistent with evidence by Tiutiunyk et al. 

(2021) who argue that although digital transformation is good with macroeconomic stability in EU 

economies, interaction with such traditional variables of growth such as credit and capital is more 

complicated and circumstance-variant. This implies that boosting levels of access to investment or 

credit is not sufficient unless and jusqu'à targeted to support activity of facilitating innovation and 

backed by institutional preparedness. For example, Iuga and Socol (2024) demonstrate how 

institutional variables play heavily into readiness of EU member states to adopt AI and complacency 

in such bridging of gaps will leave brain drain exposed in especially the less-developed regions of 

the Union. Furthermore, goodness of fit of the models reinforces importance of macroeconomic 

policy in shaping the digital competitiveness of EU economies. With rising salience placed on 

adoption of AI as driver of industrial modernity and economic resilience, such macro-booster to 

adoption can feed into more targeted and effective intervention both in member states and in the EU. 

For example, spurring adoption of AI is not about more investment of assets but strategic 
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coordination of finance systems, policy on trade, health infrastructure, and digital plans to provide 

the canvas onto which innovation can seize. Such holistic strategic coordination is consistent with 

evidence by Challoumis (2024) who argues that AI is remaping economic fundamentals and calling 

on fiscal and innovation policies to make space in turn to accommodate new finance paradigm. 

Macro-econometric robustness of the models, in particular the large R-squared of the fixed-effects 

formulation and p-value convergence between estimators, reinforces importance of such inferences. 

Notably, the conclusions push policy to be strategic and dimensional, balancing macroeconomic 

planning and digital innovation ambitions. This is not just about enhancing health systems and 

participating in international trade but about aligning the lending and investment channels to 

facilitate capabilities fully digitally. While among the major sources of economic competitiveness and 

resilience, especially in the EU's wider digital and green transformations, this question confirms 

policymakers' need to underpin macroeconomic foundations that lead to the success of AI 

technologies in business. 

5. Decoding AI Adoption in the EU: A Comparative Evaluation of Predictive 

Models and Macroeconomic Drivers 

This section presents comparative analysis of eight regression models—Boosting, Decision Tree, 

K-Nearest Neighbors (KNN), Linear Regression, Neural Networks, Random Forest, Regularized 

Linear Regression, and Support Vector Machines (SVM)—using standard measures like MSE, RMSE, 

MAE/MAD, MAPE, and R². The aim is to analyze the prediction capability and generalizability of 

each of these models in the forecasting of large EU firm adoption of AI. In addition to benchmark 

models, the section provides KNN-based feature importance measure based on mean dropout loss 

to rank macro variables with the utmost impact in prediction of AI adoption. These analyses provide 

both methodological and policy insights into structural economic indicators shaping the diffusion of 

AI in various country contexts. 

The results of the comparison among different algorithms is showed in the following Table 3.  

Table 3. Performance Comparison of Regression Algorithms Based on Standard Evaluation Metrics. 

Metric Boosting Decision Tree KNN Linear Regression Neural Network Random Forest Regularized Linear SVM 

MSE 0.187 0.31 0.000 0.23 1.000 0.293 0.293 0.214 

RMSE 0.222 0.388 0.000 0.298 1.000 0.374 0.374 0.242 

MAE / MAD 0.247 0.361 0.000 0.357 1.000 0.242 0.242 0.241 

MAPE 0.100 0.107 0.000 0.477 0.658 0.750 0.750 1.000 

R² 0.650 0.370 1.000 0.510 0.000 0.841 0.841 0.248 

In comparing the performances of eight regression models—Boosting, Decision Tree, K-Nearest 

Neighbors (KNN), Linear Regression, Neural Networks, Random Forest, Regularized Linear 

Regression, and Support Vector Machines (SVM)—our consideration is on the same five basic 

statistical measures of Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute 

Error/Mean Absolute Deviation (MAE/MAD), Mean Absolute Percentage Error (MAPE), and 

Coefficient of Determination (R²). These measures are essential indicators of how well the models fit, 

are stable, and generalize to unseen data. Lower values in MSE, RMSE, MAE/MAD, and MAPE, and 

the greater the R², the better the prediction accuracy, the stability of the model, and the more they 

generalize to unseen data. Of all the models tested, KNN shines with near-perfection in all the 

measures of evaluation with MSE, RMSE, MAE/MAD, and MAPE of 0.000 and R² of 1.000. This 

implies perfectly matching predictions of observed values with zero error. Though such kinds of 

performances are exceptionally rare in actual practical use and might be suggestive of overfitting, 

data leakage, or data with too low complexity, the results as they are set put KNN in the list of best 

performers and the top algorithm in this comparison. This is in accordance with the application of 

KNN in the environmental disciplines, like Raj and Gopikrishnan (2024), who showed how the 

algorithm performs in vegetation dynamics modeling, which emphasizes how the algorithm is 
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effective with highly ordered, rich-feature data. The second-best is Boosting, which performs well 

with MSE of 0.187, RMSE of 0.222, MAE/MAD of 0.247, MAPE of 0.100, and R² of 0.650. These indicate 

that Boosting provides excellent balance of low deviation and decent explanation of variance, making 

it well suited for practical use, especially in complicated or more noisy environments. This is in 

accordance with time series finance use, like the work by Jenifel, Jasmine, and Umanandhini (2024), 

which employed Boosting in forecasting Bitcoin prices with successful results in noisy data. SVM 

performs reasonably well based on mean deviation with MAE/MAD of 0.241, better than Boosting 

and Random Forest. But it has the worst MAPE of 1.000 and thus greatly loses credibility in matters 

of percent-based precision, like that of financial prediction or health prediction. In addition, R² of 

0.248 is quite low and represents little power to explain the dependent variable's variance. Such 

volatility in SVM is also witnessed in education analytics, where Kumah et al. (2024) observed such 

shortcomings in identifying nonlinear behavior in prediction of students' performance, especially 

with the involvement of categorical variables or in the case of badly scaled variables. 

Conversely, Regularized Linear Regression and Random Forest have almost identical MSE of 

0.293, RMSE of 0.374, MAE/MAD of 0.242, and R² of 0.841. However, both models have big errors in 

the form of MAPE (0.750), with poor relative prediction precision. Despite that, their big R², though 

not always linked with low MSE, reveals they are perhaps useful where capturing general trend, not 

specific values, is the objective. Such balance between measures based on errors and measures in 

explaining the variance has also been shown by Chandra, Vimal, and Rajak (2024) in comparing 

relative merits of different machine learning models employed in prediction of the production 

processes, where Random Forest was praised on trend matching but is criticized on the basis of 

sensitivity to outliers. Decision Tree is no better on the majority of the measures. Its MSE and RMSE 

(0.310 and 0.388, respectively) are among the largest, with MAE/MAD (0.361) and R² (0.370) of the 

same. Only on the measure of MAPE (0.107) is it decent, with slightly better relative error than 

Random Forest and SVM. Such frailties of Decision Tree models have also been shown by 

Vijayalakshmi et al. (2023) in prediction of medical insurance prices, where regression models yielded 

more stable relative performances in both the measures of absolute and percentage. Little better 

results are found in Linear Regression with MSE of 0.230, RMSE of 0.298, MAE/MAD of 0.357, and R² 

of 0.510. These are average measures and respectable balance between complexity and 

generalizability, though not great in any of the measures. Last, best of all the models (though still 

very poor) is the Neural Network with greatest possible MSE, RMSE, and MAE/MAD (all equal to 

1.000) and lowest possible R² (0.000), to suggest that it is not able to learn any useful mapping of the 

features to the target. Its MAPE of 0.658 only supports this. Such low performance can be due to either 

poor optimization of the architecture, insufficient training data, or too deep of a network to be 

processed by the dataset. Balila and Shabri (2024) also show the same weakness in property price 

prediction, with deep models performing poorly with lesser simple models owing to over fit and data 

poor generalization. 

Upon comparison of all models based on holistic interpretation of metrics, KNN is by far the 

best performer. It not only minimizes both types of errors and explains 100% of target data's variance. 

Yet, such flawless performance is suspicious on grounds of both overfitting and generalizability, 

especially if the model has memorized data instead of learning patterns. To confirm KNN’s 

performance thus, it would be crucial to validate it on hold-out test set or by cross-validation before 

it is implemented into production. Hypothetically, under the assumption of results' stability between 

different data partitions, KNN would be best to implement due to rock-bottom accuracy and zero-

error metrics. Boosting is a strong second best in case both the robustness of the model and 

generalizability are more essential and with perfect prediction not. Then follow Regularized Linear 

Regression and Random Forest, which are similar (especially in explaining variance), though with 

relative errors that are greater. SVM’s rare combo of low MAE and high MAPE is less dependable in 

practical use where proportional errors are paramount. In this specific setting, Neural Networks 

should be avoided or heavily re-optimized to further improve learning. This is in support of research 

by Elnaeem Balila and Shabri (2024), warning of application of highly intricate models such as deep 
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learning where simple programs are both accurate and reliable—as was the case with the prediction 

of property price in Dubai via traditional application of machinel learning techniques. In practical 

use in the world outside, not only numerical performance but also computational cost, scalability, 

interpretability, and sensitivity to noise need to be considered. KNN, as instance, is unlikely to be 

able to work with large data due to lazy learning and sensitivity to feature scaling. Boosting and 

Random Forest are scalable and robust but more computationally expensive. Linear models provide 

interpretability, very crucial in regulated fields such as medicine and finance though with marginally 

less favorable prediction capability. For instance, Zeleke et al. (2023) used Gradient Boosting to 

predict prolonged hospital stays and demonstrated how their strength and explanation of variance 

made it well suited to more complex, high-risk domains where interpretability was also of concern. 

Similarly, Kaliappan et al. (2021) observe that public health use case performance evaluations—like 

prediction of reproduction rate of COVID-19—must be more concerned with generalizability than 

optimality of errors and thereby confirm Boosting's second best in such use. In this use, optimal 

algorithm selection heavily depends on goals and limitations of the use case. On purely performance 

metrics here, however, KNN is plainly best performing, outperforming all else in all tested categories. 

Boosting is second best, giving a fast and stable mix of low errors and interpretability. Random Forest 

and Regularized Linear Regression both claim third place, excelling in explanation of variance but 

falling in relative precision. SVM and Decision Tree both perform in the middle ranks, with Linear 

Regression performing decently enough but not notably so. The Neural Network model, based on 

currently available performances, is best not implemented without extreme modification. The above 

observations are of utility as decision bases in optimal selection of models, hyper parameter 

optimization, and tuning of models in future endeavors in predictive modelling. The level of mean 

dropout loss is presented in the following Table 4.  

Table 4. Mean dropout loss. 

Variables   Mean dropout loss 

DCPS 12.451 

GDPC 9.269 

HEAL 9.269 

GCFG 8.077 

INFD 6.682 

EXGS 6.239 

TRAD 6.106 

Note.  Mean dropout loss defined as root mean squared error (RMSE) is based on 50 permutations. 

Application of K-Nearest Neighbors (KNN) models to the adoption of artificial intelligence (AI) 

by large European Union companies—defined as the proportion of companies with more than 250 

employees that are utilizing at least one AI technology—provides insights into the relative 

significance of various macroeconomic indicators in prediction. Analysis is based on a matrix of 

variables such as health expenditure (HEAL), domestic credit to the private sector (DCPS), exports 

(EXGS), GDP per capita (GDPC), gross fixed capital formation (GFCF), inflation (INFD), and trade 

openness (TRAD), which are indicators of structural and financial features of EU countries' 

economies. The mean dropout loss is the main measure of the importance of variables, defined as the 

root mean squared error (RMSE) on 50 permutations. This is the measure of how much prediction 

effectiveness is lost by excluding any particular variable from the model, thereby providing data-

driven insight into how each of the features contributes to estimating AI adoption. Of the variables 

under investigation, domestic credit to the private sector (DCPS) is found to be the most important 

with the largest mean dropout loss of 12.451, implying that excluding this variable results in the best 

reduction in the performance of the model. This points to access to finance contributing to AI-related 

investments and innovation capabilities in large enterprises. It is also possible that it points to the 

significance of liquid financial systems that support risk taking and technologically intensive 

financial investments. Kotrachai et al. (2023) confirm this interpretation in their analysis of models of 
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detecting credit card fraud, where explanation techniques highlighted financial features as key to 

algorithmic functionality, and the significance of internal financial circumstances in the prediction. 

By contrast, factors like trade openness (TRAD) and exports of goods and services (EXGS) have low 

dropout losses of 6.106 and 6.239 respectively, to imply that although still useful, removal results in 

a less significant reduction in model prediction. This can be interpreted to mean that external 

economic activity, though significant, is not as key to understanding the adoption of AI as are internal 

finance and development structures. The relative importance of these internal drivers is also reflected 

in the health sector, wherein Sehgal et al. (2024) illustrate that internal clinical factors are considerably 

more predictive of early AI-based systems of diabetes prediction than external behavioral inputs. 

Furthermore, KNN's effectiveness in identifying patterns of adoption of a structured nature is 

mirrored in the work of Chaurasia et al. (2022), who employed analogous modeling approaches to 

understand the uptake of mobile technology among dementia patients—how proximity-based 

models are well-positioned to identify complex yet consistent patterns of adoption among socio-

economic segments. Notably, both health spending (HEAL) and economic prosperity (GDP per 

capita, or GDPC) have the same dropout loss of 9.269 and are in the middle range of importance. This 

coincidence implies both economic well-being and investment in health (proxying institutional and 

human capital capabilities) both play equally in the formation of the economic environments in which 

adoption of AI is possible. These results are reflected in the argument of Siddik et al. (2025) that 

institutional preparedness—measured in the form of health and education infrastructure—is a key 

enabler of technology-facilitated sustainable growth, including in the tourism and more macro 

economic cycles. Gross fixed capital formation (GFCF) maintains some lesser loss of 8.077, implying 

that investment in infrastructure and fixed capital is important but perhaps not as crucial as credit 

access and investment in health and education. Inflation (INFD) lies in between with a dropout loss 

of 6.682, perhaps mirroring its contributory but by no means small role in mediating economic 

environments either favorable to or restrictive of innovation. Moderate inflation might be seen as 

measuring economic dynamism, whereas excessive and idiosyncratic inflation can be deterring to 

investment in long-term AI projects. Gonzalez (2025) corroborates the inflation-AI link, observing in 

his work that the application of machine learning to inflation forecasting more and more emphasizes 

the intricate dynamics between macro volatility and technological investment judgments. In turn, 

KNN algorithm-based analysis appears to demonstrate that although all of these variables play 

meaningful roles in estimating the adoption of AI, there is clearly some gradient of importance. 

Financial health, more so access to credit, are the strongest predictors in the KNN model, followed 

by national wealth and institutional capacity indicators. While the latter are still of importance, they 

seem to have less of an explanation in this machine learning economic mode. These results 

underscore the complexity of AI adoption and imply that internal finance systems and public 

investment frameworks are more likely to be of immediate influence than external economic 

exposure. This observation can guide targeted policy intervention to encourage the diffusion of AI 

by giving preference to local credit systems, enhancing institutional preparedness, and harmonizing 

macroeconomic policy with digital innovation.  

The predictive values of the model are indicated in table 5 

Table 5. Additive Explanations for Predictions of Test Set Cases. 

Case Predicted Base HEAL DCPS EXGS GDPC GCFG INFD TRAD 

1 28.210 26.351 2.395 4.957 -3.652 4.913 0.699 -6.413 -1.041 

2 33.490 26.351 2.969 -0.020 0.912 3.040 1.839 -1.807 0.206 

3 15.690 26.351 0.334 -8.334 0.658 -5.020 0.605 -0.085 1.182 

4 23.030 26.351 1.153 -5.391 -0.204 -8.331 -2.654 2.877 9.229 

5 66.220 26.351 -4.690 15.768 1.517 18.006 2.582 1.513 5.173 

Note.  Displayed values represent feature contributions to the predicted value without features 

(column 'Base') for the test set. 
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The additive explanations from the application of the K-Nearest Neighbors (KNN) algorithm to 

the prediction of ALOAI—the share of large European Union companies making use of one or more 

of the three selected AI technologies—are of use in understanding macroeconomic drivers of AI 

adoption in five different test cases. Based on data from Eurostat, the baseline prediction (titled 

"Base") by the model is supplemented by measuring the additive effectiveness of seven macro 

variables in isolation: current health spending (HEAL), domestic private sector credit (DCPS), exports 

of goods and services (EXGS), economic output per capita (GDPC), gross fixed capital formation 

(GFCF), inflation (INFD), and trade (TRAD). In Case 1, the final prediction of 28.210 represents 

modest improvement from the baseline of 26.351, courtesy of mostly positive marginal effects from 

GFCF (+4.913) and HEAL (+2.395), implying that investment and government spending on health 

facilitate AI takeoff. This is, in turn, nearly reversed by large negative marginal effects from DCPS (–

6.413) and TRAD (–1.041), meaning poor access to finance and low integration in external markets 

cut down on the prospects of AI diffusion, despite other encouraging circumstances. These are in 

accordance with findings by Okoye (2023), who demonstrates how underinvestment in institutional 

infrastructure such as education critically degrades the explicative power of machine learning models 

in the presence of systemic financing restrictions. The more stable economic profile in Case 2 results 

in a final prediction of 33.490, where the increase is driven by HEAL (+2.969), GFCF (+3.040), and 

INFD (+1.839), and other variables have little marginal effect. The single negative marginal 

contribution of note is from DCPS (–1.807), implying some financial constraint but otherwise robust 

economic fundamentals supporting the uptake of AI. The inflation effects observed are also in 

accordance with results from Maccarrone, Morelli, and Spadaccini (2021), who highlighted that 

macro volatility—where moderate and reliable—is supportive of innovation since it sends the 

message of a dynamic and growth-oriented setting. Case 3 possesses very poor macro fundamentals 

and is characterized by large drops from the baseline, with a forecast of ALOAI equal to 15.690. This 

is characterized by large negative marginal effects from DCPS (–8.334) and GFCF (–5.020), which 

imply low financial flexibility and underdevelopment of assets. These patterns substantiate the 

sensitivity of KNN prediction models to internal economic structure and capital restrictions, as seen 

in Wang et al. (2024), wherein enhanced KNN models in stock prediction highlighted the pivotal role 

of economic input variables on model variance stability and accuracy (Figure 1).  

 

Figure 1. K-Nearest Neighbors (KNN) Regression Performance: Predicted vs. Observed Values and Error by 

Number of Neighbors. 

While minor positive effects are triggered by EXGS (+0.658), HEAL (+0.334), and TRAD (+1.182), 

these are insufficient to balance the overall downward pressures, such that this economy is not in 

favorable position to be undergoing technological transformation. Case 4 is more nuanced: although 

its final estimate of 23.030 is slightly below the base, under the influence of downward pulls of HEAL 

(–2.654), GFCF (–8.331), DCPS (–5.391), and GDPC (–0.204), the large positive influence of TRAD 

(+9.229) and INFD (+2.877) provides partial alleviation. This suggests an economy with poor home 

investment but superior international integration, with international trading dynamics providing 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 June 2025 doi:10.20944/preprints202506.0701.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0701.v1
http://creativecommons.org/licenses/by/4.0/


 15 of 33 

 

partial alleviation from internal weaknesses—isolated in the profile of potential emerging market 

with selective digital development. These tendencies are in line with those of Alayo, Iturralde, and 

Maseda (2022), who found that internationalization in weak structural contexts can improve 

innovation performance, especially where organizational form is flexible. Case 5 is a self-evident 

exception, with the highly boosted ALOAI prediction of 66.220 being a large, better-than-base 

departure. This is supported by very strong support from all of GFCF (+18.006), DCPS (+15.768), 

GDPC (+2.582), EXGS (+1.517), TRAD (+5.173), and INFD (+1.513), except from HEAL (–4.690), such 

that in this case, perhaps government spending priorities are unbalanced. In any event, it is well and 

truly outgunned by the pro-innovation influences of the other variables. In each case, some 

consistencies are evident: both GFCF and DCPS are always the largest in magnitude variables, with 

very elevated levels of investment having greatest impact on disclosed use of AI, and negative levels 

of credit having greatest depressing influence. TRAD always contributes constructively inasmuch as 

it is strong, such that international integration is clearly an important facilitatory factor of AI 

diffusion. INFD, although traditionally viewed as risk factor, is found to be used here as euphemism 

of managed economic expansion in support of investing in AI under certain assumptions. This is 

consistent with new work by Benigno et al. (2023) and Stokman (2023), in which it is illustrated that 

inflation—is it certain and anchored—can be used as evidence of favorable investment environments 

and not economic chaos. Accordingly, Erdoğan et al. (2020) verify the complexity of inflation 

dynamics in crisis periods (like COVID-19), with warnings to broad assumptions of all inflation 

harming innovation. GDP per capita has weak and mixed effects, such that aggregated wealth is not 

in itself highly determinant of technological adoption by enterprises. In similar veins, health 

expenditures are found to have mixed effects, beneficial in some settings and negative in others, and 

perhaps depending on whether such spending complements or crowds out innovation funding. In 

conclusion, these additive explanations reveal that the adoption of AI is driven less by overall 

economic prosperity and more by the structural investment makeup, degree of exposure to 

international trade, and access to finance. Countries wishing to expand enterprise-level adoption of 

AI need to therefore prioritize policies increasing productive capital formation, securing strategic 

access to credit, and further integration into world markets. These results also highlight the 

usefulness of interpretable machine learning techniques in policy design, in which knowing the 

specific impact of individual variables can facilitate more optimal intervention design than black-box 

prediction. Overall, the KNN-based additive explanation model uncovers the subtle and setting-

specific interaction between macroeconomic circumstance and dispersion of AI, and offers evidence 

from data to support ongoing progress towards digital transformation in Europe. 

6. Evaluating Clustering Algorithms for AI Adoption Analysis in the EU: A 

Multimetric Approach 

To assess relative performance of various clustering techniques in capturing large European 

Union firm artificial intelligence (AI) adoption patterns, standardized evaluation measures were 

employed to assess six different algorithms, including Density-Based, Fuzzy C-Means, Hierarchical, 

Model-Based, Neighborhood-Based, and Random Forest clustering. These measures—ranging from 

explanatory power (R²) to statistical efficiency (AIC, BIC), from measures of geometric cohesion 

(Silhouette Score, Dunn Index) to cluster structure (Entropy, Maximum Diameter, Calinski-Harabasz 

Index)—allow the relative merits and demerits of each algorithm to be assessed in detail. The aim of 

this is to identify the algorithm that best achieves balance between model fit, interpretability, and the 

geometric integrity of the resulting clusters and thereby offers the best of all possible instruments to 

analyze AI diffusion along macroeconomic patterns (Table 6).  

Table 6. Comparative Evaluation of Clustering and Classification Algorithms Across Multiple Performance 

Metrics. 

Metric 
Density-

Based 
Fuzzy C-Means Hierarchical Model-Based Neighborhood-Based 

Random 

Forest 
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R² 0.000 0.147 0.689 0.507 1.000 0.615 

AIC 1.000 0.767 0.000 0.368 0.000 0.288 

BIC 1.000 1.157 0.000 0.925 0.000 0.395 

Silhouette 1.000 0.000 0.692 0.115 0.346 0.115 

Max Diameter 0.000 1.000 0.517 0.000 0.000 0.001 

Min Separation 1.000 0.000 0.334 0.218 0.192 0.222 

Pearson's γ 1.000 0.347 0.724 0.492 0.574 0.317 

Dunn Index 1.000 0.000 0.862 0.231 0.692 0.269 

Entropy 0.000 1.000 0.730 0.001 0.000 0.002 

Calinski-Harabasz 0.000 0.675 1.000 0.015 0.065 0.028 

Comparison of six clustering techniques—Density-Based Clustering, Fuzzy C-Means 

Clustering, Hierarchical Clustering, Model-Based Clustering, Neighborhood-Based Clustering, and 

Random Forest Clustering—has different performance profiles on various standardized evaluation 

measures. These measures are R², AIC, BIC, Silhouette Score, Maximum Diameter, Minimum 

Separation, Pearson’s Gamma, Dunn Index, Entropy, and the Calinski-Harabasz Index, all 

standardized to between 0 and 1 to enable direct comparison. The objective of the analysis here is to 

identify the algorithm with the best balance between statistical quality and geometrical clustering 

quality. Beginning with R², which is the ratio of the amount of the variance in the data that is 

explained by the clustering model, to the total amount of variance in the data, we have the best 

possible score by Neighborhood-Based Clustering, reflecting excellent explanation of data. 

Hierarchical Clustering is next with the best possible score, followed by moderate scores from 

Random Forest Clustering. Lower in the ranks are Model-Based and Fuzzy C-Means, and lowest in 

the ranks is Density-Based Clustering, implying failure to explain the data’s variance structure. These 

are in line with the observations by Sarmas, Fragkiadaki, and Marinakis (2024), who highlighted the 

superiority of ensemble and neighborhood-aware clustering to capturing subtle consumer behavior 

to be used in demand response in transport systems. With regards to criteria in selecting models such 

as the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC), measuring 

both the goodness of fit and the complexity of models, Hierarchical Clustering and Neighborhood-

Based Clustering get the best possible scores, implying optimal performance. In turn, Density-Based 

Clustering and Fuzzy C-Means get the worst possible scores, implying low efficiency of the models 

and possible overfit or lack of parsimony. When comparing the Silhouette Score, which is how similar 

an object is to its own cluster in contrast to other clusters, we have the best possible score by Density-

Based Clustering, implying forming well-separated and well-defined clusters. Hierarchical 

Clustering is next best, followed by moderate cohesion by Neighborhood-Based Clustering. Fuzzy 

C-Means, Model-Based, and Random Forest get poor scores in this dimension, meaning that their 

cluster boundaries are not well defined. These findings are in line with general trends found in 

comparative clustering research such as that of Thamrin and Wijayanto (2021), who illustrated 

different kinds of performance trade-off between soft and hard clustering models based on the data 

structure and population homogeneity. 

Looking in particular at Maximum Diameter, which measures the greatest intra-cluster distance 

and ideally would be minimized, Model-Based Clusters, Density-Based Clusters, and Neighborhood-

Based Clusters exhibit the tightest clusters with the lowest diameters. Conversely, Fuzzy C-Means 

measures the largest value, reflecting large and perhaps poor clusters. This trend is in line with the 

application of clustering observed in Elkahlout and Elkahlout (2024), wherein spatial clustering of 

groundwater wells necessitated diligent consideration of intra-cluster variability to obtain 

meaningful geographic boundaries. Hierarchical Clusters and Random Forest Clusters are in the 

middle of the spectrum. Minimum Separation, which is the measure of the minimum distance 

between cluster centers and optimally would be large, positions Density-Based Clusters on top, with 

excellent cluster separation. Hierarchical Clusters perform in the middle, and while Neighborhood-

Based Clusters scores low, this is perhaps suggestive of overlapping or close clusters. Fuzzy C-Means 

ranks lowest, further evidence of the former's poor intra- and extra-class definability. Pearson’s 

Gamma, reflecting data distance correlations with cluster assignments, places Density-Based Clusters 
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in top position, with Hierarchical Clusters and Neighborhood-Based Clusters performing reasonably 

well. Random Forest and Fuzzy C-Means are lowest on this list, and imply poor spatial 

correspondence. Dunn Index, which integrates both the cluster compactness and separation and 

serves as a strong measure of overall cluster quality, yet again positions Density-Based Clusters on 

top, with Hierarchical Clusters and Neighborhood-Based Clusters immediately in second and third 

positions. This measure is in keeping with observations from Silhouette, Separation, and Pearson’s 

Gamma. Fuzzy C-Means and Model-Based Clusters lag behind, reflecting poor intra-class 

compactness and inter-class distinctness. This is consistent with observations by Da Silva, Melton, 

and Wunsch (2020), who highlighted the importance of dynamic and incremental measures of 

validity to rank hard partitioning techniques, particularly where clusters undergo changes or update 

in the online setting. Entropy, reflecting here the degree of disorder or randomness in cluster 

assignments and optimally would be low, further penalizes Fuzzy C-Means, which measures the 

greatest value, and suggests overlapping and noisy clusters. In contrast, Density-Based Clusters, 

Neighborhood-Based Clusters, and Model-Based Clusters obtain the lowest entropies and more 

ordered cluster assignments. These findings confirm the warning uttered by Gagolewski, Bartoszuk, 

and Cena (2021) that cluster validity indexes can differ in significant ways between and among 

different algorithms and are best interpreted in their specific contexts and not comparatively in 

isolation. Lastly, the Calinski-Harabasz Index, the variance ratio measure that penalizes low between-

cluster and within-cluster dispersion, ranks Hierarchical Clustering in first position, and Fuzzy C-

Means next. This is partially at odds with the rest of the measures but suggests that Hierarchical 

Clustering works exceptionally well if viewed from a variance-based dimension. On this measure, 

the lowest rank is occupied by Density-Based Clustering and it is possible to speculate that although 

spatially well-defined, such clusters will not meet traditional expectations of statistical variance—a 

difference expressing the model-agnostic findings highlighted by Sarmas, Fragkiadaki, and 

Marinakis (2024) in their research on explainable ensemble clustering on the modeling of complex 

systems. 

Together, the results demonstrate that no algorithm excels the rest on all measures but that 

different patterns are clear. Density-Based Clustering behaves well in clustering quality in terms of 

geometry with leading scores in measures of structure, separation, and coherence such as Silhouette 

Score, Dunn Index, Pearson’s Gamma, and Minimum Separation. These findings are in line with 

those of Auliani, Novita, and Afdal (2024), who demonstrated the superiority of the former in 

creating well-separate clusters in car sales data, especially in the data with noise. But the weak 

behavior of Density-Based Clustering in statistical measures such as R², AIC, BIC, and Calinski-

Harabasz Index identifies it as lacking in explanation and statistical efficiency in pursuit of robust 

model-based inference. Hierarchical Clustering, on the other hand, has top-performing overall 

behavior with top ratings in R² and Calinski-Harabasz coupled with decent performance in structural 

measures such as Dunn Index and Pearson’s Gamma. This is in line with findings by Azkeskin and 

Aladağ (2025), who viewed hierarchical clustering to be effective in identifying regional energy 

patterns with statistical cohesiveness. Hierarchical Clustering is thus found to be a balanced 

algorithm with the potential to produce statistically sound and geometrical meaningful clusters. 

Neighborhood-Based Clustering has the best statistical profile with leading results in R², AIC, and 

BIC and decent results in diameter, entropy, and compactness. It does not have the lead in measures 

of geometrical separation, but is strong enough on all sides to be a serious runner. The balanced 

statistical foundation and decent structure of the models provide it with the potential to bridge the 

gap between interpretability and performance. Random Forest Clustering is found in the middle 

ground with decent behavior in all sides except in excelling in any specific area. Similarly, Model-

Based Clustering has mixed results with some decent statistical behavior but poor geometrical cluster 

properties—a trend observed by Ambarsari et al. (2023) in comparing fuzzy versus probabilistic 

clustering methods in population welfare segmentation. Fuzzy C-Means Clustering, on the other 

hand, performs mixed results on nearly all measures, especially in terms of cohesion, separation, 

entropy, and statistical fit. This is consistent with findings by Sarmas, Fragkiadaki, and Marinakis 
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(2024), who demonstrated fuzzy clustering methods to be lacking in situations where clear 

delineation and strong interpretability is needed. Considering all of these findings collectively as a 

whole, Neighborhood-Based Clustering is the best performer overall. Its balance of strong statistical 

fit, computational efficiency, simple cluster shape, and moderate but sufficient structural 

preservation makes it the best overall and most consistent algorithm to use to cluster in this context. 

While Density-Based Clustering generates well-separate and spatially coherent clusters, the lack of 

statistical stability decreases the utility of this algorithm in contexts that require both interpretability 

and inferability. Hierarchical Clustering is still another strong option, particularly under the 

application of the use of variance-based measures or hybrid approaches. Ultimately, whichever 

algorithm to employ would best be dictated by the specific aims of the analysis—whether statistical 

explanation, geometric simplicity, and/or implementation ease is of utmost importance. But with the 

application of the normalization measures here, Neighborhood-Based Clustering provides the best 

overall and strongest balance of performance in all of the measures of evaluation (Table 7). 

Table 7. Cluster Characteristics and Centroid Profiles. 

Cluster 1 2 3 4 5 6 7 

Size 2 25 35 6 58 24 1 

Explained proportion within-cluster heterogeneity 0.010 0.187 0.182 0.003 0.384 0.234 0.000 

Within sum of squares 3.089 60.513 58.997 0.926 124.420 75.809 0.000 

Silhouette score 0.584 0.265 0.334 0.894 0.346 0.164 0.000 

Center ALOAI 0.018 1.407 0.018 0.693 -0.837 0.379 -0.527 

Center HEAL -0.897 0.762 0.797 -1.533 -0.739 0.390 -2.450 

Center DCPS -1.156 1.512 0.415 0.849 -0.826 -0.277 -0.576 

Center EXGS 1.653 -0.453 -0.741 3.619 -0.131 0.857 -0.747 

Center GDPC 1.809 0.907 -0.095 2.933 -0.821 0.326 -0.814 

Center GCFG 5.168 0.365 -0.588 -1.215 0.157 -0.130 2.406 

Center INFD -0.504 -0.080 -0.320 -0.191 0.167 -0.191 10.237 

Center TRAD 1.693 -0.512 -0.776 3.579 -0.074 0.837 -0.714 

Note.  The Between Sum of Squares of the 7 cluster model is 876.25. Note.  The Total Sum of Squares 

of the 7 cluster model is 1200. 

Clustering outcomes here, based on macroeconomic indicators, attempt to provide explanations 

of patterns of adoption of artificial intelligence (AI) technologies—reflected in ALOAI—among large 

EU companies in different industrial and country contexts. Such explanation is based on 

standardized macroeconomic indicators such as current health expenditures (HEAL), domestic credit 

to the non-financial sector (DCPS), exports (EXGS), GDP per capita (GDPC), gross fixed capital 

formation (GFCF), inflation (INFD), and trade openness (TRAD). Derived clusters of seven are quite 

dissimilar in size, within-cluster homogeneity/similarity, and silhouette score, reflecting great 

heterogeneity in how macroeconomic environments are related to adoption of AI among European 

countries. Cluster 5 is the largest (n = 58), and with moderate within-cluster heterogeneity proportion 

(0.384), reasonably large within-cluster sum of squares (124.42), and moderate silhouette (0.346). 

Rather strikingly, it has negative ALOAI center of –0.837, reflecting below-average use of AI despite 

containing the largest number of countries. Its economic profile of uniformly negative or near-zero 

on salient variables such as GDP per capita (–0.821), domestic credit (–0.826), and trade openness (–

0.074) reflects countries that are perhaps economically constrained, locked into traditional systems, 

or less integrated with the world, and lag behind on spread of AI. This is consistent with Popović, 

Todorović, and Milijić (2024), who illustrate how adoption of AI is positively linked with circular use 

of material and innovation-driven economies—factors which Cluster 5 countries could be lacking. 

Furthermore, Brey and van der Marel (2024) suggest the strategic role of human capital in enabling 

the integration of AI, and that Cluster 5 underperformance can also be traced to educational 

infrastructure and digital preparedness deficits. On the opposite side, Cluster 2, among better-

defined clusters (n = 25, var. exp. 0.187), is characterized by very-high ALOAI center of 1.407, 

reflecting above-average enterprise level use of AI. Its macroeconomic profile of strong GDP per 
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capita, moderate management of inflation, and healthy and favorable levels of both domestic and 

external credit and trade reflect dynamic economies. Such countries are also bound to be privileged 

with more developed financial and strategic digital systems and more exposure to international 

markets and innovation systems. Czeczeli et al. (2024) note that such countries are more likely to be 

resistant to inflation and policy flexible—two properties that foster economic stability and support 

investment in AI (Figure 2). 

 

Figure 2. Pairwise Scatterplot Matrix of Standardized Macroeconomic Variables by Cluster. 

Their economic profile is comprised of favorable values on nearly all of the indicators, with 

special characteristics including strong home credit (1.512), moderate exports (–0.453), and 

respectable GDP per capita (0.907). Such a cluster is expected to be comprised of developed, mid-

sized EU economics with stable access to capital and balanced external trade profiles that support 

moderate to high AI adoption. Such findings are supported by Bosna et al. (2024), who used 

clustering and ANFIS analysis to reveal macroeconomic balance to be the primary determinant of 

supporting growth and innovation following eurozone membership. Cluster 6 is small (n=24) but 

shares comparable structural characteristics with Cluster 2 with the exception of low ALOAI centre 

(0.379), meaning that, although macroeconomic fundamentals are reasonably favorable such as 

health spending (0.39), trade openness (0.837), and exports (0.857), other variables such as labor 

market rigidity, policy gaps, or low industrial digital maturity are likely to curb AI diffusion. These 

structural barriers are likely to be symptomatic of institutional preparedness challenges as discovered 

in the regression EU inflation study of Czeczeli et al. (2024), where clustering untangled different 
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preparedness profiles to economic shocks. Cluster 3 is the largest low-ALOA cluster with large 

silhouette score (n = 35, silhouette = 0.334, ALOAI = 0.018). It has marginally positive health and credit 

indicators but negative exports (–0.741), trade openness (–0.776), and GDP per capita (–0.095), 

signifying internal economic development with minimal external market integration. Such findings 

are in consonance with observations by Arora et al. (2024), who showed by correlation and clustering 

that macroeconomic groupings of variables tend to divide along lines of internal vs. external 

orientation with implications on preparedness to innovate. Cluster 4 is small (n = 6) but is different 

in having high silhouette score (0.894) and above-mean ALOAI (0.693). It is marked by exceptionally 

strong exports (3.619), trade openness (3.579), and very high GDP per capita (2.933) but poor health 

spending (–1.533) and GFCF (–1.215). This is indicative of a group of high-income, export-dependent 

economies where dynamism of the private sector is capable of compensating poor public investment 

and infrastructure in health. Such configurations are representative of those influenced by industrial 

competitiveness rather than by institutional support, and also by Merkulova and Nikolaeva (2022) 

within their cluster membership of EU taxes indicators and fiscal capacity. Cluster 1, small in number 

(n = 2), has highly elevated measures of GDP per capita (1.809), trade (1.693), exports (1.653), and 

GFCF (5.168), but with very low health spending (–0.897) and domestic credit (–1.156). ALOAI is flat 

(0.018), inferring under-adoption of AI due to underdeveloped policy ecosystems or mismatch 

between financial and innovation systems. Nenov et al. (2023) see similar mismatch in their neural 

model predictions, noting how successful economies have low innovation outcomes if institutional 

or behavioral factors are not appropriately in balance with structural capabilities. Cluster 7 includes 

the extreme dataset in isolation, with highly elevated inflation (10.237) and negative scores in credit, 

GDP per capita, and trade. Its negative ALOAI (–0.527) is evidence of systemic economic volatility 

and infers best to be interpreted as representing simply an extreme (outlier) or abnormal 

macroeconomic regime not reflecting wider tendencies. Such extremes are in support of the 

application of unsupervised clustering analysis to reveal macroeconomic outliers, as previously 

demonstrated in multidimensional cluster research such as Bosna et al. (2024) and Czeczeli et al. 

(2024). 

 

Figure 3. Cluster Membership Visualization in Two-Dimensional Projection with Case Labels. 

Conversely, the least adopter clusters (Clusters 5 and 3) are characterized by poor access to 

finance, low productivity, and low international integration. This is in line with the cross-EU country 

analysis by Popović et al., which revealed how extremely sensitive AI adoption is to material use 
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strategies and economic environment, especially in environments with restricted access to material 

inputs. The evidence supports the suggestion that economic sophistication, access to finance, and 

external orientation (through exports and international trade) are positively associated with AI 

adoption in large enterprises. There are exceptions, though—like Cluster 1's very macro indicators 

with low adoption and Cluster 4's external orientation and high GDP with low public spending—

highlighting that economic factors are not sufficient to secure innovation adoption. Rather, as 

emphasized by Uren & Edwards (2023), organizational maturity and technology readiness mediate 

the role. Preparedness of the institution, sector patterns, and the prevailing digital cultural 

environment mediate crucially whether economic slack is turned into technological adoption. Such 

influences are evidenced in the work by Kochkina et al. (2024), who found that industry-specific 

strategic fit, enhanced by sector-matched application of AI and preparedness assessments, plays an 

influent role in shaping successful integration of AI—even within technologically developed 

environments. The silhouette scores also verify the heterogeneity of these clusters. Cluster 4, with a 

score of 0.894, is the internally best-coherent cluster and is marked by stable and replicable profile 

features—i.e., distinct macro indicators and adoption of AI. Cluster 2 and Cluster 6, on the other 

hand, although prospective in economic orientation, have poor silhouette scores, exemplifying more 

internal heterogeneity and perhaps more intricate dynamics. Cluster 5 and Cluster 3, although with 

the number of entities, are low-adopting domains and require targeted intervention in policy. Such 

clusters are likely to enjoy the greatest benefits from strategic intervention in the form of targeted 

investment in infrastructure; digital skills and education programs; and international 

competitiveness-enhancing programs. In essence, such cluster analysis reveals that large EU firm 

adoption of AI is positively associated with access to financing, external orientation, and GDP per 

capita, though they are not determinant factors. Institutional power, technological readiness, and 

strategic fit—through and especially public-private investment systems—are essential to the 

macroeconomic levers' translation into successful digital transformation. 

Table 8. Cluster Centroids for Standardized Macroeconomic Variables. 

 ALOAI HEAL DCPS EXGS GDPC GCFG INFD TRAD 

Cluster 1 0.018 -1.156 1.653 5.168 1.809 -0.897 -0.504 1.693 

Cluster 2 1.407 1.512 -0.453 0.365 0.907 0.762 -0.080 -0.512 

Cluster 3 0.018 0.415 -0.741 -0.588 -0.095 0.797 -0.320 -0.776 

Cluster 4 0.693 0.849 3.619 -1.215 2.933 -1.533 -0.191 3.579 

Cluster 5 -0.837 -0.826 -0.131 0.157 -0.821 -0.739 0.167 -0.074 

Cluster 6 0.379 -0.277 0.857 -0.130 0.326 0.390 -0.191 0.837 

Cluster 7 -0.527 -0.576 -0.747 2.406 -0.814 -2.450 10.237 -0.714 

The data analysis of the result of the implementation of the K-Nearest Neighbors (KNN) 

clustering algorithm on the set of macroeconomic and financial variables provides insightful 

observations regarding the patterns of artificial intelligence (AI) adoption—through the ALOAI 

indicator—among large enterprises (250+ staff) with European Union economies. Not accounting for 

agriculture, mining, and finance, the ALOAI indicator records the proportion of enterprises utilizing 

any of the AI technologies such as machine learning or recognition of images. The standard variables 

on which the clustering is performed are current health spending (HEAL), domestic credit to the non-

financial sector (DCPS), exports of goods and services (EXGS), Gross Domestic Product (GDP) per 

capita (GDPC), gross fixed capital formation (GFCF), inflation (INFD), and trade openness (TRAD). 

The seven cluster centroids represent the average standardized figures of each of the variables from 

the member countries. Cluster 2 is characterized by the greatest ALOAI indicator (1.407), which 

validates strong adoption of AI by its constituents. This cluster records high-availability credit (DCPS 

= 1.512), significant health spending (HEAL = 1.512), robust GDP per capita (GDPC = 0.907), and 

robust investment in capital formation (GFCF = 0.762). Despite slightly low values in exports and 

trade, the economies' internal resilience regarding infrastructure, investment, and access to finance 

seems to be adequate to facilitate digital transformation. The observed patterns are consistent with 
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Iuga & Socol (2024), who emphasize how readiness in the use of artificial intelligence and preventing 

brain drain are inextricably connected with institutional investment and availability of finance. That 

such uptake is observed in the cluster suggests collaboration of macroeconomic stability, investment 

in the provision of social services, and financial capability to produce technological innovation, 

regardless of whether they have macroeconomic orientation towards international trade. This 

supports arguments in Czeczeli et al. (2024), who observe that economic resilience and 

preparedness—especially in situations of macroeconomic volatility—are intricately ingrained in the 

fiscal and lending architecture of a nation. Cluster 4 also features the ALOAI indicator with a high 

score (0.693), although with differences in the economic profile. It features the highest levels of 

exports (EXGS = 3.619) and trade openness (TRAD = 3.579), as well as the highest level of GDP per 

capita (GDPC = 2.933). On the contrary, it features low health spending (HEAL = –1.533) and negative 

capital formation (GFCF = –1.215), reflecting low investment in public infrastructure or long-term 

assets. This reflects that economic models are based on private-sector dynamism, high 

competitiveness, and international integration. As the analysis by Papagiannis et al. (2021) of 

intelligent infrastructure and public-private preparedness in Eastern Europe reveals, robust adoption 

of AI is even possible in market-exposure and innovation-pressure-driven systems lacking public 

investment. Cluster 6 features an ALOAI of moderate magnitude (0.379) and is a mixed-transitional 

group. It features mixed signs, with positive values of credit availability (DCPS = 0.857), modest 

health spending (HEAL = –0.277), and robust trade openness (TRAD = 0.837), but other factors are 

near- or slightly below-average. The profile identifies emerging and converging economies that have 

the macroeconomic fundamentals of digital transformation but have not yet translated them into 

elevated levels of AI adoption. As Iuga & Socol (2024) highlight, such economies tend to require 

stronger institutional infrastructure, targeted policy instruments, and brain drainage countermasures 

to leverage their AI preparedness more effectively. Additionally, workforce competences and 

support structures of innovation may not yet be fully compatible with the demands of digital 

transformation. Cluster 3, with very low ALOAI (0.018), is characterized by the economic profile of 

structural weakness. While it features modest health and credit indicators, it features clearly negative 

values of exports (–0.741), trade (–0.776), and GDP per capita (–0.095). This reflects underdeveloped 

and weakly integrated economies into international markets, with low external exposure and low 

national income levels that heavily hamper technological diffusion. These findings are corroborated 

by Guarascio et al. (2025), who illustrate that regional heterogeneity in exposure to AI and 

employment is disproportionately driven by macroeconomic underdevelopment and sectoral 

inflexibility. Even with some government investment in health and/or credit, structural weaknesses 

prevent firms from rolling out cutting-edge technologies on large scale. Cluster 5 has the lowest 

ALOAI score (–0.837), and it is characterized by very weak digital transformation. The economic 

indicators are unambiguously negative or low on average, such as GDP per capita (–0.821), 

availability of credits (–0.131), low health spending (–0.826), and low capital formation (–0.739). These 

economies are presumably faced with several systemic barriers—economic, institutional, and 

infrastructure—that severely impinge on the capabilities of businesses to access digital instruments 

and invest in AI technologies. As demonstrated by Rađenović et al. (2024) from their cluster analysis 

of eco-innovation, such underdevelopment is typically an indicator of overall policy inertness and 

poor coordination of innovation ecosystems. In the absence of targeted fiscal measures, support to 

private sector digitalization, and inclusion into EU innovation policies, these economies are unlikely 

to escape low adoption equilibria. 
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Figure 4. Cluster-Wise Standardized Means of Macroeconomic Variables with Error Bars. 

Cluster 1 is an intriguing and educational example in which a low ALOAI (0.018) is found with 

exceptionally favorable macroeconomic indicators. It is the best performer in GDP per capita (1.809), 

exports (1.653), and trade integration (1.693), and in gross fixed capital formation (GFCF = 5.168), 

reflecting a structural wealth and integration profile. But it also manifests stark weaknesses in health 

spending (HEAL = –0.897) and access to credit (DCPS = –1.156). Such dualities imply that 

macroeconomic prosperity is not in itself enough to provide successful AI adoption. As Uren & 

Edwards (2023) contend, organisational preparedness in the form of digital competency, strategic 

alignment, and institutional flexibility is paramount in converting advantageous macro settings into 

innovation results. Likewise, Baumgartner et al. (2024) note the requirement of essential digital 

capabilities and transformation competencies on the firm level, which in turn might be scarce even 

in ostensibly prosperous economies. Hence, the example of Cluster 1 serves to illustrate that the 

diffusion of AI is demonstrably dependent on the convergence of financial accessability, institutional 

backing, and technological preparedness. Cluster 7 consists of a single extreme outlier. It is 

characterized by anomalously high inflation (INFD = 10.237) and negatively skewed values on all of 

the remaining indicators, including GDP per capita, access to credit, and international integration. 

The attendant negative ALOAI (–0.527) reinforces the hypothesis that macro dysfunction generates a 

setting hostile to digital innovation. Such settings are typically associated with brain drain (Iuga & 

Socol (2024)), policy ambiguity, and low institutional capability, which together constitute a feedback 

cycle of suboptimality in AI preparedness. Here, any push to support the adoption of AI would not 

be merely about altering digital policy, but macroeconomic stabilization. Cluster 7 is thus best 

interpreted as structural abnormality, and presents in itself a cautionary reminder of technological 

transformation's foundational prerequisites. 

7. Aligning Macroeconomic Policy with AI Adoption: Strategic Priorities for the 

European Union 

The quantitative analysis of macroeconomic drivers of adoption of AI by large enterprises in 28 

European Union member states from the years 2018 to 2023 provides rich lessons of policy to facilitate 

digital transformation. Based on both the use of both econometric panel models and on machine 

learning techniques including KNN, they support the multidimensionality and complexity of AI 

diffusion in institutional, economic, and technological contexts. Most notably, they illustrate how 

macro indicators such as GDP per capita, inflation control, and ease of access to credit are important 

inputs but cannot implement integration of AI on their own. Instead, such inputs need to be 

supplemented by strategic fit with institutional capacity, sector maturity, and organization 

preparedness. As emphasized by Agrawal, Gans, and Goldfarb (2021), adoption of AI is not about 

accessing technology—it in many cases involves organizational and sector transformation of the 

entire machinery with policies of adaptive nature going beyond the use of classic economic levers. 

Perhaps the best evidence is between health spending and adoption of AI. This points to the fact that 

public health spending supports not only the evolution of human capital but institutional maturity 

as well, both of which are key requisites to uptake. In that regard, European Journal of Public Health 

(2024) identifies public health modernization and digital innovation as inseparable policies that need 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 June 2025 doi:10.20944/preprints202506.0701.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0701.v1
http://creativecommons.org/licenses/by/4.0/


 24 of 33 

 

to be reconciled with in national policies, and more so with systemic shocks such as the COVID-19 

crisis. Rather than regarding them as two distinct policy arenas, digital transformation and social 

infrastructure need to be conceptualised in integrated national plans. This argument is favorable to 

the hypothesis that an overall plan of development with investment in education, health, and digital 

capability is more efficient than single innovation policies. That is to say, adoption of AI is more 

effective in those settings where societal development and digital transformation are in want in 

tandem. This argument is supported by Übellacker (2025), who presents evidence regarding 

perceptions of shortages of AI by individuals, particularly by underprepared institutions, to in turn 

impact preparedness despite overall economic resilience. EU policymakers thus need to use 

instruments like the Recovery and Resilience Facility to balance macro-financial planning with such 

technological ambitions. As evidenced with Kochkina et al. (2024), sector digital maturity and 

leadership initiative are determinant in the translation of congenial macro environments to 

technological implementation. Secondly, evidence of negative correlation between banking sector 

credit to the home country's private sector and adoption of AI requires more specific analysis of 

financial allocation and policy design. In orthodox theory, access to finance is meant to stimulate 

technological progress. However, evidence from the data suggests otherwise. A plausible 

explanation is in the form of misallocation of capital with financial funds redirected into low-tech or 

traditional sectors not related to innovation. As demonstrated by Criste, Lupu, and Lupu (2021) in 

their analysis of the consistency of the credit cycle, structural inefficiencies and asynchronous 

dynamics of euro area credit will be a barrier to the effective use of available financial funds to 

growth-enhancing sectors. Beyond this divergence, this is also symptomatic of institutional bias in 

lending patterns or underdevelopment of systems of finance innovation. To be able to effectively use 

financial liquidity to finance AI development, policymakers need to redirect credit and capital flows 

to innovation sectors and startups, in the form of instruments like AI-specific guarantees, innovation 

funds, or blended finance platforms. As demonstrated by Ferraro, Männasoo, and Tasane (2023), 

intervention by the public sector in the form of EU Cohesion Framework on R&D and innovation has 

measurable impacts on SME productivity, employment, and exports—highlighting the potential of 

targeted finance in raising digital competitiveness. 

Third, the uniformly negative coefficients attached to exports of goods and services in both fixed 

and random effects models indicate the existence of structural inertia in economies heavily 

dependent on traditional export bases. Such economies might be prone to path dependency, in which 

incumbent sectors resist digital disruption in order to protect existing comparative advantages. 

Consistent with results by Dudzevičiūtė (2021), such exports are observed to contribute to aggregate 

economic growth, yet only if their composition matters—standardized, low-tech exports are found 

to stifle innovation-driven transformation unless they are combined with digital capabilities. To get 

beyond such barriers, “smart specialization” is required. These entail coordinating industrial policy 

to be in accordance with digital innovation ecosystems, such that traditional export bases are able to 

transform by incorporating AI and associated technologies into production and service provision. 

Incentivizing exporters to upgrade from commoditized to technological and data-driven output 

assures digital transformation is not simply in parallel, yet rather ingrained within export-oriented 

growth models. Conversely, trade openness is found to have a strong, positive impact on AI 

adoption, reinforcing the proposition that economies with increased integration into the world 

economy are more likely to innovate more intensively. As illustrated by Marčeta and Bojnec (2023), 

trade openness is a key driver of world competitiveness and convergence among EU economies. It 

provides knowledge spillovers, raises competitive pressure, and allows access to new technologies—

all of which serve as drivers of enterprise-level AI integration. EU external and internal policies are 

thus required to transform beyond providing tariff-free market access and instead integrate digital 

standards, intellectual property rights, and cross-border data protocols into bilateral and multilateral 

trade agreements. In addition, these external measures need to be backed by internal policies 

facilitating both SMEs and large corporates to take advantage of innovation opportunities generated 

by trade by investing in digital infrastructure, engendering cross-border digital preparedness, and 
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advancing governance cohesiveness throughout the single market. Notably, although frequently 

employed as a measure of national wealth, GDP per capita is found to have only marginal influence 

in the KNN-based importance assessments below both goods and health expenditure. The evidence 

here implies economic prosperity is not enough to assure digital transformation. This aligns with the 

findings of Dritsaki et al. (2023), who established that macro factors play a part in innovation but their 

influence is contingent on environmental and institutional enablers. The implication is that resource 

abundance is to be complemented by efficient allocation measures and institutional coordination in 

order to produce innovation results. 

Such evidence is supported by Costantini, Delgado, and Presno (2023), who observe 

convergence in eco-innovation in countries with institutional support and focused policy contexts. 

Applied to the adoption of AI, it is obvious that absorptive capacity, institutional quality, and 

incentives are key drivers. EU Cohesion Policy must also redirect efforts to equalize not only physical 

infrastructure in lag regions, but also assistance to administrative modernisation, skills ecosystems, 

and regulation streamlining—a basis on which to facilitate digital absorption and sustainable 

innovation. Gross fixed capital formation (GFCF) presents evidence of counterintuitive but 

statistically significant negative correlation with the adoption of AI. It is evidence with implications 

that investment in EU economies is perhaps biased in the direction of familiar tangible assets, such 

as physical infrastructure and machinery, and not intangible digital assets like AI algorithmic content, 

cloud infrastructure, or workforce skills upgrade. In Licchetta and Meyermans (2022) analysis, 

investment in the COVID-19 era remained focused on traditional capital, in particular infrastructure 

and public buildings—sectors not immediately open to digital transformation. It is evidence of 

mismatch between investment type and digital transformation aim. EU and member state fiscal 

policies thus need to redirect to stimulate capital deepening in digital and AI-related technology. 

Targeted tax incentives to the acquisition of AI software and digital R&D is one such possible avenue, 

along the lines of the argument in Morina, Misiri, and Alijaj (2024) on strategic investment incentives. 

A further step is that the EU's digital chapter in the green taxonomy has the potential to direct 

investment by the private sector to sustainable and digitally oriented outcomes, and that public 

procurement mechanisms can be re-engineered to create incentives for AI-driven innovation in 

health, public administrations, and infrastructure. The statistical influence of inflation on the 

adoption of AI is to be viewed with circumspection. Although not suggestive of direct causality, it 

can be exercising investment dynamism in moderate inflation times, and causing adaptive economic 

behavior and capital transference realism. Results in Bańkowski et al. (2023) demonstrate that in 

periods of inflation, government has the potential to adjust policies of public finance and strive to 

increase investment in innovation so as to sustain competitiveness. Thus, inflation is not inherently 

an obstacle to adoption of AI provided that macroeconomic stability is ensured and countercyclical 

digital investment is maintained. Other than these macroeconomic considerations, results of the 

clustering and machine learning results also affirm that adoption patterns of AI are not taking place 

in all structurally comparable economies. For instance, Cluster 2—where macro indicators are well-

balanced and intensive use of AI is taking place—is in contrast with Cluster 5, where access to finance 

is poor, and low trade integration and low investment in capital restrain the spread of AI. This 

difference is in affirmation of results by Usman et al. (2024), who argue that economic openness is 

required to be complemented by sectoral capacity and policy consensus in order to translate into 

results in the form of innovation or productivity growth. 

These observations require different policy approaches. Top-performing clusters need to 

concentrate on securing and leveraging competitive strengths, such as leadership in AI regulation or 

standard-setting within the EU. By contrast, underperforming clusters need institutional 

restructuring, investment in digital infrastructure, and capability development, including in skills 

related to digital competences and local ecosystems of innovation. Without such targeted support 

measures, the EU digital divide can grow deeper, imperiling Digital Europe Programme and 

European innovation strategy cohesion goals. EU coordination plays a particularly significant role in 

the digital transformation of the continent in the areas of emerging policy instruments such as the AI 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 June 2025 doi:10.20944/preprints202506.0701.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0701.v1
http://creativecommons.org/licenses/by/4.0/


 26 of 33 

 

Act, Chips Act, and the Digital Decade policy programme. These instruments need to be regarded 

not as distinct initiatives, but as complementary elements in one integrated strategy for diminishing 

digital fragmentation, enhancing technological convergence, and enhancing pan-Europe-wide 

competitiveness in AI. As described by Pehlivan (2024), the AI Act proposes to implement a risk-

analysis-based governance plan to handle artificial intelligence in member states, with provision of a 

legal support structure to facilitate trustworthy and secure AI. Analogously, Schulz, Pehl, and Trinitis 

(2024) portray the Chips Act as aiming to upgrade the semiconductor ecosystem in Europe—a key 

facilitator of enhanced use of AI and European digital sovereignty. To complement such regulation 

and investment plans, the European Commission urgently needs to put harmonisation on both 

technical and institutional levels on priority. This entails harmonising benchmarking tools for AI, like 

the ALOAI indicator, and benchmarking dashboards providing policymakers with in-real-time 

information on the adoption and readiness of regions to adopt and use AI. Such evidence-based tools 

would improve comparability, transparency, and accountability and facilitate ex-ante planning and 

ex-post policy analysis. Notably, the policy process itself can be enhanced with the help of AI-driven 

decision support. The K-Nearest Neighbors (KNN) algorithm coupled with explainable AI measures 

like SHAP values permits interpretable models of adoption drivers. As this research exemplifies, 

variables like access to finance, openness to trade, and capital formation play important roles in 

influencing enterprise-level adoption of AI. With such models-based governance, the EU can better 

design and customize intervention with much finer grained granularity, allocating funds to contexts 

in which macroeconomic alignment and readiness of the institutional infrastructure is best. But such 

application of machine learning to policy design also has to be balanced by methodological caution. 

Hazards such as overfitting, data bias, and the ecological fallacy are still paramount, especially in 

cross-country research in which structural heterogeneity is ever present. As Kezlya et al. (2024) 

indirectly note in biodiversity research, capturing the complexity of ecosystem contacts is as 

challenging as capturing the dynamics of AI uptake: systems are connected, local factors count, and 

prediction is not policy. In conclusion, Europe's shift to an economy driven by AI requires an intricate, 

multidimensional policy response. Financial measures need to be redirected to support intangible 

innovation; public spending needs to build institutional capability; industrial and trade policies need 

to unlock digital competition. Most importantly, policy design itself needs to be more adaptive, data-

driven, and evidence-based—deploying AI not merely as a research object but as an instrument of 

governance. 

8. Conclusions  

This analysis in the study presents an exhaustive understanding of the macroeconomic drivers 

of artificial intelligence (AI) adoption by big business in the European Union. With the use of an 

interactive approach of panel data econometrics and machine learning, the evidence underscores 

how adoption of AI is driven not by single factors but by the complex web of economic, institutional, 

and structural factors. The exceptionally positive correlation between health expenditures and 

diffusion of AI, for instance, suggests the likely enhancement of overall institutional and human 

capital bases to support technological advances by investing in public health systems. Similarly, the 

same way, open trade is found to be crucial in explaining adoption of AI with the suggestion that 

more integrated economies are better placed to absorb and adopt new technologies and to realize 

spillovers and competition pressures. Other findings, contrary to prevailing assumptions, undermine 

some assumptions. The seen negative correlations between domestic credit and adoption of AI and 

between gross fixed capital formation and adoption of AI suggest that financial and investment flows 

are not in and of itself supportive of digital transformation. Rather, the targeting of investment and 

credit matters more than their quantity. Credit systems with goals targeted to traditional or low-

productive areas can inadvertently inhibit technological upgrading, with investments in physical 

capital and not in intangible digital assets in turn perhaps not being effective in providing beneficial 

contexts to disseminate AI. These lessons suggest more strategic and innovation-oriented industrial 

and finance policies to redirect capital allocation in accordance with digital horizons. The findings of 
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machine learning, particularly those based on application of the K-Nearest Neighbors algorithm, 

substantiate and provide more depth and nuance to the evidence provided by the econometrics. By 

sorting macroeconomic indicators of relative magnitude, these models confirm the decisive role of 

financial access, institutional investment, and trade in explaining country heterogeneity in adoption 

of AI. Significantly, the cluster composition provides that both countries with similar macroeconomic 

profiles need not have similar adoption rates of AI. It suggests the role played by factors that are not 

quantifiable such as governance quality, institutional coordination in law and policy, and sector-

specific configurations in influencing digital readiness. Clusters with balance in macroeconomic 

fundamentals and targeted policy programs are more likely to have increased levels of adoption of 

AI, while those with structural economic vulnerabilities or institutional weaknesses always lag 

behind. Individually and collectively, evidence requires policy intervention to be multi-dimensional 

and nuanced. Moving the EU to increased adoption of AI cannot be founded on increasing aggregate 

investment or technological capability; it requires strategic interoperability of macroeconomic policy 

with digital policy, institutional resilience, and sectoral adjustment. Financial instruments have to be 

calibrated to support innovation, public investment has to be compatible with complementary digital 

programs by the private sector, and trade policies have to be employed to support technological 

upgrading. Additionally, EU-wide coordination by the likes of the AI Act and the Digital Decade is 

required to cut disparities within member states and usher in an inclusive digital transformation. 

Ultimately, adoption of AI in Europe is not merely a determinant of economic capability, but of policy 

orientation, institutional readiness, and strategic synergy. The future of the EU is based on leveraging 

macroeconomic potential into functional, targeted, and adaptive schemes that support businesses in 

innovating and competing in the international arena of AI. 
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