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Abstract

Amidst health-conscious consumption trends, functional foods rich in gamma-aminobutyric acid
(GABA) and vitamin B9 are gaining prominence. Foxtail millet, naturally abundant in these
compounds, plays vital roles in nervous system regulation, cellular metabolism, and fetal
development. In this work, we introduced hyperspectral imaging for detecting these nutrients in
millet, collecting spectral data from 190 samples across 19 varieties. Four "coarse-fine" wavelength
screening strategies were innovatively proposed: interval spectral variables initially identified
wavelengths with strong explanatory power, followed by model cluster analysis for precise
optimization. A stacked BiLSTM-Adaboost model was built for efficient prediction. Results revealed
significant variations in GABA and vitamin B9 content among varieties, offering crucial insights for
breeding and quality assessment. The GABA prediction model achieved R?=0.5421, RMSE=13.9349,
RPD=1.4778; the vitamin B9 model attained R?=0.8932, RMSE=4.6676, RPD=3.0600. This integration of
technology and methodological innovation provides a novel pathway for rapid, non-destructive
millet nutrient analysis, facilitating intelligent quality control, industry advancement, and functional
food development.

Keywords: foxtail millet; hyperspectral imaging; nutritional components prediction; feature
wavelength selection; nondestructive detection

1. Introduction

In the context of the growing popularity of the “Healthy China” concept, the public’s dietary
structure is gradually shifting from simply aiming to “fill up” to focusing on “eating well and eating
healthily”, with nutritious coarse grains increasingly gaining recognition [1]. As an important coarse
grain crop, foxtail millet occupies a central position in the dietary system of northern China [2].
Shanxi, as a major production area for small grains in China, ranks among the top in terms of foxtail
millet cultivation area. Its high-quality produce is widely loved by the public [3]. foxtail millet is rich
in carbohydrates, proteins, fats, vitamins, minerals, and various other nutrients, providing
comprehensive and balanced nutritional support for the human body [4]. Notably, it is rich in
essential amino acids that the human body cannot synthesize on its own, which gives it a unique
advantage in the content and proportion of essential amino acids. Thus, it serves as a high-quality
source of plant protein [5]. In addition, foxtail millet also contains some health-preserving
components, such as gamma-aminobutyric acid (GABA) and vitamin B9, which further enhance its
functionality and commercial value [6-8].
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In the field of nutrition and health, the content and proportion of nutrients in foxtail millet have
a significant impact on its nutritional value and health benefits [9]. The GABA and vitamin B9 it
contains are closely related to the human nervous system and metabolic functions. Specifically,
GABA, a non-protein amino acid widely distributed in microorganisms and plants and animals, has
various health benefits, including anti-diabetes, anti-hypertension, liver and kidney protection, and
sleep promotion [10]. The GABA content in foxtail millet can reach 20-50 mg/100g, which is
significantly higher than that in ordinary grains [11]. Vitamin B9, an essential vitamin for the human
body, participates in various biochemical reactions and plays a crucial role in preventing neural tube
defects, megaloblastic anemia and other diseases [12]. The folic acid content in foxtail millet is 30-50
ng/100g, higher than that in staple crops such as corn and wheat [13]. Given the superior content of
GABA and vitamin B9 in foxtail millet compared to other crops, achieving rapid and non-destructive
detection of these two nutrients has high practical significance. However, traditional chemical
detection methods have drawbacks such as long detection cycles, high costs, and sample destruction,
which make it difficult to meet the demands of modern food nutrition analysis. Therefore, developing
a rapid, accurate, and non-destructive analysis technology for GABA and vitamin B9 in foxtail millet
is of great significance.

Hyperspectral imaging, as an emerging non-destructive testing technology, offers advantages
such as high spectral resolution, continuous wavelength bands, and rich information, and has been
widely applied in fields such as agricultural product quality inspection and food safety monitoring.
Guo et al. [14] systematically reviewed the research progress of the past decade, conducting an in-
depth investigation into the application of hyperspectral imaging technology in the detection of
fungal and mycotoxin contamination in grains. They summarized detection cases for different types
of grains and used machine learning algorithms such as support vector machines (SVM) and
convolutional neural networks (CNN) for feature extraction and classification of hyperspectral
images, enabling early identification of common pathogenic fungi such as Fusarium graminearum
and Aspergillus flavus. Aviara et al. [15] reviewed the frontier applications of hyperspectral imaging
technology in grain quality and safety detection, establishing a correlation model between spectral
features and physical indicators of grains by analyzing differences in spectral absorption peaks.
Medina-Garcia et al. [16] focused on sensor technology, data processing algorithms, and machine
learning in non-destructive testing of grain quality, aiming to address the challenges of the correlation
between food production and dynamic environments. Zhang et al. [17] utilized NIR-HSI combined
with machine learning algorithms to establish a correlation model between spectral features and the
protein, starch, and water content of 77 wheat varieties. Chen et al. [18] constructed a
backpropagation neural network model and a partial least squares model to predict the crude fat and
water content in hickory seeds. Shi et al. [19] accurately predicted the vitamin content in wheat using
stepwise linear regression (SLR).

Currently, with the development of computer science, deep learning algorithms combined with
hyperspectral imaging have become a research hotspot for many scholars [20-22]. Ren et al. [23] used
four deep learning models, adding coordinate attention mechanisms and label smoothing loss
functions, to detect the seed vitality of soybeans. Yue et al. [24] designed LeafTraitNet by integrating
deep and shallow network features based on the Visual Geometry Group architecture, aiming to
estimate the physicochemical parameters of plant leaves. Among the various deep learning models,
long short-term memory networks (LSTM) have shown excellent performance in modeling time-
series data, effectively capturing the relationships and overall trends between data points [25]. This
ability makes the LSTM model particularly suitable for predicting curves with continuous response
characteristics [26]. The bidirectional long short-term memory network (BiLSTM), as an improved
version of LSTM, has significant advantages in processing sequence data. It can fully extract deep
temporal features from sequences, providing an important basis for feature extraction in complex
spectral sequences in hyperspectral data [27]. It has been found through research that the
generalization ability of deep learning models is often constrained by the scale of training data and
noise interference [28]. However, the weighted combination of multiple weak classifiers via ensemble
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learning algorithms can effectively enhance the stability and robustness of models [29]. Among them,
adaptive boosting (Adaboost) is a classic ensemble learning algorithm that significantly improves the
prediction accuracy and generalization ability of a model by combining multiple weak learners into
a strong one. During the iterative process, Adaboost dynamically adjusts the sample weights
according to the prediction errors of the weak learners, making the model focus more on difficult-to-
classify samples, thereby continuously optimizing model performance [30-32]. The BiLSTM-
Adaboost collaborative model combines the dual advantages of bidirectional feature extraction and
ensemble optimization, breaking through the performance bottleneck of single models. Currently,
scholars both domestically and internationally have conducted research in different fields [33-36].
However, there is limited research on the application of the BILSTM-Adaboost collaborative model
in the field of agricultural science, particularly in the precise analysis of GABA and vitamin B9 content
in foxtail millet, and no related studies have been reported so far.

In this work, we measured the GABA and vitamin B9 content in 190 foxtail millet samples from
19 varieties using traditional detection methods, obtained spectral data of the samples using
hyperspectral imaging, selected four “coarse-fine” strategies with strong correlation between spectral
features and the contents of GABA and vitamin B9, and constructed a BiLSTM-Adaboost
collaborative model for precise prediction of GABA and vitamin B9 contents in foxtail millet. The
technical route of this work is shown in Figure 1. The experimental results will enrich the theoretical
application of hyperspectral imaging in the field of food science. By exploring the intrinsic
relationship between hyperspectral data and food nutritional components, this work provides new
theoretical foundations and methodological support for food ingredient detection.
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Figure 1. Technical route of this work.
2. Materials and Methods

2.1. Planting and Sample Collection

The 190 foxtail millet samples used in this work (including ‘Changnong No. 35’, ‘Changnong
No. 36", “Changenong 38-41’, ‘Changenong 44’, ‘Changenong 46-55’, ‘Jingu 21’, and ‘2021 Variety 56,
totaling 19 varieties) were all planted in the foxtail millet Research Institute of Shanxi Agricultural
University, located in the eastern part of Changzhou District, Chizhou City, Shanxi Province
(Latitude 36°12', Longitude 113°08’, Elevation 977 m). The tested millet variety was bred by the Millet
Cultivation Research Team of our institute, and its detailed information is shown in Table S1. This
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base serves as a core experimental field in the mid-late maturing dry farming area for spring sowing,
with an annual average temperature of 10.2 °C, a frost-free period of 185 days, and annual
precipitation of 550 mm, which highly matches the drought-resistant and barren-tolerant
characteristics of the samples. It is particularly suitable for analyzing the adaptive mechanism of
foxtail millet in the mid-late maturing dry farming areas of northwestern China. The foxtail millet
was sown on May 12, 2024, in a typical brown soil area (0-20 cm soil layer: organic matter 1.65%,
available phosphorus 12.3 mg/kg, pH 7.8). Manual sowing was adopted with a row spacing of 40 cm
and a planting density of 450,000 plants per hectare. The base fertilizer consisted of 30,000 kg/hm?
decomposed sheep manure and 600 kg/hm? slow-release fertilizer (N-P20s-K20O = 20-10-15). Urea was
applied at 225 kg/hm? during the jointing stage combined with drip irrigation. Harvesting was
performed on October 10, 2024. Ten samples were collected from each variety, with each sample
weighing 200 g. The samples were sun-dried, hulled, and underwent further processing.

2.2. Hyperspectral Imaging Data Acquisition

The experiment on data acquisition of foxtail millet samples based on near-infrared
hyperspectral imaging was conducted using the push-sweep hyperspectral imaging system
manufactured by Headwall Photonics of the United States (Figure 1). The system consists of five core
functional modules: (1) A NIR hyperspectral imaging device with a spectral range of 900-1700 nm
(172 bands, spectral resolution of 4.715 nm); (2) An electric lifting scanning platform equipped with
a precision stepper motor (positioning accuracy of +0.01 mm); (3) A dual-channel halogen lamp array
light source system (color temperature of 3200 K, illumination uniformity >95%); (4) An industrial-
grade control computer with dedicated imaging control system and software; (5) A precision push-
broom mechanism based on guide rails (stroke of 300 mm). Optimal acquisition parameters were
determined through pre-experiments: object distance of 280 mm (determined by contrast
experiments with five groups of different distances), and a push-broom speed of 2.721 mm/s, using
a “object distance - speed - light source” collaborative calibration mode. To eliminate ambient light
(<5 Ix) and sensor dark current noise (<0.1 DN), the standardized process of “white reference
calibration — dark field acquisition — radiometric calibration” was strictly followed. First, a 99%
reflectance diffuse standard white panel (Labsphere, USA) was used for white field calibration,
followed by capturing the full dark field reference value with the lens cap covered. Finally,
radiometric calibration was completed using equation (1) to ensure the absolute radiometric accuracy
of the original spectral data (R?>0.998).

Ry —R,

R=Rw_Rb (1)

Where, R is the corrected image; Ro is the original image; R« is the white reference calibration
image (reflectance > 99.9%); and Re is the dark background calibration image (reflectance < 0%).

The foxtail millet grain samples were sequentially placed into the same experimental vessel with
a diameter of 3 cm and a depth of 1 cm, ensuring the surface of the sample was flat and compact.
Each sample was scanned three times, and the data were numbered and saved sequentially. To
address the significant signal-to-noise ratio drop at the edges of the spectral response range of the
hyperspectral imaging system (<950 nm and >1650 nm), where the relative standard deviation was
greater than 15%, the effective modeling wavelength range was determined to be 950-1650 nm based
on the principles of spectral stability and feature effectiveness. This range, which includes 148 feature
channels, is suitable for the quantitative detection of GABA and vitamin B9 in foxtail millet.

2.3. Physicochemical Determination of GABA and Vitamin B9 in foxtail millet

The samples were ground thoroughly to ensure uniformity. The GABA content was determined
using an Ultimate ODS-3 reverse-phase column (4.6 mm x 250 mm, 5 um) in a high-performance
liquid chromatography (HPLC) system. The detection conditions were set as follows: flow rate of 0.6
mL/min, column temperature of 40 °C, wavelength of 331 nm, and injection volume of 10 pL. The
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stock solution of GABA standard sample was diluted in a certain proportion to prepare standard
solutions of different concentrations for the subsequent construction of the standard curve. An
appropriate amount of derivatizing agent was prepared by accurately weighing o-phthalaldehyde,
methanol, dimethylaminoethyl mercaptan chloride, then adding them to a suitable borate buffer
solution and stirring to ensure thorough mixing and accurate component ratios. The detailed
procedure can be found in reference [37]. The prepared sample solutions and standard solutions were
injected sequentially into the HPLC system. The chromatographic peak area corresponding to each
standard solution was recorded. Using these data, a standard curve was generated. The unknown
sample’s data was then compared with the standard curve to accurately calculate the GABA content.

The ground samples were treated with an appropriate amount of hydrochloric acid to facilitate
the dissociation of vitamin B9 more effectively from the samples. Zinc sulfate was then added to help
precipitate impurities. After centrifugation and filtration, a relatively pure solution containing
vitamin B9 was obtained. The vitamin B9 content was measured using liquid chromatography with
a Nova Atom C18 column [38]. The mobile phase A was acetonitrile, and mobile phase B was
potassium dihydrogen phosphate. The column temperature was maintained at 25 °C, the flow rate
was stabilized at 1 mL/min, and the detection wavelength was set at 200 nm.

2.4. Data Preprocessing and Sample Set Division

When the hyperspectral imaging system acquires the spectral images of samples, instrument
noise, environmental noise, and surface scattering can inevitably interfere with the experimental
data. Therefore, preprocessing of the original spectral data is essential to eliminate or reduce the
impact of instrument and environmental noise, while suppressing the surface scattering effect, thus
effectively weakening the interference of external factors on spectral signals.

The Savitzky-Golay (S-G) filter [39] is primarily used to filter high-frequency noise from the
spectral lines, improving the continuity of the data by smoothing the spectral curves The specific
parameters adopted in this work were: polynomial order 1, frame length 3, and window size of 5 for
the finite impulse response smoothing filter.

Wavelet transform [40] decomposes the signal into basis functions (wavelets) of different
frequency and time to perform time-frequency analysis. Noise typically manifests as high-frequency
components, while useful signals are often distributed in low-frequency or specific frequency bands.
The signal is subjected to multi-scale wavelet decomposition, yielding approximation coefficients
(low-frequency) and detail coefficients (high-frequency). The detail coefficients are thresholded to
retain significant signals and suppress noise. The threshold determination principle of the Penalty
strategy balances the model’s goodness of fit and complexity, adaptively selecting a global threshold.
The signal is reconstructed using the processed coefficients.

The standard normal variate transformation (SNV) [41] aims to eliminate the influence of
surface glossiness, scattering effects, and background interference on the reflection spectra of
foxtail millet. After processing using SNV, the reflectance at each point shows regular variation, and
each spectral value is standardized for correction.

In the process of modeling spectral data and chemical composition, the sample set partitioning
based on joint x-y distance (SPXY) algorithm [42] was used to divide the sample set. This method
simultaneously optimizes the spectral feature space (x space) and the chemical parameter
distribution (y space) using dual distance metrics, dividing the dataset into a calibration set (143
samples) and a prediction set (47 samples) in a 3:1 ratio. The calibration set is used for model
construction and cross-validation, while the prediction set is used to evaluate the prediction
performance of the model.

2.5. Feature Wavelength Extraction

The hyperspectral imaging has high resolution, which leads to high data dimensions. Direct
application often faces issues such as high computational complexity, difficult band selection, and
susceptibility to overfitting. By extracting spectral feature variables from hyperspectral imaging, data
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dimensionality can be reduced while retaining key information, simplifying the model. This is
beneficial for improving the efficiency of data processing and analysis, as well as enhancing the
performance of subsequent algorithms. Therefore, extracting feature wavelengths is crucial. In this
work, the “coarse-fine” selection strategy was adopted to gradually optimize the spectral variable
space of the foxtail millet, in order to obtain the optimal variable combination for establishing
detection models of GABA and vitamin B9 content. Four “coarse-fine” selection strategies are
proposed: iRF-CARS, iRF-BOSS, iVISSA-CARS, and iVISSA-BOSS. The spectral matrix of foxtail
millet is represented as X (mxp), and the nutritional index matrix as Y (mx1). After preprocessing X
and dividing the X and Y datasets, the “coarse-fine” selection strategy was applied to extract feature
variables for the corresponding physiological parameters. The specific steps are as follows:

Step 1 (Coarse Selection): Screening the wavelength intervals with strong interpretability in the
form of interval spectral variables significantly reduces the variable space. From the initial larger
feature wavelength set, spectral intervals with higher correlations and significant information
extraction abilities are gradually selected. Coarse selection plays a critical role in this strategy because
the wavelengths selected in this step serve as the data source for subsequent steps. If wavelengths
related to the corresponding physiological parameters are not retained in this step, the final feature
wavelengths will lose relevant information, thereby affecting the estimation accuracy of the
corresponding physiological parameter models. By dividing X into intervals of a certain width and
building models for each interval, the root mean square error of cross-validation (RMSEcv) is
obtained through cross-validation, and intervals with smaller RMSEcv are retained to form the
optimal wavelength combination matrix X1 (mxpz). In this step, the iterative random forests (iRF) [43]
and interval variable iterative space shrinkage approach (iVISSA) [44] were used to perform coarse
selection of the foxtail millet spectral full variables. The iRF parameters were set as follows: 1000
iterations, moving window size of 10, 20 sub-intervals, and a maximum of 10 principal components.
The iVISSA parameters were set as: Window-Based Moving Subsampling (WBMS) generates k=1000
subsets, with an initial weight wo =0.5.

Step 2 (Fine Selection): Based on the principle of model cluster analysis, the coarse-selected
wavelength set is further refined to eliminate irrelevant and interfering variables and retain
important ones. Strongly correlated feature wavelengths are meticulously selected from the coarse-
selected spectral intervals to improve the robustness and stability of the model. Subsets of
wavelengths are generated from Xi (mxp1) using specific sampling methods, and models are built for
each subset. The RMSEcv is obtained via cross-validation, and wavelengths with smaller RMSEcv are
retained to form the optimal wavelength combination matrix X2 (mxpz). In this step, the competitive
adapative reweighted sampling (CARS) [45] and Bag of Symbolic Fourier Approximation Symbols
(BOSS) [46] were used to fine-select the coarse spectral wavelengths of the foxtail millet, further
reducing the variable space. The CARS parameters were set as follows: Monte Carlo Sampling (MCS)
iterations = 100; the BOSS parameters were set as: Window-Based Subsampling (WBS) iterations =
1000, and the optimal model ratio = 0.1.

2.6. Model Construction

The stacked BilSTM-Adaboost model adopted in this work is an integrated learning model that
integrates BILSTM and Adaboost. The network structure is shown in Figure 2. The model stacks
multiple layers of BILSTM as basic weak learners to capture the bidirectional dependencies of the
spectral data. It consists of two independent LSTM layers, which extract features from the sequence
in both forward and reverse directions. These layers output hidden states containing spectral
information, and eventually, the forward and reverse features are integrated through concatenation
or weighted fusion to form a comprehensive representation of the spectral sequence. A two-layer
BiLSTM is used to extract more complex hierarchical features by increasing the network depth. The
two-layer BiLSTM extracts deeper features compared to a single-layer model, thus avoiding
underfitting typically associated with shallow models. The number of hidden layer nodes in each
BiLSTM layer is set to 6 to balance model complexity and training efficiency. Adaboost is used to
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iteratively train 10 weak learners. Based on the current sample weights, it trains BiLSTM weak
learners and calculates prediction errors. Each weak learner focuses on fitting the samples with larger
prediction errors from the previous round, and is assigned a weight based on its prediction accuracy.
The final prediction is determined by the weighted output of all weak learners—weak learners with
smaller errors have higher weights, thereby enhancing the model’s fitting ability for difficult samples.
The final prediction is the weighted sum of all weak learners’ outputs. Adaboost progressively
corrects the prediction bias of BILSTM through iterative weighting, especially for noisy spectral data
or feature wavelengths in foxtail millet, significantly improving the robustness of the model to
“abnormal samples”. The iterative weighting mechanism of Adaboost enhances the overall
prediction accuracy and robustness of the model. By integrating multiple BILSTM weak learners,
Adaboost gradually optimizes sample weights, reduces prediction bias, and addresses the issues of
insufficient accuracy or instability of a single BILSTM model.

The evaluation metrics for the quantitative detection model in this work include three key
statistical indicators: correlation coefficient (R?), root mean square error (RMSE), and residual
prediction deviation (RPD) [47].
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Figure 2. Network structure of the stacked BiLSTM-Adaboost model.
3. Results

3.1. Analysis of the Differences in GABA and Vitamin B9 Content Among Different foxtail millet Varieties

The following figure illustrates the differences in GABA and Vitamin B9 content among various
varietiesof the foxtail millet. Significant fluctuations in GABA content were observed across different
varieties. The GABA content in ‘Changnong No.35" is relatively low, whereas varieties such as
‘Changnong No.41" and ‘Changnong No.50” have higher GABA content, indicating differences in the
GABA accumulation ability among varieties. This variation could be related to factors such as the
genetic characteristics of the varieties and the activity of related enzymes. Similarly, there is a notable
variation in Vitamin B9 content across different varieties. ‘Changnong No.54" stands out with a high
Vitamin B9 content, while ‘Changnong No.49" exhibits lower levels of this component. Some
varieties, such as ‘Changnong No.54’, show higher total nutritional content, with Vitamin B9 making
up a significant proportion. On the other hand, ‘Changnong No.49" has a lower overall nutritional
content, and Vitamin B9 is particularly scarce, reflecting the differences in the accumulation of this
nutrient among the varieties. The ratio of GABA to Vitamin B9 also varies among the different
varieties. ‘Changnong No.41" has a higher proportion of GABA, while ‘Changnong No.54" has a more
prominent Vitamin B9 content. This suggests that different varieties exhibit distinct tendencies in
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accumulating these two nutrients. In conclusion, significant differences exist in the contents and
ratios of GABA and vitamin B9 among different foxtail millet varieties. These differences provide a
basis for selecting foxtail millet varieties with high nutritional quality and reflect how the genetic
characteristics or environmental adaptability of the varieties influence the accumulation of these
nutrients.
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Figure 3. Differences in GABA and Vitamin B9 content among 19 foxtail millet varieties.

3.2. Spectral Data Response and Preprocessing Results

Figure 4 (A) shows the reflectance characteristics of the original spectral response in foxtail millet
in the wavelength range of 950-1650 nm, which result from the interaction between multiple internal
chemical components of foxtail millet and light. Reflection valleys appear at 997 nm, 1199 nm, and
1468 nm, while reflection peaks form at 1100 nm and 1298 nm. The variations across different
wavelength intervals contain rich chemical information. The 950-997 nm range is mainly associated
with the vibration absorption of chemical bonds in components such as water and carbohydrates.
The O-H bond in water and the C-H bond in carbohydrates undergo vibrational energy level
transitions within this wavelength range, absorbing light energy and resulting in a decrease in
reflectivity. This absorption reflects the internal energy conversion of molecules, showcasing the
selective absorption properties of these functional groups for light of specific wavelengths [48]. The
wavelength range of 997-1100 nm may indicate that the vibration modes of some functional groups
such as the amide groups in proteins or C-H stretching vibrations in fats, which cause a decrease in
light absorption in this interval. This reflects the modulation effect of components like proteins and
fats on the spectra in this wavelength segment [48]. The 1100-1199 nm range may correspond to
enhanced comprehensive absorption of carbohydrates such as starch. As a polysaccharide, the
complex molecular chain structure of starch (e.g., connections of multiple glucose units) leads to the
superimposed vibration absorption of O-H, C-O, and other bonds in this range, enhancing light
absorption and lowering reflectance, highlighting the dominant absorption of carbohydrates in this
region [48]. The 1199-1298 nm range likely corresponds to the weakened absorption of partial
functional groups (e.g., C-H, O-H overtone), reflecting the influence of the overtone vibration of
functional groups on spectral features. The 1298-1468 nm range is dominated by the strong
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absorption of O-H stretching overtone in water. Water is a polar molecule. The vibration frequency
doubling absorption of the O-H bond has a strong absorption intensity in this wavelength range,
absorbing a large amount of light energy, which significantly reduces the reflectance. This feature
highlights the key influence of water on the reflectance in this spectral range. The 1468-1650 nm range
shows weakened absorption, likely due to the overlapping effects of absorption characteristics from
various components in foxtail millet, such as proteins, fats, and carbohydrates. The reflectance
exhibits a specific trend of variation,which is a macroscopic spectral manifestation of the synergistic
effect of multiple chemical components, reflecting the complexity of the composition of foxtail millet
and the comprehensiveness of its spectral characteristics [48, 49].

Figure 4 (B) shows the spectral curve after preprocessing of 5S-G, which effectively reduces
random noise while preserving the shape and position of spectral characteristic peaks. Compared to
Figure 4 (A), the spectral curve in Figure 4 (B) is smoother, with significantly reduced noise. The
identification of characteristic peaks (in intervals such as 1000-1200 nm and 1300-1400 nm) has
improved, and the baseline tends to be stable. However, there may still be slight shifts due to sample
scattering or background differences. Following S-G smoothing, the data were processed with
discrete eavelet transform (DWT) to decompose the spectral signal into components of different
frequencies, removing high-frequency noise while retaining the low-frequency valid signal, as shown
in Figure 4 (C). The spectral curve is further optimized, noise is more thoroughly suppressed, the
resolution of the characteristic peaks is enhanced, and the baseline drift is better corrected, improving
the overall spectral stability. SNV corrects the light scattering caused by the differences in particle
size and stacking density of foxtail millet, making the spectra more comparable. Combining S-G,
DWT, and SNV, the results achieved multiple optimizations, including noise suppression, baseline
correction, and scattering correction, as shown in Figure 4 (D). The consistency of the spectral curves
has been significantly improved, the fluctuation range of reflectance has been narrowed, the
deviation caused by scattering has been eliminated, and the regularity of characteristic peaks has
become more prominent, greatly enhancing the spectral quality.
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Figure 4. foxtail millet spectral response curves. (A) Original spectra; (B) Spectra after S-G preprocessing; (C)
Spectra after S-G and DWT preprocessing; (D) Spectra after S-G, DWT, and SNV preprocessing.
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3.3. Feature Wavelength Extraction and Detection Model Results for GABA in foxtail millet

The results of using millet GABA raw data, preprocessing data, and feature extraction data
combined with the BiILSTM-AdaBoost model are shown in Table S2. The stacked BiLSTM-Adaboost
was used to establish an association model between the original spectral data of foxtail millet and the
content of GABA. The results showed that Rc2=0.3389, RMSEc = 20.5340, RPDc = 1.2299, Rr2 = 0.3059,
RMSEr = 22.8755, and RPDr = 1.2000. After preprocessing the data with combined S-G, DWT, and
SNV, the results improved significantly: Rc? = 0.6539, RMSEc = 12.1143, RPDc = 1.7000, Re? = 0.6297
RMSEpr =12.2218, and RPDr = 1.8022. This indicates that data preprocessing plays a crucial role in the
process of constructing a component content detection model using spectral data, and can
significantly improve the performance of the model. The range of 1275-1341 nm is related to the
combined vibration modes of molecules, that is, the coupling effect of multiple chemical bond
vibrations (the coordinated vibration of C-H and N-H bonds). The spectral signals in this interval is
stable and less affected by noise, which can effectively capture the structural information of the
molecular skeleton of the GABA. The prediction results of the model were: Rc? = 0.7169, RMSEc =
10.9565, RPDc = 1.8794, Re? = 0.6921, RMSEr = 11.1451, RPDr = 1.8022. When iVISSA was applied for
rough extraction, 42 feature wavelengths were obtained, which extended the wavelength range to
include 1360-1445 nm, 1483-1558 nm, and 1643-1648 nm. The prediction results of the model at this
time are shown in Figure 6. However, a comparison revealed that the prediction accuracy of the
model based on iRF-extracted wavelengths was higher than that of iVISSA. Since iRF focuses on
continuous, strong signal intervals —where spectral absorption is intense and the signal-to-noise ratio
is high—it directly correlates with the core functional groups of GABA, thereby avoiding interference
from weak signal intervals. Although iVISSA extended the wavelength range, the newly added
discrete intervals exhibited weak signals and low specificity —potentially containing background
noise irrelevant to GABA —which may cause the model to learn erroneous features.

The coarsely extracted feature wavelength set was refined using CARS and BOSS. For the feature
wavelengths initially selected by iRF, CARS refined 23 feature wavelengths, while BOSS refined 26.
Notably, the model built with the wavelengths selected by BOSS demonstrated higher prediction
accuracy, achieving Rc? = 0.7715, RMSEc = 9.6015, RPDc = 2.0920, Re? = 0.7701, RMSEp = 9.8746, and
RPDr = 2.0856. The ultimately optimized wavelength set was determined as 1021, 1025, 1030, 1049,
1058, 1068, 1073, 1077, 1082, 1087, 1091, 1096, 1115, 1124, 1275, 1280, 1299, 1313, 1318, and 1327 nm.

For the feature wavelengths initially selected by iVISSA, CARS refined 17 feature wavelengths,
while BOSS refined 16. However, the model built with wavelengths selected by CARS demonstrated
higher prediction accuracy, achieving Rc? = 0.5510, RMSEc = 13.4580, RPDc = 1.4924, Re? = 0.5421,
RMSEr = 13.9349, and RPDr = 1.4778.

Comparative analysis revealed that the detection model built with the wavelength set refined
by iRF-BOSS achieved optimal performance. The wavelengths are highly concentrated in strong
absorption regions of hydrogen-containing groups: 14 wavelengths (70%) distributed within 1021-
1124 nm represent the most typical spectroscopic fingerprints of GABA molecules. These
wavelengths exhibit intense signals and high specificity, directly related to the content of amino
groups and methylene groups. Moreover, 6 wavelengths covering 1275-1327 nm retain core sensitive
points for combination vibrations. They encompass peak positions in the combination band region
(1299 nm, 1313 nm) [50], which are sensitive to the conformational changes of GABA molecules,
thereby further enhancing the accuracy of concentration prediction. The refined wavelengths exist as
discrete single points, all located at the vertices or sudden slope changes of the spectral absorption
peaks. These serve as “informational anchor points” that maximally reflect the changes in GABA
concentration, effectively avoiding the interference from redundant wavelengths in continuous
intervals.
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Figure 5. Distribution of feature wavelengths for GABA and Vitamin B9 in foxtail millet.

3.4. Feature Wavelength Extraction and Detection Model Results for Vitamin B9 in foxtail millet

The results of using millet Vitamin B9 raw data, preprocessing data, and feature extraction data
combined with the BILSTM-AdaBoost model are shown in Table S3. The BILSTM-Adaboost was used
to establish an association model between the original spectral data of foxtail millet and the content
of vitamin B9. The prediction results are shown in Figure 6, with performance metrics: Rc? = 0.6554,
RMSEc = 8.3265, RPDc = 1.7035, Rr? = 0.6391, RMSEr = 10.0447, and RPDr= 1.6646. After preprocessing
with S-G, DWT, and SNV, the results improved: Rc? = 0.8164, RMSEc = 6.3903, RPDc = 2.3338, Re? =
0.8083, RMSEr = 6.5725, RPDr = 2.2840.

For Vitamin B9, 82 feature wavelengths were extracted using iRF, which were distributed in the
ranges of 959-1157, 1318-1379, 1398-1464, and 1605-1648 nm. The 959-1157 nm range primarily
involves the first overtone of C-H and N-H bonds, which may be related to the aromatic or
heterocyclic structures in the folic acid molecule. The 1318-1379 nm range corresponds to the second
overtone of the O-H bonds in hydroxyl groups, which could be influenced by hydroxyl groups in the
folic acid molecule or moisture. The 1398-1464 nm range is associated with hydrogen bonding
interactions within the folic acid molecule. The 1605-1648 nm range may correspond to the
characteristic absorption of the glutamic acid group in the side chain of folic acid. The iVISSA rough
selection has additional wavelength intervals, of 1157-1318 and 1506-1605 nm compared to iRF. The
1157-1318 nm range may include interaction signals between folic acid and other components (such
as proteins or carbohydrates) or the absorption from specific conjugated structures in the folic acid
molecule. The 1506-1605 nm range could involve higher overtones of C-H bonds or vibrations of the
overall molecular framework [51]. By adding these two wavelength intervals, iVISSA covers a more
complete spectral feature of the folic acid molecule, reducing the omission of key information.

The coarsely extracted feature wavelength set was refined using CARS and BOSS. For the feature
wavelengths initially selected by iRF, CARS refined 36 feature wavelengths, while BOSS refined 36
feature wavelengths. Meanwhile, through comparison, the model built with the wavelengths selected
by BOSS demonstrated higher prediction accuracy, achieving Rc2 = 0.9111, RMSEc = 4.7457, RPDc =
3.3539, Re? = 0.8856, RMSEr = 4.8471, and RPDr = 2.9566.

For the feature wavelengths initially selected by iVISSA, CARS refined 33 feature wavelengths,
while BOSS refined 25 feature wavelengths. However, through comparison, the model built with the
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wavelengths selected by BOSS demonstrated higher prediction accuracy, achieving Rc? = 0.9362,
RMSEc = 4.0215, RPDc = 3.9590, Re? = 0.8932, RMSEr = 4.6676, and RPDr = 3.0600. The ultimately
optimized wavelength set was determined as 1016, 1073, 1091, 1096, 1101, 1181, 1186, 1190, 1223, 1228,
1233, 1313, 1322, 1341, 1346, 1351, 1360, 1365, 1398, 1445, 1516, 1558, 1624, 1638, and 1648 nm.

Comparative analysis revealed that the detection model built with the wavelength set refined
by iVISSA-BOSS technology achieved optimal performance, demonstrating excellence in the
detection of vitamin B9. This wavelength set precisely focuses on the characteristic spectral regions
of the core structure of folic acid molecules: 15 wavelengths (60%) are distributed within the 959-1157
nm, primarily corresponding to the first overtone vibrations of C-H and N-H bonds. This represents
the typical spectral feature range for the aromatic and heterocyclic structures in folic acid molecules,
with signals exhibiting significant specificity that directly correlates with the content information of
key structures in folic acid. Within the core sensitive regions reflecting intramolecular interactions, 8
wavelengths are distributed across the 1318-1379 nm and 1398-1464 nm intervals. Among them, 1318-
1379 nm is related to the second overtone vibration of the O-H bonds in the hydroxyl groups, which
can sensitively capture the impact of the hydroxyl functional groups and water in the folic acid
molecule on the spectral signals. The 1398-1464 nm range corresponds to the characteristic region of
hydrogen bond interactions within the molecule, presenting a highly sensitive response to structural
changes in the folic acid molecule. These wavelengths cover the key sites of intramolecular
interactions, providing spectral support at the structural level for the precise prediction of vitamin
B9 concentration. Additionally, 2 wavelengths located at 1605-1648 nm are presumed to be related to
the characteristic absorption of the glutamic acid moiety in the folic acid side chain, effectively
supplementing the spectral representation of the overall structure of the molecule. Notably, all
refined wavelengths exist as discrete single points, precisely located at the vertices or critical positions
of sudden slope changes in the spectral absorption peaks. This strategy avoids the interference from
redundant wavelengths in continuous intervals, enabling the model to efficiently extract core spectral
information relevant to concentration, thereby achieving accurate detection of vitamin B9 content in
foxtail millet. This wavelength selection strategy, focused on key informational anchor points, not
only significantly enhances the model’s prediction accuracy but also strengthens the reliability of the
detection method in terms of stability and generalization capability.
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Figure 6. Detection results of the BILSTM-Adaboost model. (A) and (D) are R? of the calibration set and the
prediction set, respectively; (B) and (E) are the RMSE of the calibration set and the prediction set, respectively;
(C) and (F) are the RPD of the calibration set and the prediction set, respectively.

4. Discussion

There are significant differences in the GABA and vitamin B9 contents among different varieties
of the foxtail millet. These differences reflect both the genetic traits of the varieties and the regulatory
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effects of key enzymes in the metabolic pathways. The higher GABA content in ‘Changnong No.41’
and ‘Changnong No.50" may be related to the activity of glutamate decarboxylase (GAD), an enzyme
that catalyzes the decarboxylation of glutamate to produce GABA. The variations in the expression
of its encoding genes may lead to the differences of accumulation capacity among varieties. The
extreme differences in vitamin B9 content, with ‘Changnong No.54" exhibiting high levels and
‘Changnong No.49” exhibiting low levels, may be related to the activity of dihydrofolate reductase in
the folic acid synthesis pathway, or to gene polymorphism. Notably, some varieties exhibit the
characteristic of ‘specific accumulation’. ‘Changnong No.41" has a particularly high proportion of
GABA, while ‘Changnong No.54" is predominantly rich in vitamin B9. This tendency may be related
to the long-term breeding goals or environmental adaptability of the varieties.

Feature wavelength extraction is a key step in spectral modeling, aimed at selecting critical
information points highly correlated with the target component from hundreds of wavelengths,
thereby reducing data dimensionality and enhancing model efficiency. This work compared two
coarse extraction methods, iRF and iVISSA, and found that the performance differences were closely
related to the spectral response characteristics of the molecular structure of the components. In GABA
detection, iRF outperforms iVISSA. iRF focuses on the continuous strong signal intervals of 955-1124
nm and 1275-1341 nm, corresponding to the first overtone absorption of C-H and N-H bonds and
combination vibration modes in GABA molecules. These regions have strong signals and high signal-
to-noise ratios, directly related to amino and methylene functional groups [51], avoiding interference
from weak signal intervals. However, the additional ranges of iVISSA, such as 1360-1445 nm, contain
absorption signals of water (O-H overtone) and carbohydrates, which have no direct correlation with
the GABA structure, resulting in the model learning redundant information and having a lower
prediction accuracy than iRF. In the detection of vitamin B9, iVISSA is superior. The additional 1157-
1318 nm and 1506-1605 nm ranges in iVISSA cover the characteristic absorption of the aromatic ring,
heterocyclic structures, and side-chain glutamic acid groups of the folate molecules [52]. These
regions, which involve high-order overtones of C-H bonds and fundamental vibrations of the
molecular skeleton, constitute integral components of folic acid-specific spectral signatures. In
contrast, iRF does not include these ranges, potentially missing key structural information, leading
to lower model accuracy than the iVISSA-BOSS combination. Further feature wavelength selection
through CARS and BOSS revealed that BOSS performed better in both GABA and vitamin B9
detection. This may be due to the different selection mechanisms of the two methods. BOSS retains
wavelengths with high stability through guided sampling, while CARS is based on variable weights
and exponential decay, which is suitable for integrating strong signal regions and multi-interval
features of complex structures in GABA and vitamin B9. Ultimately, the optimal wavelength set
focuses on absorption peak vertices or slope mutation points, directly linking molecular structure to
spectral response. This strategy avoids the interference of redundant information from continuous
intervals, significantly improving the model's prediction accuracy and generalization ability.

The advantage of the stacked BiLSTM-Adaboost model in GABA detection is that it can fully
utilize the processing power of BiLSTM on spectral sequence information to capture the
dependencies between different wavelengths. At the same time, the ensemble learning of Adaboost
is used to enhance the fitting ability and generalization ability of the model for complex data.
Compared to traditional machine learning models, it is better at handling nonlinear relationships and
long-range dependencies in spectral data, thus improving detection accuracy. In the detection of
vitamin B9 , the model effectively captures the complex spectral features of folic acid molecules,
improving both the prediction accuracy and stability. Compared to GABA detection, the feature
wavelength distribution for vitamin B9 is more extensive and involves more molecular structural
features. The model requires a stronger learning ability to process this information. The stacked
BiLSTM-Adaboost model, with its unique structure and the advantages of ensemble learning, meets
this need effectively.

5. Conclusions
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This work analyzed the GABA and vitamin B9 content in different foxtail millet varieties and
found significant differences among them, which are related to genetic characteristics and
environmental adaptability. These findings provide a basis for the selection of foxtail millet varieties
with high nutritional quality. The response of the spectral data and preprocessing results show that
combining multiple preprocessing methods can effectively improve spectral quality, laying a solid
foundation for subsequent model construction. In terms of feature wavelength extraction and model
development, the stacked BiLSTM-Adaboost model demonstrated excellent performance, accurately
detecting the GABA and vitamin B9 content in foxtail millet. The selected strategy for feature
wavelengths enhanced the prediction accuracy and stability of the model.

Future research should further expand the sample size of varieties of the foxtail millet and
investigate the specific mechanisms by which genetic and environmental factors influence the GABA
and vitamin B9 content, establishing a more comprehensive variety selection model. In terms of
spectral data processing, more advanced preprocessing methods and feature wavelength extraction
techniques could be explored to improve the utilization of spectral data. For the stacked BiLSTM-
Adaboost model, further optimization of the model structure and parameters is needed, along with
the integration of other deep learning technologies, to enhance the generalization ability and
detection speed of the model. Additionally, research on spectral detection of other nutritional
components in foxtail millet could be conducted to build multi-component detection models,
providing more comprehensive technical support for foxtail millet quality evaluation and functional
food development.
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Abbreviations

The following abbreviations are used in this manuscript:

GABA Gamma-aminobutyric acid

CNN Convolutional neural networks
SVM Support vector machines

SLR Stepwise linear regression

LSTM Long short-term memory networks

BiLSTM  Bidirectional long short-term memory network
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Adaboost Adaptive boosting
HPLC High-performance liquid chromatography

5S-G Savitzky-Golay
SNV Standard normal variate transformation
SPXY Sample set partitioning based on joint x-y distance

RMSEcv  Root mean square error of cross-validation
CARS Competitive adapative reweighted sampling
BOSS Bag of Symbolic Fourier Approximation Symbols

iRF Iterative random forests
iVISSA Interval variable iterative space shrinkage approach
MCS Monte carlo sampling
WBS Window-based subsampling
WBMS Window-based moving subsampling
R? Correlation coefficient
RMSE Root mean square error
RPD Residual prediction deviation
GAD Glutamate decarboxylase
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