
Article Not peer-reviewed version

Stacked BiLSTM-Adaboost

Collaborative Model: Construction of a

Precision Analysis Model for GABA and

Vitamin B9 in the Foxtail Millet

Erhu Guo , Guoliang Wang , Jiahui Hu , Wenfeng Yan , Peiyue Zhao , Aiying Zhang *

Posted Date: 14 July 2025

doi: 10.20944/preprints202507.1054.v1

Keywords: foxtail millet; hyperspectral imaging; nutritional components prediction; feature wavelength

selection; nondestructive detection

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/4770829
https://sciprofiles.com/profile/3290938
https://sciprofiles.com/profile/3297484


 

 

Article 

Stacked  BiLSTM‐Adaboost  Collaborative  Model: 

Construction of a Precision Analysis Model for GABA 

and Vitamin B9 in the foxtail millet 

Erhu Guo 1, 2, Guoliang Wang 1, 2,  †, Jiahui Hu 2, 3, Wenfeng Yan 2, 3, Peiyue Zhao1   

and Aiying Zhang 1, 2, * 

1  Shanxi HouJi Laboratory, Taiyuan 030031, China 

2  Research Institute of Foxtail Millet, Shanxi Agricultural University, Changzhi 046000, China 

3  College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China 

*  Correspondence: zay1012@126.com (A.Z.) 
†  These authors contributed equally to this work. 

Abstract 

Amidst health‐conscious  consumption  trends,  functional  foods  rich  in gamma‐aminobutyric  acid 

(GABA)  and  vitamin  B9  are  gaining  prominence.  Foxtail  millet,  naturally  abundant  in  these 

compounds,  plays  vital  roles  in  nervous  system  regulation,  cellular  metabolism,  and  fetal 

development.  In  this work, we  introduced hyperspectral  imaging  for detecting  these nutrients  in 

millet, collecting spectral data from 190 samples across 19 varieties. Four ʺcoarse‐fineʺ wavelength 

screening  strategies  were  innovatively  proposed:  interval  spectral  variables  initially  identified 

wavelengths  with  strong  explanatory  power,  followed  by  model  cluster  analysis  for  precise 

optimization. A stacked BiLSTM‐Adaboost model was built for efficient prediction. Results revealed 

significant variations in GABA and vitamin B9 content among varieties, offering crucial insights for 

breeding and quality assessment. The GABA prediction model achieved R2=0.5421, RMSE=13.9349, 

RPD=1.4778; the vitamin B9 model attained R2=0.8932, RMSE=4.6676, RPD=3.0600. This integration of 

technology  and methodological  innovation provides  a  novel pathway  for  rapid,  non‐destructive 

millet nutrient analysis, facilitating intelligent quality control, industry advancement, and functional 

food development. 

Keywords:  foxtail  millet;  hyperspectral  imaging;  nutritional  components  prediction;  feature 

wavelength selection; nondestructive detection 

 

1. Introduction 

In the context of the growing popularity of the “Healthy China” concept, the public’s dietary 

structure is gradually shifting from simply aiming to “fill up” to focusing on “eating well and eating 

healthily”, with nutritious coarse grains increasingly gaining recognition [1]. As an important coarse 

grain  crop,  foxtail millet occupies a  central position  in  the dietary  system of northern China  [2]. 

Shanxi, as a major production area for small grains in China, ranks among the top in terms of foxtail 

millet cultivation area. Its high‐quality produce is widely loved by the public [3]. foxtail millet is rich 

in  carbohydrates,  proteins,  fats,  vitamins,  minerals,  and  various  other  nutrients,  providing 

comprehensive  and  balanced  nutritional  support  for  the  human  body  [4]. Notably,  it  is  rich  in 

essential amino acids that the human body cannot synthesize on  its own, which gives  it a unique 

advantage in the content and proportion of essential amino acids. Thus, it serves as a high‐quality 

source  of  plant  protein  [5].  In  addition,  foxtail  millet  also  contains  some  health‐preserving 

components, such as gamma‐aminobutyric acid (GABA) and vitamin B9, which further enhance its 

functionality and commercial value [6–8]. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 July 2025 doi:10.20944/preprints202507.1054.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1054.v1
http://creativecommons.org/licenses/by/4.0/


  2  of  18 

 

In the field of nutrition and health, the content and proportion of nutrients in foxtail millet have 

a significant  impact on  its nutritional value and health benefits  [9]. The GABA and vitamin B9  it 

contains  are  closely  related  to  the  human  nervous  system  and metabolic  functions.  Specifically, 

GABA, a non‐protein amino acid widely distributed in microorganisms and plants and animals, has 

various health benefits, including anti‐diabetes, anti‐hypertension, liver and kidney protection, and 

sleep  promotion  [10].  The  GABA  content  in  foxtail  millet  can  reach  20‐50  mg/100g,  which  is 

significantly higher than that in ordinary grains [11]. Vitamin B9, an essential vitamin for the human 

body, participates in various biochemical reactions and plays a crucial role in preventing neural tube 

defects, megaloblastic anemia and other diseases [12]. The folic acid content in foxtail millet is 30‐50 

μg/100g, higher than that in staple crops such as corn and wheat [13]. Given the superior content of 

GABA and vitamin B9 in foxtail millet compared to other crops, achieving rapid and non‐destructive 

detection  of  these  two  nutrients  has  high  practical  significance.  However,  traditional  chemical 

detection methods have drawbacks such as long detection cycles, high costs, and sample destruction, 

which make it difficult to meet the demands of modern food nutrition analysis. Therefore, developing 

a rapid, accurate, and non‐destructive analysis technology for GABA and vitamin B9 in foxtail millet 

is of great significance. 

Hyperspectral imaging, as an emerging non‐destructive testing technology, offers advantages 

such as high spectral resolution, continuous wavelength bands, and rich information, and has been 

widely applied in fields such as agricultural product quality inspection and food safety monitoring. 

Guo et al. [14] systematically reviewed the research progress of the past decade, conducting an in‐

depth  investigation  into  the  application  of hyperspectral  imaging  technology  in  the detection  of 

fungal and mycotoxin contamination in grains. They summarized detection cases for different types 

of  grains  and  used machine  learning  algorithms  such  as  support  vector machines  (SVM)  and 

convolutional  neural  networks  (CNN)  for  feature  extraction  and  classification  of  hyperspectral 

images, enabling early identification of common pathogenic fungi such as Fusarium graminearum 

and Aspergillus flavus. Aviara et al. [15] reviewed the frontier applications of hyperspectral imaging 

technology in grain quality and safety detection, establishing a correlation model between spectral 

features  and physical  indicators  of grains  by  analyzing differences  in  spectral  absorption peaks. 

Medina‐García et al.  [16]  focused on sensor  technology, data processing algorithms, and machine 

learning in non‐destructive testing of grain quality, aiming to address the challenges of the correlation 

between food production and dynamic environments. Zhang et al. [17] utilized NIR‐HSI combined 

with machine learning algorithms to establish a correlation model between spectral features and the 

protein,  starch,  and  water  content  of  77  wheat  varieties.  Chen  et  al.  [18]  constructed  a 

backpropagation neural network model and a partial least squares model to predict the crude fat and 

water content in hickory seeds. Shi et al. [19] accurately predicted the vitamin content in wheat using 

stepwise linear regression (SLR).   

Currently, with the development of computer science, deep learning algorithms combined with 

hyperspectral imaging have become a research hotspot for many scholars [20–22]. Ren et al. [23] used 

four  deep  learning models,  adding  coordinate  attention mechanisms  and  label  smoothing  loss 

functions, to detect the seed vitality of soybeans. Yue et al. [24] designed LeafTraitNet by integrating 

deep and shallow network  features based on  the Visual Geometry Group architecture, aiming  to 

estimate the physicochemical parameters of plant leaves. Among the various deep learning models, 

long  short‐term memory networks  (LSTM) have  shown excellent performance  in modeling  time‐

series data, effectively capturing the relationships and overall trends between data points [25]. This 

ability makes the LSTM model particularly suitable for predicting curves with continuous response 

characteristics [26]. The bidirectional  long short‐term memory network (BiLSTM), as an improved 

version of LSTM, has significant advantages in processing sequence data. It can fully extract deep 

temporal  features from sequences, providing an  important basis  for feature extraction  in complex 

spectral  sequences  in  hyperspectral  data  [27].  It  has  been  found  through  research  that  the 

generalization ability of deep learning models is often constrained by the scale of training data and 

noise interference [28]. However, the weighted combination of multiple weak classifiers via ensemble 
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learning algorithms can effectively enhance the stability and robustness of models [29]. Among them, 

adaptive boosting (Adaboost) is a classic ensemble learning algorithm that significantly improves the 

prediction accuracy and generalization ability of a model by combining multiple weak learners into 

a  strong  one.  During  the  iterative  process,  Adaboost  dynamically  adjusts  the  sample  weights 

according to the prediction errors of the weak learners, making the model focus more on difficult‐to‐

classify  samples,  thereby  continuously  optimizing  model  performance  [30–32].  The  BiLSTM‐

Adaboost collaborative model combines the dual advantages of bidirectional feature extraction and 

ensemble optimization, breaking through the performance bottleneck of single models. Currently, 

scholars both domestically and internationally have conducted research in different fields [33–36]. 

However, there is limited research on the application of the BiLSTM‐Adaboost collaborative model 

in the field of agricultural science, particularly in the precise analysis of GABA and vitamin B9 content 

in foxtail millet, and no related studies have been reported so far. 

In this work, we measured the GABA and vitamin B9 content in 190 foxtail millet samples from 

19  varieties  using  traditional  detection  methods,  obtained  spectral  data  of  the  samples  using 

hyperspectral imaging, selected four “coarse‐fine” strategies with strong correlation between spectral 

features  and  the  contents  of  GABA  and  vitamin  B9,  and  constructed  a  BiLSTM‐Adaboost 

collaborative model for precise prediction of GABA and vitamin B9 contents  in foxtail millet. The 

technical route of this work is shown in Figure 1. The experimental results will enrich the theoretical 

application  of  hyperspectral  imaging  in  the  field  of  food  science.  By  exploring  the  intrinsic 

relationship between hyperspectral data and food nutritional components, this work provides new 

theoretical foundations and methodological support for food ingredient detection. 

 

Figure 1. Technical route of this work. 

2. Materials and Methods 

2.1. Planting and Sample Collection 

The 190 foxtail millet samples used in this work (including  ‘Changnong No. 35’,  ‘Changnong 

No. 36’, ‘Changenong 38‐41’, ‘Changenong 44’, ‘Changenong 46‐55’, ‘Jingu 21’, and ‘2021 Variety 56’, 

totaling 19 varieties) were all planted in the foxtail millet Research Institute of Shanxi Agricultural 

University,  located  in  the  eastern  part  of  Changzhou  District,  Chizhou  City,  Shanxi  Province 

(Latitude 36°12′, Longitude 113°08′, Elevation 977 m). The tested millet variety was bred by the Millet 

Cultivation Research Team of our institute, and its detailed information is shown in Table S1. This 
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base serves as a core experimental field in the mid‐late maturing dry farming area for spring sowing, 

with  an  annual  average  temperature  of  10.2  °C,  a  frost‐free  period  of  185  days,  and  annual 

precipitation  of  550  mm,  which  highly  matches  the  drought‐resistant  and  barren‐tolerant 

characteristics of  the  samples.  It  is particularly suitable  for analyzing  the adaptive mechanism of 

foxtail millet in the mid‐late maturing dry farming areas of northwestern China. The foxtail millet 

was sown on May 12, 2024, in a typical brown soil area (0‐20 cm soil  layer: organic matter 1.65%, 

available phosphorus 12.3 mg/kg, pH 7.8). Manual sowing was adopted with a row spacing of 40 cm 

and a planting density of 450,000 plants per hectare. The base fertilizer consisted of 30,000 kg/hm² 

decomposed sheep manure and 600 kg/hm2 slow‐release fertilizer (N‐P2O5‐K2O = 20‐10‐15). Urea was 

applied  at  225  kg/hm²  during  the  jointing  stage  combined with  drip  irrigation. Harvesting was 

performed on October 10, 2024. Ten samples were collected  from each variety, with each sample 

weighing 200 g. The samples were sun‐dried, hulled, and underwent further processing. 

2.2. Hyperspectral Imaging Data Acquisition 

The  experiment  on  data  acquisition  of  foxtail  millet  samples  based  on  near‐infrared 

hyperspectral  imaging  was  conducted  using  the  push‐sweep  hyperspectral  imaging  system 

manufactured by Headwall Photonics of the United States (Figure 1). The system consists of five core 

functional modules: ① A NIR hyperspectral imaging device with a spectral range of 900‐1700 nm 

(172 bands, spectral resolution of 4.715 nm); ② An electric lifting scanning platform equipped with 

a precision stepper motor (positioning accuracy of ±0.01 mm); ③ A dual‐channel halogen lamp array 

light source system (color temperature of 3200 K, illumination uniformity >95%); ④ An industrial‐

grade control computer with dedicated imaging control system and software; ⑤ A precision push‐

broom mechanism based on guide rails  (stroke of 300 mm). Optimal acquisition parameters were 

determined  through  pre‐experiments:  object  distance  of  280  mm  (determined  by  contrast 

experiments with five groups of different distances), and a push‐broom speed of 2.721 mm/s, using 

a “object distance ‐ speed ‐ light source” collaborative calibration mode. To eliminate ambient light 

(<5  lx)  and  sensor  dark  current  noise  (<0.1  DN),  the  standardized  process  of  “white  reference 

calibration → dark  field acquisition → radiometric calibration” was strictly  followed. First, a 99% 

reflectance diffuse  standard white  panel  (Labsphere, USA) was  used  for white  field  calibration, 

followed  by  capturing  the  full  dark  field  reference  value  with  the  lens  cap  covered.  Finally, 

radiometric calibration was completed using equation (1) to ensure the absolute radiometric accuracy 

of the original spectral data (R2 > 0.998). 

𝑅 ൌ
𝑅଴ െ 𝑅௕
𝑅௪ െ 𝑅௕

  (1)

Where, R is the corrected image; R0 is the original image; Rw is the white reference calibration 

image (reflectance > 99.9%); and Rb is the dark background calibration image (reflectance < 0%). 

The foxtail millet grain samples were sequentially placed into the same experimental vessel with 

a diameter of 3 cm and a depth of 1 cm, ensuring the surface of the sample was flat and compact. 

Each  sample was  scanned  three  times,  and  the data were numbered  and  saved  sequentially. To 

address the significant signal‐to‐noise ratio drop at the edges of the spectral response range of the 

hyperspectral imaging system (<950 nm and >1650 nm), where the relative standard deviation was 

greater than 15%, the effective modeling wavelength range was determined to be 950‐1650 nm based 

on the principles of spectral stability and feature effectiveness. This range, which includes 148 feature 

channels, is suitable for the quantitative detection of GABA and vitamin B9 in foxtail millet. 

2.3. Physicochemical Determination of GABA and Vitamin B9 in foxtail millet 

The samples were ground thoroughly to ensure uniformity. The GABA content was determined 

using an Ultimate ODS‐3 reverse‐phase column  (4.6 mm × 250 mm, 5 μm)  in a high‐performance 

liquid chromatography (HPLC) system. The detection conditions were set as follows: flow rate of 0.6 

mL/min, column temperature of 40 °C, wavelength of 331 nm, and injection volume of 10 μL. The 
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stock solution of GABA standard sample was diluted  in a certain proportion to prepare standard 

solutions  of  different  concentrations  for  the  subsequent  construction  of  the  standard  curve. An 

appropriate amount of derivatizing agent was prepared by accurately weighing o‐phthalaldehyde, 

methanol, dimethylaminoethyl mercaptan  chloride,  then adding  them  to a  suitable borate buffer 

solution  and  stirring  to  ensure  thorough  mixing  and  accurate  component  ratios.  The  detailed 

procedure can be found in reference [37]. The prepared sample solutions and standard solutions were 

injected sequentially into the HPLC system. The chromatographic peak area corresponding to each 

standard solution was recorded. Using these data, a standard curve was generated. The unknown 

sample’s data was then compared with the standard curve to accurately calculate the GABA content. 

The ground samples were treated with an appropriate amount of hydrochloric acid to facilitate 

the dissociation of vitamin B9 more effectively from the samples. Zinc sulfate was then added to help 

precipitate  impurities.  After  centrifugation  and  filtration,  a  relatively  pure  solution  containing 

vitamin B9 was obtained. The vitamin B9 content was measured using liquid chromatography with 

a Nova Atom C18  column  [38].  The mobile  phase A was  acetonitrile,  and mobile  phase  B was 

potassium dihydrogen phosphate. The column temperature was maintained at 25 °C, the flow rate 

was stabilized at 1 mL/min, and the detection wavelength was set at 200 nm. 

2.4. Data Preprocessing and Sample Set Division 

When  the hyperspectral  imaging system acquires  the spectral  images of samples,  instrument 

noise,  environmental noise,  and  surface  scattering  can  inevitably  interfere with  the  experimental 

data. Therefore, preprocessing of  the original spectral data  is essential  to eliminate or  reduce  the 

impact of instrument and environmental noise, while suppressing the surface scattering effect, thus 

effectively weakening the interference of external factors on spectral signals.   

The Savitzky‐Golay  (S‐G)  filter  [39]  is primarily used  to  filter high‐frequency noise  from  the 

spectral  lines,  improving  the continuity of  the data by smoothing  the spectral curves The specific 

parameters adopted in this work were: polynomial order 1, frame length 3, and window size of 5 for 

the finite impulse response smoothing filter. 

Wavelet  transform  [40]  decomposes  the  signal  into  basis  functions  (wavelets)  of  different 

frequency and time to perform time‐frequency analysis. Noise typically manifests as high‐frequency 

components, while useful signals are often distributed in low‐frequency or specific frequency bands. 

The  signal  is  subjected  to multi‐scale wavelet decomposition, yielding approximation coefficients 

(low‐frequency) and detail coefficients (high‐frequency). The detail coefficients are  thresholded  to 

retain significant signals and suppress noise. The threshold determination principle of the Penalty 

strategy balances the model’s goodness of fit and complexity, adaptively selecting a global threshold. 

The signal is reconstructed using the processed coefficients. 

The  standard normal variate  transformation  (SNV)  [41] aims  to  eliminate  the  influence of 

surface glossiness,  scattering  effects,  and background  interference on  the  reflection  spectra of 

foxtail millet. After processing using SNV, the reflectance at each point shows regular variation, and 

each spectral value is standardized for correction. 

In the process of modeling spectral data and chemical composition, the sample set partitioning 

based on  joint x‐y distance (SPXY) algorithm [42] was used to divide the sample set. This method 

simultaneously  optimizes  the  spectral  feature  space  (x  space)  and  the  chemical  parameter 

distribution  (y  space) using dual distance metrics, dividing  the dataset  into a calibration  set  (143 

samples)  and  a  prediction  set  (47  samples)  in  a  3:1  ratio.  The  calibration  set  is  used  for model 

construction  and  cross‐validation,  while  the  prediction  set  is  used  to  evaluate  the  prediction 

performance of the model. 

2.5. Feature Wavelength Extraction 

The hyperspectral  imaging has high  resolution, which  leads  to high data dimensions. Direct 

application often faces issues such as high computational complexity, difficult band selection, and 

susceptibility to overfitting. By extracting spectral feature variables from hyperspectral imaging, data 
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dimensionality  can  be  reduced while  retaining  key  information,  simplifying  the model.  This  is 

beneficial  for  improving  the  efficiency of data processing and  analysis,  as well as  enhancing  the 

performance of subsequent algorithms. Therefore, extracting feature wavelengths is crucial. In this 

work, the “coarse‐fine” selection strategy was adopted to gradually optimize the spectral variable 

space  of  the  foxtail millet,  in  order  to  obtain  the  optimal  variable  combination  for  establishing 

detection models  of  GABA  and  vitamin  B9  content.  Four  “coarse‐fine”  selection  strategies  are 

proposed:  iRF‐CARS,  iRF‐BOSS,  iVISSA‐CARS,  and  iVISSA‐BOSS.  The  spectral matrix  of  foxtail 

millet is represented as X (m×p), and the nutritional index matrix as Y (m×1). After preprocessing X 

and dividing the X and Y datasets, the “coarse‐fine” selection strategy was applied to extract feature 

variables for the corresponding physiological parameters. The specific steps are as follows: 

Step 1 (Coarse Selection): Screening the wavelength intervals with strong interpretability in the 

form of  interval spectral variables significantly  reduces  the variable space. From  the  initial  larger 

feature  wavelength  set,  spectral  intervals  with  higher  correlations  and  significant  information 

extraction abilities are gradually selected. Coarse selection plays a critical role in this strategy because 

the wavelengths selected in this step serve as the data source for subsequent steps. If wavelengths 

related to the corresponding physiological parameters are not retained in this step, the final feature 

wavelengths  will  lose  relevant  information,  thereby  affecting  the  estimation  accuracy  of  the 

corresponding physiological parameter models. By dividing X into intervals of a certain width and 

building models  for  each  interval,  the  root mean  square  error  of  cross‐validation  (RMSECV)  is 

obtained  through  cross‐validation,  and  intervals with  smaller  RMSECV  are  retained  to  form  the 

optimal wavelength combination matrix X1 (m×p1). In this step, the iterative random forests (iRF) [43] 

and interval variable iterative space shrinkage approach (iVISSA) [44] were used to perform coarse 

selection of  the  foxtail millet spectral  full variables. The  iRF parameters were set as  follows: 1000 

iterations, moving window size of 10, 20 sub‐intervals, and a maximum of 10 principal components. 

The iVISSA parameters were set as: Window‐Based Moving Subsampling (WBMS) generates k = 1000 

subsets, with an initial weight w0 = 0.5. 

Step 2  (Fine Selection): Based on  the principle of model cluster analysis,  the coarse‐selected 

wavelength  set  is  further  refined  to  eliminate  irrelevant  and  interfering  variables  and  retain 

important ones. Strongly correlated feature wavelengths are meticulously selected from the coarse‐

selected  spectral  intervals  to  improve  the  robustness  and  stability  of  the  model.  Subsets  of 

wavelengths are generated from X1 (m×p1) using specific sampling methods, and models are built for 

each subset. The RMSECV is obtained via cross‐validation, and wavelengths with smaller RMSECV are 

retained to form the optimal wavelength combination matrix X2 (m×p2). In this step, the competitive 

adapative reweighted sampling (CARS) [45] and Bag of Symbolic Fourier Approximation Symbols 

(BOSS)  [46] were used  to  fine‐select  the  coarse  spectral wavelengths of  the  foxtail millet,  further 

reducing the variable space. The CARS parameters were set as follows: Monte Carlo Sampling (MCS) 

iterations = 100; the BOSS parameters were set as: Window‐Based Subsampling (WBS) iterations = 

1000, and the optimal model ratio = 0.1. 

2.6. Model Construction 

The stacked BilSTM‐Adaboost model adopted in this work is an integrated learning model that 

integrates BiLSTM and Adaboost. The network  structure  is shown  in Figure 2. The model stacks 

multiple  layers of BiLSTM as basic weak  learners to capture the bidirectional dependencies of the 

spectral data. It consists of two independent LSTM layers, which extract features from the sequence 

in  both  forward  and  reverse  directions.  These  layers  output  hidden  states  containing  spectral 

information, and eventually, the forward and reverse features are integrated through concatenation 

or weighted fusion to form a comprehensive representation of the spectral sequence. A  two‐layer 

BiLSTM is used to extract more complex hierarchical features by increasing the network depth. The 

two‐layer  BiLSTM  extracts  deeper  features  compared  to  a  single‐layer  model,  thus  avoiding 

underfitting typically associated with shallow models. The number of hidden  layer nodes  in each 

BiLSTM layer  is set to 6 to balance model complexity and training efficiency. Adaboost is used to 
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iteratively  train  10 weak  learners.  Based  on  the  current  sample weights,  it  trains BiLSTM weak 

learners and calculates prediction errors. Each weak learner focuses on fitting the samples with larger 

prediction errors from the previous round, and is assigned a weight based on its prediction accuracy. 

The final prediction is determined by the weighted output of all weak learners—weak learners with 

smaller errors have higher weights, thereby enhancing the model’s fitting ability for difficult samples. 

The  final  prediction  is  the weighted  sum  of  all weak  learners’  outputs. Adaboost  progressively 

corrects the prediction bias of BiLSTM through iterative weighting, especially for noisy spectral data 

or  feature wavelengths  in  foxtail millet,  significantly  improving  the  robustness  of  the model  to 

“abnormal  samples”.  The  iterative  weighting  mechanism  of  Adaboost  enhances  the  overall 

prediction accuracy and  robustness of  the model. By  integrating multiple BiLSTM weak  learners, 

Adaboost gradually optimizes sample weights, reduces prediction bias, and addresses the issues of 

insufficient accuracy or instability of a single BiLSTM model. 

The  evaluation metrics  for  the  quantitative detection model  in  this work  include  three  key 

statistical  indicators:  correlation  coefficient  (R2),  root mean  square  error  (RMSE),  and  residual 

prediction deviation (RPD) [47]. 
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Figure 2. Network structure of the stacked BiLSTM‐Adaboost model. 

3. Results 

3.1. Analysis of the Differences in GABA and Vitamin B9 Content Among Different foxtail millet Varieties 

The following figure illustrates the differences in GABA and Vitamin B9 content among various 

varietiesof the foxtail millet. Significant fluctuations in GABA content were observed across different 

varieties.  The GABA  content  in  ‘Changnong No.35’  is  relatively  low, whereas  varieties  such  as 

‘Changnong No.41’ and ‘Changnong No.50’ have higher GABA content, indicating differences in the 

GABA accumulation ability among varieties. This variation could be related to factors such as the 

genetic characteristics of the varieties and the activity of related enzymes. Similarly, there is a notable 

variation in Vitamin B9 content across different varieties. ‘Changnong No.54’ stands out with a high 

Vitamin  B9  content,  while  ‘Changnong  No.49’  exhibits  lower  levels  of  this  component.  Some 

varieties, such as ‘Changnong No.54’, show higher total nutritional content, with Vitamin B9 making 

up a significant proportion. On the other hand, ‘Changnong No.49’ has a lower overall nutritional 

content, and Vitamin B9 is particularly scarce, reflecting the differences in the accumulation of this 

nutrient  among  the  varieties. The  ratio  of GABA  to Vitamin B9  also  varies  among  the different 

varieties. ‘Changnong No.41’ has a higher proportion of GABA, while ‘Changnong No.54’ has a more 

prominent Vitamin B9 content. This suggests  that different varieties exhibit distinct  tendencies  in 
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accumulating  these  two nutrients.  In  conclusion,  significant differences  exist  in  the  contents  and 

ratios of GABA and vitamin B9 among different foxtail millet varieties. These differences provide a 

basis for selecting  foxtail millet varieties with high nutritional quality and reflect how  the genetic 

characteristics or  environmental  adaptability of  the varieties  influence  the  accumulation of  these 

nutrients. 

 

Figure 3. Differences in GABA and Vitamin B9 content among 19 foxtail millet varieties. 

3.2. Spectral Data Response and Preprocessing Results 

Figure 4 (A) shows the reflectance characteristics of the original spectral response in foxtail millet 

in the wavelength range of 950–1650 nm, which result from the interaction between multiple internal 

chemical components of foxtail millet and light. Reflection valleys appear at 997 nm, 1199 nm, and 

1468  nm, while  reflection  peaks  form  at  1100  nm  and  1298  nm.  The  variations  across  different 

wavelength intervals contain rich chemical information. The 950–997 nm range is mainly associated 

with the vibration absorption of chemical bonds in components such as water and carbohydrates. 

The O‐H  bond  in water  and  the  C‐H  bond  in  carbohydrates  undergo  vibrational  energy  level 

transitions within  this wavelength  range,  absorbing  light  energy  and  resulting  in  a  decrease  in 

reflectivity. This  absorption  reflects  the  internal  energy  conversion of molecules,  showcasing  the 

selective absorption properties of these functional groups for light of specific wavelengths [48]. The 

wavelength range of 997‐1100 nm may indicate that the vibration modes of some functional groups 

such as the amide groups in proteins or C‐H stretching vibrations in fats, which cause a decrease in 

light absorption in this interval. This reflects the modulation effect of components like proteins and 

fats on  the spectra  in  this wavelength segment  [48]. The 1100–1199 nm  range may correspond  to 

enhanced  comprehensive  absorption  of  carbohydrates  such  as  starch.  As  a  polysaccharide,  the 

complex molecular chain structure of starch (e.g., connections of multiple glucose units) leads to the 

superimposed vibration  absorption of O‐H, C‐O,  and other bonds  in  this  range,  enhancing  light 

absorption and lowering reflectance, highlighting the dominant absorption of carbohydrates in this 

region  [48].  The  1199–1298  nm  range  likely  corresponds  to  the weakened  absorption  of  partial 

functional groups  (e.g., C‐H, O‐H overtone),  reflecting  the  influence of  the overtone vibration of 

functional  groups  on  spectral  features.  The  1298–1468  nm  range  is  dominated  by  the  strong 
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absorption of O‐H stretching overtone in water. Water is a polar molecule. The vibration frequency 

doubling absorption of  the O‐H bond has a strong absorption  intensity  in  this wavelength range, 

absorbing a  large amount of light energy, which significantly reduces the reflectance. This feature 

highlights the key influence of water on the reflectance in this spectral range. The 1468–1650 nm range 

shows weakened absorption, likely due to the overlapping effects of absorption characteristics from 

various  components  in  foxtail millet,  such  as  proteins,  fats,  and  carbohydrates.  The  reflectance 

exhibits a specific trend of variation,which is a macroscopic spectral manifestation of the synergistic 

effect of multiple chemical components, reflecting the complexity of the composition of foxtail millet 

and the comprehensiveness of its spectral characteristics [48, 49]. 

Figure  4  (B)  shows  the  spectral  curve  after  preprocessing  of  S‐G, which  effectively  reduces 

random noise while preserving the shape and position of spectral characteristic peaks. Compared to 

Figure 4  (A),  the spectral curve  in Figure 4  (B)  is smoother, with significantly reduced noise. The 

identification  of  characteristic  peaks  (in  intervals  such  as  1000‐1200  nm  and  1300‐1400  nm)  has 

improved, and the baseline tends to be stable. However, there may still be slight shifts due to sample 

scattering  or  background  differences.  Following  S‐G  smoothing,  the  data were  processed with 

discrete  eavelet  transform  (DWT)  to decompose  the  spectral  signal  into  components of different 

frequencies, removing high‐frequency noise while retaining the low‐frequency valid signal, as shown 

in Figure 4 (C). The spectral curve is further optimized, noise  is more thoroughly suppressed, the 

resolution of the characteristic peaks is enhanced, and the baseline drift is better corrected, improving 

the overall spectral stability. SNV corrects the light scattering caused by the differences in particle 

size and stacking density of  foxtail millet, making  the spectra more comparable. Combining S‐G, 

DWT, and SNV, the results achieved multiple optimizations, including noise suppression, baseline 

correction, and scattering correction, as shown in Figure 4 (D). The consistency of the spectral curves 

has  been  significantly  improved,  the  fluctuation  range  of  reflectance  has  been  narrowed,  the 

deviation caused by scattering has been eliminated, and  the regularity of characteristic peaks has 

become more prominent, greatly enhancing the spectral quality. 

 

Figure 4. foxtail millet spectral response curves. (A) Original spectra; (B) Spectra after S‐G preprocessing; (C) 

Spectra after S‐G and DWT preprocessing; (D) Spectra after S‐G, DWT, and SNV preprocessing. 
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3.3. Feature Wavelength Extraction and Detection Model Results for GABA in foxtail millet 

The  results of using millet GABA  raw data, preprocessing data,  and  feature  extraction data 

combined with the BiLSTM‐AdaBoost model are shown in Table S2. The stacked BiLSTM‐Adaboost 

was used to establish an association model between the original spectral data of foxtail millet and the 

content of GABA. The results showed that RC2 = 0.3389, RMSEC = 20.5340, RPDC = 1.2299, RP2 = 0.3059, 

RMSEP = 22.8755, and RPDP = 1.2000. After preprocessing the data with combined S‐G, DWT, and 

SNV, the results improved significantly: RC2 = 0.6539, RMSEC = 12.1143, RPDC = 1.7000, RP2 = 0.6297 

RMSEP = 12.2218, and RPDP = 1.8022. This indicates that data preprocessing plays a crucial role in the 

process  of  constructing  a  component  content  detection  model  using  spectral  data,  and  can 

significantly  improve  the performance of  the model. The  range of 1275‐1341 nm  is  related  to  the 

combined  vibration modes  of molecules,  that  is,  the  coupling  effect  of multiple  chemical  bond 

vibrations (the coordinated vibration of C‐H and N‐H bonds). The spectral signals in this interval is 

stable  and  less  affected by noise, which  can  effectively  capture  the  structural  information of  the 

molecular skeleton of the GABA. The prediction results of the model were: RC2 = 0.7169, RMSEC = 

10.9565, RPDC = 1.8794, RP2 = 0.6921, RMSEP = 11.1451, RPDP = 1.8022. When iVISSA was applied for 

rough extraction, 42 feature wavelengths were obtained, which extended the wavelength range to 

include 1360–1445 nm, 1483–1558 nm, and 1643–1648 nm. The prediction results of the model at this 

time are shown  in Figure 6. However, a comparison  revealed  that  the prediction accuracy of  the 

model based on  iRF‐extracted wavelengths was higher  than  that of  iVISSA. Since  iRF  focuses on 

continuous, strong signal intervals—where spectral absorption is intense and the signal‐to‐noise ratio 

is high—it directly correlates with the core functional groups of GABA, thereby avoiding interference 

from weak  signal  intervals. Although  iVISSA  extended  the wavelength  range,  the  newly  added 

discrete  intervals  exhibited weak  signals  and  low  specificity—potentially  containing background 

noise irrelevant to GABA—which may cause the model to learn erroneous features. 

The coarsely extracted feature wavelength set was refined using CARS and BOSS. For the feature 

wavelengths initially selected by iRF, CARS refined 23 feature wavelengths, while BOSS refined 26. 

Notably,  the model built with  the wavelengths selected by BOSS demonstrated higher prediction 

accuracy, achieving RC2 = 0.7715, RMSEC = 9.6015, RPDC = 2.0920, RP2 = 0.7701, RMSEP = 9.8746, and 

RPDP = 2.0856. The ultimately optimized wavelength set was determined as 1021, 1025, 1030, 1049, 

1058, 1068, 1073, 1077, 1082, 1087, 1091, 1096, 1115, 1124, 1275, 1280, 1299, 1313, 1318, and 1327 nm. 

For the feature wavelengths initially selected by iVISSA, CARS refined 17 feature wavelengths, 

while BOSS refined 16. However, the model built with wavelengths selected by CARS demonstrated 

higher prediction accuracy, achieving RC2 = 0.5510, RMSEC = 13.4580, RPDC = 1.4924, RP2 = 0.5421, 

RMSEP = 13.9349, and RPDP = 1.4778. 

Comparative analysis revealed that the detection model built with the wavelength set refined 

by  iRF‐BOSS  achieved  optimal performance. The wavelengths  are highly  concentrated  in  strong 

absorption regions of hydrogen‐containing groups: 14 wavelengths (70%) distributed within 1021–

1124  nm  represent  the  most  typical  spectroscopic  fingerprints  of  GABA  molecules.  These 

wavelengths  exhibit  intense  signals  and high  specificity, directly  related  to  the  content of amino 

groups and methylene groups. Moreover, 6 wavelengths covering 1275–1327 nm retain core sensitive 

points for combination vibrations. They encompass peak positions in the combination band region 

(1299 nm, 1313 nm)  [50], which are  sensitive  to  the  conformational  changes of GABA molecules, 

thereby further enhancing the accuracy of concentration prediction. The refined wavelengths exist as 

discrete single points, all located at the vertices or sudden slope changes of the spectral absorption 

peaks. These serve as “informational anchor points”  that maximally reflect  the changes  in GABA 

concentration,  effectively  avoiding  the  interference  from  redundant wavelengths  in  continuous 

intervals. 
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Figure 5. Distribution of feature wavelengths for GABA and Vitamin B9 in foxtail millet. 

3.4. Feature Wavelength Extraction and Detection Model Results for Vitamin B9 in foxtail millet 

The results of using millet Vitamin B9 raw data, preprocessing data, and feature extraction data 

combined with the BiLSTM‐AdaBoost model are shown in Table S3. The BiLSTM‐Adaboost was used 

to establish an association model between the original spectral data of foxtail millet and the content 

of vitamin B9. The prediction results are shown in Figure 6, with performance metrics: RC2 = 0.6554, 

RMSEC = 8.3265, RPDC = 1.7035, RP2 = 0.6391, RMSEP = 10.0447, and RPDP= 1.6646. After preprocessing 

with S‐G, DWT, and SNV, the results improved: RC2 = 0.8164, RMSEC = 6.3903, RPDC = 2.3338, RP2 = 

0.8083, RMSEP = 6.5725, RPDP = 2.2840. 

For Vitamin B9, 82 feature wavelengths were extracted using iRF, which were distributed in the 

ranges  of  959‐1157,  1318‐1379,  1398‐1464,  and  1605‐1648  nm.  The  959‐1157  nm  range  primarily 

involves  the  first  overtone  of  C‐H  and  N‐H  bonds,  which may  be  related  to  the  aromatic  or 

heterocyclic structures in the folic acid molecule. The 1318‐1379 nm range corresponds to the second 

overtone of the O‐H bonds in hydroxyl groups, which could be influenced by hydroxyl groups in the 

folic  acid molecule  or moisture.  The  1398‐1464  nm  range  is  associated with  hydrogen  bonding 

interactions  within  the  folic  acid  molecule.  The  1605‐1648  nm  range  may  correspond  to  the 

characteristic absorption of the glutamic acid group in the side chain of folic acid. The iVISSA rough 

selection has additional wavelength intervals, of 1157‐1318 and 1506‐1605 nm compared to iRF. The 

1157‐1318 nm range may include interaction signals between folic acid and other components (such 

as proteins or carbohydrates) or the absorption from specific conjugated structures in the folic acid 

molecule. The 1506‐1605 nm range could involve higher overtones of C‐H bonds or vibrations of the 

overall molecular framework [51]. By adding these two wavelength intervals, iVISSA covers a more 

complete spectral feature of the folic acid molecule, reducing the omission of key information. 

The coarsely extracted feature wavelength set was refined using CARS and BOSS. For the feature 

wavelengths initially selected by iRF, CARS refined 36 feature wavelengths, while BOSS refined 36 

feature wavelengths. Meanwhile, through comparison, the model built with the wavelengths selected 

by BOSS demonstrated higher prediction accuracy, achieving RC2 = 0.9111, RMSEC = 4.7457, RPDC = 

3.3539, RP2 = 0.8856, RMSEP = 4.8471, and RPDP = 2.9566.   

For the feature wavelengths initially selected by iVISSA, CARS refined 33 feature wavelengths, 

while BOSS refined 25 feature wavelengths. However, through comparison, the model built with the 
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wavelengths  selected  by BOSS demonstrated higher prediction  accuracy,  achieving RC2  =  0.9362, 

RMSEC = 4.0215, RPDC = 3.9590, RP2 = 0.8932, RMSEP = 4.6676, and RPDP = 3.0600. The ultimately 

optimized wavelength set was determined as 1016, 1073, 1091, 1096, 1101, 1181, 1186, 1190, 1223, 1228, 

1233, 1313, 1322, 1341, 1346, 1351, 1360, 1365, 1398, 1445, 1516, 1558, 1624, 1638, and 1648 nm. 

Comparative analysis revealed that the detection model built with the wavelength set refined 

by  iVISSA‐BOSS  technology  achieved  optimal  performance,  demonstrating  excellence  in  the 

detection of vitamin B9. This wavelength set precisely focuses on the characteristic spectral regions 

of the core structure of folic acid molecules: 15 wavelengths (60%) are distributed within the 959‐1157 

nm, primarily corresponding to the first overtone vibrations of C‐H and N‐H bonds. This represents 

the typical spectral feature range for the aromatic and heterocyclic structures in folic acid molecules, 

with signals exhibiting significant specificity that directly correlates with the content information of 

key structures in folic acid. Within the core sensitive regions reflecting intramolecular interactions, 8 

wavelengths are distributed across the 1318‐1379 nm and 1398‐1464 nm intervals. Among them, 1318‐

1379 nm is related to the second overtone vibration of the O‐H bonds in the hydroxyl groups, which 

can  sensitively  capture  the  impact of  the hydroxyl  functional groups  and water  in  the  folic  acid 

molecule on the spectral signals. The 1398‐1464 nm range corresponds to the characteristic region of 

hydrogen bond interactions within the molecule, presenting a highly sensitive response to structural 

changes  in  the  folic  acid  molecule.  These  wavelengths  cover  the  key  sites  of  intramolecular 

interactions, providing spectral support at the structural level for the precise prediction of vitamin 

B9 concentration. Additionally, 2 wavelengths located at 1605‐1648 nm are presumed to be related to 

the  characteristic  absorption  of  the  glutamic  acid moiety  in  the  folic  acid  side  chain,  effectively 

supplementing  the  spectral  representation  of  the  overall  structure  of  the molecule. Notably,  all 

refined wavelengths exist as discrete single points, precisely located at the vertices or critical positions 

of sudden slope changes in the spectral absorption peaks. This strategy avoids the interference from 

redundant wavelengths in continuous intervals, enabling the model to efficiently extract core spectral 

information relevant to concentration, thereby achieving accurate detection of vitamin B9 content in 

foxtail millet. This wavelength selection strategy, focused on key  informational anchor points, not 

only significantly enhances the model’s prediction accuracy but also strengthens the reliability of the 

detection method in terms of stability and generalization capability. 

 

Figure 6. Detection results of  the BiLSTM‐Adaboost model.  (A) and  (D) are R2 of  the calibration set and  the 

prediction set, respectively; (B) and (E) are the RMSE of the calibration set and the prediction set, respectively; 

(C) and (F) are the RPD of the calibration set and the prediction set, respectively. 

4. Discussion 

There are significant differences in the GABA and vitamin B9 contents among different varieties 

of the foxtail millet. These differences reflect both the genetic traits of the varieties and the regulatory 
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effects of key enzymes in the metabolic pathways. The higher GABA content in ‘Changnong No.41’ 

and ‘Changnong No.50’ may be related to the activity of glutamate decarboxylase (GAD), an enzyme 

that catalyzes the decarboxylation of glutamate to produce GABA. The variations in the expression 

of  its encoding genes may  lead  to  the differences of accumulation  capacity among varieties. The 

extreme  differences  in  vitamin  B9  content, with  ‘Changnong No.54’  exhibiting  high  levels  and 

‘Changnong No.49’ exhibiting low levels, may be related to the activity of dihydrofolate reductase in 

the  folic  acid  synthesis  pathway,  or  to  gene  polymorphism. Notably,  some  varieties  exhibit  the 

characteristic of  ‘specific accumulation’.  ‘Changnong No.41’ has a particularly high proportion of 

GABA, while ‘Changnong No.54’ is predominantly rich in vitamin B9. This tendency may be related 

to the long‐term breeding goals or environmental adaptability of the varieties. 

Feature wavelength  extraction  is  a key  step  in  spectral modeling,  aimed  at  selecting  critical 

information points  highly  correlated with  the  target  component  from  hundreds  of wavelengths, 

thereby  reducing data dimensionality and  enhancing model efficiency. This work  compared  two 

coarse extraction methods, iRF and iVISSA, and found that the performance differences were closely 

related to the spectral response characteristics of the molecular structure of the components. In GABA 

detection, iRF outperforms iVISSA. iRF focuses on the continuous strong signal intervals of 955–1124 

nm and 1275–1341 nm, corresponding to the first overtone absorption of C‐H and N‐H bonds and 

combination vibration modes in GABA molecules. These regions have strong signals and high signal‐

to‐noise ratios, directly related to amino and methylene functional groups [51], avoiding interference 

from weak signal intervals. However, the additional ranges of iVISSA, such as 1360‐1445 nm, contain 

absorption signals of water (O‐H overtone) and carbohydrates, which have no direct correlation with 

the GABA  structure,  resulting  in  the model  learning  redundant  information and having  a  lower 

prediction accuracy than iRF. In the detection of vitamin B9, iVISSA is superior. The additional 1157–

1318 nm and 1506–1605 nm ranges in iVISSA cover the characteristic absorption of the aromatic ring, 

heterocyclic  structures,  and  side‐chain  glutamic  acid  groups  of  the  folate molecules  [52].  These 

regions, which  involve  high‐order  overtones  of  C‐H  bonds  and  fundamental  vibrations  of  the 

molecular  skeleton,  constitute  integral  components  of  folic  acid‐specific  spectral  signatures.  In 

contrast, iRF does not include these ranges, potentially missing key structural information, leading 

to lower model accuracy than the iVISSA‐BOSS combination. Further feature wavelength selection 

through  CARS  and  BOSS  revealed  that  BOSS  performed  better  in  both GABA  and  vitamin  B9 

detection. This may be due to the different selection mechanisms of the two methods. BOSS retains 

wavelengths with high stability through guided sampling, while CARS is based on variable weights 

and  exponential decay, which  is  suitable  for  integrating  strong  signal  regions and multi‐interval 

features of  complex  structures  in GABA and vitamin B9. Ultimately,  the optimal wavelength  set 

focuses on absorption peak vertices or slope mutation points, directly linking molecular structure to 

spectral response. This strategy avoids the interference of redundant information from continuous 

intervals, significantly improving the modelʹs prediction accuracy and generalization ability. 

The advantage of the stacked BiLSTM‐Adaboost model in GABA detection is that it can fully 

utilize  the  processing  power  of  BiLSTM  on  spectral  sequence  information  to  capture  the 

dependencies between different wavelengths. At the same time, the ensemble learning of Adaboost 

is  used  to  enhance  the  fitting  ability  and  generalization  ability  of  the model  for  complex  data. 

Compared to traditional machine learning models, it is better at handling nonlinear relationships and 

long‐range dependencies  in  spectral data,  thus  improving detection accuracy.  In  the detection of 

vitamin B9  ,  the model effectively  captures  the  complex  spectral  features of  folic acid molecules, 

improving both  the prediction  accuracy  and  stability. Compared  to GABA detection,  the  feature 

wavelength distribution  for vitamin B9  is more extensive and  involves more molecular structural 

features. The model  requires  a  stronger  learning  ability  to process  this  information. The  stacked 

BiLSTM‐Adaboost model, with its unique structure and the advantages of ensemble learning, meets 

this need effectively. 

5. Conclusions 
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This work analyzed the GABA and vitamin B9 content in different foxtail millet varieties and 

found  significant  differences  among  them,  which  are  related  to  genetic  characteristics  and 

environmental adaptability. These findings provide a basis for the selection of foxtail millet varieties 

with high nutritional quality. The response of the spectral data and preprocessing results show that 

combining multiple preprocessing methods can effectively improve spectral quality, laying a solid 

foundation for subsequent model construction. In terms of feature wavelength extraction and model 

development, the stacked BiLSTM‐Adaboost model demonstrated excellent performance, accurately 

detecting  the GABA  and  vitamin  B9  content  in  foxtail millet.  The  selected  strategy  for  feature 

wavelengths enhanced the prediction accuracy and stability of the model. 

Future  research  should  further  expand  the  sample  size of varieties of  the  foxtail millet  and 

investigate the specific mechanisms by which genetic and environmental factors influence the GABA 

and vitamin B9  content,  establishing  a more  comprehensive variety  selection model.  In  terms of 

spectral data processing, more advanced preprocessing methods and feature wavelength extraction 

techniques could be explored to  improve the utilization of spectral data. For the stacked BiLSTM‐

Adaboost model, further optimization of the model structure and parameters is needed, along with 

the  integration  of  other  deep  learning  technologies,  to  enhance  the  generalization  ability  and 

detection  speed  of  the model.  Additionally,  research  on  spectral  detection  of  other  nutritional 

components  in  foxtail  millet  could  be  conducted  to  build  multi‐component  detection  models, 

providing more comprehensive technical support for foxtail millet quality evaluation and functional 

food development. 

Supplementary Materials: The  following  supporting  information  can be downloaded at  the website of  this 

paper posted on Preprints.org, Table S1: The detailed information of tested millet varieties. Table S2: Stacked 

BiLSTM‐AdaBoost model  results using millet GABA  raw data  (RAW), preprocessed data  (PD),  and  feature 

extracted data. Table S3: Stacked BiLSTM‐AdaBoost model results using millet Vitamin B9 raw data  (RAW), 

preprocessed data (PD), and feature extracted data. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

GABA  Gamma‐aminobutyric acid 

CNN  Convolutional neural networks 

SVM  Support vector machines 

SLR  Stepwise linear regression 

LSTM  Long short‐term memory networks 

BiLSTM  Bidirectional long short‐term memory network 
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Adaboost  Adaptive boosting 

HPLC  High‐performance liquid chromatography 

S‐G  Savitzky‐Golay 

SNV  Standard normal variate transformation 

SPXY  Sample set partitioning based on joint x‐y distance 

RMSECV  Root mean square error of cross‐validation 

CARS  Competitive adapative reweighted sampling 

BOSS  Bag of Symbolic Fourier Approximation Symbols 

iRF  Iterative random forests 

iVISSA  Interval variable iterative space shrinkage approach 

MCS  Monte carlo sampling 

WBS  Window‐based subsampling 

WBMS  Window‐based moving subsampling 

R2  Correlation coefficient 

RMSE  Root mean square error 

RPD  Residual prediction deviation 

GAD  Glutamate decarboxylase 
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