

1 Article

2

Genome analysis of two bacterial strains isolated 3 from diseased freshwater sponge reveals the 4 probable cause of its joint domination in microbial 5 community

6 Ivan Petrushin ^{1,2,*}, Sergei Belikov ¹ and Lubov Chernogor ¹7 ¹ Limnological institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033, Russia;
8 ivan.kiel@gmail.com9 ² Irkutsk State University, Irkutsk 664003, Russia; ivan.kiel@gmail.com

10 * Correspondence: ivan.kiel@gmail.com;

11

12 **Abstract:** Endemic freshwater sponges (*Demosponges*, *Lubomirskiidae*) dominate in Lake Baikal
13 and are multicellular filter-feeding animals represent a complex consortium of many species of
14 eukaryotes and prokaryotes. In recent years, mass disease and death of the *L. baicalensis* have been
15 an urgent problem of Lake Baikal. The etiology and ecology of these events remain unknown.
16 Bacteria in microbiomes of diseased sponges of the families *Flavobacteriaceae* and *Oxalobacteraceae*
17 were dominant. Both species are opportunistic pathogens common for freshwater ecosystems. The
18 aim of our study is to analyze the genomes of strains *Janthinobacterium* sp. SLB01 and *Flavobacterium*
19 sp. SLB02, isolated from diseased sponges to identify the reasons for their joint dominance. The first
20 one attacks the other cells using type VI secretion system, suppress gram-positive bacteria with
21 violacein pigment and regulate its own activity via quorum sensing. It makes the floc and strong
22 biofilm by exopolysaccharide biosynthesis and PEP-CTERM proteins expression. The second one
23 utilizes the fragments of cell walls produced of polysaccharides. Named two strains have noticeable
24 difference in carbohydrates acquisition. We described the possible way of joint occupation of
25 ecological niche into freshwater sponge microbial community. This study expands understanding
26 about symbiotic relationship of microorganisms with freshwater Baikal sponges.27 **Keywords:** Symbiosis; Opportunistic pathogens; *Janthinobacterium* sp., *Flavobacterium* sp., Genomes;
28 Floc formation; *Lubomirskia baicalensis*

29

30

1. Introduction

31 Endemic freshwater sponges (*Demosponges*, *Lubomirskiidae*) dominate in Lake Baikal in the
32 littoral zone. They cover up to 50% of the available surfaces [1] and represent a complex consortium
33 of many species of eukaryotes and prokaryotes, including diverse chlorophyll-containing microalgae
34 [2–4]. The first appearance of anomalously pink-colored *L. baicalensis* (Pallas, 1776) sponges was
35 found in 2011. In recent years, significant changes in the ecological system of the coastal (littoral) zone,
36 including mass death of the endemic representatives of the freshwater sponges of the *Lubomirskiidae*
37 family, have been an urgent problem of Lake Baikal. Diseased and dying sponges have been observed
38 in many areas of the lake [5–7]. The etiology and ecology of these events remain unknown.39 Freshwater sponges are multicellular filter-feeding animals, so they are good indicators of the
40 environmental state [8,9]. Sponges pump large quantities of water and have ability to concentrate a
41 wide range of chemicals from both the suspended and dissolved phases of the water (Orani et al.,
42 2018). The understanding of molecular mechanisms of the sponge stress response is not clear, most
43 studies focus on the effect of stress on the sponge-associated microbial community [10–12].

44 In previous studies we reported a shift in microbial communities of the diseased Baikal sponges
45 characterized by mass mortality of green symbionts (*Chlorophyta*) and increased abundances of
46 several different opportunistic colonizers [7,13]. Microbes in diseased sponges belonged mainly to
47 the phyla *Bacteroidetes* and *Proteobacteria* and were much more diverse at the family level. Among
48 these, the families *Flavobacteriaceae* and *Oxalobacteraceae* were dominant. Further we observed the
49 increase in relative abundance of *Flavobacteriaceae* and *Oxalobacteraceae* in the diseased sponges and
50 the infected cell cultures of primmorphs [7,13], isolated and cultivated separately and performed
51 whole genome sequencing two dominating strains named *Janthinobacterium* sp. SLB01 and
52 *Flavobacterium* sp. SLB02 respectively [14,15].

53 Bacteria of the *Burkholderiales* is characterized by the presence of ecologically extremely diverse
54 organisms and contains environmental saprophytic organisms, phytopathogens, and opportunistic
55 pathogens, including those for freshwater ecosystems [16,17]. Bacteria of *Janthinobacterium* family are
56 well-known for their antifungal effects most likely induced through a regulatory network in response
57 to chitin [18]. Most of *Janthinobacterium* bacteria can produce violacein, known metabolite of
58 *Janthinobacterium lividum* which has a broad bioactivity profile including antibacterial, antiviral, and
59 antitumoral activity [19]. Its biosynthesis is a cell density dependent factor, controlled by quorum
60 sensing [20,21]. Three key gens, encoding proteins associated with the quorum sensing are: the CAI-
61 1/LAI-1 autoinducer synthase, two-component histidine sensor kinase and a two-component
62 response regulator. All of them were discovered before in the closer specie *Janthinobacterium* sp. HH01
63 [21]

64 As reported before, in the stationary phase, *Janthinobacterium lividum* forms a strong biofilm that
65 is rich in exopolysaccharides [22]. When cultivating *Janthinobacterium* sp. SLB01 we experimentally
66 observed biofilms into the cell cultures of primmorphs of *L. baicalensis* (unpublished data).
67 Exopolysaccharides (EPS) – the main component of biofilm produced by species of *Janthinobacterium*
68 and *Flavobacterium* families [22–25]. PEP-CTERM-containing proteins generally contain an N-
69 terminal signal peptide and exhibit high diversity and little homology to known proteins. All bacteria
70 with PEP-CTERM have both an outer membrane and EPS production genes [26].

71 One essential strategy of Gram-negative bacteria is the secretion of virulence factors through the
72 cell membranes of the target (victim) to achieve a potential target. In early studies the type VI
73 secretion system (T6SS) was associated with bacterial virulence concerning eukaryotic host cells, but
74 a scarce number of T6SSs are directly implicated in cell disruption [27]. There are few studies
75 describing the T6SS for *Janthinobacterium* family, f.e. about HH01 strain [21,28].

76 The members of the genus *Flavobacterium*, which belongs to the phylum *Bacteroidetes*, are typical
77 bacteria of saline and freshwater ecosystems that can be opportunistic pathogens [29,30]. In a number
78 of previous works researchers have shown that some species of *Flavobacterium* contain proteolytic
79 and collagenolytic enzymes [31,32]. These bacteria regulate a diverse array of activities, including
80 symbiosis, antibiotic production, motility, virulence, and biofilm formation [33–35].

81 The aim of our study is to analyze the genomes of strains *Janthinobacterium* sp. SLB01 and
82 *Flavobacterium* sp. SLB02, isolated from diseased sponges to identify the reasons for their joint
83 dominance. The results of this study will help broaden our understanding about symbiotic
84 relationships in microbial consortium during mass mortality freshwater Baikal sponges.

85 2. Results

86 2.1. Genome assembly, scaffolding and features

87 To unravel potential molecular mechanisms involved in symbiotic relationships in microbial
88 consortium during mass mortality freshwater Baikal sponges, we established the genome sequences
89 of the isolated strains. Violet-pigmented *Janthinobacterium* sp. SLB01 and yellow-pigmented
90 *Flavobacterium* sp. SLB02 strains were isolated on Luria–Bertani (LB) broth medium agar plates
91 (diluted 1/10, temperature 15 °C). Genomic DNA was isolated following standard bacterial DNA
92 Isolation CTAB Protocol (<http://www.jgi.doe.gov>).

93 After draft assembly with SPAdes we made the reference-assisted scaffolding with Ragout [36].
 94 Genome completeness analysis with BUSCO showed results: for *Flavobacterium* sp. SLB02 96.2%
 95 complete, 1.1% fragmented, and 2.7% missing BUSCOs; for *Janthinobacterium* sp. SLB01 98.2%
 96 complete, no fragmented, and 1.8% missing BUSCOs.

97 Genomes were released into NCBI to further study and annotation. The final genome assembly
 98 statistics: raw reads count, genome size number of genes, pseudogenes, protein-coding sequences,
 99 tRNA and noncoding RNA presented in Table 1.

100 **Table 1.** Raw reads and genome features statistics of bacterial strains in this study.

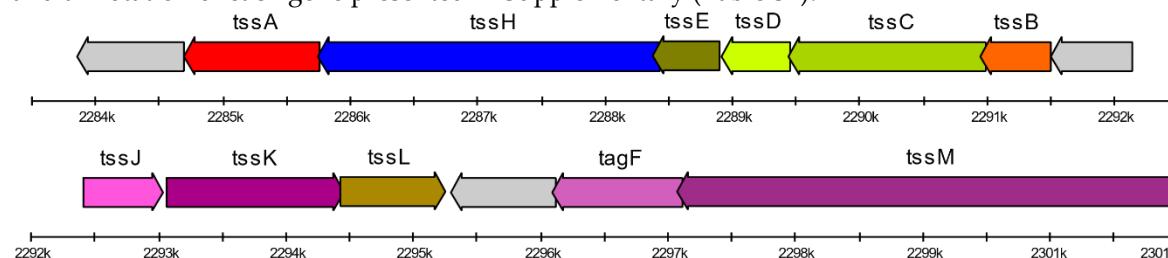
Property	<i>Janthinobacterium</i> sp. SLB01	<i>Flavobacterium</i> sp. SLB02
Raw reads	12,099,942*	17,921,744*
GenBank accession number	VZAB00000000 **	CP045928 ***
Genome size, bp	6,467,981	6,363,829
Number of contigs	2	1
GC content	62.63%	35.50%
Number of genes	6,023	4,964
protein-coding sequences	5,863	4,901
tRNAs	65	56
noncoding RNAs	4	3
pseudogenes	78	73


101 *The sequence library was generated from DNA using an Illumina Nextera XT DNA sample preparation kit.
 102 Whole-genome sequencing was performed using Illumina MiSeq platform with paired-end chemistry (2 x 250
 103 bp).

104 **Reference genome: *Janthinobacterium* sp. strain LM6 chromosome (GenBank accession number CP019510)

105 ***Reference genomes: *Flavobacterium* sp. strain KBS0721 chromosome (GenBank accession no. CP042170) and
 106 the *Flavobacterium* piscis strain CCUG 60099 whole-genome sequence (GenBank accession no. MUHC01000000)

107 2.2. Violacein synthesis by *Janthinobacterium* sp. SLB01


108 Strain *Janthinobacterium* sp. SLB01 is able to produce violacein (see further in text culture photo
 109 in Figure 4). Its genome contains required violacein synthesis operon vioABCDE. Locus structure
 110 presented as the diagram in Figure 1, genes' coordinates and loci names presented in Table S1.

112 **Figure 1.** Violacein production loci diagram into *Janthinobacterium* sp. SLB01 genome.

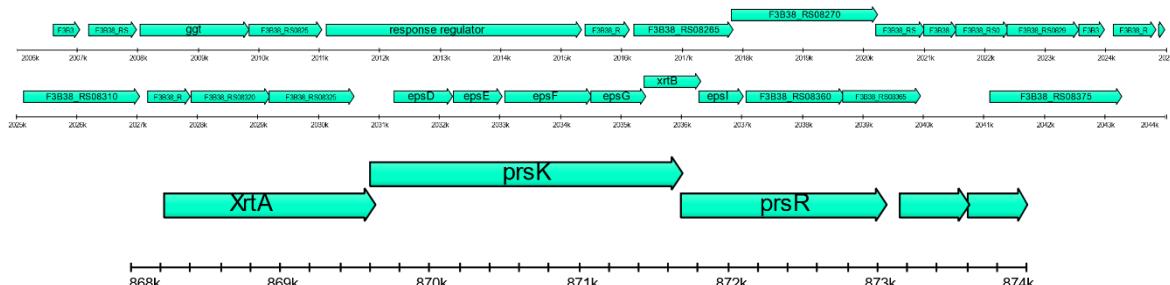
113 2.3. Type VI secretion system genes identification

114 Genome of *Janthinobacterium* sp. SLB01 contains all three categories of the genes, required for
 115 function of type VI secretion system (listed above). That genes are allocated through genome by 10
 116 clusters, the largest one – contains most of the genes – is shown in Figure 2. Name, locus, localization
 117 and annotation of each gene presented in Supplementary (Table S2).

119 **Figure 2.** Schematic diagram of the genetic organization of the type VI secretion system main gene
 120 cluster into *Janthinobacterium* sp. SLB01 genome.

121 **2.4. Quorum sensing in *Janthinobacterium* sp. SLB01**

122 We found genes associated with the quorum sensing in *Janthinobacterium* sp. SLB01 genome.
 123 Three key genes are: synthesis of the CAI-1/LAI-1 autoinducer synthase, two-component histidine
 124 sensor kinase and a two-component response regulator. We found homologous genes to all of them
 125 in *Janthinobacterium* sp. SLB01 genome. Localization and homology percentage of these genes are
 126 presented in Table 2.


127 **Table 2.** Quorum sensing genes description into *Janthinobacterium* sp. SLB01 genome.

<i>Janthinobacterium</i> sp. SLB01		<i>Janthinobacterium</i> sp. HH01		
locus tag	annotation	locus tag	% ident	% similarity
F3B38_RS23475	quorum-sensing autoinducer synthase	Jab_2c24330*	68.6	81.0
F3B38_RS23480	HAMP domain-containing histidine kinase	Jab_2c24340	60.6	73.1
F3B38_RS23485	response regulator	Jab_2c24350	68.2	79.8

128 * CAI-1/LAI-1 autoinducer synthase at first time identified for *Janthinobacterium* specie [21]

129 **2.5. Floc formation by *Janthinobacterium* sp. SLB01**

130 In the stationary phase, *Janthinobacterium* sp. SLB01 forms a strong biofilm that is rich in
 131 exopolysaccharides (EPS). In total, at least 27 genes encoding typical PEP-CTERM proteins had been
 132 identified in *Janthinobacterium* sp. SLB01 strain. Secretion of EPS, expression of PEP-CTERM proteins
 133 and exosortase forms the floc. Genome analysis of *Janthinobacterium* sp. SLB01 reveals all required
 134 gene clusters for floc formation. Its genome contains a large (F3B38_RS08235–F3B38_RS08375) and
 135 small (F3B38_RS15000–F3B38_RS15020) gene clusters of synthesis and export polysaccharides, which
 136 may be also involved in extracellular polysaccharide biosynthesis. These gene clusters include
 137 TIGR03013 family PEP-CTERM/XrtA system glycosyltransferase (previously called EpsH), PEP-
 138 CTERM system histidine kinase PrsK, PEP-CTERM-box response regulator transcription factor PrsR.
 139 In another study about floc formation two glutamine-dependent asparagine synthases asnB
 140 (F3B38_RS08405) and asnH were required [37] which also have orthologs in *Janthinobacterium* sp.
 141 SLB01 genome. Schematic diagram of the genetic organization of these gene clusters presented in
 142 Figure 3.

143 **Figure 3.** Schematic diagram of the genetic organization of *Janthinobacterium* sp. SLB01 gene clusters,
 144 required for floc formation: EPS synthesis, PEP-CTERM, exosortase. Genes are indicated by arrows
 145 and the direction of the arrows represent the direction of transcription of the genes in genome.

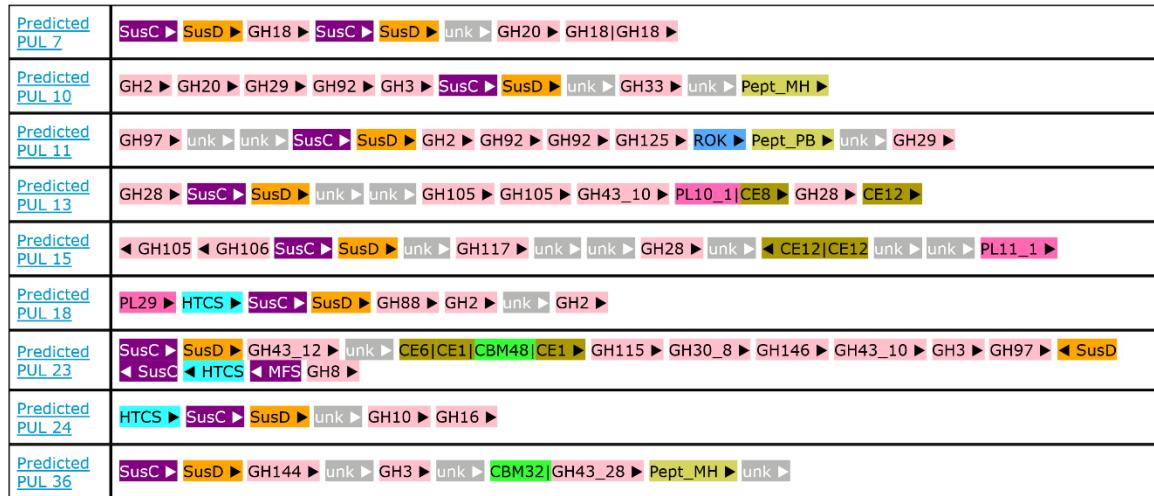
146 Floc formation and violacein pigment are visually observed into the cell culture of
 147 *Janthinobacterium* sp. SLB01 (see Figure 4).

149

150

Figure 4. Visual observance of floc formation and violacein synthesis by *Janthinobacterium* sp. SLB01.

151


2.6. Polysaccharides utilization

152
153
154
155
156
157

We detected 45 predicted polysaccharide utilization loci (PULs) into *Flavobacterium* sp. SLB02 genome, which are annotated previously and available online in PULDB http://www.cazy.org/PULDB/index.php?sp_name=Flavobacterium+sp.+SLB02 [38]. Each PUL consists of SusC/D marker genes with various combination of glycoside hydrolases, carbohydrate-binding modules, carbohydrate esterases, polysaccharide lyases, extracytoplasmic function σ -factor, peptidases and transporters (all definitions are described at <http://www.cazy.org/PULDB/tags.html>).

158
159
160
161

Genomic comparisons showed that homologous loci to these PULs occur in other *Bacteroidetes* members, for some of which exists experimental data about utilized polysaccharides. PULs with numbers 4, 7, 10, 11, 13, 15, 18, 23, 24 and 36 have strong homology (according to PULDB reports) with *Flavobacterium johnsoniae* UW101. Map of each of these loci presented in Figure 5.

162

163
164

Figure 5. Polysaccharide utilization loci (PULs) of *Flavobacterium* sp. SLB02 genome which have homologous PULs into *Flavobacterium johnsoniae* UW101 genome.

165
166
167
168

According to previous study [39,40] these PULs give the ability to digest wide range of polysaccharides, which was predicted based on the genome analysis and confirmed experimentally. Digestible polysaccharides include chitin, starch, α -glucan, pectin and hemicelluloses: xylans, mannans, and xyloglucans. Predicted cell surface proteins related to *Bacteroides thetaiotaomicron* SusC

169 and SusD, which are likely involved in binding of oligosaccharides and transport across the outer
 170 membrane, were also identified.

171 *2.7. Carbon sources metabolism*

172 Genome analysis made with SEED shows that *Janthinobacterium* sp. SLB01 and *Flavobacterium* sp.
 173 SLB02 use different carbohydrates as the carbon sources. As noted before, *Flavobacterium* sp. SLB02
 174 can utilize the polysaccharides, but *Janthinobacterium* sp. SLB01 mostly cannot (have genes only for
 175 chitin degradation). We analyzed the feature counts for carbohydrate metabolism subsystem* and
 176 found out that the composition of carbon acquisition genes is rather different for many enzymes. In
 177 the Table 3 listed the pathways (or subsystems in SEED) with significant (more than two times)
 178 differences. The full list of subsystems is presented in Table S3.

179 **Table 3.** Carbon sources metabolism subsystem differences into *Janthinobacterium* sp. SLB01 and
 180 *Flavobacterium* sp. SLB02 genomes.

Carbon source group	Subsystem* name	SLB01**	SLB02***
Central carbohydrate metabolism	TCA Cycle	15	0
	Pentose phosphate pathway	0	9
Di- and oligosaccharides	Sucrose utilization	0	2
	Methylcitrate cycle	7	0
Organic acids	Propionate-CoA to Succinate Module	6	0
	Lactose and Galactose Uptake and Utilization	0	8
Fermentation	Mixed acid	0	7
Polysaccharides	Glycogen metabolism	0	4
Monosaccharides	2-Ketogluconate Utilization	4	0
	L-Arabinose utilization	0	9

181 *A subsystem is a set of functional roles that an annotator has decided should be thought of as related.

182 ** Subsystem feature counts for *Janthinobacterium* sp. SLB01

183 *** Subsystem feature counts for *Flavobacterium* sp. SLB02

184 **3. Discussion**

185 Our study shows that strains *Janthinobacterium* sp. SLB01 and *Flavobacterium* sp. SLB02 may have
 186 symbiotic interaction in diseased sponge (host) microbial community. Bacteria of *Janthinobacterium* sp.
 187 SLB01 communicate with each other with quorum sensing and can make the floc from the EPS and
 188 PEP-CTERM proteins by exosortase XtrA (EpsH). They attack other neighboring cells with type VI
 189 secretions system (T6SS) and suppress the gram-positive bacteria with the violacein pigment. Cell
 190 walls, remaining from dead bacteria (made of polysaccharides) are the obstacle to T6SS function,
 191 because of its short range [41]. *Janthinobacterium* sp. SLB01 can utilize only the chitin, but *Flavobacterium*
 192 sp. SLB02 (as many of *Bacteroidetes*) have specific polysaccharide utilization loci (PULs) to digest the
 193 wide range of them. We observe the joint domination of these two strains into diseased sponges and
 194 the infected primmorphs [7,13].

195 Bacteria of *Janthinobacterium* sp. SLB01 colonizes the space and suppress the other bacteria
 196 (especially Gram-positive) with violacein: pigment production we observed in cell culture (Figure 4)
 197 and all required genes (operon VioABCDE) are present into its genome. Violacein also associated
 198 with quorum sensing (QS) and biofilm formation [20]. Three key gene clusters associated with the
 199 quorum sensing are: synthesis of the CAI-1/LAI-1 autoinducer synthase, two-component histidine
 200 sensor kinase and a two-component response regulator. There are very few studies describing the
 201 quorum sensing for *Janthinobacterium* family. We used the description of QS system for
 202 *Janthinobacterium* sp. HH01 strain [21,28] and found homologous genes to all required genes into
 203 *Janthinobacterium* sp. SLB01 genome. Localization, annotation and identity percentage of these genes
 204 are presented in Table 2.

205 *Janthinobacterium* sp. SLB01 extracts the necessary nutrients from the eukaryotic and bacterial
206 cell via T6SS. Its genome contains all three categories of the genes, required for function of type VI
207 secretion system [42,43]. The first category includes genes encoding membrane-associated proteins,
208 either integral membrane (TssL, TssM) or lipoproteins (TssJ). The second category of genes encodes
209 proteins with relatedness to tailed bacteriophage components (Hcp or TssD, VgrG, TssB, TssC, TssE).
210 The last category contains proteins for which no function can be inferred from in silico analyses (TssA,
211 TssF, TssG, TssK).

212 When cultivating *Janthinobacterium* sp. SLB01 we experimentally observed biofilms and floc
213 formation into the cell cultures of primmorphs of *L. baicalensis* (unpublished data). This bacteria make
214 floc and strong biofilm also in the stationary phase. This process requires exopolysaccharide
215 biosynthesis, but in recent study made clear: both widespread PEP-CTERM proteins and
216 exopolysaccharides are required for floc formation [44]. For all required gene clusters for floc
217 formation we've found the respective homologs into *Janthinobacterium* sp. SLB01 genome (Figure 3).
218 Floc formation can affect negatively on breathing, nutrients acquisition and waste products removal
219 of the host (sponge *L. baicalensis*) because of clogging the pores. Negative effect of biofouling for
220 functioning of the filter-feeding sponge *Halisarca caerulea* is studied in [45].

221 *Flavobacterium* sp. SLB02 – Gram-negative, opportunistic bacteria of phylum *Bacteroidetes*, well-
222 known fish pathogen [25]. As many of *Bacteroidetes* it has specific polysaccharide utilization loci
223 (PULs). After release into GenBank its genome has been analyzed by PULDB [38]. The large number
224 of annotated PULs (in PULDB) let us analyze their composition and compare it with other genomes
225 of *Flavobacterium* family. We predicted some of the polysaccharides, which *Flavobacterium* sp. SLB02
226 can digest by comparing annotated PULs with the literature-derived data stored in PULDB [38]. Ten
227 of 45 found PULs have strong homology (according to PULDB reports) with *Flavobacterium johnsoniae*
228 UW101 (see Figure 5). According to study [39] *Flavobacterium johnsoniae* UW101 can digest
229 polysaccharides including chitin, starch, α -glucan, pectin and hemicelluloses: xylans, mannans, and
230 xyloglucans. Utilization of cell walls fragments clears the surrounding area, including for T6SS
231 activity of *Janthinobacterium* sp. SLB01.

232 The named two strains have differences in carbon acquisition. We analyzed the feature counts
233 for carbohydrates and other carbon sources metabolism subsystem using RAST SEED [46] and found
234 out that the ratio of carbon acquisition genes is rather different for many enzymes. We listed the
235 pathways (or subsystems in SEED) with significant (when one strain have genes, but second does not)
236 differences in Table 3. Its almost half of total pathways number. We suggest that *Janthinobacterium* sp.
237 SLB01 and *Flavobacterium* sp. SLB02 have little or no competition for simple sugars, organic acids and
238 polysaccharides as the carbon sources.

239 There are lot of separate studies for each of named strains in freshwater niche: *Janthinobacterium*
240 can live in cold condition [47–50]; *Flavobacterium* its well-known fish pathogen [23,25] and is
241 component of activate sludge [51–53]. We see here that named two strains related in different phyla
242 and have entirely different life style: virulence mechanism, digested polysaccharides and
243 carbohydrates (feeding). But they probably act together and that's why dominate in the microbial
244 community.

245 This study is the first step to understanding the role of microbial community in of *L. baicalensis*
246 freshwater sponge disease. The results of this study will help broaden our understanding about
247 symbiotic relationships in microbial consortium during mass mortality freshwater Baikal sponges.

248 4. Materials and Methods

249 4.1. Bacterial Strains, Growth Media, DNA Extraction

250 In this study, two strains were isolated from sample of diseased sponge *L. baicalensis* (collected
251 in the Lake Baikal located at the Central Siberia, Russia). Violet-pigmented *Janthinobacterium* sp.
252 SLB01 and yellow-pigmented *Flavobacterium* sp. SLB02 strains were isolated on Luria–Bertani (LB)
253 broth medium agar plates (diluted 1/10, temperature 15 °C).

254 Genomic DNA was isolated following standard bacterial DNA Isolation CTAB Protocol
255 (<http://www.jgi.doe.gov>). The sequence library was generated from DNA using an Illumina Nextera
256 XT DNA sample preparation kit. Whole-genome sequencing was performed using Illumina MiSeq
257 platform with paired-end chemistry (2 x 250 bp).

258 *4.2. Genome assembly and annotation*

259 Draft assembly was built using SPAdes version 3.11.0 [54] with default settings, raw reads error
260 correction and filtering with built-in BayesHammer module (quality threshold 98%). The resulting
261 contigs were ordered with Ragout version 2.2 with default settings
262 (<https://github.com/fenderglass/Ragout>) [36].

263 Genome completeness analysis made with BUSCO v. 3.1.0 and default settings using datasets:
264 “proteobacteria_odb9” with 221 BUSCOs for *Janthinobacterium* sp. SLB01 and “bacteroidetes_odb9”
265 with 443 BUSCOs for *Flavobacterium* sp. SLB02 [55].

266 Annotation made with NCBI Prokaryotic Genome Annotation Pipeline, PGAP [56], some genes
267 were re-annotated with BLAST against Swiss-Prot database and protein sequences of closely related
268 species.

269 *4.3. In Silico Analysis of Type VI Secretion System Loci*

270 A genome wide analysis was performed in this study to reveal the veil of T6SS in the
271 *Janthinobacterium* sp. SLB01. The components and location of T6SS homologs in *Janthinobacterium* sp.
272 SLB01 were determined by SecReT6 (<http://db-mml.sjtu.edu.cn/SecReT6/>, mode T6SS-HMMER)
273 integrated database with default settings [57].

274 *4.4. Genome subsystems*

275 We analyzed the subsystems of *Janthinobacterium* sp. SLB01 and *Flavobacterium* sp. SLB02 by
276 RAST SEED (<http://rast.nmpdr.org/>) with default settings [46]. Detailed reports are available upon
277 request.

278 Violacein synthesis genes (VioABCDE operon) were annotated by NCBI PGAP and verified by
279 BLAST against protein sequences from Swiss-Prot database.

280 Genes encoding PEP-CTERM proteins were partially annotated by NCBI PGAP. We used gene
281 list from floc formation study [44] and found required homologs manually using UGENE [58].

282 *4.5. Polysaccharides utilization loci analysis*

283 Genome of *Flavobacterium* sp. SLB02 was released in NCBI in 2019. Maintainers of PULDB [38]
284 added this genome to the database and analyzed it by fully automated pipeline for PUL prediction
285 using genomic context and domain annotation [59]. Detailed report available at
286 http://www.cazy.org/PULDB/index.php?sp_name=Flavobacterium+sp.+SLB02.

287 To compare 45 detected PULs into *Flavobacterium* sp. SLB02 genome with literature-derived data
288 we performed the similarity search using PULDB build-in function. Hits with highest score were then
289 analyzed manually.

290 **Author Contributions:** Conceptualization, S.B. and L.C.; methodology (bacterial culture), L.C.; software, I.P.
291 formal analysis, S.B., I.P.; investigation, S.B., I.P. and L.C.; data curation, I.P.; writing—Original draft preparation,
292 I.P., S.B., and L.C.; writing—Review and editing, I.P., S.B., and L.C.; visualization, I.P.; supervision, S.B. and L.C.;
293 funding acquisition, S.B. All authors have read and agreed to the published version of the manuscript.

294 **Funding:** This research and article processing charge was funded by Russian Science Foundation, grant number
295 19-14-00088. Sample collection of diseased sponges was carried out within the framework of Siberian Branch,
296 Russian Academy of Sciences basic budget funding from No 0345-2019-0002 (AAAA-A16-116122110066-1).

297 **Acknowledgments:** The bioinformatics data analysis was performed in part on the equipment of the
298 Bioinformatics Shared Access Center, the Federal Research Center Institute of Cytology and Genetics of Siberian
299 Branch of the Russian Academy of Sciences (ICG SB RAS).

300 **Conflicts of Interest:** The authors declare no conflict of interest. The funders had no role in the design of the
301 study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
302 publish the results.

303 **Abbreviations**

BUSCO	Benchmarking Universal Single-Copy Orthologs
CTERM	C-terminal
EPS	Exopolysaccharides
PGAP	Prokaryotic Genome Annotation Pipeline
PEP	Pro-Glu-Pro
PUL	Polysaccharides utilization loci
T6SS	Type VI Secretion System

304 **References**

1. Pile, A. J.; Patterson, M. R.; Savarese, M.; Chernykh, V. I.; Fialkov, V. A. Trophic effects of sponge feeding within Lake Baikal's littoral zone. 2. Sponge abundance, diet, feeding efficiency, and carbon flux. *Limnol. Oceanogr.* **1997**, *42*, 178–184.
2. Jensen, K. S.; Pedersen, M. F. Photosynthesis by symbiotic algae in the freshwater sponge, *Spongilla lacustris*. *Limnol. Oceanogr.* **1994**, *39*, 551–561.
3. Chernogor, L.; Denikina, N.; Kondratov, I.; Solovarov, I.; Khanaev, I.; Belikov, S.; Ehrlich, H. Isolation and identification of the microalgal symbiont from primmorphs of the endemic freshwater sponge *Lubomirskia baicalensis* (Lubomirskiidae, Porifera). *Eur. J. Phycol.* **2013**, *48*, 497–508.
4. Bil, K.; Titlyanov, E.; Berner, T.; Fomina, I.; Muscatine, L. Some aspects of the physiology and biochemistry of *Lubomirskia baicalensis*, a sponge from Lake Baikal containing symbiotic algae. *Symbiosis* **1999**, *26*, 179–191.
5. Kravtsova, L. S.; Izhboldina, L. A.; Khanaev, I. V.; Pomazkina, G. V.; Rodionova, E. V.; Domysheva, V. M.; Sakirko, M. V.; Tomberg, I. V.; Kostornova, T. Y.; Kravchenko, O. S.; et al. Nearshore benthic blooms of filamentous green algae in Lake Baikal. *J. Great Lakes Res.* **2014**, *40*, 441–448.
6. Khanaev, I. V.; Kravtsova, L. S.; Maikova, O. O.; Bukshuk, N. A.; Sakirko, M. V.; Kulakova, N. V.; Butina, T. V.; Nebesnykh, I. A.; Belikov, S. I. Current state of the sponge fauna (Porifera: Lubomirskiidae) of Lake Baikal: Sponge disease and the problem of conservation of diversity. *J. Great Lakes Res.* **2018**, *44*, 77–85.
7. Belikov, S.; Belkova, N.; Butina, T.; Chernogor, L.; Kley, A. M. Van; Nalian, A.; Rorex, C.; Khanaev, I.; Maikova, O.; Feranchuk, S. Diversity and shifts of the bacterial community associated with Baikal sponge mass mortalities. *PLoS One* **2019**, *14*.
8. Thomas, T.; Moitinho-Silva, L.; Lurgi, M.; Björk, J. R.; Easson, C.; Astudillo-García, C.; Olson, J. B.; Erwin, P. M.; López-Legentil, S.; Luter, H.; et al. Diversity, structure and convergent evolution of the global sponge microbiome. *Nat. Commun.* **2016**, *7*.
9. Moitinho-Silva, L.; Nielsen, S.; Amir, A.; Gonzalez, A.; Ackermann, G. L.; Cerrano, C.; Astudillo-García, C.; Easson, C.; Sipkema, D.; Liu, F.; et al. The sponge microbiome project. *Gigascience* **2017**, *6*.
10. Kiran, G. S.; Sekar, S.; Ramasamy, P.; Thinesh, T.; Hassan, S.; Lipton, A. N.; Ninawe, A. S.; Selvin, J. Marine sponge microbial association: Towards disclosing unique symbiotic interactions. *Mar. Environ. Res.* **2018**, *140*, 169–179.
11. Selvin, J.; Shanmuga Priya, S.; Seghal Kiran, G.; Thangavelu, T.; Sapna Bai, N. Sponge-associated marine bacteria as indicators of heavy metal pollution. *Microbiol. Res.* **2009**, *164*, 352–363.
12. Selvin, J.; Ninawe, A. S.; Seghal Kiran, G.; Lipton, A. P. Sponge-microbial interactions: Ecological implications and bioprospecting avenues. *Crit. Rev. Microbiol.* **2010**, *36*, 82–90.
13. Chernogor, L.; Klimenko, E.; Khanaev, I.; Belikov, S. Microbiome analysis of healthy and diseased sponges *Lubomirskia baicalensis* by using cell cultures of primmorphs. *PeerJ* **2020**, *8*, e9080.
14. Petrushin, I. S.; Belikov, S. I.; Chernogor, L. I. Draft Genome Sequence of *Janthinobacterium* sp. Strain SLB01, Isolated from the Diseased Sponge *Lubomirskia baicalensis*. *Microbiol. Resour. Announc.* **2019**, *8*.
15. Petrushin, I. S.; Belikov, S. I.; Chernogor, L. I. Draft Genome Sequence of *Flavobacterium* sp. Strain SLB02, Isolated from the Diseased Sponge *Lubomirskia baicalensis*. *Microbiol. Resour. Announc.* **2020**, *9*.
16. Coenye, T. The family Burkholderiaceae. In *The Prokaryotes: Alphaproteobacteria and Betaproteobacteria*; Springer-Verlag Berlin Heidelberg, 2014; Vol. 9783642301, pp. 759–776.

345 17. Xu, X.; Tian, L.; Zhang, S.; Jiang, L.; Zhang, Z.; Huang, H. Complete genome sequence of *Janthinobacterium*
346 sp. B9-8, a violacein-producing bacterium isolated from low-temperature sewage. *Microb. Pathog.* **2019**, *128*,
347 178–183.

348 18. Cretoiu, M. S.; Korthals, G. W.; Visser, J. H. M.; Van Elsas, J. D. Chitin amendment increases soil
349 suppressiveness toward plant pathogens and modulates the actinobacterial and oxalobacteraceal
350 communities in an experimental agricultural field. *Appl. Environ. Microbiol.* **2013**, *79*, 5291–5301.

351 19. Durán, N.; Menck, C. F. M. *Chromobacterium violaceum*: A review of pharmacological and industrial
352 perspectives. *Crit. Rev. Microbiol.* **2001**, *27*, 201–222.

353 20. Gómez-Gómez, B.; Arregui, L.; Serrano, S.; Santos, A.; Pérez-Corona, T.; Madrid, Y. Selenium and
354 tellurium-based nanoparticles as interfering factors in quorum sensing-regulated processes: Violacein
355 production and bacterial biofilm formation. *Metallomics* **2019**, *11*, 1104–1114.

356 21. Hornung, C.; Poehlein, A.; Haack, F. S.; Schmidt, M.; Dierking, K.; Pohlen, A.; Schulenburg, H.; Blokesch,
357 M.; Plener, L.; Jung, K.; et al. The *Janthinobacterium* sp. HH01 Genome Encodes a Homologue of the *V.*
358 *cholerae* CqsA and *L. pneumophila* LqsA Autoinducer Synthases. *PLoS One* **2013**, *8*.

359 22. Pantanella, F.; Berlutti, F.; Passariello, C.; Sarli, S.; Morea, C.; Schippa, S. Violacein and biofilm production
360 in *Janthinobacterium lividum*. *J. Appl. Microbiol.* **2007**, *102*, 992–999.

361 23. Basson, A.; Flemming, L. A.; Chenia, H. Y. Evaluation of adherence, hydrophobicity, aggregation, and
362 biofilm development of *Flavobacterium johnsoniae*-like isolates. *Microb. Ecol.* **2008**, *55*, 1–14.

363 24. Lee, J.; Cho, D. H.; Ramanan, R.; Kim, B. H.; Oh, H. M.; Kim, H. S. Microalgae-associated bacteria play a
364 key role in the flocculation of *Chlorella vulgaris*. *Bioresour. Technol.* **2013**, *131*, 195–201.

365 25. Cai, W.; De La Fuente, L.; Arias, C. R. Biofilm formation by the fish pathogen *Flavobacterium columnare*:
366 Development and parameters affecting surface attachment. *Appl. Environ. Microbiol.* **2013**, *79*, 5633–5642.

367 26. Haft, D. H.; Paulsen, I. T.; Ward, N.; Selengut, J. D. Exopolysaccharide-associated protein sorting in
368 environmental organisms: The PEP-CTERM/SpsH system. Application of a novel phylogenetic profiling
369 heuristic. *BMC Biol.* **2006**, *4*, 1–16.

370 27. Coulthurst, S. J. The Type VI secretion system – a widespread and versatile cell targeting system. *Res.*
371 *Microbiol.* **2013**, *164*, 640–654.

372 28. Haack, F. S.; Poehlein, A.; Kröger, C.; Voigt, C. A.; Piepenbring, M.; Bode, H. B.; Daniel, R.; Schäfer, W.;
373 Streit, W. R. Molecular Keys to the *Janthinobacterium* and *Duganella* spp. Interaction with the Plant
374 Pathogen *Fusarium graminearum*. *Front. Microbiol.* **2016**, *7*.

375 29. Chen, S.; Blom, J.; Loch, T. P.; Faisal, M.; Walker, E. D. The emerging fish pathogen *Flavobacterium*
376 *spartansii* isolated from Chinook salmon: Comparative genome analysis and molecular manipulation.
377 *Front. Microbiol.* **2017**, *8*.

378 30. Kinnula, H.; Mappes, J.; Sundberg, L. R. Coinfection outcome in an opportunistic pathogen depends on the
379 inter-strain interactions. *BMC Evol. Biol.* **2017**, *17*.

380 31. Nakayama, H.; Tanaka, K.; Teramura, N.; Hattori, S. Expression of collagenase in *Flavobacterium*
381 *psychrophilum* isolated from cold-water disease-affected ayu (*Plecoglossus altivelis*). *Biosci. Biotechnol.*
382 *Biochem.* **2016**, *80*, 135–144.

383 32. Kharade, S. S.; McBride, M. J. *Flavobacterium johnsoniae* chitinase ChiA is required for chitin utilization
384 and is secreted by the type IX secretion system. *J. Bacteriol.* **2014**, *196*, 961–970.

385 33. Fuqua, C.; Parsek, M. R.; Greenberg, E. P. Regulation of gene expression by cell-to-cell communication:
386 Acyl-homoserine lactone quorum sensing. *Annu. Rev. Genet.* **2001**, *35*, 439–468.

387 34. Singh, V. K.; Mishra, A.; Jha, B. Anti-quorum sensing and anti-biofilm activity of *Delftia tsuruhatensis*
388 extract by attenuating the quorum sensing-controlled virulence factor production in *Pseudomonas*
389 *aeruginosa*. *Front. Cell. Infect. Microbiol.* **2017**, *7*.

390 35. Miller, M. B.; Bassler, B. L. Quorum sensing in bacteria. *Annu. Rev. Microbiol.* **2001**.

391 36. Kolmogorov, M.; Armstrong, J.; Raney, B. J.; Streeter, I.; Dunn, M.; Yang, F.; Odom, D.; Flicek, P.; Keane, T.
392 M.; Thybert, D.; et al. Chromosome assembly of large and complex genomes using multiple references.
393 *Genome Res.* **2018**, *28*, 1720–1732.

394 37. An, W.; Guo, F.; Song, Y.; Gao, N.; Bai, S.; Dai, J.; Wei, H.; Zhang, L.; Yu, D.; Xia, M.; et al. Comparative
395 genomics analyses on EPS biosynthesis genes required for floc formation of *Zoogloea resiniphila* and other
396 activated sludge bacteria. *Water Res.* **2016**, *102*, 494–504.

397 38. Terrapon, N.; Lombard, V.; Drula, É.; Lapébie, P.; Al-Masaudi, S.; Gilbert, H. J.; Henrissat, B. PULDB: The
398 expanded database of Polysaccharide Utilization Loci. *Nucleic Acids Res.* **2018**, *46*, D677–D683.

399 39. Larsbrink, J.; Zhu, Y.; Kharade, S. S.; Kwiatkowski, K. J.; Eijsink, V. G. H.; Koropatkin, N. M.; McBride, M.
400 J.; Pope, P. B. A polysaccharide utilization locus from *Flavobacterium johnsoniae* enables conversion of
401 recalcitrant chitin. *Biotechnol. Biofuels* **2016**, *9*.

402 40. McBride, M. J.; Xie, G.; Martens, E. C.; Lapidus, A.; Henrissat, B.; Rhodes, R. G.; Goltsman, E.; Wang, W.;
403 Xu, J.; Hunnicutt, D. W.; et al. Novel features of the polysaccharide-digesting gliding bacterium
404 *Flavobacterium johnsoniae* as revealed by genome sequence analysis. *Appl. Environ. Microbiol.* **2009**, *75*,
405 6864–6875.

406 41. Smith, W. P. J.; Vettiger, A.; Winter, J.; Ryser, T.; Comstock, L. E.; Basler, M.; Foster, K. R. The evolution of
407 the type VI secretion system as a disintegration weapon. *PLoS Biol.* **2020**, *18*.

408 42. Silverman, J. M.; Brunet, Y. R.; Cascales, E.; Mougous, J. D. Structure and regulation of the type VI secretion
409 system. *Annu. Rev. Microbiol.* **2012**, *66*, 453–472.

410 43. Wang, J.; Brodmann, M.; Basler, M. Assembly and subcellular localization of bacterial type VI secretion
411 systems. *Annu. Rev. Microbiol.* **2019**, *73*, 621–638.

412 44. Gao, N.; Xia, M.; Dai, J.; Yu, D.; An, W.; Li, S.; Liu, S.; He, P.; Zhang, L.; Wu, Z.; et al. Both widespread PEP-
413 CTERM proteins and exopolysaccharides are required for floc formation of *Zoogloea resiniphila* and other
414 activated sludge bacteria. *Environ. Microbiol.* **2018**, *20*, 1677–1692.

415 45. Alexander, B. E.; Mueller, B.; Vermeij, M. J. A.; van der Geest, H. H. G.; de Goeij, J. M. Biofouling of inlet
416 pipes affects water quality in running seawater aquaria and compromises sponge cell proliferation. *PeerJ*
417 **2015**, *2015*.

418 46. Overbeek, R.; Olson, R.; Pusch, G. D.; Olsen, G. J.; Davis, J. J.; Disz, T.; Edwards, R. A.; Gerdes, S.; Parrello,
419 B.; Shukla, M.; et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems
420 Technology (RAST). *Nucleic Acids Res.* **2014**, *42*.

421 47. Dieser, M.; Smith, H. J.; Ramaraj, T.; Foreman, C. M. *Janthinobacterium CG23_2*: Comparative Genome
422 Analysis Reveals Enhanced Environmental Sensing and Transcriptional Regulation for Adaptation to Life
423 in an Antarctic Supraglacial Stream. *Microorganisms* **2019**, *7*, 454.

424 48. Yang, M.; Lu, D.; Qin, B.; Liu, Q.; Zhao, Y.; Liu, H.; Ma, J. Highly efficient nitrogen removal of a coldness-
425 resistant and low nutrient needed bacterium, *Janthinobacterium* sp. M-11. *Bioresour. Technol.* **2018**, *256*, 366–
426 373.

427 49. Schloss, P. D.; Allen, H. K.; Klimowicz, A. K.; Mlot, C.; Gross, J. A.; Savengsuksa, S.; McEllin, J.; Clardy, J.;
428 Ruess, R. W.; Handelsman, J. Psychrotrophic Strain of *Janthinobacterium lividum* from a Cold Alaskan Soil
429 Produces Prodigiosin. *DNA Cell Biol.* **2010**, *29*, 533–541.

430 50. Gong, X.; Skrivergaard, S.; Korsgaard, B. S.; Schreiber, L.; Marshall, I. P. G.; Finster, K.; Schramm, A. High
431 quality draft genome sequence of *Janthinobacterium psychrotolerans* sp. nov., isolated from a frozen
432 freshwater pond. *Stand. Genomic Sci.* **2017**, *12*, 8.

433 51. Tezuka, Y. Cation-dependent flocculation in a *Flavobacterium* species predominant in activated sludge.
434 *Appl. Microbiol.* **1969**, *17*, 222–226.

435 52. Park, M.; Ryu, S. H.; Vu, T. H. T.; Ro, H. S.; Yun, P. Y.; Jeon, C. O. *Flavobacterium defluvii* sp. nov., isolated
436 from activated sludge. *Int. J. Syst. Evol. Microbiol.* **2007**, *57*, 233–237.

437 53. Hantula, J.; Bamford, D. H. The efficiency of the protein-dependent flocculation of *Flavobacterium* sp. is
438 sensitive to the composition of growth medium. *Appl. Microbiol. Biotechnol.* **1991**, *36*, 100–104.

439 54. Nurk, S.; Bankevich, A.; Antipov, D.; Gurevich, A.; Korobeynikov, A.; Lapidus, A.; Prjibelsky, A.; Pyshkin,
440 A.; Sirotnik, A.; Sirotnik, Y.; et al. Assembling genomes and mini-metagenomes from highly chimeric reads.
441 In *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
442 in Bioinformatics)*; 2013; Vol. 7821 LNBL, pp. 158–170.

443 55. Waterhouse, R. M.; Seppey, M.; Simao, F. A.; Manni, M.; Ioannidis, P.; Klioutchnikov, G.; Kriventseva, E.
444 V.; Zdobnov, E. M. BUSCO applications from quality assessments to gene prediction and phylogenomics.
445 *Mol. Biol. Evol.* **2018**, *35*, 543–548.

446 56. Tatusova, T.; Dicuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E. P.; Zaslavsky, L.; Lomsadze, A.;
447 Pruitt, K. D.; Borodovsky, M.; Ostell, J. NCBI prokaryotic genome annotation pipeline. *Nucleic Acids Res.*
448 **2016**, *44*, 6614–6624.

449 57. Li, J.; Yao, Y.; Xu, H. H.; Hao, L.; Deng, Z.; Rajakumar, K.; Ou, H. Y. SecReT6: A web-based resource for
450 type VI secretion systems found in bacteria. *Environ. Microbiol.* **2015**, *17*, 2196–2202.

451 58. Okonechnikov, K.; Golosova, O.; Fursov, M.; Varlamov, A.; Vaskin, Y.; Efremov, I.; German Grehov, O. G.;

452 Kandrov, D.; Rasputin, K.; Syabro, M.; et al. Unipro UGENE: A unified bioinformatics toolkit. *Bioinformatics*

453 2012, 28, 1166–1167.

454 59. Terrapon, N.; Lombard, V.; Gilbert, H. J.; Henrissat, B. Automatic prediction of polysaccharide utilization

455 loci in Bacteroidetes species. *Bioinformatics* 2015, 31, 647–655.

456

457