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Abstract: Jones [7] characterized among others monogenity of a family of cyclic sextic polynomials.
Our purpose is to study monogenity of the family of corresponding sextic number fields. This also
provides the first non-trivial application of the method described in [4], emphasizing its efficiency.
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1. Introduction
Monogenity and power integral bases is a classical topic in algebraic number theory, which is

intensively studied even today. For the classical results we refer to [9], for several recent results to [2].
Even during the last couple of years a huge number of results contributed this area [3]. Here we shorly
summarize the most important definitions.

A number field K of degree n with ring of integers ZK is called monogenic (cf. [2]) if there exists
ξ ∈ ZK such that (1, ξ, . . . , ξn−1) is an integral basis, called power integral basis. We call ξ the generator
of this power integral basis. α, β ∈ ZK are called equivalent, if α + β ∈ Z or α − β ∈ ZK. Obviously, α

generates a power integral basis in K if and only if any β, equivalent to α, does. As it is known, any
algebraic number field admits, up to equivalence, only finitely many generators of power integral
bases.

An irreducible polynomial f (x) ∈ Z[x] is called monogenic, if a root ξ of f (x) generates a power
integral basis in K = Q(ξ). If f (x) is monogenic, then K is also monogenic, but the converse is not true.

For α ∈ ZK (generating K over Q) the module index

I(α) = (ZK : Z[α])

is called the index of α. The element α generates a power integral basis in K if and only if I(α) = 1. If
α(i) (1 ≤ i ≤ n) are the conjugates of α in K of degree n, then

I(α) =
1√
|DK|

∏
1≤i<j≤n

|α(i) − α(j)|,

where DK is the discriminant of K. Searching for elements of ZK, generating power integral bases,
leads to a Diophantine equation. Let (1, ω2, . . . , ωn) be an integral basis of K, and let L(i)(x2, . . . , xn) =

x2ω
(i)
2 + . . . xnω

(i)
n be the conjugates of the linear form L(x2, . . . , xn) = x2ω2 + . . . xnωn (1 ≤ i ≤ n).

The polynomial

I(x2, . . . , xn) =
1√
|DK|

∏
1≤i<j≤n

(L(i)(x2, . . . , xn)− L(j)(x2, . . . , xn))
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has rational integer coefficients and degree n(n − 1)/2. It is called the index form corresponding to the
integral basis (1, ω2, . . . , ωn). Obviously, γ = x1 + ω2x2 + . . . + ωnxn ∈ ZK generates a power integral
basis in K if and only if (x2, . . . , xn) ∈ Zn−1 is a solution of the index form equation

I(x2, . . . , xn) = ±1

(independently of x1).
Recently several authors apply the method of Newton polygons and Dedeking criterion which

can be used to prove monogenity or non-monogenity of polynomials and number fields. It is also an
important problem to determine explicitly all inequivalent generators of power integral bases of a
number field. The resolution of the index form equations requires numerical algorithms. Up to now,
we only have general efficient algorithms for determining all inequivalent generators of power integral
bases only in cubic, quartic and special types of sextic and octic number fields. The reason is, that in
these cases the relevant index form equations lead to Thue equations or relative Thue equations, which
can be easily solved (cf. [2]), at least when their coefficients are moderate.

These algorithms for the "complete resolution" of index form equations, may require too long
CPU time. There are also some very fast methods for determining generators of power integral bases
with "small" coefficients, say, being < 10100 in absolute value, with respect to an integral basis. These
solutions cover all solutions with high probability, certainly all generators that can be used in practice
for further calculations. It is usual to apply such algorithms also if we need to solve a large number of
equation.

The general method for the complete resolutions of index form equations in sextic fields [2]
requires a huge amount of time. However, for some special types of sextic fields we have developed
very efficient methods. One of the most interesting case is represented by composites of real cubic and
imaginary quadratic fields [4]. In this paper we give the first non-trivial application of that method to
a parametric family of cyclic sextic fields, studied by L. Jones [7].

For further results on the monogenity of cyclic sextic fields we refer to [10], [1], [8].

2. The Family of Cyclic Sextic Fields
Let n ∈ Z and consider

f (x) = x6 + (n2 + 5)x4 + (n2 + 2n + 6)x2 + 1. (1)

Jones [7] proved:

Lemma 1. f (x) is irreducible for all n ∈ Z, and is monogenic exactly for n = −2,−1, 0, 1.

Let ξ be a root of f (x) and set K = Q(ξ) with ring of integers ZK and discriminant DK. We prove
that in case f (x) is monogenic, often there are further inequivalent generators of power integral bases
of K in addition to ξ. Moreover, there are parameters n, for which f (x) is not monogenic, but K is
monogenic.

Let
g(x) = x3 + (n2 + 5)x2 + (n2 + 2n + 6)x + 1. (2)

Denote by α a root of g(x), let L = Q(α) with ring of integers ZL and discriminant DL. We have ξ2 = α,
therefore L is a subfield of K.

Lemma 2. K is a composite of the totally real cubic number field L and the imaginary quadratic field M = Q(i),
where the discriminants of L and M are coprime.
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Proof. Substituting x = y − (n2 + 5)/3 into g(x) and writing the resulting polynomial in the form
h(y) = y3 + py + q we obtain

D(h) =
( q

2

)2
+

( p
3

)3
= − 1

108
(n2 + n + 7)2(n2 + n − 1)2 < 0,

whence the roots α1, α2, α3 of g(x) are real numbers: L is a totally real cubic number field.
Set

ζ = (−n2 − 2n2 − 3n + 3)ξ + (−n3 + n2 − 5n + 4)ξ3 + (−n + 1)ξ5.

A Maple calculation implies
ζ2 = (−1)(n2 + n − 1)2,

whence ζ = i · (n2 + n − 1). Hence M = Q(i) is also a subfield of K.
An integral basis of M is (1, i), the discriminant of M is DM = −4. The discriminant of g(x) is

D(g) = (n2 + n + 7)2(n2 + n − 1)2,

which is always an odd number. DL is a divisor of D(g), hence DL is also odd. These imply, that
(DM, DL) = 1. □

As a consequence of (DM, DL) = 1 we obtain:

Lemma 3. If
(1, β2, β3)

is an integral basis of L then
(1, β2, β3, i, iβ2, iβ3)

is an integral basis of K.

The properties of K allow to apply the method described in [4].
Denote by α(j) (j = 1, 2, 3) the conjugates of α, and let β

(j)
2 , β

(j)
3 be the conjugates of β2, β3,

respectively, corresponding to α(j).
Let

γ = x1 + x2β2 + x3β3 + iy1 + iy2β2 + iy3β3 ∈ ZK (3)

be arbitrary with x1, x2, x3, y1, y2, y3 ∈ Z. Then

γ(1,j) = x1 + x2β
(j)
2 + x3β

(j)
3 + iy1 + iy2β

(j)
2 + iy3β

(j)
3

and
γ(2,j) = x1 + x2β

(j)
2 + x3β

(j)
3 − iy1 − iy2β

(j)
2 − iy3β

(j)
3

(j = 1, 2, 3) are the conjugates of γ.

3. Auxiliary Results
We formulate the following general results of [6] for our special case of a sextic field K being a

composite of a totally real cubic field L and an imaginary quadratic subfield M = Q(i).
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Lemma 4. For γ ∈ ZK generating K over Q we have

I(γ) = IK/M(γ) · J(γ)

where

IK/M(γ) = (ZK : ZM[γ]) =
1√

|NM/Q(DK/M)|

2

∏
i=1

∏
1≤j1<j2≤3

|γ(i,j1) − γ(i,j2)|

is the relative index of γ and

J(γ) =
1

|DM|3/2

3

∏
j1=1

3

∏
j2=1

|γ(1,j1) − γ(2,j2)|.

If γ generates a power integral basis in K, that is I(γ) = 1, then IK/M(γ) = 1 and J(γ) = 1. Let
IL(x2, x3) ∈ Z[x, y] be the index form corresponding to the integral basis (1, β2, β3) of L.

In [4] we showed that in our spacial case:

Lemma 5. If IK/M(γ) = 1 then

|IL(x2, x2)| ≤ 1, |IL(y2, y3)| ≤ 1. (4)

This is the main power of the method described in [4]. The relative index form equation IK/M(γ) =

1 (in our case a cubic relative Thue equation over the quadratic subfield M, cf. [2]) implies absolute
index form equations in L, which are cubic Thue equations. Moreover, in the special case of our
number field K, J(γ) also factorizes:

Lemma 6. If J(γ) = 1 then
NL/Q(y1 + β2y2 + β3y3) = ±1 (5)

and
P(γ) = ∏

1 ≤ j1, j2 ≤ 3
j1 ̸= j2

|γ(1,j1) − γ(2,j2)| = ±1. (6)

Proof. In our case |DM| = 4 and
1
23

3

∏
j=1

(γ(1,j) − γ(2,j))

is a symmetric polynomial with rational integer coefficients, equal to NL/Q(y1 + β2y2 + β3y3). The
corresponding factor of J(γ) is P(γ), also having rational integer coefficients. □

4. The Algorithm
In view of the above statements, in order to determine all non-equivalent generators of power

integral bases of K, we perform the following steps for each parameter value n:

1. Calculate an integer basis (1, β2, β3) of L.
2. Solve IL(x2, x3) = ±1. Let H be the set of solutions (x2, x3).
3. Let H0 = H ∪ {(0, 0)}.
4. For all (y1, y2) ∈ H0 calculate the corresponding y1. Let H1 be the set of possible triples (y1, y2, y3).
5. For all (x1, x2) ∈ H0 and for all (y1, y2, y3) ∈ H1 construct γ (cf. (3)) and test if IK/M(γ) = 1 and

P(γ) = 1 hold.

We performed all calculations in Maple, also the integral basis in Step 1 was calculated by Maple.
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In Step 2 we calculated the solutions (x2, x3) of

IL(x2, x3) = ±1, x2, x3 ∈ Z, with |x2|, |x3| ≤ 10100. (7)

For larger parameters the coefficients of IL become extremely large, therefore the complete resolution
of (7) would have been very time consuming.

In Step 4, for given (y2, y3) we calculated y1 using equation (5) which is then a polynomial
equation in y1 with integer coefficients.

Step 5 is necessary to select the solutions from the set of possible solutions.

As an example for equation (7), for n = 140 we provide here the integral basis
(1, x, (x2 + 58941x + 118925)/138173) of L and the corresponding index form equation:

I(x2, x3) = −138173x3
2 − 137613x2

2x3 − 44758x2x2
3 − 4777x3

3.

We performed two series of explicit numerical calculations.

A. −100 ≤ n ≤ 100.
Calculating the solutions of (7) with −100 ≤ n ≤ 100 took about 30 minutes, out of which the
calculation for the interval −50 ≤ n ≤ 50 took only 1.5 minutes. This shows how the large coefficients
slow down the calculations.
B. n ∈ S, where

S = {n : n ∈ [−1000,−100) ∪ (100, 1000], n2 + n + 7 square free}.

The set S contains 1110 parameters n. The reason to consider this set is that for all n ∈ S we have the
same type of integer basis. Hence we can write equation (7) in a parametric form and we can perform
also Step 4 and Step 5 in a parametric form. It took 39 minutes to find the solution of I(x2, x3) = ±1
with |x2|, |x3| ≤ 10100 for all the 1110 parameters n ∈ S.

5. Results
For the set A of parameters n our explicit calculations imply:

Theorem 1. n = −56,−14,−7,−5,−2,−1, 0, 1, 4, 6, 13 are the only values of n with −100 ≤ n ≤ 100,
such that K admits generators of power integral bases with coefficients ≤ 10100 in the integral basis.

This statement was proved by explicit numerical calculations, following the above Algorithm. All
data of generators of power integral bases in the monogenic fields are listed in Section 6.

For the set B of parameters we only calculated the solutions of equation (7) using Maple, and the
remaining calculations were made in a parametric form.

Theorem 2. For n ∈ S there are no generators γ (cf. (3)) of power integral bases of K with coefficients
x2, x3, y1, y2, y3 ∈ Z having absolute values < 10100.

Remark. We can not exclude the existence of monogenic fields K for |n| > 100, but they are certainly
not of type S.
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Proof. Our explicit calculations showed that for all n ∈ S an integral basis of L is given by

(1, α, β),

where

β =
α2 + (n2 − n + 3)α + n2

n2 + n − 1
.

The index form of L, corresponding to this integral basis is

IL(x2, x3) = (n2 + n − 1)x2
2 + (n2 − 3n − 1)x2

2x3 + (2 − 2n)x2x2
3 + x3

3.

Let
T := {(0, 0), (±1,±n), (0,±1), (±1,±(n − 1))}. (8)

It is easy to check that (x2, x3) ∈ T are solutions of |I(x2, x3)| ≤ 1. For n ∈ S we did not find any
further solutions of (7).

For n ∈ S, (0, 0) ̸= (y2, y3) ∈ T there exist no corresponding y1. This can be shown by explicit
calculations using symmetric polynomials. For example, for y2 = 1, y3 = n the left hand side of (5) is

N = y3
1 + (2n − 5)y2

1 + (n2 − 7n + 6)y1 − 2n2 + 4n − 1.

We have
N + 1 = (ny1 + y2

1 − 2n − 3y1)(y1 + n − 2)

N − 1 = (y1 + n − 1)(ny1 + y2
1 − 2n − 4y1 + 2)

The above second degree factors are non-zero for n ∈ S. There remains y1 = 2 − n, 1 − n to test. For
these triplets (y1, y2, y3) and for all (x2, x3) ∈ T we calculated P(γ) using again symmetric polynomials.
These P(γ) are polynomials of n with integer coefficients, for which neither P(γ) + 1, nor P(γ)− 1
has integer roots in n. The other possible non-zero pairs (y2, y3) were considered similarly.

For (y2, y2) = (0, 0) we obviously have y1 = ±1. For (y1, y2, y3) = (±1, 0, 0) we again tested all
(x2, x3) ∈ T and found that neither P(γ) + 1, nor P(γ)− 1 has integer roots in n. □

6. Table
Here we list the values of n with −100 ≤ n ≤ 100 for which we found generators γ of power

integral bases of K with coefficients < 10100 in absolute value in the integral bases. We display n
and the integral basis (1, β1, β2) of L. We display the coefficients (x2, x3, y1, y2, y3) of non-equivalent
generators γ (cf. (3)) of power integral bases with respect to the integral basis (1, β1, β2, i, iβ1, iβ2).

n = −56, integral basis of L:
(

1,
x + 4

7
,

x2 + 9353x + 18531
150871

)
(x2, x3, y1, y2, y3) = (0, 0, 9,−49, 170), (0, 0, 10,−49, 170), (0, 0,−4, 17,−59),
(0, 0,−3, 17,−59), (0, 0,−5, 32,−111), (0, 0,−4, 32,−111)

n = −14, integral basis of L:
(

1,
x + 1

3
,

x2 + 32x + 1282
1629

)
(x2, x3, y1, y2, y3) = (0, 0, 12,−5,−16), (0, 0, 13,−5,−16), (0, 0, 11,−4,−13),
(0, 0, 12,−4,−13), (0, 0,−25, 9, 29), (0, 0,−24, 9, 29)

n = −7, integral basis of L:
(

1, x,
x2 + 141x + 254

287

)
(x2, x3, y1, y2, y3) = (0, 0,−19,−7, 23), (0, 0,−18,−7, 23), (0, 0, 7, 3,−10),
(0, 0, 8, 3,−10), (0, 0, 11, 4,−13), (0, 0, 12, 4,−13)
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n = −5, integral basis of L:
(

1, x,
x2 + 14x + 25

57

)
(x2, x3, y1, y2, y3) = (0, 0, 0,−2,−7), (0, 0, 1,−2,−7), (0, 0, 1,−1,−4),
(0, 0, 2,−1,−4), (0, 0,−4, 3, 11), (0, 0,−3, 3, 11)

n = −2, integral basis of L: (1, x, x2)

(x2, x3, y1, y2, y3) = (0, 0,−5,−17,−2), (0, 0,−4,−17,−2), (0, 0,−4,−9,−1),
(0, 0,−3,−9,−1), (0, 0, 9, 26, 3), (0, 0, 10, 26, 3)

n = −1, integral basis of L: (1, x, x2)

(x2, x3, y1, y2, y3) = (0, 0,−4,−6,−1), (0, 0,−3,−6,−1), (0, 0,−2,−5,−1),
(0, 0,−1,−5,−1), (0, 0, 4, 11, 2), (0, 0, 5, 11, 2)

n = 0, integral basis of L: (1, x, x2)

(x2, x3, y1, y2, y3) = (0, 0,−1,−3,−1), (0, 0, 0,−3,−1), (0, 0,−2,−1, 0),
(0, 0,−1,−1, 0), (0, 0, 2, 4, 1), (0, 0, 3, 4, 1)

n = 1, integral basis of L: (1, x, x2)

(x2, x3, y1, y2, y3) = (0, 0,−1,−3,−1), (0, 0, 0,−3,−1), (0, 0,−3,−1, 0),
(0, 0,−2,−1, 0), (0, 0, 1, 4, 1), (0, 0, 2, 4, 1)

n = 4, integral basis of L:
(

1, x,
x2 + 53x + 16

57

)
(x2, x3, y1, y2, y3) = (0, 0, 0,−4, 7), (0, 0, 1,−4, 7), (0, 0,−1, 1,−2),
(0, 0, 0, 1,−2), (0, 0, 1, 3,−5), (0, 0, 2, 3,−5)

n = 6, integral basis of L:
(

1, x,
x2 + 74x + 200

287

)
(x2, x3, y1, y2, y3) = (0, 0,−11,−2, 17), (0, 0,−10,−2, 17), (0, 0, 4, 1,−9),
(0, 0, 5, 1,−9), (0, 0, 5, 1,−8), (0, 0, 6, 1,−8)

n = 13, integral basis of L:
(

1, x,
x2 + 521x + 169

1629

)
(x2, x3, y1, y2, y3) = (0, 0, 4,−16, 25), (0, 0, 5,−16, 25), (0, 0,−3, 7,−11),
(0, 0,−2, 7,−11), (0, 0,−2, 9,−14), (0, 0,−1, 9,−14)
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