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The Code Underneath
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Madrid, 28040, Spain; jrives@dia.uned.es

Abstract: An inverse-square probability mass function (PMF) is at Newcomb-Benford Law’s (NBL)
root and ultimately at the origin of positional notation and conformality. Pr (Z) = (2Z) %, where
Z € Z". Under its tail, we find information as harmonic likelihood £ (s, t)) = H;_1 — Hs_1, where
H, is the nth harmonic number. The global Q-NBL is Pr (b,q) = £(g4+1)/c(Lb)) = (qHy_1) ",
where b is the base, and g is a quantum (1 < g < b). Under its tail, we find information as logarithmic
likelihood / ([i,j)) = Inj/i. The fiducial R-NBL is Pr (r,d) = ¢([d.d4+1))/¢([1,r)) = log, (1 + 1/d), where
r < b is the radix of a local complex system. In the framework of bijective numeration, we prove
that the set of Kempner’s series conforms to the global NBL and that the local NBL is length- and
position-invariant. The global Bayesian rule multiplies the correlation between two numbers, s and
t, by a likelihood ratio that is the NBL probability of bucket [s, ) relative to b’s support. The local
Bayesian rule is 6 (j : i|r) = i/jlog, j/i. To encode the odds of quantum j against i locally, we multiply
the prior odds Pr(b,j)/Pr(b,i) by a likelihood ratio, which is the NBL probability of bin [i, j) relative to
r’s support. This two-factor structure is recurrent under arithmetic operations. The Bayesian rule
to recode local datais 6 (j : i|r') = & (j : i|r) Inr/n/’. A particular case of Bayesian data produces the
algebraic field of "referential ratios", %. The cross-ratio, the central tool in conformal geometry, is
a ratio of referential ratios. A one-dimensional coding source reflects the harmonic external world,
the annulus {x € Q|1 < |x| < b}, into its logarithmic coding space, the ball {x € Q| |x| <1 —1/p}.
The source’s conformal encoding function is y = log, (2x — 1), where x is the observed Euclidean
distance to an object’s position. The conformal decoding function is x = %2 (1 + r¥). Both functions,
unique under basic requirements, enable information- and granularity-invariant recursion to model
the multiscale reality.
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1. Introduction

After Simon Newcomb’s public note [1] and Benford’s statement [2] that "small things are more
numerous than large things, and there is a tendency for the step between sizes to be equal to a fixed
fraction of the last preceding phenomenon or event", many scientists [3] tried to explicate the strange
high frequency of the micro in nature, the rarity of the macro, and the ebbing progression of the gaps
in between.

Nature pivots on exponential powers. Benford underlined that "the geometric series has long
been recognized as a common phenomenon in factual literature and in the ordinary affairs of life".
Nevertheless, human functions are often arithmetic-centric. Will there be a natural coding system to
convert these realms into one another, the observable into our inner world’s models, and vice versa?
In other words, does nature count on a conformal transformation mechanism [4]?
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In modern terms, Newcomb-Benford law (NBL) states that the first digits of randomly chosen
original data typically outline a logarithmic curve in an impressive diversity of fields regardless of
their physical units. Equivalently, the law remarks that raw natural data usually belong to nearly
scale-invariant geometric series. Among its manifestations, it is fascinating that linear coefficients
represented by mathematical and physical constants [5] (e.g., proportionality parameters or scalar
potentials) adhere to the law.

Although this scenario suggests that NBL might account for an elementary principle, we have yet
to clarify its origin, realize a theoretical basis, or encounter a convincing reason [6]. Berger [7] laments
that "There is no known back-of-the-envelope argument, not even a heuristic one, that explains the
appearance of Benford’s law across the board in data that is pure or mixed, deterministic or stochastic,
discrete or continuous-time, real-valued or multidimensional.”

We claim a primordial probability inverse-square law (ISL) is at NBL’s root. This "canonical"
probability mass function (PMF) has a double fundamental effect, namely the NBL for the discrete
(global and harmonic) and continuous (local and logarithmic) domains. We prefer to anticipate these
three laws’ properties and affiliated terminology in Table 1, indicating their scope and character,
baseline set, physical incarnation, scale, formula, information function, cardinality, and how we will
denominate the corresponding item, an item list, and an item range.

Table 1. Nature and terminology of the three foundational contexts, where Z is a nonzero integer, b is
the global base, q is a quantum (1 < q < b), Hy, is the nth harmonic number,  is the local radix, and 4 is
adigit (1 <d <r).

Property | | Law — Canonical PMF First NBL Second NBL
Scope Mathematical Global Local
Character Discrete Discrete Continuous
Baseline set Natural, Integer Rational Real
Physics Field Potential Entropy
Entity at origin Indeterminate Observer Coding source
Scale Linear Harmonic Logarithmic
Probability law (22)7? (gHp_1) " log, (1+1/4)
Information function Digamma Logarithm
Cardinality Infinite Base Radix
Item Number Quantum Digit
Item list < w,B,... > String Chain Numeral
Item range [, B) Interval Bucket Bin

Are these laws naturally predetermined probability distributions? We champion the view that the
canonical PMF is a brute fact and, consequently, the global and local versions of NBL are inescapable.
For one thing, their mode is one. This number is the base case for almost all proofs by mathematical
induction, statistically the most probable cardinal of a natural set (e.g., one cosmos, one black hole
at the center of a galaxy, one star ruling an orbital planetary system, one heart pumping a body’s
blood, one nucleus regulating the cellular activity, et cetera), and seed in the majority of recursive
computational processes. We read in [8] that numbers close to the multiplicative unit are not preferably
rooted in mathematics, but a simple glance at the Table of Constants in [9] points in the opposite
direction. Small leading digits and, in general, small significands (mantissae) of coefficients and
magnitudes are the most common in sciences, albeit, of course, we can find cardinalities of all sizes.

That the universe is prone to favor slightness is particularly blatant in physics and chemistry. For
instance, following the standard cosmological model [10], the abundance of hydrogen and helium
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is roughly 75 % and 23 % of all baryonic matter, respectively [11]. Higher atomic numbers than 26
(iron) are progressively more and more infrequent. Nevertheless, the universe’s heaviest elements can
comparatively produce the most remarkable galactic phenomena despite their shortage [12] (e.g., the
necessary metals to form the Milky Way represent only about 2 % of the galaxy’s disk mass). Why do
accessibility and reactivity maintain a hyperbolic relationship?

Notwithstanding that NBL assumes standard positional notation (PN) in its fiducial form, our
logic also permits obtaining the formulae for non-standard place-value numeral systems. In particular,
every NBL's PMF for standard PN has a bijective numeration [13] peer. For example, the standard and
bijective decimal system global and local laws are similar but different. These results show that the
precision of NBL is nonessential, while the support positional scale is what matters.

This article’s field of study is mathematical and computational physics, delving into philosophy,
theoretical physics, information theory, probability theory, and number theory. We have organized it
as follows. We first examine the challenges researchers historically faced in deducing NBL and the
state of the art in this field. Afterward, we present a one-parameter inverse-square PMF for the natural
numbers with positive probabilities summing to one, extensible to the integers, and diverging mean
(no bias). Next, we deduce the fiducial NBL passing through the global NBL; this two-phase derivation
clarifies why the tendency for the minor numbers revealed by the natural sciences can be regular only
if we assume that an all-encompassing base exists. To support this view, we substantiate that the set of
Kempner’s "curious" series conforms to the global NBL for bijective numeration. Further, we surmise
a PN resolution, i.e., the prospect of a natural position threshold ascribed to a place-value number
system.

Information theory [14] comes into play when we discover that information is prior to probability
in the context of NBL. Likewise, a unit fraction is the harmonic likelihood of an elemental quantum
gap, and a digit of a numeral written in PN is a bin that covers a proportion of the available logarithmic
likelihood.

The odds between two events is a correlation measure whose entropic contribution to a positional
scale ushers in Bayes’ rule [15], namely the product of two factors, a rational prior and a rational
likelihood, precisely the NBL probability of the numeric range involved. This structure is recurrent
under arithmetic operations and gives place to the algebraic field of "referential ratios", the ground for
Lorentz covariance, and the cross-ratio, a central instrument of conformality. Then, we determine the
conformal metric and iterative coding functions that preserve the local Bayesian information and are
compatible with a multiscale complex system [16]. Finally, we resolve the canonical PMF’s parameter,
the proportionality constant that ensures the divisibility of the probability mass for naturals and
integers. In the epilogue, we comment on the results and conjecture some ideas that open the door to
future research.

The primary motivation of this work is seeking a reason for NBL rather than describing how
it works [17] or elucidating its pervasiveness. Although Newcomb was an astronomer and Benford
was an electrical engineer and physicist, basic research on NBL has usually been the territory of
mathematicians; physics must reconsider NBL. Finding a rational version of the law was also a goal of
our investigation, given that real numbers are physically unfeasible, mere mathematical abstractions.
Q fits in a relational world ruled by proportions and approximations, contrasting with the continuum’s
absolute density and the ultra-accuracy of R. Another motivation is disclosing how a coding source
manipulates information in PN. NBL says nothing about the coding process that leads to a digit’s
probability of occurrence.

What falls outside our purview? Applications of NBL (e.g., financial) that are irrelevant to
computation, information theory, or physics. Neither are we interested in particular virtues of NBL,
e.g., the exactness of the law (uncanny, to tell the truth [18]), because they deviate our attention from the
critical topics to tackle, to wit, what makes the minor numbers mostly probable, the link to Bayes’ rule,
and the efficacy and universality of the conformal coding spaces (see Figure 1). Despite the title, this
essay is not about cryptographic protocols or codes enabling source compression and decompression
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or error detection and correction for data storage or transmission across noisy channels; it is about a
source’s system of rules for converting global information into local information.

(“Positive probabilities summing to | \\
g 1o o
Central symmetry Canonical PMF

No bias J Constructability
Space divisibility
\Randomness L
Global (harmonic) NBL
Hyperbolicity
Universal coding system v
Incrementality Standard

Bijective
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*  Recurrent structure — Global Bayes Law

Positional
Notation
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Referential and cross ratios Jump odds Bipartition odds
Conformality Stability Optimal stopping

Figure 1. The road to conformal coding.

How did this research develop? Our original rationale was acknowledging that a connection
between an NBL and an ISL exists. The rate of change of a significand’s probability drops quadratically,
ie.,

S ) e

According to this expression, a numeral’s occurrence differential is inversely proportional to
the square of its distance (plus its distance) from the coding source. Therefore, we could expect
this spatial arrangement around the origin based on an ISL for the natural numbers. If a genuine
inverse-square PMF exists, we should arrive at it from just a few essentials. We confirmed that
three preconditions, namely positive probabilities summing to one, no bias, and central symmetry,
unambiguously define a PMEF, except for a proportionality constant. Moreover, requiring probability
mass compartmentalization fixes such a constant and completely specifies the canonical PMF for the
natural and integer numbers. Because the resulting probability for counting numbers is a unit fraction,
a rational version of NBL should accompany the logarithmic counterpart. We ultimately gleaned how
to calculate the probability of a quantum in a given base as a value in Q.

We have encountered that information has a relational character primally conveyed by the
likelihood concept, either harmonic (£ ([s,t)) = H;_1; — H;_qharmt, ie., "harmonic units" of
information) or logarithmic (¢ ([i,j)) = Inj/inat). Likelihood is not the information obtained by
picking an item from a range but the space allocated to encode an item between the range’s ends. An
NBL probability is a proportion of the information total (likelihood density), and an NBL entropy is
the weighted mean of the information total (average likelihood). Moreso, odds, referential ratios, and
cross-ratios measure likelihood correlations. Because algebra grows on these rational data, geometry
embodies algebraic structures, and physics reflects geometrical rules, information turns out to be
physical.

Another high-level achievement was finding a hidden connection between NBL and Bayes’ law.
This rudimentary rule codes the strength of the relationship between a pair of items normalized in
a particular base b or radix r. The global Bayes’ rule, in odds form and b-ary harmonic information
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units, is the product of a prior, the ratio between the probability of two numbers t and s according to
the canonical PMF, by a likelihood factor, the global NBL probability of the bucket [s, t) in base b. The
local Bayes’ rule, in odds form and r-ary logarithmic information units, is the product of the prior, a
ratio between the global NBL probability of two quanta j and i on b’s harmonic scale, by a likelihood
factor, the local NBL probability of the bin [i, j) in radix r. Further, Bayesian data conformally encoded
constitute normalized likelihood information. Bayes’ rule also recodes information after a change of
base or radix, a foundation for incremental computation. Lastly, we learned how a source recursively
encodes the observable as Bayesian data and decodes these back into the information of the external
world. This Bayesian outlook unifies the frequentist, subjective, likelihoodist, and information-theory
interpretations.

We have verified that likelihood, probability masses, entropy, and odds are measurable
information, the common factor for the universality of the harmonic and logarithmic patterns appearing
in real-life raw numerical series. We have even inferred that information divergence is impossible.
In the first place, the entropy of the canonical PMF for the natural and integer numbers converges.
Likewise, we have defined global and local Bayesian data supported by confined harmonic and
logarithmic scales. The jump odds between consecutive quanta or numerals are also delimited.
Physically, the entropic cost of crossing entirely the universe or its local copy agrees with the Bekenstein
bound [19].

Effectively, information occupies finite space. This essay introduces various examples of how
a law, PMEF, concept, or formula supports our theory that the cosmos is a hyperbolic, thrifty, and
relational information system at a fundamental level. The notion of conformality implemented into a
source’s coding space subsumes these hallmarks. It employs the NBL invariance of scale, base, length,
and position in the Bayes’ rule to calculate the entropic contribution of a range of items. This synergy
reinforces the thesis that mathematics begets physics and that information is a form of energy. The
universe is a natural positional system that rules how a body’s local quantum-mechanical degrees
of freedom carve the information of its consubstantial properties, backing the Computable Universe
Hypothesis [20].

2. Results

We enumerate the research’s concrete results and answer what this study adds to human
knowledge.

2.1. Specific Achivements

We have found a roundabout but intuitive argument to explain the appearance of NBL in the vast
array of contexts in which its effect manifests; NBL issues from an ISL of probability.

When choosing a natural number at random, nature follows a particular PMF where zero is
possible and interpretable as "indeterminate"”, e.g., not-a-number or inaction. We require zero’s
probability to be 1 — €S, where € is a proportionality constant, and €S is the probability of picking
a counting number, i.e., {1,2,3,---}. We also need this one-parameter PMF to have no bias so that
no number is prominent (up to its probability), i.e., any number can appear. Moreover, the mass
of a counting number N is necessarily ¢/N? if we want the probability function extensible to integer
numbers, i.e., a number with the same probability regardless of the sign. Thus, the universe weighs
the cost of choosing =N as growing quadratically with N.

We have obtained the "global" and "local” NBL from this predetermined PMFE. Under its tail, the
probability that a natural number exceeds N is proportional to the trigamma function at N. Likewise,
the probability of a natural variable’s second-order cumulative function falling into [s, t) is a harmonic
likelihood ratio that cancels out the constant €, namely the bucket’s width ¢ (t) — ¢ (s) = H;—1 — Hs_1
relative to the base’s support width ¢ (b) — ¢ (1) = H,_ 1, where1 < s < t < band {s,t,b} € N*.
The base b is a global referent that changes the status of a number to a computable elemental entity
we call a "quantum". When the bucket is [g,4 + 1), we obtain the global NBL of a generic quantum
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q, Pr(b,q) = qH%' an exact and separable function where q,b € N, 1 < g < b, and H, is the
nth harmonic number. The global NBL represents in information theory the likelihood g encloses
concerning the likelihood total, geometrically a share of the surface area swept by g, and physically a
scalar potential harmonically diminishing as g moves away from the origin. The odds-version of this
PMF (21), also exact and separable, defines the stability of a quantum jump.

We can handle quanta as real variable values when the global base b is giant. Because a coding
source does not know the value of b, it must establish a local referent » < b to normalize its information
separated from the surrounding environment, changing the status of a quantum to a locally computable
elemental entity we call a "digit". This scenario involves the canonical PMF’s third-order cumulative
distribution; the probability of a quantum falling into [i, j) is a logarithmic likelihood ratio that cancels
out Hy_1, precisely the bin’s width Inj/i relative to the radix support’s width Inr. When the bin is
[d,d + 1), we arrive at the fiducial NBL, i.e., log, (1 4 1/d), where d € Nis a digit such that 1 < d <.
This PMF represents in information theory the likelihood d encloses regarding the likelihood r embraces.
It is geometrically a hyperbolic sector equivalent to the surface area swept by d relative to that swept
by r and physically a scalar potential r-logarithmically diminishing as d moves away from the origin.

In general, NBL probabilities consider the cutoffs PN imposes as a proportion of the total
information. The global and local versions of NBL for standard PN give probability masses similar to a
degree. For comparison purposes, 1 in standard ternary occupies 2/3 ~ 66.7 % (Q) and In2/in3 =~ 63.1 %
(R), while 2 occupies 1/3 ~ 33.3 % and In1.5/In3 ~ 36.9 %, respectively. Likewise, 1 in standard decimal
occupies 35.3 % (Q) and 30.1 % (R), while 9 occupies 3.9 % and 4.6 %, respectively.

Furthermore, we provide NBL for bijective numeration to reinforce the thesis that this law is
comprehensively universal. All the formulas of standard PN are translatable to bijective numeration.
The NBL with standard radix r + 1 corresponds to the NBL with bijective radix r, which is length- and
position-invariant in addition to other well-known invariances. Regardless of the numeral system, we
must conceive of positional scales as hyperbolic spaces in a broad sense, harmonic in the first place,
and logarithmic in the second place.

The sums of Kempner’s curious harmonic series [21] echo the bijective harmonic scale traced by
the global NBL. This outcome is absolute because every Kempner series is infinite, and the calculations
consider every possible numerical chain; extended numerals are increasingly unimportant. For
example, in decimal, while removing the terms including less than 10 % of 5’s in the denominator
makes a harmonic series converge, missing the terms including > 10 % of 5’s does not impede the
divergence of the depleted harmonic series. We also figure that the natural span of a positional system
in base b is b”, a measure of the physical quantity of numerals PN can inherently manage. Beyond this
computational resolution, quanta or digits could be haphazard for practical purposes.

NBL, a synonym of PN, a subsidiary of the canonical PMF, describes an information field
where probability correlates with accessibility, whence, with concentration and durability. Smaller
significands occupy more room and enclose less information than greater significands. In other words,
the space is denser and more stable near the coding source, while numerals dilute the space and
become more reactive as we move away from the origin.

The analysis of NBL from the odds angle drives us to a rudimentary Bayesian framework. The
Bayesian view of objectivistic or subjectivistic probability allegedly requires a reasoner to admit
ignorance and imperfection expressed by a prior and its likelihood, respectively. The reasoner also
accounts for counterhypotheses by considering the product of the prior and its likelihood in the
posterior calculation. Natural Bayesianism works similarly but merely involves a coding source
supporting PN.

Bayesian encoding, recoding, and decoding are elemental computing routines that handle
odds. The Bayesian encoding of the relation between two numbers is the entropic allocation of
their correlation for a harmonic scale, i.e., their ratio squared multiplied by the probability of the
associated interval in the chosen base. The Bayesian encoding of the relation between two quanta is
the entropic contribution of their correlation for a logarithmic scale, i.e., their ratio multiplied by the
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probability of the associated bucket in the chosen radix. Therefore, we can interpret a Bayesian rule as
the formula to encode the rational point #/d or the corresponding range 1, d) of integers; this duality
principle asserting that points and lines are interchangeable is endemic to the cosmos.

The global Bayes’ law bridges numbers with information. We measure global Bayesian data in
harmonic units of information that depend on the base. The natural harmonic scale uses bucket [1,2)
as a reference. We measure local global Bayesian data in logarithmic units of information that depend
on the radix. The natural logarithmic scale uses bin [1, e) as a reference, where e is Euler’s number.
However, the arithmetic of Bayesian data generally does not refer to the global base or the local radix;
it works on natural scales.

The global Bayesian rule allows for calculating a quantum jump probability, with masses decaying
similarly to the global NBL as we move away from the source. Likewise, the local version of Bayesian
coding drives us to the PMF of a domain’s bipartition, an information function applicable to stopping
problems. Specifically, we deduce the information gained from splitting a radix’s digit set. If we take
these digits as generic elements to be processed sequentially, our bipartite odds formula reaches a
pair of information maxima involving e. The square root of the radix gives a minimum between the
two maxima. We fix ideas by focussing on a variation of the "secretary problem" pursuing "a good"
instead of "the optimal" solution. This problem’s representativeness joins the overwhelming evidence
supporting the overarching character of the NBL.

A kicky discovery is that the structure of Bayesian data whose prior factor is the unit is recurrent
under arithmetic operations, giving rise to the algebraic field of "referential ratios" 4=2. Moreover, a
ratio of referential ratios is a cross-ratio, and the logarithm of a cross-ratio locally provides us with the
metric of a conformal space reflecting the observable world and consolidating the universal proclivity
towards littleness, lightness, brevity, or shortness.

The coding source calculates the conformal distance from the origin as 2artanh(Q)/inr, where
artanh (Q) = Y, %, Q =sgn (P) —1/p, sgn () is the sign function, and P is the observed Euclidean
distance to the point where an external object is. The coding space is the ball {Q € Q| |Q| <1 —1/s},
with constant curvature of —Inr, where r is the radix used to normalize the information; the
harmonic (outside) and logarithmic (inside) scales have a common origin and are separated by
the boundary 41 when b — oco. The "conformal encoding function" using the logarithm is C =
sgn (P) log, (2sgn (P) P — 1), with inverse "conformal decoding function" %2 sgn (C) (1 + r58n(©) C).
Since the metric ranges between —oo and oo, the source can repeat the encoding process inwards until
the external object’s hyperbolic distance falls within the local coding space, halting the recursion.
Likewise, every 1-ball with a radius given by the iterated decoding of C = 0 outwards corresponds to
a granularity level.

The results of this research stem all from the canonical PMF for the integer numbers, whose
characteristics are fundamental and generative, imaging the essence of the cosmos. Physically,
positive probabilities summing to one translates into unitarity, central reflection symmetry into
parity invariance, fair mean and variance into uncertainty, holistic rationality into discreteness and
relationalism, and utmost randomness in picking the number one into the principle of maximum
entropy. Likewise, the global NBL (hence Zipf’s law [22] with exponent 1), as well as the local NBL
(supported by the logarithmic scale), are arguably physical. More generally, our descriptions and
derivations introduce diverse instances of how mathematical functions, rules, or algebraic structures
emerge as observable dynamics.

2.2. Hyperbolic World

Hyperbolic geometry is non-Euclidean in that it accepts the first four axioms of Euclidean
geometry but not the fifth postulate. The n-dimensional hyperbolic space H” is the unique,
simply-connected, and complete Riemannian manifold of constant sectional curvature (equal to
—1 [23]). For instance, saddle surfaces resemble the hyperbolic plane H? in a neighborhood of a
(saddle) point. These are typical ways to introduce the notion of hyperbolicity.
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Instead, we prefer to identify a hyperbolic space with a domain whose geometry pivots on
the hyperbola, contrasting with flat and elliptic spaces, which are parabola-based and circle-based,
respectively. Harmonic scales are part of this world because a logarithmic scale results from
summing over a harmonic series with vanishing steps between the values of a rational variable.
The computational implementation of this hyperbolic world is PN, i.e., representing numeric entities
on a positional scale, either harmonic or logarithmic.

Various combinations of exponential forms define the hyperbolic functions, so logarithms
characterize the corresponding inverse (or area) hyperbolic functions. In geometry, the extent of
the hyperbolic angle about the origin between the rays to (1,1) and (x,1/x), where x > 1, is the sector
In x. The natural logarithmic scale, factually H!, rules the cosmos to a great degree, developing systems
whose properties echo a scale-invariant and base-invariant frequency.

Physics ties an ISL with "a geometric dilution corresponding to point-source radiation into
three-dimensional space" [24]. Math shapes an ISL within a two-dimensional setting [25]. Nonetheless,
our brute ISL of probability drives us to various versions of NBL all in one dimension, from which
nature can expand the logarithmic scale upon hyperbolic spaces of all ranks to avoid the curse of
dimensionality [26]. Remarkably, forming a hyperbolic triangle is more than four times as probable as
a non-hyperbolic one. We daresay that hyperbolic geometry beats at the universe’s core.

In information theory, we consider that a hyperbolic space is a coding space within which
"likelihood"epitomize the physicality of the positional number system. A global NBL probability is
a harmonic likelihood ratio, and a local NBL probability is a logarithmic likelihood ratio. A ratio of
NBL probabilities determines the relative odds between two buckets of quanta globally or between
two bins of digits locally. Typically, a coding source calculates the odds between two numeric events
considering the information of the range they embrace regarding the entire informational support
provided by the global base or the local radix. These normalized odds are likelihood ratios.

Decoded (prior) odds between two events are correlations that a coding source translates
to a positional scale multiplied by a likelihood ratio. This product is Bayes’ rule to encode and
transform the information. The shock is that first, addition, subtraction, multiplication, and division
reproduce this coding pattern, and second, under certain conditions, it collapses into the algebraic
field of referential ratios ﬁ—:g. A quotient of referential ratios is a cross-ratio, the linear fractional
transformation’s invariant over rings via the action of the modular group upon the real projective
plane [27]. Restricted to one dimension, the cross-ratio’s logarithm in radix r determines the coding
space’s metric with curvature —Inr. The canonical encoding function y = log, (2x — 1) and the
canonical decoding function x = % (1 + ¥) are the unique conformal transformations (i.e., preserving
orientation and angles) that, if applied iteratively, map x > 0 to the coding space’s positive side
in accord with the minimal information principle. For the same reason, the hyperbolic distance
dr (A, B) = 2/inr (artanh (B) — artanh (A)) between points A and B inside the local coding space is
also unique. We conclude that Poincar invariance ultimately stems from the algebraic field of referential
ratios.

2.3. Thrifty World

To improve tractability, one can feel tempted to cut the unit uniformly into equal parts. A constant
probability distribution assigns the same expected frequency to all the domain values. However,
whereas the uniform distribution of probabilities is, in principle, fair and provides maximum entropy,
it does not fit well into an open (infinite) outcome space.

Contrariwise, it is noteworthy that [28] "the frequency with which objects occur in 'nature’ is an
inverse function of their size", indicating that oddity and magnitude usually correlate and conform
to a Benford distribution. NBL says the cosmos displays a progressive aversion to larger and larger
numbers, somewhat implementing the "parsimonae lex" [29], a principle of frugality [30] that stimulates
economy and effectiveness as universal prime movers, drivers of nascent physics, particularly the
spacetime geometry.
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The canonical PMF exhibits nature’s bet on the shortest numbers, but NBL provides further
precision, pointing to a conservative policy of significands. For instance, the law favors 123.4 against
12.345 because 12345 is less probable than 1234. For the same reason, the law favors 0.234 against those.
The last digits might provide negligible, even arbitrary, information [31]. This innate tendency amounts
to restricting the resolution of the representational system to preclude unnecessary precision. Carrying
long tails of digits from operation to operation is neither intelligent nor evolutionary. Information is
gold, much like energy.

Interestingly, the probability that a randomly chosen natural number between 1 and N is prime is
inversely proportional to N’s number of digits, whence to the length of its significand [32], i.e., to its
logarithm or equivalently its likelihood. Therefore, primality and information are nearly interrelated.
Why is finding a big prime so tricky [33]? Because it demands logarithmically growing energy.

NBL denotes productivity. Radix economy E (N, ) = r log, N measures the "price" of a numeral
N using radix r as a parameter. Cost-saving number systems will employ an efficient coding radix; the
optimal radix economy corresponds to Euler’s number e, another sign of the preeminence of small
numbers. The wider the gap between the economy of consecutive numbers relative to the radix, the
higher the expected frequency. Thrifty numbers making a difference are winning, meaning that the
probability of a number coded with radix r showing up is the rate of change, or derivative, of its
economy concerning the radix, specifically

E(N+1,7)—E(N,7)

P(N,r) = . ~log, (N +1) —log, N = log, <1—|—11]>

This expression indicates the occurrence probability of the numeral N, not necessarily a digit,
with radix r. For example, log;, (1 4 1/22) is the probability of running into a decimal number starting
with 22, such as 2.29 or 2237. The logarithmic scale knits the linear space toward the coding source;
the closer, the higher the spatial density. A large numeral is less likely due to its representational
magnitude, so its space is less contracted than that occupied by a numeral with more probability mass.
NBL reflects how PN encodes numbers in agreement with this economic criterium.

Therefore, the radix economy establishes a scalar field where the gap between the "potential
energies" [34] of two objects only depends on their position as perceived from the source. Thus, the
canonical PMF and NBL subsidiaries are fundamentally efficient, balancing probability mass against
notation size. Minor numbers are accessible at a lower cost, while spatial dilution and the prospect of
likelihood increase, although deceleratingly, as we climb to infinity.

NBL maps (the minor numbers of) the "linear frequency" onto (the least costly digits) of the
"logarithmic frequency" through the "harmonic frequency". How does a harmonic scale exhibit its
austere nature? The study of constrained harmonic series mainly teaches us that the specific digits
involved in the restraining chain do not matter, whereas its length does. Long chains or high densities
of quanta are "rare" and deliver slender harmonic terms that hardly occupy space. In contrast, short
chains or low quantum densities are regular and cheap, producing heavy harmonic terms that occupy
much space, leading to convergence of the series if eliminated. In other words, only usual and
economic constraints can impede the divergence of a harmonic series. More generally, increasingly
bigger numbers on a linear scale require hyperbolically less and less attention in accord with the room
they take up. Nature builds physics upon proximity because "almost all" large numbers are expensive
and indiscernible [35].

Our theory also associates efficiency with entropy. We can interpret NBL probabilities as degrees
of stability or coherence. The lowest digits maintain distinctness from the surroundings thanks to their
solid entropic support. The more significant digits are vulnerable and give rise to more transitions,
physically translating into higher reactivity or less resistance to integration with the environment.

Parsimonious management of computational resources is crucial, as optimal stopping problems
reveal. In "the secretary problem", selecting "the best" applicant is pragmatically less sensible than
simply "a good" one, which requires maximizing the bipartite entropy. The "past partition" emphasizes
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the information gathered, while the "future partition” deals with the information we can obtain from
forthcoming aspirants. As the number of examined applicants grows, the past information increases,
but the future information decreases. In contrast, the probability of taking advantage of both types of
information decreases and increases, respectively. The best applicant implies exclusively focusing on
the future partition, but a balanced decision also implies contemplating the past.

Information economy enables cosmological evolution. That the universe optimizes computability
follows from NBL embracing several invariances. Base invariance ensures even interaction with the
environment because changes in the radix value will imply only incremental updates (recoding),
keeping the internal metric up to the curvature. Scale invariance provides the means to recursively
perform geometric calculations on nested levels of domain granularity, like a fractal. Rescaling implies
only obtaining the powers of any radix using straightforward Moessner’s construction [36]. Length
and position invariance ensure fault tolerance. Ultimately, PN is effective because it makes the most
expected data readily accessible for iterative coding functions.

Because a thrifty world refuses the continuum, computing hyperbolic spaces requires "rationality”
to be feasible.

2.4. Relational World

Real numbers are unattainable mathematical objects [37], artificial, mere abstractions; hence,
R-oriented physical laws and principles are suspicious. In contrast, relative odds, i.e., proportions
between two numbers, quanta, or digits, are tractable. Rational numbers are the fitting choice in
an inaccurate and defective [38] world, where relations are as important as individual entities [39]
and comparative quantities predominate over absolute values. A universe built upon the rational
setting facilitates divisibility, discreteness, and operability. Calculus of rational information relies on a
harmonic scale and uses harmonic numbers. Regardless, we need rational models of reality to prove
that the Q underpins the universe’s computational machinery.

Presuming the minimal information principle, we require a fundamental PMF with positive
probabilities summing to one, no bias, and central symmetry. To ensure divisibility of the probability
space, which enables the operability of the information, the mass distribution we obtain for the natural
numbers must be %N ~2 if N is nonzero and 1 — % (2) otherwise. Next, we calculate from this PMF
the probability of a natural number being odd or even and prime or composite. We also calculate the
probability of getting an elliptic, parabolic, or hyperbolic two-dimensional tiling by examining the
"triangle group". Similarly, the occurrence probability for a nonzero integer Z is 1/(2z)*. Despite being
excluded from the scope of this essay, we can even extend the canonical PMF to rational and algebraic
numbers, the computable version of complex numbers. All these laws are rational and inverse square,
fulfilling identical requirements.

We underline that the probability mass of a nonzero integer is a unit fraction. Real numbers only
appear (in terms of the Riemann zeta function at 2) when the probability of occurrence involves zero
or infinity, a sign that these limiting values are virtual. From the canonical PMF, we derive a discrete
(global) counterpart of the continuous (local) NBL, where the probability of a significand in a given
base is rational. The continuous (local) NBL emanates precisely from the rational (global) NBL by
compartmentalizing a one-dimensional hyperbolic space of colossal extent. More generally, whereas
the universe originates globally from Q, it is perceived locally as R.

The concept of information is fundamentally rational. Harmonic likelihood is global information
defined as [£ (q)]é = [¥(@)])/[p(9)]> harmt, whereas logarithmic likelihood is local information defined
as [((d)]} = nd]//Ind)snat. A "harmt’ is the global (harmonic) unit of information, peering the
local (logarithmic) unit of information, the "nat". Likewise, NBL PMFs represent normalized
information regarding the global base b, Pr(b,[s,t)) = [£@)/[c(g)), or the local radix locally,
Pr(r,[i,j)) = [@)/[e@);. Likelihood is space on a harmonic (global) or logarithmic (local) scale;
for example, if we assume that the "bit" (2! possible states) is the minimal (unit) length [40], one "byte"
(28 possible states) has length eight. If our world is positional, likelihood and entropy would have
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metric units of length for all practical purposes, meaning that information is a physical and manageable
resource.
11

Rationality in its purest form appears as the NBL probability of a quantum m, 57 OF @jump
1

e s (qfl)z , with masses separable as the product of a function of b and a function of 4. However,
the relational character of the universal rational setting pops up in all its splendor when we address
probability ratios. The odds value between between a pair of numbers, quanta, or numerals is the
quotient of their picking probabilities, quantifying the strength of their association. Assuming a < b,
Pr(a)/pPr(b) > 1 estimates how uncorrelated a and b are; if Pr(a)/pr(b) =~ 1, both events are mutually
dependent.

Then, a source encodes, recodes, and decodes odds using Bayes’ law, reminding us that ratios
are the atoms of a coding process. The global Bayes’ rule says that the odds of quantum s against ¢ in
base b are the odds of the number s versus ¢ times the probability of the bucket [s, t) in base b. The
local Bayes’ rule says that the odds of digit i against j with radix r are the global odds of the quantum i
versus j times the probability of the bin [i, j) with radix r. Both represent the entropic contribution of
the items in a range to a positional scale, confirming that information is relational.

Exceptional cases of Bayesian data are the cross-ratio, a conformality invariant, and the "referential
ratios" ﬁ—:g, the basis for relativity. Despite the conformal coding functions using the logarithm and
the exponential function, power (infinite) series by definition, the coding source adds or multiplies
incrementally a finite series of referential ratio powers to throw a rational result at any time, bettering
the approximation with the number of iterates. Rationality is intricately intertwined with decidability
in polynomial time and interruptible algorithms in evolving scenarios [41].

Numeric values do not contain information per se, while a common property makes two entities
commensurable, with the global base and the local radix as main referents. We can take global Bayesian
data as rational quanta, computable numbers, and local Bayesian data as observable correlations of
numerals. In the end, mathematics is Q-based, and physics is relational.

3. The Whole Story of NBL

We comment on the aspects of the academic story of the fiducial NBL most relevant to our essay
and then traverse the deductive road to it. We have discovered many findings on the run related to the
nature of the information at a fundamental level.

First, we introduce an inverse-square law as the origin of NBL. This PMF subsumes a probability
law of rational masses, giving place to a normalized universal PN system to manage a hyperbolic,
thrifty, and relational world. This harmonic scale system employs a global base as a fundamental
referent. When the global base is immense, the scale’s rational setting approaches a domain of real
variables and functions ruled by small radices in local settings. In other words, we prove that the
local NBL, as everybody knows it, assumes that a prior all-encompassing base exists. Eventually, the
interplay between the global base and the local radix will enable us to determine the canonical metric
ascribed to a coding source’s conformal space containing an image of the world.

3.1. The Tortuous Road to NBL

The first digits of the numerals found in data series of the most varied sources of natural
phenomena [42] do not display a uniform distribution but rather exhibit that the minor ones are
the more likely (see [43] for a detailed bibliography and [44,45] for a general overview). Specifically,
this "law of anomalous numbers" claims that the universe obeys an exponential distribution to a greater
or lesser extent.

Newcomb’s insight was, "The law of probability of the occurrence of numbers is such that all
mantissae of their logarithms are equally probable.” (What Newcomb refers to as "mantissa" is what
we will call "significand".) More than half a century later, Benford defined the exact formula of every
random variable satisfying the first-digit (and other digits) law [2]. He could not derive it formally,
although seeded a line of research asserting that "The basic operation F = [ d% or F =Y % in
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converting from the linear frequency of the natural numbers to the logarithmic frequency of natural
phenomena and human events can be interpreted as meaning that, on the average, these things proceed
on a logarithmic or geometric scale."

However, this transition from N to log N, when the baseline set is unlimited, implies tackling
the problem of "picking an integer at random" [46], and then mathematical difficulties arise. To
commence, numerals beginning with a specific digit do not have a natural density. The decimal
sequence {1,11,12,13,...,100,101,102,103...} that groups the first digits does not converge (e.g.,
oscillates). Moreover, suppose each natural occurs with equal probability. In that case, the whole
space must have probability 0 or oo, violating countable additivity (by which the measure of a set must
be nonzero, finite, and equal to the sum of the measures of the disjoint subsets); hence, we cannot
construct a viable discrete probability distribution. The attempt to choose P (N) = 1/N fails because
it diverges in the limit; it is not countably additive. Furthermore, a universal law such as NBL is
supposed to be scale-invariant. However, there are no scale-invariant probability distributions on the
Borel (measurable) subsets of the positive reals because the probability of the sets [0, 1] and [0, s] would
be equal for every scale 0 < s < 1, disobeying once more countable additivity [47].

Hill [48] resumed Newcomb’s idea; logarithm’s significands of sequences conformant to NBL
trace a uniform distribution. He identified an appropriate domain for the "natural probability space"
and, based on the decimal mantissa c-algebra (where countable unions and intersections of subsets can
be assigned a gauge), formally deduced the law for the first digit and joint distribution of the leading
digits. He also provided a new statistical log-limit central-limit-like significant-digit law theorem that
stated the scale-invariance, base-invariance, sum-invariance, and uniqueness of NBL. The cumulative
distribution function is Pr (r,d < m) = log, (1 +m), where d,m € [1..r) and r is the radix.

Since Hill’s publication in 1995, more derivations have come to light, one of the subtlest appearing
in [49] (section 14.2). Nonetheless, they all ignore foundational causes.

3.2. Properties of the Distribution

A vehicle of NBL is how different measurement records spread and repositories aggregate data.
For one thing, the significant-digit frequencies of random samples from random distributions converge
to conform to NBL, even though some of the individual distributions selected may not [50]. Besides,
many real-world examples of NBL arise from multiplicative fluctuations [51]. What happens is that
the absorptive property, exclusive of the fiducial NBL, kicks in [52]; "if X obeys Benford’s law, and Y is
any positive statistic independent of X, then the product XY also obeys Benford’s law — even if Y did
not obey this law". To boot, "variable multipliers (or variable growth rates) not only preserve Benford’s
law but stabilize it by averaging out the errors".

Which standard probability distributions obey NBL? Rarely does a distribution of distributions
disagree with NBL [53]. The ratio distribution of two uniform, two exponential, and two half-normal
distributions approximately stick to NBL. The Pareto distribution enjoys the scale-invariance property
as long as we move from discrete to continuous variables, and Zipf’s law ( 1/z* with & ~ 1) satisfies
the abovementioned absorptive property if one stays over the median number of digits [52]. More
generally, right-tailed distributions putting most mass on small values of the random variable (i.e.,
survival or monotonically decreasing like the log-logistic distribution) are just about compliant with
NBL [28] (e.g., the tail of the Yule-Simon distribution [54]). The Log-normal distribution fits NBL, and
the Weibull and Inverse Gamma distributions are close to NBL under certain conditions [55]. In short,
NBL embraces an ample range of statistical models and mixtures of probability distributions.

Empirical testing of random numerals generated according to the exponential and the generalized
normal distributions reveals adherence to NBL [56]. More precisely, almost every exponentially
increasing positive sequence is Benford (e.g., sequences of power 4", where a > 1), and every
super-exponentially increasing or decreasing positive sequence (e.g., the factorial) is Benford for
almost every starting point [57]. Further, an NBL-compliant data series is inherently sturdy because
of its invariance to changes concerning sign, base, and scale [58]; for instance, mining data about the
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lifetime of mesons or antimesons in microseconds in decimal or seconds in binary results in strict
observance of the law.

All these mathematical circumstances we have summarized about NBL explain why it is so
widespread but not its reason. Failure to comprehend this distinction has generated confusion and is a
typical scientific misunderstanding [59]. In other cases, authors have deemed specific remarks about
NBL its cause when they are indeed consequences [60].

We will explain why discrete distributions decaying as o« 1/z¢ with & € Q2 are indirectly
NBL-compliant. The common factor of all the quasi-NBL distributions is that proportional data
intervals approximately fit their heavy tail (the fatter, the better). Notably, this work does not deal with
the NBL invariances as presumed properties but derives them from basic requirements demanded
from the canonical PMF, producing a subsidiary global NBL and, thereon, the fiducial NBL. The
appearance of NBL in power sequences indeed concerns how PN codes probability ratios (odds),
where the logarithm and the exponential constitute a fundamental functional duality. The intricate
and critical linkage of the law with the rational numbers jumps out.

3.3. A Fundamental Probability Law

We seek a well-defined PMF, i.e., positive probabilities summing to 1. Not all Zipfian distributions
[61] can do the job, for Pr (N) o< N~7 eludes divergence only if 2 > 1. In particular, linear forms for the
denominator of a natural’s probability cannot fulfill countable additivity.

We assume that N is an inductively constructible set from which all physical phenomena can crop
up from the source outward, a basis of reductionism and weak emergency [62]. By including "nil",
we also ponder "infinity" as its reciprocal. However, both projective concepts are only potential and
limiting numbers in the offing; employing the successor and predecessor as symmetric constructors,
we must be able to choose any number strictly between 0 and o so that no counting number is
extraordinary. Again, many Zipfian distributions cannot do the job, for Pr (N) < N~% has a diverging
mean only if 2 < 2. For instance, cubic or higher polynomials lead to convergent expected values.

Additionally, we require a sound and dependable extension to the integers. Zipfian distributions
where 4 is an even natural do the job, but in the range a € (1,2] defined by the two previous
requirements, a = 2 is the fitting choice, the only value assuring central reflection symmetry. To cap
it all, Pr (N) &« N2 agrees with the minimal information principle [63]; considering other quadratic
polynomials for the denominator of a natural’s probability does not yield a better law because it
would introduce unwarranted assumptions in vain. For instance, the Zipf-Mandelbrot law [64]
Pr (N) = 1/(N?-5N+7) deals with unexplained coefficients and is not centrally symmetric.

Therefore, the PMF of a random variable X taking natural numbers is

NeN-{0}: & )

Pr(X:NGN):{else: 1—e€C(2)

We will suppose the proportionality parameter ¢ € Q7 to comply again with the minimal
information principle. { (2) = 7*/6 is the value of the Riemann zeta function at 2, brewing gently as a
factor of endless aggregation of occurrence probabilities. Because the "else" (null) case is possible, this
PMEF is not a pure zeta distribution [65].

Countable additivity holds; the probabilities sum to 1 owing to

(0]

Y 5 =€)

N=1
The picking event X is fair owing to the indeterminacy of the expected value of a natural number,
ie.,
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[e9)

~ € =1
E(X) —0(1—€€(s))—|—NZ:;1Nﬁ _61\121N = o0

Indeed, the nth-order moment diverges for all nonzero n € N.

This PMF does not assume the law of large numbers or the law of rare events. On the contrary, it
works under the statistical assumption of independence of occurrences and no bias. Outcomes of the
picking event are unpredictable, even considering an indefinite trail of repetitions. No predetermined
constant mean exists in space or time, nor is there an absolute measure of "rarity"; the relative frequency
between two events solely depends on their probability mass. We can regard it as a brute law.

Let us leave the rational € unfixed for the time being, given that it is unimportant for the derivation
of NBL. Remember that € € (0,6/72) holds the constraint Pr (N € N) > 0 (i.e.,,¢/N2 > 0and € (2) < 1),
and we will return to it in subsection 7.1.

3.4. The Rational (Global) Version of NBL

In analytic number theory, the mesmerizing Euler-Mascheroni constant y ([66], section 1.5) is the
limiting difference between the harmonic series and the logarithm, i.e.,

lim Hy —InN ~ o
N—oo

where Hy = Z}(V:l % is the Nth harmonic number. If our universe is as harmonic as logarithmic
[49], the discrete version of the NBL must exist connected to but separated from the continuous
(fiducial) one.

The cumulative distribution function of a random variable X obeying (1) is

N—ll
Pr(1<X = —
r(l1<X<N) ekgkz

which tells us how often the random variable X is below N. We call its complementary function
"natural exceedance probability”, quantifying how often X is on level N or above. This dwindling
distribution function is

Pr(X>N)=Pr(X>1)—Pr(1<X<N)=¢(Z(2) — Hy_12)

where Hy» = E}C\’:l 1/i? is the generalized Nth harmonic number in power 2.
We can express this probability in terms of the second derivative of the gamma functionI" (x)’s
logarithm, i.e., the digamma function’s first normal derivative, defined as

V=[] = 21

Since { (2) = ¢/ (1) and ¢/ (N +1) = ¢/ (N) — 1/N2 = ¢/ (1) — LN, 1/&2, the natural exceedance
of N is

Pr(X > N) =€y’ (N)

Numbers lack physicality. If numbers were frequencies, the trigamma function would represent a
probability fractal signal such that the occurrence probability density (i.e., per frequency range) decays
proportionally with the signal’s frequency.

Regardless of the scale, let us divide the natural line into concatenated strings of numbers of the
same length, which we name "quanta". Then, the second-order cumulative function arrives on the
scene for global computability. The plot of ey (q) + constant, the natural exceedance’s antiderivative,
has an informational flavor. A significant value of the quantum ¢ is more unpredictable and influential
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than a minor one; this harmonic surprise needs a medium to reify the event occurrence, and the extent
of the resulting log note 1 (q) is its only measure.

So, how likely is the event X = ¢ to fall into bucket [s, t), assuming a harmonic scale underneath?
The "natural harmonic likelihood" £ depends on the bucket’s extent, namely

t t
x (g} = v @ reonstantly W@l _ oy re) e )

2
ley (q) + constant]] (¢ (9)];
in natural harmonic units of (global) information, where we have considered the generalized
recurrence relation ¢ (t + 1) — ¢ (s + 1) = H; — H;. Note that (2) is a proportion, canceling the constant
€.

The natural harmonic likelihood is neither the probability of a quantum falling into [s, t) nor the
probability that [s, t) is the truth given the observation X = 4. It is the information obtained by picking
a quantum from the bucket [s, t) or the information that X = g gives when s < g < t, i.e., the space
allocated to encode a quantum between the bucket’s ends, which is why it does not refer to g.

The harmonic number function (interpolated to cope with rational arguments) parallels the
continuous world’s logarithmic function in information theory, like in analytic number theory.
L([1,2)) = H; — Hy = 1 represents the "harmt" (a portmanteau of "harmonic unit"), just as
the natural local information unit, the "nat", corresponds to [1,e) by [Inx]] = 1. Thus, natural
harmonic and logarithmic likelihoods are analogous, as we will explain in Section 3.6. In particular,
Llg,q+1) =9 (q+1)—v¢(q) = Hy — Hy—1 = /g implies that g’s reciprocal denotes information,
precisely the natural likelihood of an elemental quantum gap.

A global base b marks the boundary between the mathematical and physical world. We define
the probability mass of bucket [s, t) regarding b’s support as the harmonic likelihood ratio

L([s,t)) _ Hi1—Hs

Pr(blst) = 20 = H, -1 €Q 3)

where 1 < s <t < bands,t,b € N. This probability is separable as a product of [s,t)’s and b’s
functions, expressing a part of the information total that is the b-normalized rational quantum ¢/s’s
length or bucket [s, t)’s width.

The reader can object that the concept of likelihood is unnecessary to define (3) since we can
directly define the probability of a bucket as [¥(1);/[p(g)). However, we aim to stress that we get
information regardless of the base, only relative to the natural harmonic bucket [¢ (q)ﬁ Because
[1,b) gives the maximum likelihood estimate, Pr (b, [s, t)) is the relative likelihood function [67] of the
bucket [s,t) given1 <s <t < b.

When s = g and t = g 4 1, we obtain

0= Shtiley T~ () () eosee e

We measure this PMF in b-ary harmonic information units. It is the simplest case of Zipf’s
law, geometrically an embryonic form of progressive one-dimensional circle inversion. Further, if g
represented a frequency, we could understand the probability of a quantum with a given base as a
(physical) potential diminishing hyperbolically with the distance from the source, i.e., a flicker [68] or
pink [69] noise.

We have described how the harmonic series bridges equations (1) and (4). Both laws point to
minor numbers as the most frequent significands, amassing more probability around the source to
increase accessibility. However, we find three main differences between them:

1. (1)’s probability masses are rational numbers. Instead, a quantum’s probability represents an
area ratio measured through the digamma function; hence, a quantum’s probability is a quota of
information.
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2. The global NBL outlines a hyperbola instead of an ISL. Thus, while the probability of a number is
inversely proportional to its norm (the number’s square), the probability assigned to a quantum
is inversely proportional to its modulus (the quantum’s absolute value).

3. (4) gives us the thing-as-it-appears (perceived potential) stemming from the thing-in-itself (field
per se) [70] expressed by (1), two sides of the same property or object, the dual essence of the
world.

3.5. Analysis of the Global NBL

The global (Q-based) NBL's average probability for the decimal system is
1/ 9232? (quO,l)_l =1/9 = 1 =~ 11%, which is equal to the local (R-based) NBL's average
probability (due to Zgj log (1 +1/d) = 1). The mean value for the quanta 1 to 9 following the global
NBL is g ~ 3.18 (from Pr (10,9) = 1/9), whereas it is d ~ 3.43 (from log (1 + 1/d) = 1/9) for the local
NBL. The harmonic mean value for the quanta 1 to 9 following the global NBL is g = (9+1)/2 = 5.

As expected, Equation (4) brings Pr (2,1) = 1, i.e., 1 occupies 100% of the space in binary. In base
3, the appearance probabilities of 1 and 2 as the first quantum are Pr (3,1) = 2/3 and Pr(3,2) = 1/3,
respectively, a 2/1 sharing out. We deem this Pareto rule so rudimentary that it might be fundamental
in physics. The corresponding Pareto rule is 63/37 if we utilize the local NBL. Quantum 1 in decimal
occupies Pr (10,1) = 2520/7129 =~ 35.3%, while it is 30.1% using the local NBL. Figure 2 compares the
probability of a decimal datum’s first position value between the global, discrete, rational, countable,
harmonic NBL and the local, continuous, real, uncountable, logarithmic one. Regardless of the
cardinality, the former is always steeper.
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Figure 2. A comparison of the global with the local (fiducial) NBL, where "Bb" stands for "Bijective
(global) base" and "Br" for "Bijective (local) radix". Vertical axes represent the occurrence probability
of the horizontal axes” quanta or digits. The plot on the top left shows the PMFs of the global and
local standard ternary (bijective binary) numeral system along with the PMFs of the global and local
standard quaternary (bijective ternary) numeral system. The plot on the top right shows the PMFs of
the global and local standard decimal (bijective nonary) numeral system. The plot on the bottom right
shows the PMFs of the global and local standard undecimal (bijective decimal) numeral system. The
plot on the bottom left shows the PMFs of the global and local standard undecimal numeral system
divided into [1..6) and [6..11) and the PMFs of standard decimal divided into [1..4), [4..7), and [7..10).

The unit bucket a quantum represents can be of any size, so we can recursively perform the
integration and normalization process that gave rise to (4) "within" every quantum attributed to base b,
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obtaining a chain of nested quanta. The probability of getting the leading chain ¢ of quanta with any
length in b-ary is simply
H, Hq.4 1

Pr b,C = — = e@
(b.c) Hyy Hp1 cHp

It represents c’s likelihood in b-ary harmonic units and becomes (4) when ¢ is a base’s quantum.
For example, the probability masses that a decimal chain starts with "10" (e.g., 0.1071) and "99" (e.g.,
992) are Pr (10,10) = (10Hy) " ~ 0.03535 and Pr (10,99) = (99Hg) ' ~ 0.00357.

3.6. The Fiducial (Local) NBL

The global NBL furnishes the frame for constructing a sheer logarithmic system that conserves
base and scale. To achieve such a pursuit, we must turn to the local context of a coding source and
analyze how it represents a numeral in PN.

We call a "bin" of "digits" to a bucket of quanta in the source’s proximity. The third-order
cumulative function of (1) arrives on the scene to facilitate local computability. When the base b is
enormous, we can handle digits like real values to calculate the antiderivative of (4), nd/H, , + constant,
which outlines how unexpected and momentous digit d is. Large values locally transmit more
information than small ones; for whom? Logarithmic surprise needs an observer to reify the event
occurrence. The harmonic information perceived by a receiving system, a coding source, becomes
local information with extension Ind. Consequently, broad bins are more likely than narrow ones as
supporting evidence.

Assuming a logarithmic scale underneath, we define the "natural logarithmic likelihood" ¢y of
the event Y = d < b to fall into bin [i, j) as the ratio

Ind j i
. - +constant| In dV ;
[y ()} = [HH }é EELLN =4([ij) €R ©)
! Ind [Ind] i J
[ﬁ —l—constant]l 1

Note that this proportion no longer refers to base b; a coding source is unaware of the global
setting for calculation purposes.

The natural logarithmic likelihood is neither the probability of a digit falling into [i, j) nor the
probability that [, j) is the truth given the observation Y = d. It is the information obtained by picking
a digit from the bin [i, j) or the information that Y = d gives when i < d < j, i.e., the space allocated to
encode a digit between the bin’s ends, which is why it does not refer to d. However, it has nothing to
do with surprisal [71]; ¢ denotes informative space rather than information content. Indeed, we can
take it as the natural positional length of j/i or the natural width of [7, j). We can also take (5) as the
differential entropy of the uniform probability density function Pr (x) = i/j Vx < j/i.

We measure the natural logarithmic likelihood in natural units ('nats") because of [Ind]{ = 1. Itis
manifestly scale-invariant; since the area of a hyperbolic sector (in standard position) from (1,1) to
(x,1/x) is In x, another way to define invariance of scale is that a squeeze (geometrical) mapping boosts
the logarithmic likelihood up or down arithmetically (see [49] chapter I).

The domain of a digit d spans from the unit to r — 1, where r < b is the cardinality of the local
coding space, precisely the source’s "radix". We define the r-ary probability mass of bin [d, d,) relative
to the radix’s support as the logarithmic likelihood ratio

da
([, dp)) _Ing da
— = = = <
Pr (r,[d1,d2)) ) Ty log, i eR(1<d<dy<r) (6)
with dq,dp, v € N. We can take it as the representation length of 42/4; or the width of [dy,d) in

r-ary logarithmic information units, in correspondence with equation (3), reckoning the probability

d0i:10.20944/preprints202411.0594.v1
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of a bucket as a normalized harmonic likelihood. Therefore, in PN, the probability is a quota of the
available space, a view we will develop in subsections 5.1 and 5.2.

Geometrically, the probability of event dy < d < dy conditioned to r is the ratio between the
areas under the hyperbola delimited by bins [d1,d;) and [1,r), equivalent to the area enclosed by
the rays 1/d4, and 1/4, relative to the span of the hyperbolic angle r. Because the hyperbola preserves
scale changes, the logarithm uniformly distributes the significant digits of a geometrical sequence, as
Newcomb underlined in his note; k In x = In x* implies that, for example, x must drop to ¢/x to divide
the natural likelihood by three (k = ¥5).

By setting in (6) dy = d and dy = d + 1, we fit the Y’s occurrences into the digits of a standard PN
system with radix r, obtaining

Pr(r,d) =log, <1 + ;) eR (7)

The original natural random variable Y € N and the underlying global base b are absent. This
expression is the local (fiducial) NBL, which tells us the PMF of a r-ary numeral’s first digit.

A coding system (observer or source) that uses standard PN handles the unit range as a
concatenation of the sub-bins [log, 1,log,2) = [0,log, 2), [log,2,log,3), ... [log,(r—1),log,r) =
[log, (r —1),1), covering intervals of log, 2/1, log, 3/2, ... log, / (r—1) units of space, and corresponding
to the symbols 1, 2, ... and r — 1, respectively; the addition of these areas is the unit.

More fundamentally, common digits are near the coding source, i.e., the probability of a digit
correlates with its accessibility and declines logarithmically. If we liken probability mass to space,
smaller digits induce more density than significant digits. In other words, accessibility concentrated
around the origin progressively dilutes as we move away, contrasting with the linear scale that
distributes the space evenly.

We can generalize (6) to cope with bins outside the radix. The resulting expression is not generally
a probability anymore, given that we can have bins of any size, but it is again an r-normalized
likelihood that retains the geometric interpretation. In other words,

leogr@ ER (1<m <m) ®)

t([1,r)) n

is the r-normalized 72/n,’s length or [n1,112)’s width. We can regard it as a fractal dimension where

£([ny,n2)|r) =

r is the scaling factor, n; is the number of measurement units, and 7 is the number of fractal copies.
For instance, (8) might explain the Weber-Fechner law [72] in psychophysics, where ¢ ([n11, 1) |r) is the
intensity of human sensation, 1/Inr is a perception- and stimulus-dependent proportionality constant,
1y is the strength of the stimulus, and #; is the zeroing strength threshold.

When n; = n and np = n + 1, we can again interpret this likelihood as the probability of getting a
leading r-ary numeral n € N* of any length, i.e.,

Pr(r,n) =4 ([n,n+1)|r) =log, (n+1) —log, n = log, (1+ i) cR

The efficiency of a r-ary numeral system worsens as r — 17 or r — b — oo [73] because r diverges
from the optimal radix economy, namely Euler’s number e, destroying the information. In the former
case, we encounter the unary system, which boils down to a linear frequency. In the latter case, the
numerals n < r that only use the first position increase limitlessly. Both are no-coding cases.

4. A Curious Effect

We prove that the Kempner distribution reflects the rational version of NBL for bijective
numeration, allows figuring a natural resolution in PN, and confirms a global tendency towards
smallness.
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Watch the notation; we display the base and the radix underlined to denote bijective numeration
rather than standard notation.

4.1. NBL for Bijective Numeration

Suspicion about the authenticity of the number cero [74] suggests that bijective PN is likely more
natural than standard PN, the number system we use daily. Various curious series we will analyze in
the following subsection, specifically the Kempner distribution, append additional evidence that NBL
for bijective numeration [75] is foundational and universal.

Every formula about the NBL for standard PN has a bijective peer. Following the same plot thread
we developed in Section 3.4, a sample of chains encoded using bijective b-ary satisfies the global NBL
if the leading quantum falls in bucket [s, f) relative to the area swept by base b with probability

Hy,1—H

s—1
H, €Q

Pr(b,[s,t)) =

wherel <s <t <bands,t,b € N. Whens = gand t = g + 1 we obtain the probability with
base b of leading quantum g,

1

Pr(b,q) = 7H,

€Q (1<q<b{qb}eN) )

Thus, NBL for the standard PN in base b + 1 corresponds to NBL for bijective b-ary numeration.
For example, we obtain Pr(1,1) = 100%, Pr(3,1) = 6/11 =~ 54.5%, Pr(3,2) = 3/1 =~ 27.3%,
Pr(3,3) = 2/11 =~ 182%, Pr(A,1) = 0.34142, and Pr(A,A) = 0.03414, where "A" symbolizes
the bijective decimal base. Owing to Pr(2,1) = 2/3 and Pr(2,2) = 1/3, the odds 0(2:1|2) =
Pr(22)/Pr(2,1) = % constitute an essential sharing out.

The entropy of PMF (9), E (b), is the expected value (weighted arithmetic mean) of the harmonic
likelihood function (¢ (x) — ¢ (1) = H,_1) evaluated at the probability mass reciprocal, i.e.,

- . q=b
E(b) =E(Pr(bq)) =Y, —— harmt

For example, E (1) = 0, E (2) = 0.90914, E (3) = 1.35432, E (10) = 2.47676, and E (100) = 4.2269.
When b acquires a gargantuan value, we can take the summation as an integral and the harmonic
number function as the natural logarithm, so that the "differential entropy" [76] of the global NBL
approximately tends to

b1n (gInb) .
/1 g 49="mnb+In(inb)

Thus, the global entropy is finite, which agrees with the Bekenstein bound in physics.
The probability of picking a chain of any length starting with c is the likelihood gap it induces on
the b-ary harmonic scale, i.e.,
_H. H., 1

Pr(b,c) = = — =
I‘(JC) HQ HQ CHQ

€Q

which becomes (9) when c is a base’s quantum. For example, the probability that a bijective
decimal chain starts with 11 (e.g., .111) and AA (e.g., AAAA) is Pr (A, 11) = 1/(11Hyp) ~ 0.03104 and
Pr (A, AA) = 1/(110Hy) ~ 0.003104, respectively.

This result allows us to derive the probability of picking a length-I bijective b-ary chain starting
with the quantum g,
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I—1_
k:(q"'l)blilﬁ‘bk,] 1_1

1
1, -l k
k=g 14 21
Pr(b1,q9) = i —q €Q
[ A
b1 =3

where 1 < g < b, b > 1, and {b1,q} € N*. For instance, the probability of running into
1 to 3 as the first quantum of a bijective ternary chain with length 5 is {0.46565,0.30602, 0.22833},
and the chances of choosing 1 to A as the first quantum of a bijective decimal chain with length
2 is {0.2842,0.1688,0.1205, 0.09377,0.07677,0.065, 0.05637, 0.04976, 0.04454, 0.04031 }. Watch that this
equation boils down to (9) if I = 1.

Too, the probability that we run into g as the p-th quantum of a bijective b-ary chain is

Z":kk%l‘l 1
k:gﬂflq bk+q
Pr(b,q,p) = = €Q (10)

where 1 < g < b b > 1, and {bq,p} € NTt. For instance, the probability of
getting 1 to 3 as the fifth quantum of a bijective ternary chain is {0.335011,0.333327,0.331662},
and the chances of encountering 1 to A as the second quantum of a bijective decimal chain
is {0.1183,0.113,0.1083,0.1041,0.1004, 0.09694, 0.09381, 0.09094, 0.08829,0.08583}. Watch that this
equation reduces to (9) if p = 1. Figure 3 shows the PMF of various bijective bases for consecutive
positions and the hyperbolic progression of the bijective ternary digits as the position increases.
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Figure 3. Leading quantum’s PMF for bijective bases 2, 4, and 10 at positions 2 (top-left), 3 (top-right),
and 4 (bottom-left), which quickly tend to the uniform distribution. On the bottom right, we show the
hyperbolic plot of the bijective ternary digits as a function of their position; only the first few quanta
make a coding difference.

Following the plot thread we developed in Section 3.6, the ratio between the area under the
hyperbola delimited by the bin [dy,d) and the radix support [1,r < b) is

Pr (Z, [d1,d2)) = logﬁl % eR (1 < d1 < dz <r, {dl,dz,[} S N+)
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We arrive at the NBL for bijective notation by putting d; = d and dp = d + 1. A sample of
numerals expressed in bijective r-ary PN satisfies the local NBL if the leading digit d occurs with
probability

Pr(r,d) =log, (l + Lli) eR (1<d<ry) (11)

The NBL with radix r 4 1 corresponds to the bijective r-ary numeration’s NBL; for example, the
standard ternary system assigns to 1 and 2 the probabilities 63 % and 37 %, which is the PMF of bijective
binary numeration. In the usual case where the radix is r = 10, the standard decimal system assigns to
digits 1 and 9 probabilities of 30.1 % and 4.6 %. In contrast, the bijective decimal numeration assigns to
digits 1 and A = 10 probabilities of 28.9 % and 4.0 %. Likewise, the local bijective ternary numeration
assigns to 1, 2, and 3 the probabilities 50 %, 29 %, and 21 %, contrasting with the percentages 54.5 %,
27.3 %, and 18.2 % the global bijective ternary numeration assigns.

The entropy of PMF (11) for radix r, € (r), is the expected value (weighted arithmetic mean) of the
likelihood function (In (x)) evaluated at the probability mass reciprocal, i.e.,

d=r
e(r) = E(Pr (r,d)) = Z 10gz+1 (1 * tli> In ;1 nat
d=1 log, 4 (1 + E)

For example, e (1) = 0, ¢(2) = 0.65846, ¢ (3) = 1.03247, ¢ (10) = 2.08134, and ¢ (100) = 3.84099.
Because r < b and we assume that b is a positive natural number, the local entropy is finite, in
agreement with the Bekenstein bound.

Note that (11) is also valid for the unitary system (r = 1), unlike (7) in standard PN; bijective unary
assigns the probability of 100 % to 1. A system "encoding" data in bijective unary has no curvature and
keeps a linear scale. In bijective numeration, (re)coding from unary into r-ary means summing the
number of ones and executing an iterative procedure based on Euclidean division. Figure 4 describes
the encoding algorithm; e.g., it converts the representation of 1567 into 12332315.

The initial remainder is

R ind . . . )
the datum to be encoded ‘ [ Iy er/Radix] -1 ‘ ‘ Remainder — Radix x Quotient ‘

Position. Remainder Quotiént Digit Term weigh
\ =

0 ise7 sz 1 1 pe——
1 52 < 173 3 9 S

Radix Datum 2 173 57 2 18

3 1567 3 57 ‘  18 3 81

4 18 < s 3 243

5 s 7 1 2 486

6 1 0 1 729

Total 1567

Procedurehalis | 1567 = 12332315

Figure 4. Data encoding in bijective numeration. Note that we use the ceiling function; specifically, we
use [] — 1 instead of the floor function | |, which standard PN uses.

We can generalize the PMF given by (11) to the probability of getting a leading r-ary numeral
n € N of any length. It is the likelihood gap it induces on the logarithmic scale, i.e.,
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1
Pr(r,n) =log, ., (n+1) —log, ;n=1log, 4 <1 + n) eR (12)

For example, the probability that a bijective decimal numeral starts with "2A1", say 2.Alyg or
21710, s logy, (1+ 5y ) = 0.13832%.

This result allows us to derive the probability of picking a bijective r-ary numeral with length [
starting with the digit d,

k:(d+1)z”l+ll;1f171 1
Pr(r,1,d) = ) log,i+1_, (1 + k) eR
k:d[lfl-‘rrl:il;] A1

where 1 < d < r,r > 1,and {r,1,d} € NT. For instance, the probability of picking 1 to 3
as the first digit of a bijective ternary numeral with length 5 is {0.465312,0.306147,0.228541}, and
the probability of choosing 1 to A as the first digit of a bijective decimal numeral with length
2 is {0.2797,0.1685,0.1209, 0.09442,0.07746,0.06567, 0.057,0.05036, 0.0451,0.04084}. Owing to this
equation boils down to (11) if I = 1, the local NBL is length-invariant! Figure 5 shows the PMF
of various bijective radices for consecutive lengths and the hyperbolic progression of the bijective
ternary digits as the numeral’s length expands.
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Figure 5. Leading digit’s PMF for numerals in bijective radices 2, 4, and 10 with lengths 2 (top-left),
3 (top-right), and 4 (bottom-left). On the bottom right, we show the probability plot of the bijective
ternary digits as a function of the numeral’s length; the probability gap between consecutive digits
tends to stabilize.

Likewise, Equation (12) allows us to derive the law for digits beyond the first; the probability of
getting a r-ary digit d at position p is

rP—1
=51 1
t 1
Pr(r,d,p) = log p+1_ (1 + ) eR
k= f”zlll i rk+d

where 1 < d < r, r > 1, and {r,d,p} € NT. Because this equation reduces
to (11) if p = 1, the local NBL is position-invariant! For instance, the chance of picking
1 to 3 as the fifth digit of a bijective ternary numeral is {0.335006,0.333327,0.331667}, and
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the probability of choosing 1 to A as the second digit of a bijective decimal numeral is
{0.1177,0.1126,0.1081, 0.1041, 0.1004, 0.09707, 0.09402, 0.09121, 0.08862, 0.0862 }.

4.2. Depleted and Constrained Harmonic Series

The global NBL for bijective numeration suddenly appears in the set of Kempner’s curious series.
We say a series is curious when the infinite summation of a harmonic series, divergent, is depleted by
constraining its terms to satisfy specific convergence conditions. For example, consider the harmonic
series missing the terms where "66" appears in their denominator. Most researchers in this fieldwork
use decimal representation, but we can generalize the results to any base. Although their terminology
refers to the items of a unit fraction’s denominator as digits, for us, these are quanta of a chain because
we are handling terms of a harmonic series.

The point is that most depletions result in an absolute mass because a harmonic series is on the
verge of divergence. In particular, a harmonic series becomes convergent by omitting a single quantum.
For example, the shrunk harmonic series without the terms in which "4" appears anywhere in the
decimal representation of the denominator is K4 of the Kempner series. Offhand, convergence comes
up because we withdraw most of the terms; 1/10 of the terms contain a "4" if the random variable
ranges from 0 to 9, 20% have at least one "4" if the random variable ranges from 0 to 99, and eventually,
most of the terms of any random chain with 100 quanta will contain at least one "4" and will not sum.
However, this explanation needs to be corrected.

A Ky series converges slowly [77]. We will reason that this property is due to large numerical
chains’ relative and geometrically short contribution to the total. Table 2 summarizes the outcomes of
approximated calculations from 1 (Kj) to A = 10 (K4 ). Nonetheless, the most stunning feature of the
Kempner summations (third column) is that they outline a curve that decreases harmonically.

Every quantum eliminates the same number of terms. K; < K; < -+ < K4 means not that "1"
is in more terms than "2" or "3" but a heavier mass attributed to the terms with the minor quanta; if
we take out 1/1, the resulting summation is smaller than when we take out 1/2 or 1/3, and "A" is the
quantum that contributes less to the total. (Although "A" is taken as "0" for calculation purposes, the
value of K4 proves that bijective numeration is underneath.) Considering that a Kempner series is
infinite and the set of Kempner series embraces all quanta g represented in bijective decimal, how
could we find a better proof that a default probability potential outlines a hyperbolically decreasing
function of g4?

Since a curious series converges by default of unit fraction terms, the mass share of a quantum
globally depends on the reciprocals of the Kempner summations; the third column of the table includes

Kj’s reciprocals normalized to 100 % (e.g., K1’s relative mass is M; = ( Ky Z“;‘:l 1/1<q) ! ~ 13%). We
must underline the relevance of these summations and percentages, reflecting the mass of every
quantum irrespective of where it is, in contrast with the global NBL, which indicates the probability
mass of a quantum at a given position in a given base.

We introduce two caveats to analyze the NBL weights (fourth column). First, the Kempner
distribution conforms with NBL via the average of NBL distributions for different positions, which is
NBL, too. For instance, Wj is, in principle, the average of quantum 1’s probabilities at first (34.14%),
second (11.89%), third (10.18%), fourth (10.01%), et cetera position according to (10). Second, because
the distribution of the nth quantum quickly tends to be uniform (10% for each of the ten quanta
from the fifth position), we must suspect that there exists a threshold position above which the
contributions to the quantum’s weight do not count; otherwise, the resulting mean distribution will
end up reaching uniformity despite the differences that the Benford distribution makes at the first
positions. Consequently, the last column calculates W, as the NBL frequency averaged only over the
first nine positions. Averaging ten positions also gives an excellent approximation (with a mean error
of .091 %) to the distribution of Kempner masses, but nine positions deliver the minimal total mean
error of .024 %.
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Table 2. These are the absolute and relative masses of the Kempner series compared to NBL averaged
over the first nine positions.

Decimal Kempne-r Ky Kempner M, l\fe];;}:,texge
quantum (q) summations mass (© posi tionqs)

1 16.1770 13.00 12.91

2 19.2573 10.92 10.95

3 20.5699 10.22 10.26

4 21.3275 9.86 9.89

5 21.8346 9.63 9.65

6 22.2056 9.47 9.48

7 22.4935 9.35 9.36

8 22.7264 9.25 9.25

9 22.9207 9.18 9.16

A 23.1034 9.10 9.09

Total 212.6158 100 100

Can we extrapolate this result in b = A to any value of b? If affirmative, PN would ignore a
natural significand’s quanta from the bth place, agreeing with claims often made by mathematicians
[78], physicists [79,80], and engineers [81] about the illogicality of a PN system carrying excessive
digits in calculations of any type, regardless of the discipline.

We surmise that a bijective b-ary chain c that fulfills log; ¢ > b is physically elusive. The universe
in base b would cope with at most b nesting levels, each distinguishing between b possible quanta. The
"physical resolution”

R(b) = b*

would estimate the scope of quanta a computational system like the cosmos can naturally operate,
much as a native resolution describes the number of pixels a screen can display.

In [82], the author contrives an efficient algorithm for summing a series of harmonic numbers
whose denominator contains no occurrences of a particular numerical chain. As a result of the
calculations, a harmonic series in base b omitting a chain of length n (regardless of its specific quanta)
might converge approximately to

b"Inb.

This conjecture means that the contribution of linearly more extended chains to an endless series
is geometrically lesser. For instance, the harmonic series where we impede the occurrence of the
decimal numeral "314159" is about 2302582.334, whereas the same sum omitting "only" "3" is 22.921,
10° times as low. Thus, large numerical chains would be exponentially inconsequential.

More general constraints allow several occurrences of a given quantum to calculate summations
positively. Let S (n, g, b) be the sums of the b-base reciprocals of naturals that have precisely # instances
of the quantum g. For example, omitting the terms whose denominator in decimal representation
contains one or more 6 is the particular case S (0, 6, 10). The sequence of values S decreases and tends
to

lim S (1,4,b) = blnb ~ In R (b)

n—o0
regardless of g [83].

Except for the gap from n = 0 to n = 1, where the total increases, the summation falls as we raise
the constraining quantity of quanta. What is the reason? It is not that we get more terms with 7 gs
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than terms containing n + 1 gs, but that the longer the chain, the lighter the contribution. Furthermore,
whenn > 1,5 (n,q,b) 2 S(n+1,q,b), whereasifn 21,5 (n,q,b) > S (n+1,4,b), i.e., increments of
n near the origin produce significant drops and vice versa, increments of n far from the origin produce
negligible drops. Although we have not statistically tested "the number of quanta" for compliance with
NBL, we can again conclude that while small is a synonym for solid and discernible, huge numerical
chains are fragile and hardly convey differences.

Instead of imposing absolute constraints, we can allow in a term arbitrarily many quanta g
irrespective of the position and number so long as the proportion of gs remains below a fixed parameter
A € [0..1]. In [84], the authors prove that the series converges if and only if A < 1/b. In decimal, while
Kempner’s original series implies A = 0, where no term containing a given quantum contributes to the
summation, the complete harmonic series means A = 1, where any density is allowed, i.e., we keep all
the reciprocals.

For instance, if we consider the constraint "allow a rate of A = 5% of 7s at most", the term
1/98765432109876543210 disappears (10 % of 7s), but neither 1/98654321098 (no 7s) nor 1/98865432109876543210 (5 %
of 7s) does. While the series converges in A € [0..1/10), it no longer converges above the threshold
A = 1/10. Note that the archetype of the Pareto law appears naturally; on average, 90% of the unit
fractions, those with the highest quantum density, offset the remaining 10%. Moreover, this result
engages with our surmise concerning the physical resolution R (b) of a universal computational system.
Again, densities of b quanta or more are intractable. A PN system must restrict itself to chains with
less than b quanta to guarantee the operability of coded data and avoid overflow conditions.

5. Odds

Although odds typically appear in gambling and statistics, this section illustrates how they are
central to the computational processes of a coding source, including an application to physics and
another to decision theory.

We usually define the odds of an outcome as the ratio of the number of events that generate that
particular result to those that do not. In this sense, odds constitute another measure of the chance of a
result. Likewise, the ratio between the probabilities of two events determines their relative odds; the
higher the odds of an outcome compared with another, the more informative the latter’s occurrence is.

Indeed, odds highlight the rational character of a probability. For instance, we can interpret the
one-parameter PMF (1) in terms of odds. Since the odds O of picking a nonzero natural N against
piking N? are precisely N?, we can establish Pr (N) = €O (N2 : N).

The encoded odds between a pair of events are the product of their probability ratio and likelihood
factor. The coding rule agrees with Bayes’ law. Odds between propensities or degrees of belief become
information correlations representing entropic contributions in Bayesian coding. Thus, we attribute a
metric sense to this theorem, embracing the objectivistic [85] and subjectivistic [86] interpretations.

Our description will exclusively focus on standard PN, omitting the corresponding bijective
numeration’s derivations and formulas for conciseness.

5.1. Global Bayesian Coding

The probability ratio between two events diverges from the unit as their correlation weakens.
A PN system must multiply this value by a coding factor to fit into the base’s harmonic scale. This
operation is rigorously Bayes’ theorem. Specifically, global Bayesian coding employs the formula

O(t:s|X=0b)=0(t:s) Ag(t:s|]X=0b)€eQ (1<s<t<b) (13)
to encode the odds between two numbers.

» O(t:s|X = b) represents the global (encoded or posterior) odds of getting quantum  against s
in base b. We can consider it the rational quantum s/t on a b-ary harmonic scale.
e O (t:s) is the ratio between the probabilities of the two events according to (1), namely
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~ ~ Pr () 5\ 2
1s) = 181) = = (-
Oft:s) =0 (t:s]1) Pr(s) (t)
straightforwardly measuring the (decoded or prior) odds of picking the number ¢ against s on a
linear scale. If we fix the center of the range, the narrower the interval, the higher the odds, whereas if
we fix the interval width, the minor s (or t), the lower the odds. Note that the odds of two concatenated
intervals calculated separately are the product of the interval’s odds,

o= (5) (5= ()

* Ay (t:s|X =b) is the global coding (Bayes) factor, which measures the degree to which the
outcome b of the random variable X supports "hypothesis" t against s, assuming both are
independent numbers. Because interval s, t) is not yet encoded, the coding law establishes a
likelihood difference instead of a likelihood ratio, namely

Ao(t:s|x:b):ﬁ(t|x:b)f£(s|x=b):%:Pr(b,[s,t))
b—1
where
Hy
LgX=0b)=-"= 14
(q[X=b) =5 — (14)

is the likelihood function of g with b fixed; since £ (1|X = b) vanishes and £ (b|X =b) =1, we
can understand this function as a measure of the nearness between g and b > 1 normalized to one.
The coding factor is precisely Equation (3), measured in b-ary harmonic information units.
Compiling, PN calculates (13) as

O(t:s|b):<;)z%e@(1§s<t<b) (15)

It is the cost of computing the bucket’s harmonic width, i.e., the entropic contribution of bucket
[s,t) to b’s harmonic scale. Because O (2 : 1|b) is maximally informative irrespective of the base, the
global information unit corresponds to the natural harmonic bucket [y (q)]% we use in (2). The global
odds of a quantum against itself vanish, having no representation on a harmonic scale. The reciprocal

Ofs:tb) = L — <t>zH“e@ (1<s<t<b)
' N O(t:S|b) \s Hy 1 —Hs 1 -
measures the odds of quantum s against t, with a maximum approaching b? as b climbs to infinity.
A PN system must employ (13)’s variation
O(t:slt') =0 (t:s|b) Ag (V' :blge[s,t) €Q

to recode globally, where 1 <s < g < t < band t < I'. The coding (Bayes) factor is a likelihood
ratio when it deals with previously encoded data, as usual in statistics; using (14),

L(blg) _ Hea/Hy .y Hpy

A (U :blg € [s, 1)) = = —
o Wb € ) = gl = B/, Hyg

measures the degree to which a given quantum supports "hypothesis" b’ against b, assuming both
are independent quanta. Hence, the PN system can change to base b’ utilizing the rule

Hy_q
Hy

O(t:s|b') =O(t:sb) €Q (16)

which coincides with the odds of [s, t) in base b’ for the first time because of

d0i:10.20944/preprints202411.0594.v1
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0(:s) = ((5) (M) it = (5) e s )

Equation (16)" Bayes factor Hy-1/H,,_, is the classical Bayes factor replacing probabilities by global
likelihoods. Thus, the transformation b — b’ constitutes a primal memory (incremental) process that
decreases the global odds if b < b/, and vice versa, increases the global odds if b > b'. For instance,
an asymmetry such that b grows every tic of a global clock would mean an unstoppable progressive
information loss for a fixed universe region; this connection between time and entropy is crucial to
theoretical physics and cosmology [87].

For example, the PN system encodes bucket [4,13) to base b = 100 as

4\?>Hp 1 — Hy
) -1 7 Pl L 0.0232

O (13 : 4]100) = (13 oo |

This value is the entropic contribution of bucket [4,13) to 100’s harmonic scale. When the PN
system changes the base to b’ = 110, using (16), it delivers

~ ~ Hiypo—
O (13 : 4/110) = O (13 : 4/100) 21 ~ 0.0228
Hi10-1
meaning that the bucket’s entropic contribution decreases. Then, changing to base b’ = 90 yields
~ ~ Hiyo-
0 (13 :4/90) = O (13 : 4/110) —21°=1 ~ 0.0237
Hoo—1
i.e., the bucket’s entropic contribution increases. Finally, the PN system decodes the odds with
base 90 by solving the prior from (15), i.e.,
O (13 : 4/90)

O(l3:4):m:
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5.2. Local Bayesian Coding

Local Bayesian coding assumes that (13), the global Bayesian law, governs the universe’s
information. We express the informational correlation between two numerals by multiplying their
harmonic correlation by a coding factor, obtaining a point on a logarithmic scale. This operation is
rigorously the Bayes’ theorem that settles down the basis of a conformal metric space. Specifically,
local Bayesian coding employs the formula

0(np:m|Y =r)=0d(np:mlb) Ag(np:m|Y =r)€eR (17)
to encode the probability ratio between n; and np, where (1 < nj; < np < b) A (r <b).

® 0 (np:mn|Y =r) represents the local (encoded or posterior) odds of getting 1, against n; with
radix r.

* 0 (ny : np|b) is the (prior) probability ratio between the two events only assuming that a global
base exists; using (4),

1
~ . Pr (b/ nZ) nsz_l n
olmimlb) = 5y = 1
! n1Hp 1

It measures the strength of the association between 77 and 7, on the harmonic scale provided by

* Aj(np:np]Y =r) is the local coding (Bayes) factor, which measures the degree to which the
outcome r of the random variable Y supports "hypothesis" n, against 1y, assuming both are

d0i:10.20944/preprints202411.0594.v1
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independent. Because the bucket [111, n12) is not locally encoded yet, the coding law establishes a
likelihood difference instead of a likelihood ratio, namely

No(np=m|Y=r)=L(m|Y=r)—L(m|Y =r1)

where ¢ (n|Y = r) = log, n quantifies the likelihood of #n when the actual value r occurs. In short,
the local coding factor is the log-odds of n; relative to nj, equivalent to the support of [n, ny) with
radix r according to (8), i.e.,

n
Ns (np :n1|Y = r) = log, np, —log, n; = log, n—j ={([ny,np)|r) (18)
Compiling, the PN system calculates (17) as

0(ny:nylr) = Elogr 2 (1 <m <ny) (19)
n2 n
Note that the local odds of a numeral against itself vanish, having no representation on a
logarithmic scale. Consequently, the local Bayes’ rule measures the entropic contribution of bin [n1, n7)
on r’s logarithmic scale, with a minimum approaching 6 (r : 1|r) = 1/r as r climbs to infinity. Euler’s
number has an extraordinary meaning in this setting; a Bayesian datum in this form is maximally
informative irrespective of the radix when n2/n; = e = 2.718.. ., an ideal proportion that induces the
local information unit associated with the natural logarithmic bin [In#]] we use in (5).
A PN system must employ (17)’s variation

d(np:mlr') =0 (np:mlr) Ao (¥ :rln € [n1,mp)) €R

V {ny,nnyr, 1"} €N(1<n <n<mn)

to recode locally. When it deals with previously encoded data, the local Bayes factor is a likelihood
ratio, as usual in statistics,

(rln) _ log,r _ Inr
(*|n)  log,r  In?

14
N (7 i r|n € [n1,mp)) = 7

Thus, the degree to which the outcome n € [n1, 1) of the random variable Y supports "hypothesis"
r" against r is independent of n. Then, a coding source can change to standard radix ' utilizing

Inr
Inv/
which coincides with the odds of 1, against 77 with radix r’ for the first time

Inr m no\ Inr  m )
0 (ny:nqlr = | —log, —= = —log, =
(2 2 my )lnr’ Ny &r ny ) Inr’ np &r n

0 (na:m|r') = (ny:mlr) (20)

Equation (20)" Bayes factor In7/In+ is the classical Bayes factor replacing probabilities by local
likelihoods. Note that the transformation » — r’ increases the odds if # > 7/, and vice versa, decreases
the odds if r < 7.

For example, a coding source locally encodes the bin [4,13) using radix r = 100 as

13
4

This value measures the entropic contribution of bin [4,13) to standard radix 100. When the
coding source changes the radix to v’ = 110, it delivers using (20)

4
0 (13:4]100) = = logyg - ~ 0.07875

In100
0(13:4|110) =0 (13 : 4|1 —— ~0.0771
0(13:4[110) =46 (13 |00)ln110 0.07715
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Then, changing the radix to ¥’ = 90 yields

In110

0(13:4/90) = 0 (13 : 4[110) 3~ ~ 0.0806

In

Finally, the coding source decodes the odds with radix 90 by solving the prior from (19), i.e.,

i 5(13:4/90)  0.0806 4
1 4) = = =~ 0.30769 ~ —
0(13:4) = 590, 3,13)) loggy B 030769 ~ 73

Remember that local Bayesian coding copes not only with ratios of digits but with ratios of
numerals in general. For example, the rational 95/971 (bin [95,971)) encoded with radix 4 is

_ 1133, 33023
T 33023, U84 1133,

If environmental conditions cast a change to radix 3, the coding source would decode the datum

0(971:95/4) ~ 0.022133334

In4
5(971:95[3) = 0.0221333341%3 ~ 0.01212022;
as

6(971:953) _ 0.01212022; _ 95

(]95,971) [3) ~ log, 192222 “on

5(971:95) =

5.3. Elemental Jumps

Using odds instead of probabilities is especially powerful when we measure the gap between
successive quanta or digits.
The odds (15) between consecutive quanta

2 2
- 1 q
O+1:b:(q>Prb,,+1:<q) =
(g+1:qb) =57 ) P lea+) = (77 ) o5 T
measure the associated harmonic likelihood gap in a given base b, where we have used equations
(3) and (4). b-normalized quantum jumps define the PMF

1
Cr=7"""F—
T Hy 1 —Hy 1y

9
Pr(b,q)=C €Q 1)
o “g+1)
an exact and multiplicatively separable function where Hy o = Y& ; 1/#? is the generalized Nth
harmonic number in power two and 1 < g < b — 1. Note that the summation only goes until the
penultimate quantum g = b — 2 because g = b — 1 cannot jump to b.
PMF (21) is well-defined because of

b—-2
Y Pr(bg) =1
g=10

so we can take as the odds version of PMF (4). For example, C; = 36/17, Pr5 (4,1) = C41/4 = 9/17,
and Prg (4,2) = C42/9 = 8/17. With b = 7, we get Pr (7,1) = 900/3451 ~ 0.261, Pr5 (7,2) = 800/3451 ~
0.232, Pr5 (7,3) = 675/3451 =~ 0.196, Pr5 (7,4) = 576/3451 ~ 0.167, and Pr (7,5) = 500/3451 ~ 0.145. Fig.
6 outlines in red the PMF corresponding to standard undecimal in a global setting. The information
gap decays harmonically from the second quantum so that transiting from the greatest quanta is easier
than from the minor ones. Indeed, only the first few quanta remain stable.
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Developing similar reasoning in a local setting, using equations (6), (7), and (19) (d; = d and
dy = d + 1), the odds between consecutive digits

o(d+1:d|r)=

7 :l_ 1 log, <1 + ;) (22)

measure the associated likelihood gap in radix r. Then, we can calculate the PMF that normalizes
these digit gaps in a given radix; the larger the digit, the lesser the information differential. For
example, the PMF corresponding to standard quaternary is {0.561814, 0.438186}. With radix r = 7, we
get Pry (7,1) ~ 29.8%, Pr; (7,2) ~ 23.24%, Pr; (7,3) ~ 18.55%, Pr; (7,4) ~ 15.35%, and Pr; (7,5) ~
13.06 %.

Figure 6 outlines in green the logarithmic PMF of standard undecimal, measuring the
improbability of a random local jump through its contribution to the coding source’s entropy. The
lowest digits maintain discernibility from the environment, while the decreasing entropic support of
the more significant digits makes them more vulnerable.

| Information gaps (low cardinality) |

1 2 3 4 5 6 7 B 2
0.215
0.20}
£ o.asl
=1
7
o
E
=2
™ 0.10|
ISh=11]
0.05} Sr=111

i 2 3 4 5 6 7 B L)
Quantum {red), Digit (green)

Figure 6. These are the information gaps the undecimal numeral system induces. Note that the fiducial
NBL for decimal numerals is steeper than the digit plot (in green), and the digit plot is steeper than the
quantum (in red).

Although the fiducial NBL is steeper than the corresponding Pr; regardless of the radix, and
this is steeper than Pr 5 irrespective of the base, these three plots are hardly distinguishable for large
cardinalities (see Figure 7), meaning that an NBL probability is synonym with stability. A transition
from the greatest quanta or digits is generally much more frequent than a transition from the minor
ones. This condition resembles the reactivity of the chemical elements periodic table concerning the
electron shell (i.e., principal quantum number). More generally, ascending order (of numbers, quanta,
digits, or shells) correlates with unsteadiness, which explains why closeness prevails over farness.
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Information gaps (large cardinality)

Stability
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NBL r=10000
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Quantum (red), Digit (green)

Figure 7. These are information gaps induced by the quanta of global base 10000 (in red) and the digits
of local radix10000 (in green), compared with the fiducial NBL.

5.4. Optimal Stopping

A PN system assigns an information value to the concepts of likelihood, probability, and odds. In
subsections 5.1 and 5.2, we argue that Bayes’ rule is the entropic contribution of a bucket to a harmonic
scale or a bin to a logarithmic scale. In particular, eq. (19) allows us to calculate the information we can
extract from a bipartition by nailing the first and last domain digits. Assuming 1 < r < b, the local
odds of getting digit x against 1 and r against x estimate the information aggregate of the two parts.
Inherent to the X’s dichotomy {[1,x), [x,7)},

o (x) = d({[Lx), [x7)})
= 0(x:1r)+0(r:xr)
- 1
- Elogrx—'— %1Ogr§
gives the bipartite odds in logarithmic r-ary units of information, where 1 < x < r.
We obtain additive countability by making % flr 0y (x) dx = 1. The entropy (local likelihood)
distribution function

4
= 2+4(rlnr—1)Iny/r—1

o, (x) = K; Inx

o, (x) = 1cx1n£

0 ()=, () + 0, (x) (23)

gives the normalized bipartite odds so that 07 (x) = Kby (x) acquires a value between 0 and 1.

For %07, (1) = 0, (r) = xInr, both 0", (1) and ‘0", (r) tend to vanish in the limit r — b — oo.
Where does (23) become stationary? When r > 55, the normalized bipartite odds produce two maxima
corresponding to 0, (x)and 0, (x); as r — b — oo, the first maximum tends to x = e and the second
to x = r/e. These maxima optimize the total information transmission of the system. We find at x = /7,
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between the two maxima, a digit that minimizes the distinguishability between the two partitions,
which is the analog of the middle point of a segment on the linear scale.

For example, with radix r = 10000, the bipartitions are maximally entropic about
{[1,2.7329)  [2.7329,10000) } and {[1,3659.1), [3659.1,10000) }, and ‘0", (100) is the minimum. Figure
8 repeats this exercise and shows the results with r = 100 applicants.

| Normalized entropy (r=100, k=0.000281) |

0015

{3.745L0.0134  (26.70150.0134) Bipartite odds — KrlLoglx]/x

{10.0.0129) — kxLogirx

— k(rLog|x]/ x + X Loglr/x))

Lo10H-

Entropy

Odds of future
0005

Odds of past

o.000L— | s n s 1
(1] 20 40 60 B0 100

Applicant x)

Figure 8. Plots of the odds that yield the past, future, and bipartite entropy (local likelihood
distribution function) with radix 100 (99 applicants). The three points correspond to the maxima
and the minimum, whose abscissas give place to the bipartitions with utmost information and tiniest
bipartite distinguishability, respectively.

Supposing that 1/x and */r are probabilities, Equation (23) is the addition of the corresponding
entropies. Both maxima separate a stage of "retention" from a "decision" stage. Retention implies input
processing, which raises entropy, whereas decision involves output processing, which lowers entropy.
Maximum entropy indicates the best resource efficiency between the ascent and descent sections.
Overall, the plot of €07, (x) reflects a natural entropic imbalance toward the small values; o (%)
dominates in the short term, whereas 0", (x) dominates in the middle and long term. Computationally,
it induces the bulk of processing far before reaching x = /2, while physically, it implies a bias of space
or time.

The bipartite odds function can have interesting consequences in computational physics, especially
in sequential decision-making to solve optimal stopping (or planning) problems with solutions such
as the odds algorithm [88]. Specifically, the secretary problem [89] is a mathematical trope to grasp
how computation closely ties with incremental (Bayesian) inference, hence with the asymmetric
management of fundamental resources. Shortly, one of ¥ — 1 sequentially interviewed applicants must
be nominated, with the proviso that they will be either chosen or rejected just after being examined;
past the first | x| applicants (typically a secretary, but also a lead actor or actress or a car), the judges
select the next one that is better than any of the previous ones. Well, x = /e maximizes o, (x),1ie.,
the probability of success in choosing "the best" applicant.

Instead, 0", (x) answers a different question. What is the optimal size [x] of examined applicants
to maximize the odds of choosing "a good" one? This nuance implies a crucial difference in approaching
a solution; in this case, we must consider both terms of (23). We define "a good" prospect as a
"candidate" in terms of the classic secretary problem, i.e., a seeker (or contender, or claimant) better
than the previously examined applicants.
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Considering that x is the current applicant, the bipartition separates the past from the future
because ‘0, (x) and 0, (x) focus on the expected benefit before and after x and the practicality of
preceding against succeeding data.

Regarding the "past” term, In x is the amount of information ascribed to examined applicants,
and 1/x is the probability of using such information. As x — 1, we take advantage of less and less
gathered information, albeit more likely, whereas if x — r, we can leverage more and more references,
albeit less likely. There is a compromise between choosing the first applicant (i.e., utterly uninformed
decision-making) and selecting the last applicant (i.e., assuring to miss all the acquired information).
We obtain the maximum of ‘0, (x) at x — easr — b — co.

Regarding the "future" term, In/x is the information we can obtain from forthcoming applicants,
and ¥/r is the probability of using such information. As x — 1, we will surely miss the most suitable
prospects; if x — r, we will hardly find a suitable applicant. There is a compromise between choosing
the first applicant (i.e., ignoring the information the remaining applicants can provide) and selecting
the last applicant (i.e., information exhausted). We obtain the maximum of o, (x) at x — /e as
7 — b — co.

Summing both terms implies balancing the partition behind against the partition ahead. If x is
too low (x 2 1), you have the most information ahead for an acceptable selection, and if x is too high
(x S r), you have many references for a good choice. Unfortunately, if x is too low (x 2 1), you have
less probability of making an acceptable selection, and if x is too high (x < r), you have probably
missed the finest choices. While bipartition {[1,7/e), [r/e,r)} implies a probability of 1/e % of skipping
and selecting the best alternative, bipartition {[1,¢), [e, )} reduces this percentage significantly. Thus,
‘0, (x) enables promptness and 0’ (x) quality.

The entropy distribution function of a bipartiton rises to the first maximum, falls and rises again
to reach the second maximum, and decays until it almost vanishes. The right holistic strategy is
to wait for the information to stop rising so that 30"+ (x)/ax vanishes and 9*0"+(x)/ax2 decreases, i.e.,
in agreement with the maximum entropy principle for isolated systems (and the minimum energy
principle for closed systems) in thermodynamics.

Exclusively concentrating on the past term also makes sense. The idea is to assess the general level
after examining only a few applicants. Assuming that ours behaves as a linear time-invariant system,
deviations decay as e, so the probability that the mean of the three first interviewed applicants
is close to the pool mean is 1 — e™3 ~ 95%. Since a threesome reasonably represents the whole
set of applicants, we can confidently pick a forthcoming candidate. o, (x) considers the cost of
the processing; it is a precursor of human intuition and opens the door to computational methods
of solution refinement. For instance, assuming that we can retain a (preliminary) solution, we can
progressively renew candidates between the two maxima. If the selection process continues after the
second maximum, we are in the same scenario as the classic secretary problem.

Deciding near x = /r, between the maxima, is questionable because having already spent
substantial resources on getting information, the probability of picking the best applicant still needs to
reach the optimum. Nonetheless, it is a separator of the two partitions that a living being, for instance,
can seek on purpose to maximize internal order or coherence.

5.5. Bayesian Recurrence

PN coding is fundamentally relational. It compares pairs of buckets by figuring out probability
double ratios. Using (15), we define

5 (il - O(j:ilb) (;) L) hi 2<Hjl_Hi1>
OU:ih:g) = O(h glb) — (3)? Pr(b,[g,h)) B (gj) Hy—1 — Hg ¢

=oq
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where (1 < ¢ < h) A (1 <i < j). The first factor is the prior (decoded) ratio O (hi : gj|r = 1), and
the second is the likelihood ratio measuring the strength of the correlation between the information
that the buckets [i,j) and [g, 1) keep. Note that the formula does not refer to the global base anymore.
This structure is repetitive; a generic probability quadruple ratio is the rational

O(j:ilh:g) S(ii
— 27/ = cilh: cm|l k) =
5 mli k) O(j:ilh:gln:m|l:k)

Hl 1 — Hi1) (Hj-1 — Hi 1) _
Hmfl) (thl - Hgfl)
_ (hikn)2 (Hj—lHl—l + Hi_1Hy1) — (Hj—1Hx—1 + Hi—1H; 1)
gjlm (Hg—1Hp—1+ Hy_1Hy—1) — (Hg—1Hu—1 + Hy—1Hp1)

Thus, we can formulate a probability ratio of order 2" as coded odds, i.e., the product of a rational
squared and a likelihood ratio between two rational differences. Moreover, the product of probability
ratios also fits Bayes’ coding pattern because of

O(j:ilh:8)O(n:mll:k)=0(j:ilh:g|l:kln:m)=

_ (hilm)2 (Hi—1Hy—1 + Hi_1Hyy—1) — (Hi-1Hp—1+ Hi—1H,—1)
gjkn (Hg1Hy_1 + Hy_1H;_1) — (Hg_1H;_1 + Hy_1Hy_1)

It is paramount to highlight that PN coding also copes with probability double ratios in a local
setting, with no extra apparatus. A coding source uses the rule

o i i . . .
< o(j:ilr) jlog, 5 (hz)(ln]—lnz)
0(j:ilh:g) =< = = ————]€Q
(G ilh: g) o(h:glr) %bgrg gj) \Inh—Ing
where (1 < g <h)A (1 <i<j),tocompare a pair of odds. The first factor is the prior (locally
decoded) ratio 6 (hi : gj|r = 1), and the second is the likelihood ratio (Bayes factor), which measures

the strength of the informational correlation between bins [g, &) and [i, j) and obliterates the local radix.
In the particular case where the bins have a joint event, either initial or final, we obtain

Inj—Ing
0(j:8lh:g) = (]>(M>€Q

If the joint event is the unit, we obtain the "subjective ratio"

. .h

Gt =G 11 = (3 ) (1) = foa € @ 24)

where 1 < h < j; eg., (10%10) = 1/5, (10'%,10°) = 1/9, (10%,10) = 3/100, (10%;10) = 1/250,

(10%10) = 1/2000, and (108;10) = 1/1250000. It is the relative mutual likelihood between a pair of

numerals regarded from the source, satisfying (j;h) = 1/(k;); for example, (10°;10*) = 1/8 and
(10%10%) = 8.

The structure of a Bayesian datum (4/D) (B—C/E~F) is locally repetitive, like in global coding. The

original posterior odds 4 (j : i|r) = §logr { imply A/D =i/j,B=1Inj,C=1Ini, E =Inr,and F = In1,

the original prior odds % 1mp1y A/D =i/jand B — C = E — F, and the odds arithmetic always yields
the same format; an essentlal operation "x" invariably results in the product of a probability ratio (the

prior factor) and a likelihood ratio of differences (the Bayes factor). Let

(&) (=) (=) (5=7) = () (5=F)
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then,

A/D = 1/KR

B=  GHRS+ GJRT + KLNP + KMNQ
*="+"={C=  GHRT+ GJRS + KLNQ + KMNP

E= LS+MT

F=  MS+ILT

A/D = 1/KR

B= GHRS + GJRT + KMNP + KLNQ
x="-"=C= GJRS + GHRT + KLNP + KMNQ
= LS+ MT
F= MS + LT

A/D = GN/KR

B= HP+JQ
x="x"= = JP+ HQ
E= LS +MT
F= MS+ LT

A/D = GR/KN

=  HS+]T
x="+"=>(C= JS+HT
E= LP+MQ
F= MP+LQ

For instance, the arithmetic of a probability quadruple ratio

determines
A/DZ 1/nsvz
B = proz(Innlny +Inplnz) + nswy (Inrlnov +Inslnw)
x="4"= = proz(Innlnz +1Inplny) + nswy (Inrlnw + Inslnov)
E= InrIny +Inslnz
F= Inrlnz +1Inslny
A/D: 1/nsvz
B = proz(Innlny +Inplnz) +nswy (Inrlnw +Insinv)
*x="-"={C= proz(Innlnz +Inplny) + nswy (Inrlnv + Inslnw)
E= Inrlny +Inslnz
F= Inrlnz +1Inslny
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A/D = prwy/nsvz

B= Innlnv+Inplnw
*x="x"=>C= Innlnw+Inplno

E= Inrlny +Inslnz

F= Inrlnz+Inslny

A/D = PVUZ/nswy

B= Innlny +Inplnz
x="+"=(C= Innlnz+Inplny

E= Inrlnv+Inslnw

F= InrInw +Inslnv

As an example, we can express the original local odds (19) as an arithmetic combination of
quadruple ratios, namely

.o ri ] . .

o 3(jzilr:1) _Glogr i

0(]‘l|r)_5(r:1|r2:1)+5(r:1|r2:1)_zéllnirz = ;o8
nr

This property reinforces a PN system’s recoding process, which takes advantage of the most
recent information. Note that one thing is that Bayesian odds boost incremental computing, and a
horse of another color is that the structure of Bayesian data is recurrent under arithmetic operations.
By exploiting the same representational pattern for all its calculation methods, a coding source can
"accumulate experience".

5.6. Referential Ratio and Cross-Ratio

The probability quadruple ratio

i 2
0G:ii:g) _ (& <<Hn1—Hg1> (Hf—l_Hi—1)>

O (Tl : i|n : g) n ni (anl — Hifl) (ijl — Hgfl)

&

is of foremost interest. Since the prior is the unit, it is a sheer likelihood ratio, i.e., a genuine
proportion of information we can rewrite as

(:ilj:8) _ Ha—Hea

el - ~ H, 1—-H;_
(n:in:g) #H;j

O
= 25
5 (25)

When n — b — oo, the denominator drops from the formula. Using the change of variables
A =H; 1,B=H, j,and C = H,_1, this singular Bayes factor tends to the "referential ratio"

A—B

A-C

which is a ratio between the likelihood of two buckets with a joint referent.
Locally, the probability quadruple ratio

(A;B:C) = (26)

o(rtrClrArB) 6 (e eCled : ef)
o(rDrClrD i ¥B) 5 (eD 1 eCleD : eB)

D

also leads to (26) when P b= oo, e.g.,
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3 /.5
Ine’/e =(35:7)=%
11’193/e7

and

In 2.5163/4.5091 35 _ Hp—Hy
———— ~(0.9228;1.5061 : 1.8728) ~ — =
In 2.5163/6.5065 (0.9228;1.506 8728) 57 H,— Hg

Note that the product, quotient, sum, and difference of two referential ratios are referential ratios.
In other words, the set of referential ratios, which we will represent by Q, is an ordered algebraic field
(of characteristic zero) where

G- w7y FL+HJ—F])— (F]+ GL+ HK—FK—G]J)
(FG:H)+ (;K:L)= FL T~ ()

. . (FL)— (FK+GL+HJ — G] — HK)
(F;G:H) = (L;K:L) = (FL) — (F] + HL—H))

(FJ) — (FK 4+ GJ — GK)
(FJ) — (FL+ HJ — HL)
(FJ) — (FL+GJ — GL)

(FJ) — (FK + HJ — HK)

(F;G:H) x (;K:L) =

(FFG:H)+(;K:L)=

We can represent a referential ratio (A;B:C) as the point (A—B,A—C,A) on a
three-dimensional grid where the x component is the numerator, the y component is the denominator,
and the z component is the reference. Figure 9 displays the referential ratios (F; G : H) = (2;3: 1) and
(;K:L) = (4,1:5) and the result of the basic operations between them, i.e., addition, subtraction,

multiplication, and division.

Arithmetic of referential ratios

-4
[ DOt 2 G
A-C = b
1 A vy 2
e e .)),,-’ __‘K__‘h—_,__ = T
T s T
B b e T
— " iy 1 £ H7
W ; Fen e LA ==t J‘!L(il?? } '-'=(10;8=9}(2,1',_10§ i
e “-*=1__ T rewTElass

Figure 9. Example of how to represent a referential ratio and its arithmetic.

We can formally define referential ratios as equivalence classes (symbol "~") of integer triplets
where (A;B:C) ~ (A;D : E) <= BE = CD. Mind that Q C Q due to

N

B:(;N:D)
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This view lets us comprehend a referential ratio as a dislocated or transported rational number;
(26) is B/ observed from A. So, Q is an extension field of Q such that the latter’s operations are those
of the former by restricting the referent to the origin. Specifically, the multiplicative units of the field
are (;£1:1). Besides, (A;B:B) =(1;:) =1, (A;B:A—1)=A—-B,(A;B:C) = (—A;—B:-C),
and (A;B:C) = (A;C:B)" L.

Since a detailed algebraic analysis of this field, its meaning, representation, and potential
applications would need a specific article, we will focus herein only on a couple of manifestations.

In physics, we must generically understand the concept of correlation as a ratio between
magnitudes of the same physical unit. The most straightforward embodiment of the referential
ratio gives the Doppler effect’s relationship between the frequency perceived by the receiver f, and
emitted frequency f;, i.e.,

fr
fs

where sy, is the propagation speed of waves in the medium, s, < sy, is the speed of the receiver
relative to the medium, and s; < sy, is the speed of the source relative to the medium, assuming that
they are getting away from each other [90]. Likewise, the formula of the relativistic Doppler effect of
the source’s frequency relative to the receiver’s frequency moving away at speed v is [91]

- (Su;;s;/ : *Ss)

BN e ) e (e o) — (1 —ofe oy - L
(ﬁ) = (G205 0): Goie)) = (o/e:v/0) = 1o @)

A referential ratio also appears subsumed into the "cross-ratio" of four distinct points [92]

A—C
45  (A;C:D)
A,B;C,D) = 4=D _ 4

( ) 75:1(5 (B;C:D)

= (AB+CD; AD 4 BC : AC + BD) (28)

where the alphabetical order indicates that A, B, C, and D are consecutive on the rational
projective line, and A — B and C — D have the same sign. This likelihood ratio is the central tool that
characterizes the projective line’s geometry. The cross-ratio calculates how much the quadruple’s
crossing symmetries deviate from the ideal proportion 1, precisely the extent to which the ratio
of how C divides [A, B) is proportional to how D divides [A, B). For example, the substitutions
{A=H;_1,B=H,_1,C=H;_1,D = Hy_1} produce the cross-ratio defined by (25).

6. Conformality

Departing from an inverse-square PMF for the naturals, we gleaned the global and local NBL,
implying that a double scale is necessary to support a universal place-value system. A global base
specifies the harmonic scale, while a local radix fixes the logarithmic scale that a coding source uses to
represent numerals in PN.

In the previous section, we managed odds as probability ratios, i.e., information double ratios.
Bayes-compliant information 2"-ratios are closed under division. An exceptional case of these is the
referential ratio. A ratio of referential ratios is precisely a cross-ratio whose logarithm determines the
conformal metric of a local coding space.

Conformal maps preserve angles, hence the shape of the figures, which also implies scale
invariance. These properties are critical to translating the elements of a global harmonic space into a
local logarithmic subspace, the latter reflecting the state of the former. Conformality is a requirement
for coding information that drives complexity; "there is a shared very particular characteristic of all
complex systems. And that is they internally encode the world in which they live" [93].
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6.1. the Conformal 1-Annulus Model

The cross-ratio paves the way to conformality because it is invariant under linear fractional
transformations over rings [94]. Noteworthy, the group of linear fractional transformations
(Az+B)/(cz+D), where {A, B,C, D} € Z, called the "modular group" (a subset of the M bius group), acts
transitively on the points of the grid 7?2 visible from the origin, i.e., the irreducible fractions [95], so
preserving the form of polygonal shapes through the cross-ratio. A modular map also conserves the
referential ratio given by (28).

Because the harmonic and logarithmic scales handle the concept of cross-ratio, we can find a
modular transformation between four specific points in a global space S and four points in a given S’s
subspace, the coding space where the source makes a local model.

The most powerful application of the cross-ratio is the Poincar disk (The Non-Euclidean World
in [96]), a conformal model of hyperbolic geometry that projects the whole H? in the unit disk.
Circle-preserving M bius transformations are the isometries of the complex plane. Assuming that the
disk center is at the plane’s origin, points zp and z3 within the disk connected by the arc of a geodesic
circle perpendicularly intersecting the disk’s boundary at z; and z4 are at a hyperbolic distance of
In (21, 22; 23, z4) [97]. This measure is invariant under the subset of M bius maps acting transitively on
the unit disk, the space of the coding source.

In one dimension, the complex plane augmented by the point at infinity can be considered the
real projective line [98], and the disk becomes the unit 1-ball. More specifically, the set of irreducible
fractions augmented by the point at infinity is the rational projective line; hence the unit 1-ball becomes
the rational open unit interval.

While (—1,1) is the mathematical domain where the modular group acts, we are interested in the
global computational space where Bayesian processes and transformative calculation methods occur.
We assume that global Bayesian data, i.e., rational quanta, populate a cosmos of information a source
perceives and codes to create a continuous world model. Outside a coding source, the information
resides on a harmonic scale, whereas inside, a logarithmic scale lodges local Bayesian data.

Suppose that an object is at position P outside (—1,1). We are ignorant of the actual computation
of P, but we know that it is a rational number resulting from applying the rule (15). Be that as it may,
we can use Equation (19) to locally figure the odds of P — 1 against P + 1 in radix r, whose Bayes factor

is the logarithm in r-ary units of a cross-ratio where z; = —1,zp = 1,z3 = P,and z4 = oo, i.e,,
P+1
log, (~1,1;P,0) = log, (P; ~1:1) =log, b1

In information theory, this expression is the representational length in radix r of the rational
number P+1/p-1 and, according to NBL (8), the r-normalized width of bin [P — 1, P + 1). We can unite
these outlooks by interpreting this Bayes factor as the hyperbolic distance from P to b — o, i.e.,

dy (P,00) =log, (—1,1;P,00) = %areoth (P)

where arcoth is the inverse function of the hyperbolic cotangent.
A neat inversion conformally maps the outside of the coding source to its inside,

(-1,1;P,00) — (~1,1;D,0) (29)

conserving the cross-ratio. (Other inversions z o 1/z also serve but violate the minimal

information principle.) For example, if P = 2, (—1,1;P,00) = 752 = 3= % = (-1,1,D,0).
Therefore, the r-normalized hyperbolic distance between the origin and |D| = |1/P| < 11is

dr (0,D) =log, (—-1,1;D,0) =log, (0,D;1,-1) =
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g LTD . _D:D) =2
= log, 1D = log,(1,-D:D) = lrlrar’ranh(D)

where artanh is the inverse function of the hyperbolic tangent, and In r is the (constant) curvature’s
absolute value of the source’s coding space.

The inverse function of d, (0,1/P) is P = coth ((*2Inr)d, (0,1/P)). For example, an object at
a Euclidean distance P = 10° from the origin is at a natural hyperbolic distance of de (P, c0) =
2arcoth (10°) ~ 2 x 107 from b — oo. The coding source positions the object at D = 1/p = 107°,
at a natural hyperbolic distance of de (0, D) = 2artanh (10°) = 2arcoth (10°) from the origin, and
decodes it as P = cothartanh (107¢) = 10°.

Mind that the local coding space is the 1-annulus

a ={DeQ| -1<D< —-1/p}
" ={DeqQ|/v<D<1}

a=a uat={DeQ|/v<|D| <1}

reflecting what the source observes in the 1-annulus

A-={PecQ| -b<P< -1}
AT={PecQ1<P<b}

A=A"UAt={PecQ|1<|P|<b} (30)

For instance, if D € &%, d, (0, D) vanishes if P — b — o0, is > 1 if P is at a Euclidean distance
closer than cothIn7/2 from the origin, and diverges if P — 1.

6.2. The Conformal 1-Ball Model

The r-normalized hyperbolic distance between two points A and B in dis d, (0, Qp) — d, (0,Q4),
ie.,

4 (Q4, Qn) = . (artanh (Qp) — artanh (Q4))

where Q 4 and Qgp result from the conformal transformation (29), i.e., P + 1/Q, which mirrors the
external world concerning a’s outward boundary, to wit 1. Thus,

2
= martanh (Q) (31)

dr (Q) = d; (0,Q)
reflects how far an object at Q is from infinity, situated at the origin.

Nonetheless, we want the origins of the coding source and A to coincide and +1 to be the infinite
points of the local model. This requirement implies calculating Q’s complement to one, a logical
negation that varies on the left and the right. Recall that all negations are derivations of the canonical
one [99], so we will use Q — —1 — Q on the left and Q — 1 — Q on the right to satisfy the minimal

information principle. The coding space is now the open 1-ball

C={QeQl|Ql <1-1/1} (32)

reflecting what the source observes in the 1-annulus A.
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An object at P € A will be in 87" at a Euclidean distance of
Q=(P1)=1- 1
=(P;1:) = 5
from the origin and hence at a hyperbolic distance of
2
di (Q) = Eartanh (Q) =log, (2P —1) =log,(P;1—-P:P—1) (33)
with inverse (decoding) function P = % (1 + 7 (Q)>.
Similarly, an object at P € A~ will be in 8~ at a Euclidean distance of
Q—('P—i—l'—P)——l—l
=(; : = 5
from the origin and hence at a hyperbolic distance of
2
d, (Q) = —artanh (Q) = —log, (— (2P +1)) =log, (P;P+1: -P—1) (34)

Inr

with inverse (decoding) function P = —% (1 + 7 (Q)).

For example, a coding source places an object observed at a Euclidean distance of P = +10° at Q =
£+.999999 in C at a natural hyperbolic distance de (Q) = 2artanh (£.999999) = £1In (£2 x 10° — 1) =
+14.50866 from the origin, and P = +% (1 + e!45086) = +10°. On the positive side, the odds are
0(2P—1:1le) = lngf:ll) = h};gggggg ~ 7.254332 x 107°. Suppose that, later, the coding source
calculates this value as 7.254265 x 10~°, meaning that either the object has moved to P ~ 41000010
(because 6 (2P —1:1]e) = h‘zgggg%g ~ 7.254265 x 107) or the radix has changed to r ~ 2.71831
(because 6 (2 x 10° — 1 : 1[r) = 1ggomstporesy ~ 7-254265 x 107°). Even a combination of these two
cases could produce the same odds value.

Note that functions in the form |6; | exp (|62Q|) artanh? (|64|Q), where {61, 65,604 € Q} and 63 is
an odd power, e.g., 2 exp (3Q) artanh’ (7Q), also give rise to an odd hyperbolic distance that complies
with boundary conditions d, (1) = +oo and a vanishing distance when Q vanishes (|P| — 1).
However, they would introduce new factors and parameters we cannot explain; artanh (Q) is the
only conformal function that retains the origin and conforms with the minimal information principle.
Besides, it agrees with the canonical PMF (the first power is the most probable) and satisfies the
additional condition of having a non-vanishing derivative at the origin, i.e., the origin is not stationary
so that the function can keep its increasing tendency from left to right.

The effect of the radix on (31) is to adjust the point of maximum curvature. If r — 11 (physically,
at very low energies), such a point’s curvature vanishes as Q — +%*; if r — b — co (physically, at
very high energies), it diverges as Q — +£17. As we mentioned in Section 3.6, these extreme values
convey no-coding cases. Whenr = e = 2.718.., i.e,, when (’s curvature radius is 1/lne = 1, the
coding source is maximally efficient, and the maximum curvature approximately corresponds to a
hyperbolic distance of d (0.72543) = 2artanh (0.72543) = 1.83803.

6.3. Conformal Relativity

We must take the hyperbolic distance (31) as an abstract concept that does not have to be a
physical length.

Imagine that the global base b physically represents the speed of light. On the right hand,
P = (b;:v) =b/(b—v) = 1/(1—v/c) produces Q = 1 —1/p = v/b = v/c; if an object’s speed isv — b =,
then P — oot and Q — 17, and if v — 07, we get P — 17 and Q — 0". On the left hand,
P=(Gb:—(b+v)) = -b/(b+v) = —1/(1+v/c) produces Q = —1 — 1/p = v/b = v/c; if an object’s speed
isv > —b=—c,thenP - o0 and Q -+ —17,and ifv - 0", wegetP - —1"and Q — 0~. In
either case, Q = v/b, and we can write the relativistic Doppler effect (27) in the form

d0i:10.20944/preprints202411.0594.v1
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fS artanh (o/b) _ eartanh(Q)
fr
Since the rapidity corresponding to velocity v is, by definition,
v = artanh (v/b) (35)

the Special Relativity’s Lorentz factor is v = cosh v [100]. Thus, the coding source resolves the
composition of Doppler shifts as the exponential of the addition of hyperbolic distances, i.e.,

Ss fm

fm fr

where f; is the frequency perceived by the first receiver, v;;s the rapidity of the first receiver
relative to the source, and v, the rapidity of the second receiver relative to the first one.

Vms TV,
:emr‘!‘rm

The special relativity theory is only conformal in terms of rapidity. Visualize two inertial frames,
A and B, cruising at relativistic speed ratios of P4 = 3 and Pg = 18 about the origin of the coding
source. These correspond in C at ratios Q4 = 1 —1/3 = 2/3and Qp = 1 — 1/18 = 17/18 of the speed
v to b = ¢, defining rapidities v4 = artanh (2/3) and vg = artanh (17/18), and encoded in ternary
as hyperbolic (relativistic) speeds d3 (Q4) = 2va/In3 = 1.465 and d3 (Qp) = 2v8/n3 = 3.2362. The
difference in hyperbolic speeds is linear in 8, i.e., d3 (Q4, Qp) = d3 (Qp) — d3 (Qa) = 1.7712. Within
A (30), the difference in (Euclidean) velocities is 18 — 3 = 15, but the difference in hyperbolic speeds is

1 (1 n 3%(%*%) —1 (1 n 31-7712) —4

Rapidity arithmetic is more straightforward than calculating Einstein’s subtraction formula of

(Euclidean) velocities, which calculates vg — v4 as artanh (%) .

Another way to obtain the same result is directly using the cross-ratio, i.e.,

3/371
/341
logs 17/18-1

w1143 s | =15 (1 + 3logs 7) =4

These results mean the weave of Lorentz invariance, and more generally, Poincar invariance, is
the algebraic field of referential ratios. Lorentz symmetry [101] locally preserves central reflections
and boosts, the latter maintaining constant the speed of light (the global base) when transforming
to a reference frame with a different velocity. Poincar symmetry, the entire symmetry group of any
relativistic field theory, additionally preserves the laws of physics for inertial coding sources situated
at different quantum positions.

6.4. Conformal Coding and Computability

artanh has a protagonist role in a conformal space not only due to its manifestations in physics,
mainly the metric (31), but also because its Taylor series allows calculating iteratively the natural
logarithm itself based on the odd powers of the referential ratio 2 o1 ([102] 4.1.27),1i.e.,

)21'71

1nx_2z(xl—

2i—1 (36)

It is valid for any x € R™, especially when x ~ 1. For example, let us calculate the ternary
logarithm of P = 10°. Since 10° = 12122102020013, a numeral with 13 digits, its logarithm’s
characteristic is 12. Then, the coding source calculates the logarithm’s mantissa from (36), where
x = P — 312 = 1.88168; after five iterations, the mantissa’s error is less than one millionth. So, we

1. 2i—1
calculate log; P = 12 + % Y % = 12.57541925 against the real value of 12.57541965.
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Because the coding source can calculate the logarithm in its coding space (32), £8’s curvature — Inr
is a built-in value. Likewise, 8’s Euler characteristic y = fol Inxdx = —1, a topological invariant [103]
corresponding to no vertices, one edge, and no faces, is a built-in value. Moreover, the coding source is
"aware" of the PMF (1) through the digamma function ¢ (x) = I'(x)/T(x) (see Section 3.4) because the
gamma function results from integrating the powers of £’s curvature over the unit segment, namely
T(n+1)= [ (~Inx)" dx.

Let us denominate the r-normalize hyperbolic distance (equations 33 and 34) in logarithmic terms
the "conformal encoding function" of P € A, namely

T, (P) = sgn (P) log, (2sgn (P) P — 1) (37)
with inverse "conformal decoding function”
T, (C) =sen (C) (1 + rs8n(C) a“’)) (38)

where sgn () is the signum function (see Figure 10).

Iffx <-1, -log,(-2x-1)] Conformal decoding
x>0 ’

iffx>1, log,(2x-1)]
Iffx<0, -0.5(1+¢™)]
Iffx>0,0.5(1+¢")]

Conformal encoding

@>I)

-4 =2 Be 2 4 6
Conformal encoding L0
x<=I) L

e 2 Conformal encoding function (|z| > 1)1

&

(z) =sgn(z) log, (2sgn (z)  —1)
Conformal decoding function:
» () = dsgn (x) (14 rEn(@) )

/

/
/
/
/
/ -4
Confor-;nnl decoding
x<O)

Figure 10. The coding functions of the 1-ball conformal model.
Because the source places an object observed at a Euclidean distance P € A at a Euclidean distance

Q=sgn(P) ~ 5 =sgn(P) (Pl1)

from the origin, we can calculate the conformal encoding function using (36) as the infinite
summation

2 © QZifl
T Inr&=2i-1
i=1

Q)

Consequently, the coding source can calculate the conformal decoding function as the infinite
product

o 2i—1
T, (Q) =%sgn(Q) (1 + r8n(Q) ?’(Q)) =Yasgn (Q) (1 + HeZSgn(Q)%fl>
i=1

which does not depend on r.
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Therefore, Euclidean distances measured in £ (32) are the only inputs necessary to compute the
coding functions.
Furthermore, a coding source can calculate its first digit probability as

1
i (1+1) - Q00 1

6.5. Local Bayesian Entropy

The conformal encoding function (37) represents the likelihood of the local Bayesian odds, namely

~ log. (2sgn(P) P—1 log (2 |P| —1
0(2sgn(P) P—1:1|r) = ng(sgng(P()Izl ): ng(‘P|||1 )

which expresses the entropic contribution of bin [1,2 |P| — 1), hence of P, to A’s information total,
where (30) defines A. Because a cross-ratio is invariant under a conformal transformation, so is the
Bayesian information defined by the local odds. The transformed Bayesian datum is

_1osn(Q) 9, (Hsgn(Q) Q)
1+sgn(Q) Q °"\1-sgn(Q)Q

which expresses the entropic contribution of bin [1 — |Q|, 1+ |Q|), hence of Q, to C’s information
total, where (32) defines . Moreover, because the mapping is bijective, A and C contain the same
absolute likelihood information; therefore, reflects exactly the Bayesian entropy of A.

The limiting function of the rationals in A to approximate a piece of "real" average information
would require an analysis analogous to [104] (chapter 4b), which pivots on the differential entropy [76].
Assuming b — oo, such a "differential Bayesian entropy" measures the continuous weighted likelihood
from the coding source boundary to a point P; it is precisely the integral

0(1+sgn(Q) Q:1—sgn(Q) Qlr)

P

_ _rlog,(2x—1) . 1 (In(2P—1)\?
EA*(P)_/T‘M_E 2
1
on the right and
-1
N _ flog,(—2x—1) . 1 (In(-2P-1)\?
EA*(P)_/ (—2x—1) dx_lnr( 2
on the left.

Then, artanh comes up again to estimate the coding source’s entropy ec. Using (33) and (34),

2
7 (Q) = 2 (p) = MM Q) g 9)

would dominate the coding source’s Bayesian entropy from the origin to infinite points (Q — 1).
In the special theory of relativity, this result means that the entropy grows quadratically with the
rapidity (35) when v — b = c. Using (31),

2 (Q) = Inr (4(Q)/2)? nat

in terms of distance; note that this expression peers Bekenstein-Hawking’s formula of black hole
entropy in quantum gravity [105]. Since entropy measures confusion, this result means that objects in
remarkably curved coding spaces or at huge distances are indiscernible.
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6.6. Conformal Iterated Coding

Because of the hyperbolic distance (equations 31 or 37) and the rapidity range between —oco and
oo, we can presume the coding source’s logarithmic scale is a (new) whole external world, defined by
Euclidean distances, and repeat the encoding process.

If we apply the conformal encoding function on the right recursively

log, (2log, (2log, (2...—1) —1) 1)

the source encodes an external object’s position sooner or later in C*, and the recursion halts. For
example, if r = 3, we can map an object observed at a Euclidean distance of googol from the origin,
after five nested conformal transformations, onto a point in C* at an approximated hyperbolic distance
of 0.096773 from the origin.

Repeatedly applying the encoding function (37) or the decoding function (38) is
information-preserving iterated coding. We will use the notation r o n to express the nth iterate
(n > 1) of the encoding function 87 (P) so that ?,01 (P) = ?, (P) and

Crofuin) (P) = Cr(P)o Cron (P)

"n_n

where "o" denotes function composition holding the properties

C roman) (P) = Cron (P)o Crom (P)

and

C romn (P) = Cron (3rom (P))

Note that the limits of the coding space remain unaltered irrespective of the iteration because
?mn (£1) vanishes for all n.

The iterated logarithm of N € N*t, written log, N, is the number of times the natural logarithm
function must be recursively applied before the result is less than or equal to the unit. Similarly,

.. (P)

is the number of times we must iteratively apply (37) until the absolute value of the result is less
than one.

We call the sequence of values 8,0,1 (P), where 1 < n < 87* (P), the "conformal orbit" of P,
which outlines a tetrational plot [106]. For example, the orbit with radix » = 3 of the quantum minus
googol is { —10'%, —210.221, —5.49687, —2.09533, —1.05609, —0.096773 }. No value of the orbit can be
"identically 1" because £1 represents £co, while the global base b is our universe’s maximum. Indeed,

ex (b) gives us the universe’s maximum natural depth.

We recover the original point by applying (38) iterated the same number of times, i.e.,

%ro?y*(l’) (ﬁro&(p) (P ))

— — = — =
where C 01 (H) = C(H) and C o411y (H) = Cy (H) o Cyon (H).
Every 1-ball of radius %,on (0) might correspond to a granularity level [107], a local setting
belonging to the nested information of a (global) complex system such as the universe. Considering
that g

granularity depth for the currently estimated universe size in Planck units would be C 3, (10%!) =5,
and the binary granularity depth for the currently estimated number of atoms in the known universe

would be C, (10%) =8,

r+« (P) grows with P exceptionally slowly, the natural granularity levels are likely few; the ternary
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Granularity and primality might be related. A PN system encodes a number as a polynomial in a
single (integer) variable [108], the base or radix, where the coefficients are the possible outcomes of the
variable, either quanta or digits. Imagine now that b = r*, where r is a prime, and k = ?,* (b)isa
nonzero natural that indicates the r-ary depth of the universe. Then, the universe could be a finite (or
Galois) field [109] of order b and characteristic r (addition of r copies of any quantum vanishes) where
the operations of multiplication, addition, subtraction, and division are well-defined, and equation
(91 + q2)" = q} + g5 holds. A granularity tier would constitute a prime field of order r represented by
its digits 1 < d < r (roots of the polynomial X’ ~! — 1), and b’s quanta would correspond to the factors
of X*=1 —1 over r’s field.

Because every iteration conserves the local likelihood information, a granularity realm has
an identical copy of the Bayesian data that matches its range of distances in the external world.
Nevertheless, it is autonomous in creating new information elements, such as those resulting from
clustering points or lumping together states of similar behavior, defining emerging organizational
layers. We can even take this combination of iterated coding with coarse-grained modeling [110] as a
principle of multiscale modeling [111].

From a computational point of view, conformal coding might use a representation similar to the
level-index number system [112]. The quantum P & AT encoded as the (true normalized form of the)
significand 0 < s < 1 aftern = C, (P) > 1 iterations would be represented as s, so that

) (H %<Hr..vz<l+r5>>)
J r

%
Px Crn(s)=%|1+r

where the order (height) of the power tower is 7.
For example, a conformal representation of the number googol is .00212111221...3.5 (see Figure
11) owing to .00212111221...3 = .096773 ... and
l/2(1+31/2(1Jr3.096773... ))
¥ (1+3 )

%1 143

%
1010 = C3,5(.096773...) =% | 1+3

<_
We similarly obtain that 1038 = C 5,5 (.805897...) =.1100111001 . . .o.s.
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logi{-2 x - 1} 0
TR o b—‘ e LG T Log[3,2 x - 1]
o2 . hf“
\googolz .00212111221... .
e
2nd level af granularity
3rd lavel o\‘égranularlty
—0.5(37" +1) —af--------= ------------; --------------------- ,- 0.5(3% +1)
Figure 11. The most profound three levels of granularity

{£C(0) = +1,£C 0 (0) = C, (1) = £2,£C5 (0) = C, (£2) =45} (out of 5) a coding
source generates to encode the number googol with radix r = 3, the minor 4 points of the conformal
orbit, and the conformal encoding (in red) and decoding (in blue) functions.

7. Primordial Distributions

We construct the one-parameter canonical PMF from binomial generators. Then, we fix the
parameter of the canonical PMF for the natural and integer numbers by introducing a requirement for
the divisibility of the probability mass. This provision is equivalent to making the event "picking the
number one" a Bernoulli process.

The resulting PMF for the natural numbers allows calculating the probability and entropy of
dichotomies like odd-even and prime-composite and trichotomies such as negative-zero-positive and
elliptic-Euclidean-hyperbolic. The canonical PMF for the integer numbers could be the germ of a
fundamentally unitary, parity-invariant, uncertain, discrete, and maximally entropic universal field.

7.1. Ensuring Constructability, Rationality, and Randomness

We can not irrefutably prove that the probability ISL (1) is a foremost PMF beating at the core
of the cosmos, but NBL emanating from it is at least evidence supporting that possibility. Because
NBL is pervasive and reflects the properties of PN, efficiency must be a rudimentary feature of nature.
Following this trend of thought, we will describe how to grow this one-parameter PMF from elemental
geometric distributions, guaranteeing universal constructability. We will also tune the PMF’s parameter
to achieve the expected divisibility of N’s probability mass and cast probability values as unit fractions,
which backs the idea that nature has a prominent rational character.

Euler product formula for the zeta function (equations 1.6 and 1.13 in [113]) allows us to define
PMF (1)’s primordial random variable X € N7 as the infinite product

X=1] pX0/p)
pelP
of independent identically distributed random variables of parameter 1/p?> with a geometric
sequence of probabilities Pr ( XP (1/p?) = k) = (Y pz)k (1 —1/p?) [65], corresponding to the PMF of
pe

k failures before the first success, each binomial trial (see below) with failure probability 1/p2. This
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construction means that the canonical PMF (up to €) consists of geometric distributions that, in turn,
are "memoryless" [114] and "infinitely divisible" [115]. Of course, this infinitude is theoretical because
there must be a maximum prime.

Once we have constructed the one-parameter canonical PMF from elemental generators, which
constitutes a rudimentary notion of emergence, we can improve its computability by digging into
rationality and making the probability mass of the natural numbers divisible on average to ensure its
compartmentalization.

At the end of Section 3.3, we determined that € € (0,6/7?) by merely demanding Pr (N € N) > 0,
ie, (1—¢€Z(2)) = (1—em/6) > 0. Given that the fraction of square grid Z*’s points visible from the
origin is precisely 6/n? [116], our requirement is equivalent to setting € as a rational equal to the size of
a subset of them.

We now introduce a new vital constraint on the number of divisors of a natural number intended
to narrow the range of possible values of €. The rationale is that divisibility, as a dual concept of
primality, is paramount to understanding our universe.

Remember that a nonzero natural’s number of divisorsd includes one and the number itself; for
instance,d (12) = 1,d(22) = 3 (1,2, and 4),d (32) = 3 (1, 3,and 9), andd (4?) = 5 (1, 2,4, 8, and 16).
Notwithstanding that the distribution Pr (¢ (N?)) is unknown, we can calculate the mean of divisors
of counting numbers squared employing the general law of the expected values (or "unconscious
statistician") [117]. We require such an expected value to be at least two to guarantee that the divisibility
of the entire probability room defined by (1) takes place non-trivial and naturally, for if N? splits into

d (N?) > 2 parts, so can Pr (N), i.e.,

& A S d(N?) 2 () 5,
ZSE(J(N )) _€NX::1 N2 _65(4) —€ /90 VI
where the summation agrees the equation 3.41 of [118]. Considering the high probability of
picking the unit, this constraint is more rigid than it might seem at first sight.
Let us recap. We are imposing only a pair of constraints to provide € with an accurate value; first,
the probability of a natural to be nonzero, and second, the expected probability mass of the set of
natural numbers to be splittable. Thus,

(0<e<6/m®)A (61527'[2 > 2)

constricts the possible values of € to the narrow range

5

1 124
T2

, 6> ~ (.4863417,.6079271)
We aim to define NBL in a strict rational setting to increase operability through multiplication and

division (see subsections 3.4 and 5.1). Although rationals such as 49/100 or 6/10 satisfy this constraint,
the most probable numerator and denominator in agreement with (1) are precisely 1 and 2, so

e=% (40)

In passing, this value assures that the probability mass of a nonzero natural number is splittable.
Moreover, it is a unit fraction.

What does (40) mean from the information theory perspective? It means converting the event
"picking the unit" into a Bernoulli (binomial) experiment equivalent to flipping a coin. A sequence of
these independent identically distributed picks is a Bernoulli process, unique and universal in that it is
the single most random non-mixing process possible [119].
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More generally, the corresponding variable that considers obtaining exactly k ones in an
experiment with N trials, each with a probability of success €, follows the binomial distribution

[120]
Ny N!
<k>_k!(Nk)!

Pr(k,N,e) = (f) e (1—e)NH (41)

isomorphic to "exactly k tosses out of N > k tosses resulting in a head". The logarithmic
scale awesomely comes up when we calculate the entropy of this distribution, which tends to
1%1n (27teNe (1 — €)) as N approaches infinity.

Well, the binary entropy function of "picking the number one" (and the complementary event
"picking a number with splittable probability") attains its maximum when (40) holds, like a fair coin,
where the odds for and against are 1 (heads or tails) by definition. For the same reason, %2 maximizes
the entropy of the binomial distribution (41), too.

In summary, (40) ensures five conditions, to wit, positive rational probabilities congruent with
the PMF itself, divisibility of N’s probability mass, maximum number of naturals with splittable
occurrence probability, counting numbers with unit fraction probability masses, and maximum
universal randomness.

7.2. Canonical PMF for the Natural and Integer Numbers

Assuming (40), we can establish that

NeN-{0}: 5a @)

Pr(X=N)= {else: 1-%L(2)

is the canonical PMF for a random variable X that takes natural values. Its mode is one, with
undefined mean and variance, and entropy requiring 3 bits because of

= log, (AN~?)

T = 26178bit

— (1 -4 (2)) log, (1 - 47 (2)) — 14
N=1

As required, the expected divisibility value of the global probability mass surpasses two, namely

3
I
E(d(N?)) =» 205617
Indeterminacy has chances every tick of the clock because of 1 — 4 (2) ~ 17.75%. Therefore, the
probability of a counting number coming out is

o 1T o
%Alglﬁ =t =y A 8225%

The probability of a string of numbers is the product of the indiviual probabiliies; for example, the
probability of picking s and t inarow is Pr (< s,t >) = Pr(< t,s >) = Pr (s) Pr (t). The probability of
a choice between a set of numbers is the sum of the indiviual probabiliies; in particular, the probabilty
of picking a number in the interval [s..t) is the sum of Pr (s) +Pr(s+1) +--- +Pr(t —1).

The probabilities of a natural number being odd and even are (3/4) (¢(2)/2) = (7/4)* ~ 5/s and
(1/4) (£(2)/2) = 7*/48 = 5/24, respectively (see equation 1.12 in [121]). So, getting an odd natural number
is i;—i = 3 times as probable as picking an even, in sharp contrast with the "intuitive" 2 size in [48].

The probability of the event "picking a natural number greater than 1", i.e., a number with
splittable probability, is the unit minus the probabilities of indeterminate and one, namely
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Pr(X>2)=1-(1-%(2)+%)=%({(2) —1) = 0.32247
The probability of the event "picking a prime" is half the sum of the reciprocals of prime numbers

P squared, i.e.,

Pr(X=NeP)=)_ zlﬁ =150 (2) ~ 0.22612
NeP

where P (-) is the prime zeta function. Thus, picking a composite number has a probability of

Pr(X>2AX¢P)=%({(2) —1—P;(2)) ~ 0.09634
and the probability that N € [P, conditioned to be greater than 1, exceeds 70% due to

Pr(X=NeP) P (2) 022612

Pr(X=NeP|X>2)= _ ~
rX=NePIX22) =m0 ~ 7 -1~ 03247

~ 0.70123

Therefore, observing primes in nature is expected; regarding number theory, the odds of prime
versus composite are 70/30.

On the other hand, the canonical PMF (42) straightforwardly explains the proclaimed supremacy
of the hyperbolic configurations concerning the two-dimensional tilings algebraically associated with
the finite reflection groups [122].

The probability of a natural number greater than one occurring thrice is

(Pr(X >2))° = (%5(7(2) —1))> ~ 0.033532

In other words, this value is the probability of producing three naturals to form a triangle.
The probability of picking three naturals forming a Euclidean triangle (i.e., /i +1/m +1/n = 1) is
the probability of picking {2,3,6}, {2,4,4}, or {3,3,3}, namely

sf 1 1 1
(4) <223262 T o2 gz ) 0000990

The probability of picking three naturals forming a spherical triangle (i.e., 1/1 +1/m +1/n > 1) is

5(C(2)—1 1 1 1\
(%) ( ior— t oy T T azgzs |~ 0005780

where the first term is the probability of a triplet of two 2s and any natural greater than one.
The probability of picking three naturals forming a hyperbolic triangle (1/1 +1/m +1/n < 1) equals
the occurrence probability of a triangle that is neither Euclidean nor spherical,

0.033532 — 0.000390 — 0.005780 ~ 0.0273615

So, the odds of hyperbolic cases against non-hyperbolic cases point to the former’s predominance,
specifically

0.0273615
0.000390 + 0.005780

In summary, two-dimensional tilings are usually hyperbolic. Remember that a star of the triangle
group [123] is the set of all rotational triangle subgroups D (2,3, 1) (1/2+4 1/3 4 1/n < 1), isomorphic to
the modular group we broached at the end of Section 5.6. This group is a subset of the almighty M
bius group, which permeates through many fields of geometry, number theory, and significant areas of
physics.

~ 4.434429

d0i:10.20944/preprints202411.0594.v1
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In particular, D (2,3,7) is the triangle subgroup most probable in the hyperbolic class. It is
algebraically the quotient of the group of unit quaternions by its center +1 and topologically the
cover for all Hurwitz surfaces. The Hurwitz group of a Hurwitz surface maximizes the order
of the automorphism group for a given genus through orientation, scale, and angle-preserving
transformations, i.e., conformal mappings, with grand importance in Quantum Field Theory,
gravitation, and cosmology. The Hurwitz surface of the minor genus (three) is the Klein quartic
[124,125] with automorphism group the self-dual Fano plane, closely related to the octonions [126],
both appearing in game theory and fundamental physics. Moreover, the mysterious Monster group
can grow from D (2,3,7) [127].

These facts indicate again that inversive and conformal geometry might be at the world’s heart,
built from the simplest simplices (generalizations of a triangle to any dimension).

Finally, we can extend (42) to the set of integer numbers to establish

Z — : 1
Pr(Z) = ZeZ-10} (22)* (43)
else : 1-1%(2)

The canonical PMF for the integers, illustrated in Figure 12, has mode £1, with entropy

« log, ((22)72
—<1—1/zc<z>>log2<1—%€<z>>—2Zg2<>

5 = 3.44027 bit
7=1 (22)

For nonzero integers x and y, it is the solution to the functional equation

Pr (x) Pr(y) = (xy Pr(xy))

satisfying the condition Pr (£1) = 12,

This PME which accounts for the weight of the ISL in physics [128], cannot be more buildable; take
every second integer from the coding source point of view, i.e., {---,—8,—-6,—4,-2,,2,4,6,8,--- },
then their reciprocals squared, obtaining {---,1/64,1/36,1/16,1/4,,1/4,1/16,1/36,1/64,- - - }, which
coincides with (43). It satisfies positive probability masses summing to one, central reflection symmetry,
fair (i.e., undefined) mean and variance, holistic rationality, and randomness. Unitarity, parity
invariance, indeterminism, discreteness, and the principle of maximum entropy are the physical
reflections of these properties, which are all fundamental. Besides, the square root of the probability
mass (physically, the probability amplitude) of a nonzero integer is precisely half its reciprocal.

Again, the resulting NBL is valid irrespective of the proportionality constant € following Section
3.6, namely

1
Pr(r,d) =log, (1 + d|>

where1 < |d| <r,y e N>2,andd € Z.
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Canonical Probability Mass Funetion for Integers

Negative unit Positive unit

Indeterminate

Figure 12. The canonical PMF for the integer numbers could be the germ of a fundamentally
unitary, parity-invariant, indeterministic, discrete, and maximally random universal field. The
upper points resemble the (inverted) cross-section of a sombrero potential (e.g., the quartic function
—(2/2)% 4 2(2/2)*) of a scalar field with an unstable (indeterminate) center and a nonzero "vacuum
expectation value"; the multiplicative units F1 provide this field with the ground (vacuum) state
enabling spontaneous symmetry-breaking. Thus, the sombrero potential would be the physical
manifestation of a fundamental improbability mass function.

8. Epilogue

Our research shows how discreteness and the continuum interact under the shelter of (1). A
complex system and its environment embody the continuous local and discrete global. The NBL
probability’s derivative of the local takes us to the global, and vice versa; the global’s integral situates
us in a local setting of likelihood-based probability. A harmonic scale of rational numbers supports
the global realm, while a logarithmic scale of "real values" supports the local realm. The harmonic
scale’s base is a universal reference that establishes the concept of likelihood-based information, and a
logarithmic scale’s radix is an exponentiation constant that normalizes the system’s conformal space of
local information coded in PN.

We assume the system is a coding source that observes the outside, operates internally the
gathered information, and takes action on the environment. More precisely, a coding source uses
the synergy between Benford’s and Bayes’s laws to reflect (encode) the external world, process
(recode or arithmetically transform) the information, and return (decode) the results to its immediate
surroundings. These laws connect mathematics with physics.

8.1. Canonical PMF

NBL bets on smallness; little objects are more numerous than extensive ones. Why? The fact that
many probability distributions partially adhere to NBL does not reveal its root. Nor can we glean its
origin from the fact that merging methods via sampling or multiplication of real-world data series
produces adherence to NBL. "Mathematics alone cannot justify a first-digit law", wrote Raimi. Given
that the effects of NBL are well-known in physics, we need to be aware of its fundamental character
and ultimate cause.

NBL is not so mysterious if we concede that it originates from an ISL of probability. Whenever
the canonical PMF governs a system behavior, we can infer its properties are data spaces that record
information on a positional scale. This constructible primordial PMF states an absolute hyperbolic
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relation between the square of a nonzero number N € N and its probability mass Pr (N), specifically
that N2 Pr (N) is constant. We stress that the phenomenology of the canonical PMF and NBL run in
parallel, to the point that we aver that ours is an inverse-square world for the most part, much as Havil
affirms that "It's a Harmonic World" and "It’s a Logarithmic World".

If we assume the minimal information principle, PMF (43) is the only way to satisfy that the
probabilities are positive summing to 1, guarantee that our random variable’s average value is not
finite if we repeat the experiment often enough, ensure mass divisibility, and cope with the extension
to all the integers, hence to the rational and algebraic numbers. These requirements” logic, sturdiness,
and feasibility suggest a full-fledged tenet at the heart of mathematics, physics, and higher integrative
levels. Besides, this PMF implements the Axiom of Induction; "at least one inductive set does exist
determined uniquely by its members that has a substrative probability distribution".

Although the canonical PMF consists of Bernoulli generators, we introduce (43) as a brute fact
deprived of tangible information. Notwithstanding, this probability ISL could be the embryo for crucial
experimental laws of physics, such as Newton’s Universal Gravitation and Coulomb’s Electrostatic
Force. Understood as an improbability field, it could even give place to the energy density of space
characterized by a sombrero potential with an unstable center and a nonzero vacuum expectation
value.

The canonical PMF indicates a manner of arranging availability versus transcendence. Occasional
numbers are more startling and influential than abundant ones. While frequent numbers provide
resilience, infrequent numbers have the capacity for transformation. Therefore, the universal
equilibrium is not enforced via uniformity but achieved by hyperbolically balancing accessibility or
stability (position) against magnitude or reactivity (momentum); does not it sound to the Uncertainty
Principle?

In particular, our study of depleted harmonic series teaches us that the specific digits involved in
a constraining numeral do not matter. In contrast, the length of such a numeral does. Short numerals
or low digit densities are accessible and cheap, producing heavy terms that condense the space. In
contrast, long numerals or high densities of digits are "rare" and deliver slender harmonic terms. In
other words, increasingly bigger numbers on a linear scale have less and less weight on a positional
scale. Moreover, "almost all" large numbers have a high cost of accessibility and are indistinguishable
except for their order of magnitude.

The canonical PMF naturally copes with indeterminacy by introducing the "indeterminate" value
(interpreted as inaction or not-a-number and symbolized by zero) and dodging a finite expected value.
Additionally, uncertainty appears with a less metaphysical flavor and a quantum touch. A number’s
value and probability represent a foundational (position-momentum) inaccuracy,

N-Pr(N) = -~ <1
2N —

Assuming that induction is a rudiment of our cosmos, this inequality is a sort of "certainty
principle’, i.e., a clue that uncertainty is finite.

The canonical PMF defines a large number by its probabilities, proportional to the chance of fitting
its tail and inversely proportional to its opportunity, i.e.,

N (N) P> N)

£z Pr(N)

Equality exclusively occurs in the infinite limit when the trigamma function approaches a
hyperbola asymptotically (see Section 3.4). Alternatively, for Pr' (> N) ~ —Pr (N), l\%irn Pr(>N)+
—00

NPr' (> N) vanishes. In principle, scale invariance is unreachable because the exact solution
Pr (> N) = ¢/N exists only in the offing.

Nevertheless, summing from the unit to base b, say the superlative natural number, immediately
drives us to the global NBL. b confines the physical framework where numbers become quanta. The
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trigamma function measures a number’s probability exceedance, i.e., its cumulative distribution
function’s upper tail. When normalizing the trigamma function relative to the base’s support, we
obtain the probability of quantum ¢ in base b, which is the product’s reciprocal of 4 and the harmonic
number b — 1. We can interpret Pr (r,q) = Y4/H, ; as measuring cruising speed because 1/q and H, 4
estimate a quantum’s span (space) and a base’s scope (time); minor quanta or bases raise promptness,
while high quanta or bases yield delay.

Pure conformality is only possible within a finite global scope; b ultimately enables implementing
a PN-based coding space where the accessibility potential

dPr(b,q)
99

vanishes for all quanta g and the logarithm can germinate.

Pr(b,q) +4q

8.2. the Logarithm Measures Local Information

Integrating under the global NBL's hyperbola and normalizing concerning a local radix r < b
immediately drives us to the fiducial, R-based, logarithmic form of NBL.

The logarithm and its inverse (the exponential) are fundamental functions because they appear
everywhere in mathematics and physics, to wit generalized means, primes, fractals, solutions to many
differential equations, power laws, information transmission, von Neumann entropy, et cetera. This
plenty demonstrates that hyperbolic spaces proliferate. Indeed, we prove that the canonical PMF leads
to such dominance in Section 7.2. Within the scope of this essay, not only does the logarithm measure
the local natural likelihood (5) and probability of a bin (equations 6 and 7), but the local Bayes factor
(18), the elemental jumps (22), the entropy distribution function of a bipartition (23), the subjective
ratio (24), the hyperbolic distance (31), the rapidity (35), the canonical coding (37) and decoding (38)
functions, the differential Bayesian entropy (39), and the repetition of the Bernoulli event "picking the
unit" (41) also involve it.

In geometry, the logarithm gives the normalized area under the hyperbola. The logarithm bridges
information and physics, especially thermodynamics, via the Gibbs entropy formula in statistical
mechanics and the Bekenstein-Hawking formula in quantum gravity. In information theory, the
logarithm mainly estimates the representational extent of a given numeral written in PN. Further, our
essay proves that the logarithm resolves the metric of a conformal space by recasting correlations into
distances or rapidities, as Section 6.2 describes. This conversion is critical in iterated coding, especially
in coarse-grained and multiscale modeling. The radix’s logarithm is precisely the (absolute value of
the) coding space’s curvature. In particular, radix r = e defines the natural logarithmic scale, i.e., the
standard one-dimensional hyperbolic space.

The logarithm is central to comprehending how profoundly NBL connects with recurrence and
incrementality. A coding source implements Bayes’ rule by multiplying the prior odds between two
quanta by a likelihood factor represented by a local NBL probability, precisely the logarithm of their
ratio’s reciprocal. We say a local datum is Bayesian if it admits this structure, which is recurrent under
iterative processes of encoding, recoding, arithmetic operations, and decoding. A local Bayesian datum
represents likelihood information, e.g., the encoded odds of an elemental gap or a stopping choice.

Assuming that a digit is an orbit and the radix is the number of orbits, e.g., of an atom, a jump
between consecutive orbits introduces significant entropy differences only in the origin’s immediacy.
Lower orbits have more difficulty achieving a transition, whereas the reactivity associated with the
farthest orbits is logarithmically more probable. This behavior resembles the chemical elements’
periodic table concerning the electron shells.

Assuming that a digit is an item and the radix r is the number of items in a pool, Bayesian coding
solves a version of "the secretary problem" that considers the strategy to select "a good" item rather than
"the best" one. It belongs to a class called "last-success problems" with universal scope. Its objective
is to determine the last item x on the fly that maximizes the probability of success in accomplishing
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the stopping rule, i.e., rejecting the first x items and stopping afterward at the next that is better
than the preceding ones. We approach the solution by aggregating the odds 6 (x : 1|r) o £ Inx and
0 (r: x|r) o< xIn L. We feature a pair of characteristic properties of all these good-choice (best-choice
included) and optimal-stopping problems; first, they require a phase for incremental information
gathering to deliver a preliminary proper output only refined if there is time left, and second, the
solution x generates asymmetry by making the past partition (bin [1, x)) smaller than the future
partition (bin [x, r)). Is this procedure not primary management of memory in real-time?

8.3. Conjectures

On the one hand, the canonical PMF and its NBL subsidiaries explain why proximity or slightness
provides more stability than distance or heftiness. Occurrence probability attracts information toward
a central source; apart from the second thermodynamical law, no other law allows inferring such a
fundamental imbalance. However, the entropic leaks from the most outlying digits offset this mass
accumulation in the source’s proximity. Therefore, data encoded in PN would induce alternating
uphill and downhill flows, reflecting a brute fluctuation between the dual elementary concepts of
concentration and dispersion.

On the other hand, Newcomb-Benford and Bayesian laws regulate the implementation of a
conformal space through tractable hyperbolic functions. An NBL probability is a likelihood, i.e., a
Bayes factor. A referential ratio is a particular case of Bayesian datum with a unit prior (i.e., a sheer
Bayes factor) and a point at infinity. A cross-ratio is a quotient of referential ratios, and the logarithm of
a cross-ratio yields a conformal metric. The canonical coding functions define how a complex system,
say a coding source, creates an image of the world, which can render crucial consequences in physics,
principally enabling scalability and boosting efficiency as leitmotifs and chief drivers of cosmological
development.

The universal hyperbolicity that the inverse-square, Newcomb-Benford, and Bayesian laws steer
can illuminate the measurement problem. If the integer line Z were the position space of a generic
object, the canonical PMF for the integers (43) would match with a default wave function with one
degree of freedom expressible as a linear combination of the position eigenstates |Z), namely

Y= 1/a] —2) +1/2] — 1)+ /182 (2)[0) + /2| + 1) + /4| +2) + 16| +3) +- -

A nonzero integer Z € Z represents an actual eigenvalue corresponding to the eigenstate with
rational amplitude (2Z) ~! and the origin is the idle or vacuum (beable) state with quantum amplitude
/1 =" (2). By the Born rule, the quantum-mechanical probability of being at place Z is the square
modulus of its rational amplitude, precisely its canonical probability mass. From a complementary
point of view, the canonical PMF tells us the probability Pr (Z) = (4E|Z)) ! of having energy E|Z) =

72, corresponding to a wave function’s rational amplitude (2\/E|Z )) ' in the momentum space.
Thus, the physical existence of the canonical PMF would imply a default wave function and vice versa.
A system object of observation and the measurement entity (e.g., an instrument, an experimenter,
or the environment) interact, entangling into a mixture of states represented by their joint wave function.
Suppose the observed object is a test particle, and the observing entity is a measurement device whose
wave function corresponds to our universally binding canonical PMEFE. The joint wave function is
untestable, but the coding device can measure the particle’s position up to inherent uncertainty.

We assume particles materialize as wave packets with arbitrary widths rather than points.
During measurement, a particle in the observation field progressively decoheres, losing its pure
quantum nature and dynamics while transferring the information into the coding source, which
recursively assigns the particle’s state to nested bins forming a numeral. For example, suppose that
a particle has triangular wave function 5| — 1)+1/2|0)+%| 4 1) with center of masses objectively at
position 200 (and triangular momentum compatible with the uncertainty principle). We can locate
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the particle’s wave function projected onto a bin of digits at any time. The odds of registering "2" to
"1" are (((l/\/i)2+(1/2)2) 10810(1+1/2)/((1/2)2log10(1+1/1))> = 1.755, the odds of registering "20" to "19" are

(((1/\/2)2+(1/2)2) 108]0(1+1/20)/((1/2)2log10(1+1/19))> = 2.854, and the odds of registering "200" to "199" are
((1/ V2)? logyo (141/200) / ((1/2 10g10(1+1/199))) = 1.99. Note that position data are biased towards the source

regarding the expected genuine odds, to wit 3 = ((/v2)*+(1/2)%)/(1/2)2, 3, and 2 = (1/v2)*/(1/2)%; objects
would be farther than they appear! After measurement, we have no more coherent position state but a
position datum; the particle’s information now lies in the measurement numeral.

8.4. Some Metaphysics

Literature about NBL overlooks its rational aspect. Ours is primarily a harmonic world, where
rational numbers guarantee calculability. PMF (42) and PMF (43) tell us that the probabilities of natural
and integer numbers are unit fractions. The global NBL, stemming from (1), means that quantum
frequencies are unit fractions, too. Besides, although the fiducial NBL appears to be an absolute law
that assigns a probability to every digit separately, a digit acquires its informational meaning only
compared with another, i.e., in odds form. Contrary to the Special Relativity premises, we take the
global base manifesting as the speed of light as proof of the universe’s "rational" rather than "real"
essence (see Section 6.2).

More fundamentally, holistic rationality implies relationalism (i.e., reciprocity) and operability
(i.e., arithmetical tractability), basic properties of a physical transformation. Rationality is budding
relativity. Indeed, the quotidian continuum we perceive from our local outlook approximates the
discrete reality; the continuum emerges from the rational instead of vice versa. We conclude that
Q is the universal number system at the heart of computability, contrasting with the contrived real
numbers.

Infinity has no place in the algebraic field of rational numbers. Further, we have endorsed the
universe’s finiteness in many other ways. To begin with, we feature a global base closely related to
the maximum natural (or prime) number. Raw data statistics of natural phenomena indicate that no
counting system can avoid this universal tendency towards littleness. Perceivable things in the cosmos
are typically small but always rationally commensurable from some standpoint; otherwise, they would
be incomparable, whence indiscernible. An infinite host universe reduces all its finite guests to zero,
an unobservable number. PN ignores numeral positions surpassing a certain threshold. Because a
(quantum) measurement obliterates the least significant digits, the models a coding source supports
necessarily give rise to non-deterministic mechanics, such as Gisin’s proposal, "which is empirically
equivalent to classical mechanics but uses only finite-information numbers." A transfinite universe
prone to productivity is counterintuitive. The universe is an economic system precisely owing to its
limited scope and resources.

This essay generally points to mathematics having a physical status. We have put laws midway
between mathematics and physics on the table. The canonical PMF for integer numbers defines
a pervasive numeric field of stability that is the germ of a constitutively unitary, parity-invariant,
uncertain, discrete, and maximally random universe. The linkage between probability space and
physical space, especially within a coding space, is so intricate that we hardly find discrepancies.
Further, because the notion of logarithmic likelihood results from comparing two logarithmic sectors
(5) and a local NBL probability mass is a ratio of logarithmic likelihoods (6), stating that information is
physical means probability is physical.

We have told a hegira from information coding to physics, presuming the Galilean idea
that nature is mathematical per se. William K. Clifford (1976, On the Bending of Space,
https:/ /doi.org/10.1007 /978-94-010-1727-5_49) underlined that we might "be treating merely as
physical variations effects which are really due to changes in the curvature of our space", although
"Whether one associates 'geometric’ ideas with a theory is [illegible] a private matter", stated Einstein in
a letter written to Reichenbach (Google translation from Doc. AEA 20-117 of the Albert Einstein Archive,
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8 April 1926). Our partway philosophical worldview supports the theory that every mathematical
concept has a physical peer because physics emerges from algebra via geometry, supported by
hyperbolicity, economy, and relationalism. The embodiment of these pillars makes Tegmark’s
hypothesis that the observable reality is a mathematical structure defined by computable functions
plausible. We must add that such a structure consists of conformal spaces and transformations.
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