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Abstract

Many problems in science, engineering, and economics require solving nonlinear equations, often
arising from attempts to model natural systems and predict their behavior. In this context, iterative
methods provide an effective approach to approximate the roots of nonlinear functions. This work
introduces five new parametric families of multipoint iterative methods specifically designed for
solving nonlinear equations. Each family is built upon a two-step scheme: the first step applies the
classical Newton method, while the second incorporates a convex mean, a weight function, and a
frozen derivative (i.e., the same derivative from the previous step). The careful design of the weight
function was essential to ensure fourth-order convergence while allowing arbitrary parameter values.
The proposed methods are theoretically analyzed and dynamically characterized using tools such as
stability surfaces, parameter planes, and dynamical planes on the Riemann sphere. These analyses
reveal regions of stability and divergence, helping identify suitable parameter values that guarantee
convergence to the root. Numerical experiments confirm the robustness and efficiency of the methods,
often surpassing classical approaches in terms of convergence speed and accuracy. Overall, the results
demonstrate that convex-mean-based parametric methods offer a flexible and stable framework for
the reliable numerical solution of nonlinear equations.

Keywords: iterative methods; nonlinear equations; convergence order; optimal methods; dynamical
analysis

1. Introduction
In mathematics and engineering, many real-world and physical phenomena are modeled using

nonlinear equations or systems. Solving such problems has led to the development of numerous
numerical methods, which serve as fundamental tools for approximating solutions that cannot be
found exactly or analytically.

Among these, iterative methods play a crucial role in finding the roots of nonlinear equations.
Since a variety of iterative strategies exist, it becomes essential to evaluate their convergence order,
stability, and computational efficiency. These aspects allow us to compare methods and choose the
most appropriate one for a given problem.

Iterative methods are typically classified based on whether they are single-step or multi-step,
with or without memory, and whether they require derivatives or not . In this context, we present
new multipoint iterative methods aimed at approximating the zeros of nonlinear functions. These
methods are inspired by the work in [1], which investigates and enhances Newton-type methods by
incorporating convex combinations of classical means, achieving third-order convergence.

With the aim of improving this order of convergence, we introduce new multipoint iterative
schemes based on the composition and in the use of weight function. These functions combine data
from multiple evaluations of the function and its derivatives throughout previous iterations to improve
both accuracy and efficiency. The proposed methods achieve fourth-order convergence and satisfy the
optimality condition postulated by the Kung-Traub conjecture [2], which states:
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The order of convergence p of a without memory iterative method cannot exceed 2d−1, where
d is the number of functional evaluations per iteration.

A method that reaches this bound is called optimal. This and other criteria described below will allow
us to define which method is more effective than another.

One of the most widely used and foundational approaches in nonlinear root-finding is Newton’s
method. It is defined as:

xn+1 = xn −
f (xn)

f ′(xn)
, n = 0, 1, 2, . . . , (1)

provided f ′(xn) ̸= 0. Under appropriate smoothness conditions and for simple roots, the method
exhibits quadratic convergence, meaning:

|xn+1 − α| ≈ C|xn − α|2,

for some constant C > 0 and being α a root of f (x) = 0.
In 2000, Weerakoon and Fernando [3] proposed a third-order variant of Newton’s method. This

method replaces the rectangular approximation in the integral form of Newton’s method with a
trapezoidal approximation, reducing truncation error and improving convergence. Their method,
known as the trapezoidal or arithmetic mean method, is defined as:

yn = xn −
f (xn)

f ′(xn)
, xn+1 = xn −

2 f (xn)

f ′(xn) + f ′(yn)
, n = 0, 1, 2, . . . . (2)

This method laid the foundation for subsequent generalizations using other types of means.
Researchers such as Chicharro et al. [4] and Cordero et al. [1] expanded this idea by incorporating
various mathematical means to construct families of third-order methods:

xn+1 = xn −
f (xn)

Mm
[

f ′(xn), f ′(yn)
] , n = 0, 1, 2, . . . , (3)

where yn denotes the Newton step and Mm(x, y) represents the chosen mean applied to the values x
and y.

1.1. Types of Means

Below are the different types of convex averages used in the literature for the design and analysis
of various iterative methods. These concepts constitute a fundamental reference and will serve as a
methodological basis for the development of our own iterative procedures.

Arithmetic Mean MA: The arithmetic mean of two real numbers x and y is given by:

MA(x, y) =
x + y

2
.

This mean appears in the trapezoidal scheme (2).
Harmonic Mean MH : The harmonic mean of two positive real numbers x and y is defined as:

MH(x, y) =
2xy

x + y
.

This mean is particularly sensitive to small values and is known for its use in rates and resistances.
In the context of iterative methods, its reciprocal nature often yields improved stability under specific
conditions. The following scheme arises by replacing in (2) the arithmetic mean by this mean, as done
in [5]:

xn+1 = xn −
f (xn)( f ′(xn) + f ′(yn))

2 f ′(xn) f ′(yn)
, n = 0, 1, 2, . . .
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Contraharmonic Mean MC: The contraharmonic mean is given by:

MC(x, y) =
x2 + y2

x + y
,

and is always greater than or equal to the arithmetic mean. It accentuates larger values, making
it suitable when higher magnitudes dominate the behavior of the function. When this mean is
incorporated into iterative schemes, the obtained method presented in [1,6] is:

xn+1 = xn −
( f ′(xn) + f ′(yn)) f (xn)

( f ′(xn))2 + ( f ′(yn))2 , n = 0, 1, 2, . . .

Different authors have proved that all these schemes have order of convergence three.

1.2. Some Characteristics of the Iterative Methods

To analyze an iterative method in greater depth, it is essential to understand certain concepts
related to the mathematical notation used, the order of convergence, the efficiency index, the computa-
tional order of convergence, as well as the fundamental theorems and conjectures that support the
correct formulation of the proposed new multipoint methods. Each of these aspects is detailed below.

Order of convergence
The speed at which a sequence {xn} approaches a solution α is quantified by the order of

convergence p. Formally, the sequence {xn} is said to converge to α with order p ≥ 1 and asymptotic
error constant C > 0 if:

lim
n→∞

|xn+1 − α|
|xn − α|p = C.

This limit establishes an asymptotic relation that describes how rapidly the errors en = xn − α

decay as the number of iterations increases. Specifically:

• If p = 1 and 0 < C < 1, the convergence is linear,
• If p = 2, the convergence is quadratic,
• If p = 3, the convergence is cubic,
• For p > 3, the method has higher-order convergence.

In practice, a high value of p implies faster convergence toward the root of f (x) = 0, assuming
the constant C remains reasonably small. However, higher-order methods often require more function
or derivative evaluations per iteration, increasing computational cost.

The error equation of an iterative method can be expressed as:

en+1 = Cep
n +O(ep+1

n ), C ∈ R,

where C is the asymptotic error constant and O(ep+1
n ) denotes higher-order terms that become negligi-

ble as n increases. This expression is central to the local convergence analysis of iterative schemes.
Numerical estimation of the order of convergence
Since the exact root α is typically unknown, practical estimation of the convergence order relies

on approximate values of the iterates. Two widely used techniques are:

• The computational order of convergence (COC) defined in [3],
• The approximate computational order of convergence (ACOC) defined in [7].

These tools are commonly used in numerical experimentation to assess the performance of
iterative schemes.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 September 2025 doi:10.20944/preprints202509.0776.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.0776.v1
http://creativecommons.org/licenses/by/4.0/


4 of 29

The classical estimate (COC) [3], assuming knowledge of the root α, is given by:

p ≈ COC =
ln
∣∣∣ xn+1−α

xn−α

∣∣∣
ln
∣∣∣ xn−α

xn−1−α

∣∣∣ , n ≥ 2.

When α is unknown, the ACOC [7] formula provides a root-free estimate using only the iterates:

p ≈ ACOC =
ln
∣∣∣ xn+1−xn

xn−xn−1

∣∣∣
ln
∣∣∣ xn−xn−1

xn−1−xn−2

∣∣∣ , n ≥ 3. (4)

This tool allows us to approximate the theoretical order of convergence p without requiring
knowledge of the exact solution. Its reliability increases as the iterates approach the root, provided the
errors remain sufficiently small to avoid numerical cancellation or round-off issues.

Efficiency Index of an Iterative Method
To assess the computational efficiency of an iterative method, one must consider its convergence

order and the number of function evaluations per iteration. Ostrowski (1966) introduced the efficiency
index I, defined as:

I = p1/d, (5)

where p is the order of convergence and d is the total number of functional evaluations per iteration
(including derivatives, if applicable). This index provides a comparative efficiency measure across
methods with varying orders and computational demands.

More recently, the concept has been extended to the computational efficiency index (CEI) [8],
which includes not only functional evaluations but also the products/quotients of the iterative method.

CEI = p1/(d+op), (6)

where op refers to the number of products/quotients produced in each iteration.
These indicators allow different iterative methods to be compared regarding convergence speed

and total computational cost.
In this manuscript, Section 2 presents some known fourth-order iterative methods used in the

numerical section for comparison. In Section 3, the new schemes are presented and their order of
convergence is proven. Section 4 deals with the dynamical analysis of one of the proposed families
of iterative schemes. The best method in terms of stability is compared in the numerical section with
known schemes. Two academic examples and two applied problems confirm the theoretical results.
With some conclusions and references, we conclude the manuscript.

2. Some Fourth-Order Methods in the Literature
In recent decades, there has been an urgent need to develop iterative methods with high orders

of convergence that do not require new functional evaluations or derivatives. Since Traub’s initial
contributions [9] with his method known as the frozen derivative, various approaches have been
proposed to address this challenge. The following iterative expression defines Traub’s method:

yn = xn −
f (xn)

f ′(xn)
, xn+1 = yn −

f (yn)

f ′(xn)
, n = 0, 1, 2, . . .

This scheme achieves cubic convergence without the need to evaluate the second derivative. Similarly,
Jarratt [10] introduced a two-step iterative scheme:

yn = xn −
2
3

f (xn)

f ′(xn)
, xn+1 = xn −

1
2

(
3 f ′(yn) + f ′(xn)

3 f ′(yn)− f ′(xn)

)
f (xn)

f ′(xn)
, n = 0, 1, 2, . . . ,
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This also avoids evaluating second derivatives and achieves fourth-order convergence.
Based on these ideas, many multipoint methods have been developed to achieve even higher

convergence orders. The specialized literature, including the works of Chun [11], Ostrowski [12],
King [13], among others, offers a wide range of fourth-order schemes based on the adjustment of
parameters and weighting functions. These schemes will serve as benchmarks for comparison with
the methods proposed in this work.

Among them, it is worth highlighting the family of fourth-order methods introduced by Arti-
diello [14]. It is based on a weighting function H(µ) that generalizes several known schemes. Its
formulation follows a two-step scheme:

yn = xn −
f (xn)

f ′(xn)
,

xn+1 = yn − H(µn)
f (yn)

f ′(xn)
, n = 0, 1, 2, . . . ,

(7)

where µ = f (y)
f (x) .

Theorem 1 ([14]). Let f : I ⊂ R → R be a sufficiently differentiable function on an open interval I containing
a simple root α of f (x) = 0, and H : R → R any sufficiently differentiable function satisfying:

H(0) = 1, H′(0) = 2, |H′′(0)| < ∞.

Then, for an initial estimate x0 close enough to α, method (7) converges with order at least 4 and its error
equation is:

en+1 =

((
5 − H′′(0)

2

)
c2

3 − c2c3

)
c2

2 e4
n +O(e5

n),

where cj =
f (j)(α)
j! f ′(α) , j = 2, 3, . . . , and en = xn − α.

This theoretical framework not only unifies classical methods (such as those of Ostrowski or Chun)
through specific choices of H(µ), but also provides a rigorous basis for designing new schemes. Table 1
summarizes several iterative methods that achieve fourth order thanks to the correct consideration of
weighting functions.

Table 1. Summary of Fourth-Order Iterative Methods.

Author H(µ) Iterative Method

Chun (MEDCH4) [11] 1 + 2µ

yn = xn −
f (xn)

f ′(xn)
,

xn+1 = yn −
f (xn) + 2 f (yn)

f (xn)

f (yn)

f ′(xn)

Ostrowski (MEDOS4) [12]
1

1 + µ

yn = xn −
f (xn)

f ′(xn)
,

xn+1 = yn −
f (xn)

f (xn)− 2 f (yn)

f (yn)

f ′(xn)

King (MEDK4) [13]
1 + (2 + β)µ

1 + βµ

yn = xn −
f (xn)

f ′(xn)
,

xn+1 = yn −
f (xn) + (2 + β) f (yn)

f (xn) + β f (yn)

f (yn)

f ′(xn)

Kung–Traub (MEDKT4) [15]
1

(1 − µ)2

yn = xn −
f (xn)

f ′(xn)
,

xn+1 = yn −
f (xn)2

( f (xn)− f (yn))2
f (yn)

f ′(xn)

Zhao et al. (MEDZ4) [16]
1 + 2µ + µ2

1 − 4µ2

yn = xn −
f (xn)

f ′(xn)
,

xn+1 = yn −
f (xn)2 + 2 f (xn) f (yn) + f (yn)2

f (xn)2 − 4 f (yn)2
f (yn)

f ′(xn)

Artidiello (MED44) [14]
(1 + µ)2

1 − 5µ2

yn = xn −
f (xn)

f ′(xn)
,

xn+1 = yn −
( f (xn) + f (yn))2

f (xn)2 − 5 f (yn)2
f (yn)

f ′(xn)
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Each of these weight functions iterative methods satisfies the conditions H(0) = 1, H′(0) =
2, |H′′(0)| < ∞, achieving the corresponding scheme a fouth-order convergence.

3. General Framework of Mean-Based Iterative Methods
As mentioned in the Subsection 1.1, all iterative methods exhibit cubic convergence. Consequently,

this motivates the creation of a new family of iterative methods in which weight functions play a
key role in increasing the order of convergence from three to four, without adding new functional
evaluations.

We consider the following multipoint method:

xn+1 = xn − H(µn)
MT( f (xn), f (yn))

f ′(xn)
, (8)

where yn represents the Newton step, MT is an arbitrary mean applied to f (xn) and f (yn), and H(µ)

is a weight function, with µ = f (y)
f (x) .

By choosing different symmetric means MT , such as: the arithmetic mean (MA) and (MAy ); the
harmonic mean (MHy ); the counterharmonic mean (MC) and (Mcy ), we obtain several iterative schemes
with different correction steps, as summarized in Table 2.

Table 2. Iterative methods defined via different symmetric means MT , along with their abbreviations and
corresponding correction steps.

Method Mean Correction Step

MA Arithmetic xn+1 = xn − H(µn)
f (xn) + f (yn)

2 f ′(xn)

MAy Arithmetic with yn xn+1 = yn − H(µn)
f (xn) + f (yn)

2 f ′(xn)

MHy Harmonic with yn xn+1 = yn − H(µn)
2 f (xn) f (yn)

f ′(xn)( f (xn) + f (yn))

MC Contraharmonic xn+1 = xn − H(µn)
f (xn)2 + f (yn)2

f ′(xn)( f (xn) + f (yn))

Mcy Contraharmonic with yn xn+1 = yn − H(µn)
f (xn)2 + f (yn)2

f ′(xn)( f (xn) + f (yn))

Theorem 2. Let f : I ⊂ R → R be a sufficiently differentiable function on an open interval I, holding its
simple root α ∈ I, that is, f (α) = 0 and f ′(α) ̸= 0. The multipoint iterative method defined by a Newton step:

yn = xn −
f (xn)

f ′(xn)
, (9)

followed by a corrector step

xn+1 = xn − H(µn)
MT( f (xn), f (yn))

f ′(xn)
, n = 0, 1, . . . , (10)

where:

• MT( f (xn), f (yn)) is a symmetric bivariate function representing a mean (MA, MAy , MHy , MC or MCy ),

• µ =
f (y)
f (x)

, is the variable of the weight funtion H,

• H(µ) is a weight function with a Taylor expansion around µ = 0:

H(µ) = H(0) + H′(0)µ +
1
2

H′′(0)µ2 +
1
6

H′′′(0)µ3 + O(µ4).

If the coefficients H(0), H′(0), H′′(0), H′′′(0) satisfy specific conditions given in Table 3 then the method
achieves fourth-order convergence.
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Table 3. Coefficients of H(µ) and Error Equations.

Mean Coefficients of H(µ) Error Equation

MA H(0) = 2, H′(0) =
0, H′′(0) = 8, |H′′′(0)| < ∞

1
12

(
(−36 + H′′′(0))c3

2 − 12c2c3

)
e4

n +O(e5
n)

MAy H(0) = 0, H′(0) =
2, H′′(0) = 4, |H′′′(0)| < ∞

1
12

(
(−48 + H′′′(0))c3

2 − 12c2c3

)
e4

n +O(e5
n)

MHy H(0) = 1
2 , H′(0) =

3
2 , |H′′(0)| < ∞

(
(−7 + H′′(0))c3

2 − c2c3
)
e4

n +O(e5
n)

MC H(0) = 1, H′(0) =
2, H′′(0) = 4, |H′′′(0)| < ∞

((
5 − H′′′(0)

6

)
c3

2 − c2c3

)
e4

n +O(e5
n)

Mcy H(0) = 0, H′(0) =
1, H′′(0) = 6, |H′′′(0)| < ∞

((
6 − H′′′)(0)

6

)
c3

2 − c2c3

)
e4

n +O(e5
n)

All methods achieve fourth-order convergence, with the generalized error equation:

en+1 =
(

γ1c3
2 + γ2c2c3

)
e4

n + O(e5
n),

cj =
1
j!

f (j)(α)

f ′(α)
, j = 2, 3, . . . , (11)

and en = xn − α represents the iteration error. The constants γ1 and γ2 depend on the chosen mean and on the
coefficients of the weight function H(µ).

Proof. Let en = xn − α denote the error at the n-th iteration. Since f is sufficiently differentiable and α

is a simple root, we can use Taylor expansions of f (xn) and f ′(xn) around α. In terms of en, we have:

f (xn) = f (α) + f ′(α)en +
f ′′(α)

2!
e2

n +
f ′′′(α)

3!
e3

n +
f (4)(α)

4!
e4

n + O(e5
n).

Since f (α) = 0, it follows that

f (xn) = f ′(α)en +
f ′′(α)

2!
e2

n +
f ′′′(α)

3!
e3

n +
f (4)(α)

4!
e4

n + O(e5
n).

We simplify the calculations using the expression of the constants (11)

f (xn) = f ′(α)
(

en + c2e2
n + c3e3

n + c4e4
n + O(e5

n)
)

.

In a similar way,

f ′(xn) = f ′(α) + f ′′(α)en +
f ′′′(α)

2
e2

n +
f (4)(α)

6
e3

n + O(e4
n),

= f ′(α)
(

1 + 2c2en + 3c3e2
n + 4c4e3

n + O(e5
n)
)

.

Therefore,
f (xn)

f ′(xn)
= en − c2e2

n + (2c2
2 − 2c3)e3

n + (−4c3
2 + 7c2c3 − 3c4)e4

n + O(e5
n),

yn = xn −
(

en − c2e2
n + (2c2

2 − 2c3)e3
n + (−4c3

2 + 7c2c3 − 3c4)e4
n + O(e5

n)
)

= en + α − en + c2e2
n − (2c2

2 − 2c3)e3
n − (−4c3

2 + 7c2c3 − 3c4)e4
n + O(e5

n).
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So,
yn − α = c2e2

n − (2c2
2 − 2c3)e3

n + (4c3
2 − 7c2c3 + 3c4)e4

n + O(e5
n).

Hence, the error in the approximation of yn becomes:

ey
n = c2e2

n − (2c2
2 − 2c3)e3

n + (4c3
2 − 7c2c3 + 3c4)e4

n + O(e5
n). (12)

In a similar way, we have:

f (yn) = f ′(α)ey
n +

f ′′(α)
2!

(ey
n)

2 +
f ′′′(α)

3!
(ey

n)
3 +

f 4(α)

4!
(ey

n)
4 + O(ey

n)
5,

we rewrite the expansion in terms of normalized coefficients (11):

f (yn) = f ′(α)
(

ey
n + c2(e

y
n)

2 + c3(e
y
n)

3 + c4(e
y
n)

4 + O(ey
n)

5
)

.

In terms of en, we obtain:

f (yn) = f ′(α)
(

c2e2
n + (2c3 − 2c2

2)e
3
n + (5c3

2 − 7c2c3 + 3c4)e4
n + O(e5

n)
)

. (13)

Therefore,

f (xn) + f (yn) = f ′(α)
(

en + 2c2e2
n +

(
−2c2

2 + 3c3

)
e3

n +
(

5c3
2 − 7c2c3 + 4c4

)
e4

n + O(en)
5
)

. (14)

We calculate, by direct division, µn = f (yn)
f (xn)

µn =
f (yn)

f (xn)
= c2en + (−3c2

2 + 2c3)e2
n + (8c3

2 − 10c2c3 + 3c4)e3
n + O(e4

n).

Since µn = f (yn)
f (xn)

→ 0 as n → ∞, we expand the weight function H(µ) in a Taylor series around µ = 0:

H(µ) = H(0) + H′(0)µ +
1
2

H′′(0)µ2 +
1
6

H′′′(0)µ3 + O(µ4).

Substituting the expression in terms of en, we obtain:

H(µn) = H(0) + H′(0)c2en +

(
1
2

c2
2(H′′(0)− 6H′(0)) + 2c3H′(0)

)
e2

n

+

(
c3

2

(
8H′(0)− 3H′′(0) +

H′′′(0)
6

)
+ 2c3c2(H′′(0)− 5H′(0)) + 3c4H′(0)

)
e3

n + O(e4
n)

(15)
Now, we detail the expansion of MT( f (xn), f (yn)) using the arithmetic mean MA of Table 2. For the
rest of the means, all calculations are analogous.

We return to (14) and (13), to substitute them into the expression:

f (xn) + f (yn)

2 f ′(xn)
=

en

2
− c2

2e3
n +

(
9c3

2
2

− 7c2c3

2

)
e4

n + O
(

e5
n

)
,

multiplied by (15):

H(µn)
f (xn) + f (yn)

2 f ′(xn)
=

en H(0)
2

+
1
2

c2e2
n H′(0)

+

(
1
4

c2
2(−4H(0)− 6H′(0) + H′′(0)) + c3H′(0)

)
e3

n

+
1

12

(
c3

2(54H(0) + 36H′(0)− 18H′′(0) + H′′′(0))

−6c3c2(7H(0) + 10H′(0)− 2H′′(0)) + 18c4H′(0)
)
e4

n

+ O(e5
n)

(16)
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Thus, equation MA of Table 2 expands to:

xn+1 = en + α − enH(0)
2

− 1
2

c2e2
n H′(0)

+

(
1
4

c2
2(−4H(0)− 6H′(0) + H′′(0)) + c3H′(0)

)
e3

n

− 1
12

(
c3

2(54H(0) + 36H′(0)− 18H′′(0) + H′′′(0))− 6c3c2(7H(0) + 10H′(0)− 2H′′(0))

+18c4H′(0)
)
e4

n + O(e5
n),

(17)

that is,

xn+1 − α =

(
1 − H(0)

2

)
en −

1
2

c2H′(0) e2
n

+

(
c2

2

(
H(0) +

3
2

H′(0)− 1
4

H′′(0)
)
− c3H′(0)

)
e3

n

+
1
12

(
−c3

2(54H(0) + 36H′(0)− 18H′′(0) + H′′′(0))

+6c3c2(7H(0) + 10H′(0)− 2H′′(0))− 18c4H′(0)
)
e4

n +O(e5
n).

(18)

By solving the system obtained from eliminating the first-, second, and third-order error terms,
ensuring that:

H(0) = 2, H′(0) = 0, H′′(0) = 8, |H′′′(0)| < ∞,

the error of the method based on the arithmetic mean MA becomes:

en+1 =
1

12

(
(36 − H′′′(0))c3

2 − 12c2c3

)
e4

n + O(e5
n).

This finishes the proof for the case of the arithmetic mean. The order of convergence of the remaining
methods is obtained in a similar way, replacing the mean function MT and using the corresponding
values of the coefficients of H(µ) presented in Table 3. Proceeding in this manner, the methods
indicated in Table 2 achieve a fourth-order convergence.

4. Dynamical Analysis
The order of convergence of an iterative method is not the only relevant criterion when evaluating

its performance. In fact, the dynamical of the method, that is, the behavior of its orbits under different
initial estimations, plays a fundamental role in its overall analysis. For it, tools from complex analysis
are used, which represent the evolution of the methods in the Riemann sphere C∪ {∞} [17–19].

We start from a rational function resulting from the application of an iterative method to a
polynomial of low degree, denoted by R : Ĉ → Ĉ, where Ĉ = C∪ {∞} denotes the Riemann sphere.
The orbit of a point z0 ∈ Ĉ is given by the sequence:

{z0, R(z0), R2(z0), . . . , Rn(z0), . . . }.

We are interested in studying the asymptotic behavior of the orbits, so we must classify the different
points of the rational operator R. A point ẑ is k-periodic k ≥ 1, if

Rk(ẑ) = ẑ, and Rp(ẑ) ̸= ẑ, ∀ 1 ≤ p < k.

We say that it is a fixed point of R if
R(ẑ) = ẑ.

If this fixed point is not a solution of the polynomial, it is called a strange fixed point, as well as being
numerically undesirable, since the iterative method can converge on them under certain initial guesses
[18].
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The dynamical behavior of these fixed points z∗ is classified according to the modulus of the
derivative R′(z∗). If |R′(z∗)| < 1, the fixed point is an attractor; if |R′(z∗)| = 1, it is called parabolic or
indifferent; if |R′(z∗)| > 1, it is repellent; and if |R′(z∗)| = 0, it is a superattractor.

On the other hand, the study of the basin of attraction of an attractor z∗ is defined as the set of
points that converge to it

A(z∗) = {z0 ∈ Ĉ : lim
n→∞

Rn(z0) = z∗}.

The Fatou set F is the union of the basins of attraction. The Julia set J is its topological complement
in the Riemann sphere and represents the union of the frontiers of the basins of attraction.

The following classic result, given by Fatou [20] and Julia [21], includes both periodic points (of
any period) and fixed points, considered as periodic points of unit period.

Theorem 3. Let R be a rational function. The immediate basins of attraction of each attractive periodic point
contain at least one critical point.

Using this key result, the entire attraction behavior can be found using the critical points as seeds
of the iterative process [22]. A point z∗ ∈ Ĉ is critical for R if:

R′(z∗) = 0.

We are going to start with a rational function resulting from the application of an iterative scheme
on a quadratic polynomial. In order to obtain global results for the class of quadratic polynomial we
prove a Scaling Theorem for the corresponding iterative method.

4.1. Conjugacy Classes

Let f and g be two analytic functions defined on the Riemann sphere. An analytic conjugacy
between f and g is a diffeomorphism h on the Riemann sphere such that h ◦ f ◦ h−1 = g.

We now state a general theorem that applies to all types of symmetric means described in Table 2.

Theorem 4. Let f : Ĉ → C be an analytic function on the Riemann sphere, and let h(z) = αz + β be an affine
transformation with α ̸= 0, and g(z) = λ f (h(z)), with λ ̸= 0. Let us consider the iterative scheme defined by

G f (z) = y f − H(µ f )
MT
(

f (z), f (y f )
)

f ′(z)
, (19)

where y f = z − f (z)
f ′(z) is Newton’s method, being MT one of the means that provide the schemes MAy , MA, MHy

or MC, MCy , Here, H(µ) satisfies the conditions indicated in Table 3.
Then, (19) is analytically conjugate to the analogous method applied to g, that is:

(h ◦ Gg ◦ h−1)(z) = G f (z), (20)

sharing the same essential dynamics.

Proof. To prove the general result, we consider a particular case of the mean. For the rest of the
methods, the proof is analogous. We choose the case of MAy , whose scheme is given by:

xn+1 = yn − H(µn)
f (xn) + f (yn)

2 f ′(xn)
. (21)

As can be seen, its structure is representative of the methods included in Table 2. We know that the

affine function h(z) = αz + β has an inverse given by h−1(z) =
z − β

α
.
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By hypothesis, g(z) = λ f (h(z)) = λ f (αz + β). By the chain rule, we obtain:

g(h−1(z)) = λ f (z), g′(h−1(z)) = λα f ′(z). (22)

Defining the operator Gg(z) as

Gg(z) = yg − H(µg)
MT
(

g(z), g(yg)
)

g′(z)
, (23)

and evaluated at h−1(z), we obtain:

Gg(h−1(z)) = h−1(z)− g(h−1(z))
g′(h−1(z))

− H(µg(h−1(z)))
g(h−1(z)) + g

(
h−1(z)− g(h−1(z))

g′(h−1(z))

)
2g′(h−1(z))

.

(24)

Using the identities from (22) and taking into account that

h
(

h−1(z)
)
= z, h

(
h−1(z)− g(h−1(z))

g′(h−1(z))

)
= z − f (z)

f ′(z)
,

we deduce that:

g
(

h−1(z)− g(h−1(z))
g′(h−1(z))

)
= λ f

(
z − f (z)

f ′(z)

)
. (25)

Substituting (22) and (25) into (24), we obtain:

Gg(h−1(z)) =
z − β

α
− λ f (z)

λα f ′(z)
− H(µg(h−1(z)))

λ f (z) + λ f
(

z − f (z)
f ′(z)

)
2λα f ′(z)

=
z − β

α
− f (z)

α f ′(z)
− H(µg(h−1(z)))

f (z) + f
(

z − f (z)
f ′(z)

)
2α f ′(z)

Now, we apply the transformation h:

h
(
Gg(h−1(z))

)
= α

 z − β

α
− f (z)

α f ′(z)
− H

(
µg(h−1(z))

) f (z) + f
(

z − f (z)
f ′(z)

)
2α f ′(z)

+ β

= z − f (z)
f ′(z)

− H
(
µg(h−1(z))

) f (z) + f
(

z − f (z)
f ′(z)

)
2 f ′(z)

We observe that the term µg(h−1(z)) transforms as:

µg(h−1(z)) =
g
(

h−1(z)− g(h−1(z))
g′(h−1(z))

)
g(h−1(z))

=
f
(

z − f (z)
f ′(z)

)
f (z)

= µ f (z). (26)

Substituting (26) into (4.1), we finally deduce:

h
(

Gg(h−1(z))
)
= z − f (z)

f ′(z)
− H(µ f (z))

f (z) + f
(

z − f (z)
f ′(z)

)
2 f ′(z)

= G f (z), (27)
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which proves the desired identity (20), and confirms that G f and Gg are analytically conjugate through
the affine transformation h(z).

The same reasoning extends directly to the methods in Table 2, since:

• In each case, the correction term maintains the form MT
(

f (z), f (y f )
)
, with symmetric combina-

tions based on means.
• The affine transformation h acts compatibly on both f (z) and f (y f ), preserving the functional

structure of the correction.
• The identity µg(h−1(z)) = µ f (z) holds, since it depends only on the ratio f (y f )/ f (z), scaled by

λ.

Therefore, the result holds for the entire family of iterative methods based on symmetric means,
as described in Table 2.

4.2. Dynamics of Fourth-Order Methods

As shown in Table 2, five different parametric families of iterative methods are identified, each of
them associated with specific conditions on the function H(µ). To satisfy these conditions, polynomial
weight functions have been selected. However, other types of functions could also be considered, as
long as they meet the imposed constraints. This also allows the introduction of an additional parameter
β in cases where H(µ) is bounded.

Table 4 presents the polynomials chosen by the authors for the development of this paper.

Table 4. Families of Fourth-Order Iterative Methods Based on Means.

Mean H(µ) Iterative scheme

MA 2 + 4µ2 + βµ3 xn+1 = xn − (2 + 4µ2
n + βµ3

n)
f (xn) + f (yn)

2 f ′(xn)

MAy 2µ + 2µ2 + βµ3 xn+1 = yn − (2µn + 2µ2
n + βµ3

n)
f (xn) + f (yn)

2 f ′(xn)

MHy
1
2 + 3

2 µ + βµ2 xn+1 = yn −
(

1
2
+

3
2

µn + βµ2
n

)
2 f (xn) f (yn)

f ′(xn)( f (xn) + f (yn))

MC 1 + 2µ + 2µ2 + βµ3 xn+1 = xn − (1 + 2µn + 2µ2
n + βµ3

n)
f (xn)2 + f (yn)2

f ′(xn)( f (xn) + f (yn))

MCy µ + 3µ2 + βµ3 xn+1 = yn − (µn + 3µ2
n + βµ3

n)
f (xn)2 + f (yn)2

f ′(xn)( f (xn) + f (yn))

Here, µn =
f (yn)

f (xn)
and β is a free parameter.

To observe the dynamics of these iterative methods, we will take as an example the arithmetic
mean family MAy , which is defined as:

yn = xn −
f (xn)

f ′(xn)
,

xn+1 = yn −
(

2
f (xn)

f (yn)
− 2
(

f (xn)

f (yn)

)2

− β

(
f (xn)

f (yn)

)3
)

f (xn) + f (yn)

2 f ′(xn)
. (28)

The other cases can be analyzed in a similar way.
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4.3. Rational Operator

Proposition 1. Let us consider the generic quadratic polynomial p(z) = (z − a)(z − b), of roots a and b. The
rational operator related to family MAy given in (28) on p(z) is:

Rp(z, β) = −
z4(−β + 2z6 + 16z5 + 54z4 + 96z3 − βz2 + 92z2 − 3βz + 44z + 8

)
βz6 − 8z6 + 3βz5 − 44z5 + βz4 − 92z4 − 96z3 − 54z2 − 16z − 2

, (29)

being β ∈ C an arbitrary parameter.

Proof. We apply the iterative scheme MAy to p(z) and obtain a rational function Ap(z, β) that depends
on the roots a, b and the parameter β ∈ C. Then, we apply a Möbius transformation [19,23,24] on
Ap(z, β) with

h(z) =
z − a
z − b

,

which satisfies h(a) = 0, h(b) = ∞ and h(∞) = 1. This transformation maps the roots a and b to the
points 0 and ∞, respectively, whose nature is attractive, and the divergence of the method to 1. Thus,
the new conjugate rational operator is defined as:

Rp(z, β) := h ◦ Ap(z, β) ◦ h−1(z), (30)

= −
z4(−β + 2z6 + 16z5 + 54z4 + 96z3 − betaz2 + 92z2 − 3βz + 44z + 8

)
βz6 − 8z6 + 3βz5 − 44z5 + βz4 − 92z4 − 96z3 − 54z2 − 16z − 2

. (31)

which no longer depends on the parameters a and b.

Thus, this transformation facilitates the analysis of the dynamics of iterative methods by allowing
the standardization of roots and the structural study of dynamic planes and their stability regions [8].

4.4. Fixed Points of the Operator

Now, we calculate all the fixed points of Rp(z, β), to subsequently analyze their character (at-
tractive, repulsive, neutral, or parabolic). Taking into account that the method has order four, the
points z = 0 and z = ∞ are always superattractor fixed points, since they come from the roots of the
polynomial.

The fixed points of Rp(z, β) are z = 0, z = ∞, and nine strange fixed points:

• z = 1 is a strange fixed point if β ̸= 312
5 ,

• The roots of the polynomial:

Pβ(t) = 2 + 18t + 72t2 + (160 + β)t3 + (208 + 3β)t4 + (160 + β)t5 + 72t6 + 18t7 + 2t8, (32)

denoted by exi(β), i = 1, . . . , 8, for any β ∈ C.

Now, we study the stability of the strange fixed point z = 1.

Proposition 2. The strange fixed point z = 1 has the following character:

• If β = 312
5 , z = 1 is not a fixed point.

• If
∣∣∣β − 312

5

∣∣∣ > 1024
5 , z = 1 is attractor.

• If
∣∣∣β − 312

5

∣∣∣ = 1024
5 , z = 1 is parabolic.

• If
∣∣∣β − 312

5

∣∣∣ < 1024
5 , z = 1 is repulsive.

Proof. As seen in the previous section, the behavior of the fixed point can be determined according to
the value of the stability function: it will be an attractor if |R′

p(z, β)| < 1, a repulsor if |R′
p(z, β)| > 1,

superattractor if |R′
p(z, β)| = 0 and parabolic if |R′

p(z, β)| = 1. The expression of operator |R′
p(z, β)| is
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R′
p(z, β) = −

2z3(z + 1)8(4β + 4βz4 − 32z4 + 7βz3 − 156z3 − 12βz2 − 248z2 + 7βz − 156z − 32
)

(βz6 − 8z6 + 3βz5 − 44z5 + βz4 − 92z4 − 96z3 − 54z2 − 16z − 2)2 .

Therefore,
R′

p(1, β) =
1024

312 − 5β
.

If β = 312
5 , then z = 1 is not a fixed point. To determine whether it is attractive or repulsive, we solve:∣∣∣∣ 1024

312 − 5β

∣∣∣∣ ≤ 1 ⇐⇒ 10242 ≤ |312 − 5β|2.

Expressing the right side in terms of ℜ(β) and ℑ(β):

|312 − 5(ℜ(β) + i ℑ(β))|2 = (312 − 5ℜ(β))2 + 25ℑ(β)2.

So,
10242 ≤ 3122 − 3120ℜ(β) + 25ℜ(β)2 + 25ℑ(β)2

By simplifying, we get (
ℜ(β)− 312

5

)2
+ℑ(β)2 ≥

(
1024

5

)2
,

thus, ∣∣∣∣β − 312
5

∣∣∣∣ ≥ 1024
5

.

Graphically, the behavior of the fixed point z = 1 is visualized in Mathematica using the graph of
the function Φ(β) =

∣∣∣ 1024
312−5β

∣∣∣.
In Figure 1, the attraction zones are the yellow area and the repulsion zone corresponds to the

gray area. For values of β within the disk, z = 1 is repulsive; while for values of β outside the gray
disk, z = 1 becomes attractive. Therefore, it is natural to select values within the gray disk, since
repulsive divergence improves the performance of the iterative scheme.

Figure 1. Stability function of z = 1.

For the eighth roots exi(β), i = 1, . . . , 8, of polynomial Pβ(t), we obtain the following results:

• |R′
p(ex1(β))| = 0, there is no β value,

• |R′
p(ex2(β))| = 0, for β1 = 0.408822, and β2 = 18.0802,

• |R′
p(ex3(β))| = 0, for β1 = 0.408822, and β2 = 18.0802,

• |R′
p(ex4(β))| = 0, for β3,4 = 0.782768 ± 1.1103i,

• |R′
p(ex5(β))| = 0, there is no β value,

• |R′
p(ex6(β))| = 0, for β3,4 = 0.782768 ± 1.1103i,

• |R′
p(ex7(β))| = 0, for β5 = −78.5858,
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• |R′
p(ex8(β))| = 0, for β5 = −78.5858.

In the following figure we represent the stability functions of the strange fixed points points
exi(β), i = 1, 2, . . . , 8.

For each root exi(β) evaluated in the rational derivative operator (??), its stability surfaces are
constructed. In this context, the graphical representation distinguishes the orange regions as zones of
attraction |R′

p(exi(β))| < 1, the gray regions as zones of repulsion |R′
p(exi(β))| > 1, superattraction

zones when it is the vertex of the cone |R′
p(exi(β))| = 0, and parabolic zones when it is at the boundary

|R′
p(exi(β))| = 1.

From Figure 2, the following conclusions are drawn:

(a) Stability surface of ex1,5(β) (b) Stability surface of ex2,3(β)

(c) Stability surface of ex4,6(β) (d) Stability surface of ex4,6(β)

(e) Stability surface of ex7,8(β)

Figure 2. Behavior of fixed points exi(β) in attraction zones.
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• As the derivative operator associated with the strange fixed points ex1,5(β) can not be zero, it
can be seen in Figure 2(a) that the resulting surface has only one gray region. This indicates that
these fixed points are repulsive throughout the analyzed range, which is desirable, as it prevents
convergence to a strange fixed point.

• Furthermore, at points ex2,3(β), we obtain we obtain β1 = 0.408822 and β2 = 18.0802. Figure
2(b) shows an inverted cone-shaped surface (normally yellow), representing an attractor inside
the cone and a superattractor at its vertex β2 (that of β1 is similar, so it is omitted). The associ-
ated unstable domain is approximately [0, 0.2]× [0, 0.2], indicating a small but localized region.
Similarly, by setting the derivative operator associated with the roots ex4,6(β) to zero, we obtain
β3 = 0.782768 + 1.1103i and β4 = 0.782768 − 1.1103i. Figure 2(c) and Figure 2(d) show behavior
qualitatively similar to that of β2, with a comparable domain.

• By setting the derivative operator associated with the roots ex7,8(β) to zero, we obtain β5 =

−78.5858. As illustrated in Figure 2(e), a considerably wider region of attraction appears, approxi-
mately (0, 100)× (0, 100), indicating that the method shows marked instability for these values of
β.

Therefore, to ensure the robustness of the method, values of β where some root exi(β) is an
attractor or superattractor should be avoided. In contrast, values such as β where all strange fixed
points are repellers, are preferable to ensure stable numerical behavior.

Just as we have studied strange fixed points, we must also analyze critical points, since, recalling
Theorem 3, it turns out that each attraction basin of an attractive periodic point (any period) contains
at least one critical point.

4.5. Critical points of the operator

Proposition 3. The critical points of the rational operator Rp(z, β) are z = 0, z = ∞, directly related to the
zeros of the polynomial, and the following free critical points:

z = −1,

z1,2(β) = ±1
2

√
−a(β) + b(β)− c(β)− d(β)− e(β),

z3,4(β) = ±1
2

√
a(β) + b(β)− c(β) + d(β)− e(β),

where the auxiliary functions a(β), b(β), c(β), d(β), and e(β) are algebraic simplifications used for easy of
notation:

a(β) =
2(β − 8)√

369β2 − 1800β + 784

(
(7β − 156)3

64(β − 8)3 − (−3β − 62)(7β − 156)
(β − 8)2 +

2(7β − 156)
β − 8

)
,

b(β) =
(7β − 156)2

32(β − 8)2 − −3β − 62
β − 8

− 8β − 64
4(β − 8)

,

c(β) =

√
369β2 − 1800β + 784

16(β − 8)
,

d(β) =

√
369β2 − 1800β + 784

16(β − 8)
,

e(β) =
7β − 156
16(β − 8)

.

Thus, there are five free critical points, except for β = 0, β = 312
5 , and β = 8, where only three free critical

points exist.
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Proof. To prove the result, we recall that the derivative of the rational operator (??) is:

R′
p(z, β) = −

2z3(z + 1)8(4β + 4βz4 − 32z4 + 7βz3 − 156z3 − 12βz2 − 248z2 + 7βz − 156z − 32
)

(βz6 − 8z6 + 3βz5 − 44z5 + βz4 − 92z4 − 96z3 − 54z2 − 16z − 2)2

It is easily observed that its roots are z = 0, z = ∞, z = −1, z1,2(β) and z3,4(β). These last four
correspond to the roots of the polynomial of degree 4 in the numerator.

Now, let us observe that for certain values of β, only three free critical points exist. One such case
is β = 0, where the derivative of the operator simplifies to:

2z3(z + 1)6(8z2 + 23z + 8
)

(2z + 1)2(2z3 + 6z2 + 4z + 1)2 .

Here, the strange critical points are z = −1, and the conjugate pair

z =
1

16

(
−23 ±

√
273
)

.

When β = 312
5 , the derivative operator becomes:

−
10x3(x + 1)8(272x2 + 895x + 272

)
(136x5 + 494x4 + 420x3 + 180x2 + 45x + 5)2 .

In this scenario, the strange critical points are z = −1, and the conjugate pair

z =
1

544

(
−895 ± 3

√
56121

)
.

And finally, when β = 8, the derivative operator becomes:

2x4(x + 1)8(25x2 + 86x + 25
)

(10x5 + 42x4 + 48x3 + 27x2 + 8x + 1)2 ,

whose zeros are z = −1 and the conjugate pair

z =
1

25

(
−43 ± 6

√
34
)

.

For the free critical point z = −1, we have Rp(−1, β) = 1, which is a strange fixed point. Therefore,
the parameter plane associated with this critical point is not of much interest, since we already know
the stability of z = 1.

To visualize the behavior of the free critical points that depend on β, we plot the parameter planes.
In each parameter plane, we use each free critical point as an initial estimation. A mesh of 2000 × 2000
points is defined in the complex plane. Each point of the mesh corresponds to a value of β, that is
an iterative method member to the family, and for each one of them, we iterate the rational function
Rp(z, β). If the orbit of the critical point converges to z = 0 or z = ∞ in a maximum of 100 iterations,
the point is colored red; otherwise, it is colored black.

As a first step, we graph the parameter plane of the conjugate pair z1,2(β), both in the domain
D1 = [−150,−25]× [−225, 225], which represents a broad stable performance region around the origin,
and D2 = [−150, 25]× [−60, 60], which represents a divergence zone related to the exi.

It is observed that there are many values of the parameter β for which the free critical points
converge to the roots z = 0 or z = ∞, visually, showing convergence in an approximate domain of
[−50, 100]× [−100, 100]. On the other hand, Figure 3 presents a divergence detail and refers to the
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strange fixed points ex7(β) and ex8(β), which, when computing their derivative operator set to zero,
yielded a value of β = −78.5858, which precisely aligns with the divergence observed in Figure 2(e).

(a) D1
(b) D2

Figure 3. Plane of parameters of z1,2(β) in domain D1 and a detail in D2.

Likewise, the parameter plane of the conjugate pair z3,4(β) is shown, both in the domain D3 =

[−150, 275]× [−210, 210], and a detail in the domain D4 = [70, 270]× [−100, 100], which represents
the region that has not converged to any of the roots.

Figure 4 shows very stable behavior in an approximate domain of [−50, 50]× [−100, 100], while
when the domain D4 corresponding to Figure 4 is viewed in more detail, the mostly black region
demonstrates a divergent behavior of the studied method (28).

(a) D3 (b) D4

Figure 4. Plane of parameters of z3,42(β) in domain D3 and a detail in D4.

4.6. Dynamical Planes

In the case of dynamical planes, each point in the complex plane is considered as a starting point
z0 of the iterative scheme and is represented with different colors depending on the point it converges
to. In this case, points that converge to z = ∞ are colored blue, and those that converge to z = 0 are
colored orange. These dynamical planes have been generated using a grid of 800 × 800 points and a
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maximum of 100 iterations per point. In these planes, the fixed points are represented by a white circle,
the critical points by a white square, and the attracting points by an asterisk.

Next, the dynamical planes are plotted based on the values for β obtained from the strange fixed
points of the operator (??) and from the observations in the parameter plane.

In Figures 5 and 6, good behavior of the method can be observed when choosing β = 0 and β = 1.
The colors of the plots indicate convergence of the method to z = 0 and z = ∞, which are the roots.

Figure 5. β = 0.

Figure 6. β = 1.

A notable case is β = 312
5 , since in Proposition 4.4 it was established that when β takes that value,

z = 1 is not a fixed point, as observed in Figure 7.
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Figure 7. β = 312
5 .

In Figure 8, it can be clearly seen that z = 1 is no longer characterized as a strange fixed point
of the method. Moreover, we recall that when

∣∣∣β − 312
5

∣∣∣ < 1024
5 , z = 1 is repulsive, as shown in

Figures 5 and 6, and when
∣∣∣β − 312

5

∣∣∣ > 1024
5 , z = 1 is an attractor, as shown in Figures 9 and 10.

Figure 8. Approach to β = 312
5 .
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Figure 9. β = 400.

Figure 10. Evaluation at β = 400.

Observe that when evaluating the dynamical plane in Figure 9, the method converges to z = 1; a
strange fixed point of the rational operator, even though the root z = 0 is relatively closer. Furthermore,
note the notable instability of choosing such a high value of β.

Based on the previous study (see Figure 2(e)), when considering the value β5 = −78.5858, complex
dynamical behavior was observed. In that figure, it is seen that the associated attraction cone covers a
significantly larger area compared to other values of β. Additionally, this basin of attraction is related to
the parameter plane of the conjugate critical point z1,2. In this scenario, the method converges to basins
different from the roots 0 and ∞, indicating that it is not suitable for root-finding. Therefore, values
such as β = −78.5858 should be avoided when applying this method. Likewise, another example of
divergence β = 200.
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Figure 11. β = −78.5858.

Figure 12 represents the divergence observed in the parameter plane of Figure 4.

Figure 12. β = 200.

The analysis of the remaining iterative methods presented in Table 4 has been carried out similarly.
The same qualitative information obtained in the previous analysis was also found in the rest of
the families. The union of parameter planes is the same for all families. Therefore, their qualitative
performance is the same, with a wide area of complex values for parameter β giving rise to stable
methods.

5. Numerical Examples
The iterative methods used in this section are presented in Table 4. This table considers all the

conditions established in Table 3 with respect to Hµ, aiming to guarantee fourth-order convergence. In
particular, the parameter β = 0 is selected, given its favorable behavior observed in the dynamical
analysis.

To assess the efficiency of the newly proposed iterative methods, a comparison is made with
classical algorithms from the literature, as listed in Table 1.
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This section evaluates the performance of the newly proposed multipoint iterative methods
compared to several well-established fourth-order methods. The comparison includes the following
performance indicators:

• Number of iterations required for convergence (Iter),
• Approximate Computational Order of Convergence (ACOC),
• Bounds of the errors (Incr, Incr2), where

Incr = |xn+1 − xn|, Incr2 = | f (xn+1)|,

• Efficiency Index (EI),
• Execution time (Time), measured in seconds.

5.1. Academic Example 1: f1(x) = cos(x)− x

The target root of the problem considered is x∗ ≈ 0.7391, obtained from the proposed nonlinear
function. For the iterative process, x0 = 0 was taken as the initial estimate, with a convergence
tolerance of 10−50 and a maximum number of 100 iterations. The implemented algorithm uses as a
stopping criterion.

|xn+1 − xn| < 10−50, or | f (xn+1)| < 10−50.

If neither criterion is met, the procedure ends when the maximum number of iterations is reached.
Table 5 presents the results obtained under these conditions.

Table 5. Performance comparison for f1(x) = cos(x)− x.

Method Iter Incr Incr2 ACOC EI Time (s)

MA 4 6.107 × 10−32 1.096 × 10−126 3.995 1.587 5.151 × 10−2

MAy 5 2.324 × 10−86 0.000 4.000 1.587 5.759 × 10−2

MHy 5 1.044 × 10−49 1.795 × 10−197 4.000 1.587 6.806 × 10−2

MC 4 6.098 × 10−15 1.588 × 10−58 3.840 1.566 3.098 × 10−2

MCy 5 9.841 × 10−49 1.247 × 10−193 4.000 1.587 3.803 × 10−2

Jarratt 4 5.37 × 10−36 3.276 × 10−143 3.998 1.587 4.025 × 10−2

Ostrowski 4 1.893 × 10−35 5.492 × 10−141 3.998 1.587 4.155 × 10−2

King (β = −1) 4 2.133 × 10−24 1.632 × 10−96 3.980 1.585 4.469 × 10−2

Kung-Traub 5 2.925 × 10−24 4.084 × 10−72 3.001 1.442 4.487 × 10−2

Zhao et al. 5 3.787 × 10−35 5.1 × 10−140 3.999 1.587 5.990 × 10−2

Chun 4 1.893 × 10−35 5.492 × 10−141 3.998 1.587 3.784 × 10−2

Artidiello IV 5 1.752 × 10−18 6.378 × 10−74 4.250 1.620 5.160 × 10−2

The results reported in Table 5 underscore the strong competitiveness of the newly developed
methods when compared with classical schemes. The proposed approaches exhibit comparable, and
in several cases superior, performance in terms of both accuracy and computational efficiency. This is
reflected not only in the reduced number of iterations required to approximate the root, but also in the
exact convergence order of four achieved by several of the new methods. In particular, tiny residual
errors were obtained, such as | f (xn+1)| ≈ 10−197 for method MHy and exactly zero for method MAy .

Nevertheless, it is important to acknowledge the effective performance of the classical iterative
schemes. For instance, the Jarratt’s method demonstrated remarkable robustness and efficiency,
reaching errors of the order of 10−143 with relatively low computational cost.

On the other hand, the Artidiello IV method, despite its high estimated order of convergence
(ACOC = 4.25), produced significantly larger final errors (∼ 10−18). This behavior may indicate the
presence of numerical instabilities or sensitivity to the transcendental nature of the problem.
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5.2. Academic Example 2: f2(x) = ex − cos(x)− 2

The real root of this function is x∗ ≈ 0.9488, with an initial estimate x0 = 0.5, the same tolerance
10−50, the maximum number of 100 iterations, and the same stopping criterium as before. The results
are given in Table 6.

Table 6. Performance comparison for f2(x) = ex − cos(x)− 2.

Method Iter Incr Incr2 ACOC EI Time (s)

MA 4 9.237 × 10−34 6.510 × 10−133 4.000 1.587 5.444 × 10−2

MAy 5 2.646 × 10−97 7.787 × 10−208 4.000 1.587 7.244 × 10−2

MHy 4 1.575 × 10−14 1.398 × 10−55 3.926 1.578 6.071 × 10−2

MC 4 4.862 × 10−18 8.841 × 10−70 3.964 1.583 6.263 × 10−2

MCy 4 1.164 × 10−14 3.535 × 10−56 3.924 1.577 6.040 × 10−2

Jarratt 4 3.801 × 10−44 4.500 × 10−175 4.000 1.587 4.654 × 10−2

Ostrowski 4 2.037 × 10−44 3.549 × 10−176 4.000 1.587 5.681 × 10−2

King (β = −1) 4 4.612 × 10−28 4.044 × 10−110 3.995 1.587 3.920 × 10−2

Kung-Traub 5 6.989 × 10−29 5.036 × 10−85 3.000 1.442 3.818 × 10−2

Zhao et al. 4 1.256 × 10−25 3.421 × 10−101 4.042 1.593 4.764 × 10−2

Chun 4 2.037 × 10−44 3.549 × 10−176 4.000 1.587 4.491 × 10−2

Artidiello IV 4 2.842 × 10−16 3.140 × 10−63 4.109 1.602 4.625 × 10−2

In this nonlinear and rapidly varying function, MAy exhibits the most outstanding precision,
with final error on the order of 10−208, confirming its high robustness. The classical methods Jarratt,
Ostrowski, and Artidiello IV maintain excellent convergence behavior with very low errors (∼ 10−176)
and lower execution times.

Overall, methods MC and MCy achieve superlinear convergence with low number of iterations,
and their performance may improve with adaptive strategies. In contrast, methods such as MAy offer
a balance between precision and convergence, suggesting their suitability for problems demanding
extremely high accuracy.

The proposed methods MC, MCy , and MHy demonstrate solid fourth-order behavior, but exhibit
larger errors compared to Example 1, indicating sensitivity to the exponential component of f2(x).
Among all methods, Kung-Traub’s performance is clearly limited in convergence order ACOC ≈ 3.0,
highlighting its theoretical constraint, though its execution time is the lowest.

Applied Problems
Problem 1: Chemical Equilibrium in Ammonia Synthesis

The analysis of chemical equilibrium systems using numerical methods has been widely addressed
in the scientific literature. Solving complex nonlinear equations that model fractional conversions in
reactive processes such as ammonia synthesis requires robust and efficient techniques.

This work analyzes the chemical equilibrium corresponding to the ammonia synthesis reaction
from nitrogen and hydrogen, in a molar ratio of 1:3 [25], under standard industrial conditions (500 ◦C
and 250 atm). The equation that describes this reaction is the following:

f (x) = x4 − 7.79075 x3 + 14.7445 x2 + 2.511 x − 1.674, (33)

where x is the fractional conversion. Of the four real roots of this equation, only one x∗ ≈ 0.27776 lies
within the physical interval [0, 1], and therefore it is the only one with chemical significance.

In Table 7, it can be seen that all methods converge rapidly to the physically meaningful root,
demonstrating high efficiency for this type of problem. For this results, we can used x0 = 0.5, and the
same stopping criterium as in the previous examples.
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Table 7. Comparison of iterative methods for the chemical equilibrium problem.

Method Iter Incr Incr2 ACOC EI Time (s)

MA 4 1.14 × 10−33 5.257 × 10−131 3.996 1.587 0.1490
MAy 5 8.294 × 10−130 3.893 × 10−208 4.000 1.587 0.1331
MHy 4 4.491 × 10−32 2.600 × 10−124 3.995 1.587 0.1218
MC 4 9.663 × 10−33 4.140 × 10−127 3.995 1.587 0.1058
MCy 4 2.179 × 10−32 1.255 × 10−125 3.995 1.587 0.0974

Jarratt 4 4.663 × 10−33 6.992 × 10−129 3.996 1.587 0.1188
Ostrowski 4 2.592 × 10−35 6.632 × 10−138 3.997 1.587 0.0617
King (β = −1) 4 1.125 × 10−33 4.976 × 10−131 3.996 1.587 0.0630
Kung-Traub 4 4.635 × 10−19 1.684 × 10−54 2.994 1.441 0.1018
Zhao et al. 4 5.225 × 10−37 4.830 × 10−145 4.001 1.588 0.0720
Chun 4 9.756 × 10−33 4.303 × 10−127 3.995 1.587 0.0492
Artidiello IV 4 7.927 × 10−41 6.800 × 10−161 3.971 1.584 0.0729

Method MAy exhibits the best performance in terms of accuracy, reaching an Incr2 on the order of
10−208, positioning it as the most precise among the set, at the cost of one additional iteration.

Among the classical methods, Ostrowski and Zhao et al. stand out due to their excellent accuracy,
with very small errors (∼ 10−138 and ∼ 10−145, respectively) and theoretically ideal ACOC. The
Artidiello IV method also shows good performance, achieving an Incr2 as low as 10−161, although its
practical order of convergence falls slightly below the expected value.

It is worth noting that the Kung-Traub method is the only one in the set whose practical order of
convergence approaches 3 (ACOC ≈ 2.994), a limitation reflected in the relative error and intrinsic
efficiency (EI). Nevertheless, it exhibits competitive computational time, being faster than some more
precise methods.

Regarding the proposed methods MA, MC, MCy , and MHy , a consistent stability in the order
of convergence and a good approximation in the errors can be observed, with results close to the
classical methods, though without systematically surpassing them. Their computational performance
is acceptable, albeit slightly inferior in terms of time.

In summary, for this chemical equilibrium problem, the methods with the best overall performance
considering accuracy, efficiency, and stability are MAy , Ostrowski, and Zhao et al., all offering an ideal
combination of minimal errors, fulfilled theoretical order of convergence, and low execution times.

Table 8. Comparison of iterative methods with initial point x0 = 0.

Method Root Iter Incr Incr2 ACOC Time (s)

MA -0.3841 10 3.656 × 10−31 4.79 × 10−120 3.997 0.1931
MAy -0.3841 9 5.865 × 10−157 3.893 × 10−208 4.000 0.1948
MHy -0.3841 9 6.609 × 10−35 1.24 × 10−134 3.998 0.1766
MC -0.3841 11 4.265 × 10−16 1.52 × 10−59 3.928 0.2086
MCy -0.3841 13 1.081 × 10−36 7.571 × 10−142 3.998 0.2341

Jarratt 0.2778 4 3.431 × 10−16 2.049 × 10−61 3.906 0.08466
Ostrowski 0.2778 4 3.157 × 10−16 1.459 × 10−61 3.997 0.0515
King (β = −1) -0.3841 19 1.563 × 10−33 1.602 × 10−129 3.998 0.293
Kung-Traub 0.2778 6 1.707 × 10−51 8.41 × 10−152 3.000 0.09162
Zhao et al. 0.2778 5 1.077 × 10−34 8.707 × 10−136 4.002 0.09587
Chun -0.3841 73 1.426 × 10−42 1.898 × 10−165 3.999 0.8783
Artidiello IV 0.2778 5 1.516 × 10−39 9.091 × 10−156 3.960 0.08355

Using x0 = 0 as initial estimation, a bifurcation in the convergence of the methods is observed. In
particular, all mean-base d methods MA, MAy , MHy , MC, and MCy converge to the root x∗ ≈ −0.384094,
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which lacks physical interpretation within the context of the chemical equilibrium problem. Although
this root is mathematically valid, it does not represent the desired solution, indicating a strong
dependence of these methods on the initial condition and their sensitivity to the local behavior of the
function.

The case of the King and Chun methods is particularly notable: although they also converge to
the same non-physical root, they do so after a large number of iterations (19 and 73, respectively),
reflecting lower numerical efficiency compared to the other methods.

On the other hand, classical methods such as Jarratt, Ostrowski, Zhao et al., Kung-Traub, and Ar-
tidiello IV correctly converge to the physically meaningful root x∗ ≈ 0.27776, requiring approximately
4 to 6 iterations and yielding extremely low final errors.

This highlights the importance of appropriately selecting the initial condition in problems with
multiple solutions.

Problem 2: Determination of the Maximum in Planck’s Radiation Law

The study of blackbody radiation through numerical methods has been fundamental in the
development of quantum physics. As noted in [26] in their work “Didactic Procedure for Teaching
Planck’s Formula”, determining the spectral maximum in Planck’s distribution requires advanced
techniques to solve nonlinear transcendental equations.

We analyze the equation derived from Planck’s radiation law that determines the wavelength
corresponding to the maximum energy density:

f5(x) = e−x − 1 +
x
5

,

where x = hc
λkT . Among the possible solutions, only x ≈ 4.9651142317 has physical meaning in this

context [? ].
Table 9 shows that all proposed methods MA, MAy , MHy , MC, MCy converge correctly to the

physically valid root x∗ ≈ 4.9651142317, even starting from a distant initial condition (x0 = 1).

Table 9. Comparison of iterative methods for the Planck problem

Method Root Iter Incr Incr2 ACOC EI

MA 4.965 4 2.578 × 10−16 1.08 × 10−67 2.008 1.262
MAy 4.965 5 6.912 × 10−67 0.0 4.0 1.587
MHy 4.965 4 2.71 × 10−16 1.564 × 10−67 2.671 1.388
MC 4.965 4 2.82 × 10−16 1.689 × 10−67 1.981 1.256
MCy 4.965 4 2.943 × 10−16 2.089 × 10−67 1.915 1.242

Jarratt −5.609 × 10−200 5 2.616 × 10−50 4.487 × 10−200 4.0 1.587
Ostrowski −3.471 × 10−51 4 4.178 × 10−13 2.777 × 10−51 3.942 1.580
King (β = −1) −5.427 × 10−115 15 3.081 × 10−29 4.342 × 10−115 3.997 1.587
Kung-Traub −1.186 × 10−79 7 5.334 × 10−27 9.486 × 10−80 3.000 1.442
Zhao et al. 3.344 × 10−119 7 4.003 × 10−30 2.675 × 10−119 3.984 1.585
Chun −158.3 100 1.639 5.668 × 1068 5.121 1.724
Artidiero IV 1.68 × 10−91 6 2.588 × 10−23 1.344 × 10−91 3.976 1.584

Method MAy stands out for its quartic convergence (ACOC = 4.0) and a final error of exactly 0 in
only 5 iterations, making it the most accurate method. Although it is slightly more computationally
expensive, it achieves the highest relative efficiency (EI ≈ 1.587) among the proposed methods.

Methods MA, MC, MCy show quadratic convergence ACOC ≈ 2, with errors of order 10−67 in only
4 iterations, with low execution times. The method MHy slightly improves the order of convergence
ACOC ≈ 2.67, which represents a good compromise between efficiency and robustness.

In contrast, several classical methods converge to values that do not represent the physically
significant root. For example, Chun converges to a negative value (x ≈ −158.3) with a clear divergence

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 September 2025 doi:10.20944/preprints202509.0776.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.0776.v1
http://creativecommons.org/licenses/by/4.0/


27 of 29

(Incr2 ∼ 1068). Meanwhile, the other methods diverge completely, presenting values with no physical
meaning.

This highlights that, under unfavorable initial conditions, the proposed methods remain stable,
while the classical ones are sensitive. Therefore, for problems such as Planck’s, methods based on the
mean offer a more robust and reliable alternative.

Table 10 shows that all evaluated methods successfully converged to the physically meaningful
root of Planck’s equation, despite starting from a distant initial condition (x0 = 10).

Table 10. Comparison of iterative methods for the Planck problem with x0 = 10.

Method Iter Incr Incr2 ACOC EI Time (s)

MA 3 3.413 × 10−17 3.316 × 10−71 3.466 1.513 0.0380
MAy 4 2.223 × 10−70 0.0 4.0 1.587 0.0638
MHy 3 4.172 × 10−17 8.786 × 10−71 3.447 1.511 0.0323
MC 3 3.787 × 10−17 5.496 × 10−71 3.456 1.512 0.0394
MCy 3 3.978 × 10−17 6.976 × 10−71 3.452 1.511 0.0388

Jarratt 3 3.106 × 10−12 5.067 × 10−51 3.539 1.524 0.0509
Ostrowski 3 3.047 × 10−17 1.911 × 10−71 3.477 1.515 0.0323
King (β = −1) 3 3.413 × 10−17 3.314 × 10−71 3.466 1.513 0.0305
Kung-Traub 4 5.964 × 10−40 2.674 × 10−122 3.0 1.442 0.0576
Zhao et al. 3 2.869 × 10−17 1.424 × 10−71 3.483 1.516 0.0411
Chun 3 3.047 × 10−17 1.911 × 10−71 3.477 1.515 0.0388
Artidiello IV 3 2.693 × 10−17 1.045 × 10−71 3.489 1.517 0.03368

The MAy method maintains its outstanding performance, with quartic convergence order (ACOC
= 4.0), zero error in the second increment (Incr2 = 0), and maximum intrinsic efficiency (EI = 1.587).
This confirms its high robustness and accuracy even under unfavorable scenarios.

The methods MA, MHy , MC, and MCy exhibited similar behavior, with ACOC ≈ 3.45 and
convergence achieved in just 3 iterations, maintaining errors on the order of 10−17 and very low
execution times (< 0.04 s).

Among the classical methods, King, Ostrowski, Zhao et al., and Jarratt also showed good efficiency
and stable convergence. The Kung-Traub method, although achieving higher precision Incr2 ≈ 10−122,
resulted in a lower ACOC (3.0) and reduced efficiency due to its higher cost per iteration.

In summary, all the analyzed methods proved to be efficient from a distant initial point, with MAy

standing out for its stability and performance.

6. Conclusions
This manuscrpt presents a new perspective on the design, analysis, and dynamical behavior

of fourth-order multipoint iterative methods, constructed through convex combinations of classical
means and parameterized weight functions. By extending the Newton-type scheme and incorporating
arithmetic, harmonic, and contra-harmonic, a versatile family of optimal methods is developed,
complying with the Kung–Traub conjecture by achieving order four with a minimal number of
functional evaluations. Other means such as Heronian, and centroidal have been used without positive
results. The resulting iterative methods do not reach order four, so the are not optimal schemes.

The general formulation, grounded in a solid theoretical framework (Taylor expan- sions, affine
conjugation, and local error analysis), enabled the derivation of explicit conditions on the weight
functions to ensure fourth-order convergence. This was complemented by a rigorous dynamical
systems analysis using tools such as conjugated rational operators, stability surfaces, parameter planes,
and dynamical planes on the Riemann sphere.

The results reveal that the proposed parametric families, particularly those associated with
the modified arithmetic mean (MAy), exhibit stable convergence behavior over large regions of the
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complex parameter space β. Nevertheless, critical regions of divergence were identified, including
attraction basins unrelated to the roots or convergence toward strange fixed points. Such zones
often visualized as black or green regions in the parameter and dynamical planes must be avoided
in practice. In this context, the detailed study of free critical points proved fundamental, as each
attractive basin must contain at least one critical point. Their behavior provided early insights into
the method’s stability and convergence characteristics. Noteworthy cases such as β = −78.5858 or
β = 400 illustrated convergence toward undesirable fixed points (e.g., z = 1), despite proximity to the
root z = 0, emphasizing the importance of well-informed parameter selection.

Finally, numerical experiments confirmed the competitiveness of the proposed schemes. In various
tests, both academic and applied, methods based on convex means showed efficient performance
comparable to classical methods. In most of the problems considered, they managed to converge to
the root in approximately 3 to 5 iterations. The only exception was the first applied example, which
required a greater number of iterations; however, it also reached the root with errors of the order of
∼ 10−208. Likewise, in the second applied problem, their robustness was evident, as they were the
only methods that converged to the root, even starting from initial conditions far from the solution,
unlike classical methods.

In summary, the proposed class of parametric iterative methods based on convex means not only
achieves high computational efficiency but, when coupled with dynamical analysis, offers a robust
and predictive framework for the stable and accurate solution of nonlinear equations.
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