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Abstract: The convergence of artificial intelligence (AI) and robotics has brought about a fresh period 

of autonomous systems able of executing sophisticated jobs in changing and unpredictable settings. 

Although great advancements have been achieved, a multitude of unresolved mathematical issues 

limits  the use of AI‐driven  robots  in  safety‐critical  and  real‐world uses. Focusing on  robustness, 

safety,  learning,  human‐robot  interaction,  and  complicated  system  management,  this  study 

investigates  several  important  unresolved  concerns  at  the  crossroads  of AI,  control  theory,  and 

mathematics. Creating  intelligent,  dependable,  and  trustworthy  autonomous  robots  depends  on 

addressing these obstacles. Several influential open problems are introduced within the folds of this 

paper, with final thoughts on mathematizing AI‐driven robot control. 

Keywords: artificial intelligence (AI); AI‐driven robots; AI; machine learning; robotics; reinforcement 

learning (RL); deep neural networks (DNNs) 

 

1. Introduction 

Advances in artificial intelligence—especially machine learning—are propelling a major change 

in the field of robotics. Mostly grounded in classical control theory, conventional robot control often 

depends  on  exact  models  and  controlled  surroundings  (Such  as  The  convergence  of  artificial 

intelligence (AI) ) and robotics has produced a new era of autonomous systems capable of performing 

complex  tasks  in dynamic  and unexpected  environments.(Kim  et  al.,  2022). Although  significant 

innovations have been made, several unsolved mathematical problems restrict the application of AI‐

driven robots in safety‐sensitive and real‐world scenarios, as in Figure 1 (c.f., Kim et al., 2022). 

 

Figure 1. An ongoing casting procedure. 
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Emphasizing  robustness, safety,  learning, human‐robot  interaction, and sophisticated system 

management, this research explores multiple critical still unanswered questions at the intersection of 

artificial  intelligence, control theory, and mathematics (Kim et al., 2022). Building very  intelligent, 

reliable, and trustworthy autonomous robots (Cantucci et al., 2025) depends on overcoming these 

challenges. But actual situations are naturally complicated, unpredictable, and dynamic, requiring 

more clever and flexible control systems. With its capacity to learn from data (Kim et al., 2022), detect 

sophisticated patterns, and make decisions under ambiguity, artificial intelligence provides a great 

toolbox for tackling these problems. 

Broad range of approaches  including reinforcement  learning  (Beck et al., 2025;  Jensen, 2023), 

deep  learning  for  perception  and decision‐making  (Aljamal  et  al.,  2025),  imitation  learning,  and 

various forms of adaptive control define AI‐driven robot control. From negotiating unsorted surfaces 

to executing complex manipulating tasks (Manikandan et al., 2025), these approaches have allowed 

robots to accomplish amazing tasks. 

Still,  the  change  from  managed  laboratory  environments  to  large‐scale  actual  application 

exposes basic  theoretical  and mathematical deficiencies(Manikandan  et al., 2025). This document 

seeks to outline some of these important unresolved issues, therefore emphasizing places where strict 

mathematical structures are required to guarantee the robustness (Manikandan et al., 2025), safety, 

and generalizability of AI‐driven robotic systems. 

2. Safety Guarantees and Robustness 

For  AI‐driven  robots(Dhanwe  et  al.,  2024)—particularly  in  safety‐critical  settings  (e.g., 

autonomous driving, surgical robots)—the absence of official assurances about their reliability and 

safety is one of their most important issues, as depicted in Figure 2 (Dhanwe et al., 2024). 

 

Figure 2. AI‐driven Internet of Things (AIIoT) in robotics applications. 

2.1. Official Verification of Neural Network Controllers 

Deep neural networks (DNNs) (Chan et al., 2024) , used for perception, policy learning, or state 

estimation,  abound  in many  contemporary AI‐driven  robot  control  systems.  Being  very  opaque 

“black boxes,” DNNs complicate greatly formal verification of their behavior (Chan et al., 2024). 
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 Problem: How can we mathematically prove that a neural network controller (Dai et al., 2021) 

will always operate within specified safety boundaries, avoid collisions, or maintain stability 

under all permissible inputs and environmental conditions? 

 Challenges: Conventional formal verification techniques (Mahmoud et al., 2024) are impractical 

given the non‐linear, high‐dimensional character of DNNs and their sensitivity to hostile attacks. 

New  mathematical  methods  are  required  to  examine  reachable  sets  of  DNN‐controlled 

systems(Mahmoud et al., 2024), check Lipschitz continuum features, and formulate probabilistic 

safety promises. This entails creating strong techniques for measuring uncertainty flow across 

neural networks  and  incorporating  them  into  control Lyapunov  functions  (CLFs) or  control 

barrier functions (CBFs) (Mahmoud et al., 2024; Li et al., 2023). 

2.2. Uncertainty Propagation and Quantification 

Sensor noise (Wang et al., 2022; Reiser et al., 2025), model errors, unexpected disturbances, and 

limited  knowledge  all  contribute  to  the  inherent  uncertainty  of  real‐world  situations.  Reliable 

operation is required for AI‐driven robots despite this variability(Wang et al., 2022; Reiser et al., 2025). 

 Problem: How can we accurately quantify and propagate uncertainties  through complex AI 

models and control loops (Schöning & Pfisterer, 2023), ensuring that decision‐making accounts 

for these uncertainties in a principled manner? 

 Bayesian approaches present an intriguing path, but computationally difficult is their scaling to 

high‐dimensional robot states (Zakka et al., 2023) and deep learning models. Still an open area 

is developing tractable solutions for probabilistic inference(Pfanschilling, et al., 2025), resilient 

state estimation (e.g., robust Kalman filters, particle filters for non‐Gaussian uncertainties), and 

decision‐making  under  extreme  uncertainty  (e.g.,  using  robust  optimization  or  minimax 

control).  This  covers mathematically  (Pfanschilling,  et  al.,  2025),  defining  how  downstream 

control activities are affected by perception inaccuracies. 

2.3. Oppositional Robustness 

Particularly  deep  learning  models(Menghani,  2023),  artificial  intelligence  systems  are 

susceptible  to  adversarial  attacks,  in which  case  tiny,  barely  noticeable  changes  to  inputs might 

produce  very  erroneous  results.  For  robots,  this  might  show  up  as  misreading  instructions, 

misidentifying things, or sensing phantom barriers(Barron et al., 2024). 

 Problem: How can we build AI‐driven robot control systems that are certainly robust against 

adversarial perturbations in their sensor inputs or internal states(Gunawardena et al., 2024)? 

 Challenges: Modern adversarial training approaches might produce few assurances and could 

lower performance on clean data (Li et al., 2021). Understanding the geometry of adversarial 

instances  in high‐dimensional state spaces  (Geelen, et al., 2023), creating certified  robustness 

solutions for robotic applications, and designing control laws that are automatically resistant to 

such  assaults  require  novel mathematical  frameworks.  This  investigates  relations  between 

control theory (Bin& Parisini, 2023., 2023), game theory, and adversarial machine learning. 

3. Adaptation and Learning 

Although artificial intelligence’s strength is in its learning, current learning paradigms for robot 

control confront major mathematical challenges regarding efficiency, generalization, and continuous 

adaptation. 

3.1. Reinforcement Learning Sample Efficiency 

Although  reinforcement  learning  (RL)  (Beck  et  al.,  2025;  Jensen,  2023), has had outstanding 

performance  in  simulated environments,  its use on actual  robots  is  sometimes hindered by great 

sample inefficiency. Training (Beck et al., 2025; Jensen, 2023), a robot in the actual world is expensive, 

labor‐intensive, and possibly dangerous. 
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 Problem: How can we create mathematically grounded RL systems that learn optimal or near‐

optimal control policies with much less real‐world contacts(Luo et al., 2024)? 

Challenges: This covers research into model‐based RL (learning dynamics models), off‐policy 

learning,  transfer  learning  from  simulation  to  reality  (sim‐to‐real),  and  efficient  exploration 

strategies(Da et al., 2025). This mathematically means improving knowledge of the circumstances for 

successful policy transfer, developing tighter bounds on sample complexity (de Croon et al., 2022), 

and  creating  best  experimental  design  plans  for  robot  learning.  Active  research  fields  include 

Bayesian optimization, meta‐learning, and information‐theoretic approaches to exploration. 

3.2. Lifelong and Continuous Learning 

Robots  used  in  the  real world  need  to  constantly  change  to  new  circumstances,  dynamic 

surroundings,  and  fresh  jobs  without  forgetting  earlier  acquired  abilities  (catastrophic 

forgetting)(Aleixo et al., 2023). 

 Problem: How can we mathematically model and solve the issue of lifelong learning for robot 

control(Zhu et al., 2024), therefore allowing continuous adaptation and skill acquisition without 

performance drop on past tasks? 

Challenges: This calls  for  fresh mathematical models  for knowledge representation, memory 

management(Song & Li, 2025), and transfer learning with incremental policy and model updating. 

Relevant are methods from biologically inspired neural architectures, concept drift adaptation (Xiang 

et  al.,  2023),  and  online  learning.  It  is  essential  to  create metrics  and  theoretical  guarantees  for 

measuring  and  guaranteeing  good  transfer  and  to  minimize  catastrophic  forgetting  in  robotic 

applications(Mukherjee et al., 2024). 

3.3. Generalization and Out‐of‐Distribution Robustness 

One of the main drawbacks of modern artificial intelligence systems is their weak generalization 

to data or circumstances much different from their training distribution (out‐of‐‐distribution, OOD) 

(Chen et al., 2024). For robots (Malik, 2024), this means that a policy developed in one context might 

perform horrifically in another rather similar environment. 

 Problem: How can we mathematically characterize and enhance the generalization abilities of 

AI‐driven robot controllers to fresh(Isreal et al., 2025) unfamiliar settings and duties? 

 Challenges: This calls for a deeper knowledge of the inductive biases of learning algorithms (Yan 

et al., 2024), the  intrinsic dimensionality of robotic tasks, and the creation of domain adaption 

methods  with  robust  theoretical  guarantees.  Mathematical  bases  for  developing  more 

generalizable robot behaviors can be found  in causal  inference,  invariant  learning, and robust 

optimization(Wang et al., 2024). 

4. Human–Robot Interaction (HRI) 

Complex mathematical models are required to comprehend human intent (Winkle et al., 2023), 

guarantee safe cooperation, and build trust so that robots may be smoothly and safely integrated into 

human surroundings. 

4.1. Intent Prediction and Inference 

Robots must correctly infer and project human intentions (Kaza et al., 2024), goals, and future 

actions for efficient teamwork. 

 Problem: How  can we  enable proactive  and  cooperative  robot behavior by means of  strong 

mathematical models for real‐time human intent inference(Pandya et al., 2024), particularly in 

uncertain or partially visible situations? 
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 Challenges: Major mathematical problems are quantifying the uncertainty in intent predictions 

and creating control policies resistant to misinterpretations(Violos et al., 2025). This also covers 

knowledge of cognitive states and human tastes(Pilditch, 2024). 

4.2. Shared Autonomy and Variable Autonomy 

Many HRI situations include shared control between the person and the robot(Jonnavittula et 

al., 2024) or the degree of robot autonomy changes depending on context. 

 Problem: How can we mathematically devise optimal control strategies  for shared autonomy 

systems guaranteeing safety (Proia, 2024)  , efficiency, and user satisfaction that flawlessly mix 

human input with robot autonomy? 

Challenges  in  this  include  human  factors,  optimal  control,  and  dynamic  system modeling. 

Mathematical models are required for human trust, cognitive load, and error propagation in shared 

control  loops(Guo  et  al.,  2024).  This  also  entails  creating  arbitration  systems  and  hand‐over 

procedures with official assurances (Robinson et al., 2023). 

4.3. Robot Decisions Can Have Ethical Ramifications as They Become More Autonomous 

Of  first  importance  is guaranteeing honesty(Soori et al., 2023),  responsibility, and  fairness  in 

robot behavior. 

 Problem: Directly  into  the mathematical  formulation of  robot control objectives and  learning 

algorithms (Zhuang et al., 2022), how can we embed ethical principles and fairness limitations? 

Challenges: This is a developing but essential field. It entails transforming abstract ethical ideas 

into  measurable  mathematical  limits  (e.g.,  ensuring  non‐discrimination,  minimizing  harm, 

maximising  society benefit)(Lakdawalla  et  al.,  2024). This may  include  constrained optimization, 

multi‐objective  optimization,  and  the  integration  of  social welfare  functions  into  control  design 

(Rahimi et al., 2023). 

5. Regulation of Complex Robotic Systems 

Managing  big,  varied,  or  very  dynamic  robotic  systems  presents  special  mathematical 

difficulties. 

5.1. Decentralized Control and Multi‐Robot Coordination 

Often in a dispersed way without a centralized coordinator (Dawood et al., 2025), many real‐

world projects involve teams of robots working together to meet shared objectives. 

 Problem: How can we create scalable and strong mathematical  frameworks  for decentralized 

control and coordination of big multi‐robot systems (Pradhan et al., 2023), therefore guaranteeing 

emergent desirable behaviours and preventing undesirable ones? 

Challenges  in  this  include  swarm  intelligence,  graph  theory,  game  theory,  and  distributed 

optimization(Cao et al., 2024). A major mathematical difficulty is guaranteeing stability, convergence, 

and fault tolerance in decentralized learning and control techniques(Wan et al., 2022). This also covers 

constrained control,  task delegation, and resource distribution among communications  (Pal et al., 

2022). 

5.2. Hybrid Systems and Event‐ Triggered Control 

Many robotic systems have hybrid dynamics (Song & Wang, 2025)—that is, a mix of continuous 

physical movement and discrete logical transitions (e.g., switching between modes, contact events). 
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 Problem: Especially when AI components control the discrete transitions(Jain et al., 2025), how 

can we  create mathematically precise  techniques  for designing and validating  controllers  for 

hybrid robotic systems? 

 Challenges: This  calls  for  formal methods, discrete  event  systems  (Abbas  et  al.,  2024)),  and 

continuous  control  theory.  Key  mathematical  issues  are  guaranteeing  Zeno  behavior 

avoidance(Qian et al., 2024), stability across mode changes, and robustness to uncertainties  in 

event detection. Event‐triggered control(Scheres et al., 2024)—where control updates occur only 

when needed—provides efficiency but complicates stability analysis. 

5.3. Soft Robots and Deformable Bodies 

Soft  robots’  innate  compliance  and  infinite‐dimensional  state  spaces  call  into  question 

conventional rigid‐body control approaches. 

 Problem: Particularly when AI  is used  to  learn  their  intricate, non‐linear dynamics(Qu  et al. 

2024), how can we create mathematical models and control techniques for very deformable soft 

robots? 

Challenges:  This  combines  continuum  mechanics,  functional  analysis,  and  innovative 

techniques for state estimation and control of high‐dimensional( Della Santina et al., 2023), non‐ linear 

systems. Significant mathematical difficulties arise in learning correct forward and inverse models 

for soft robots and developing controllers able to use their compliance for safe interaction. 

6. State Estimating and Perception 

Robot control is built on accurate state estimation(Nagami & Schwager, 2024) and perception; 

artificial intelligence has transformed these fields, but open mathematical challenges still exist. 

6.1. Strong Semantic Perception and Sensor Fusion 

To create a complete picture of their surroundings (Tan et al., 2024), robots use several sensors 

(cameras, LiDAR, IMUs). High‐level semantic information can be extracted by AI‐driven perception 

systems. 

 Problem: How  can we mathematically  fuse  heterogeneous  sensor  data,  including  semantic 

information(Sun & Ren,  2024),  in  a  robust  and  computationally  efficient manner  to  provide 

accurate and reliable state estimates for control? 

 Problems: This entails robust estimation approaches, deep learning for feature extraction, and 

probabilistic graphical models. An open field is quantifying the uncertainty in semantic labels 

and  integrating  it  into  state  estimation  frameworks  (e.g.,  semantic  SLAM)  (Shu  et  al.,  2023) 

Equally important is strong handling of sensor malfunctions, occlusions, and new objects. 

6.2. State Estimation with Limited Observability 

Many  robotic  jobs  require  dealing with  limited  knowledge(Wu  et  al.,  2023)  regarding  the 

surroundings or the robot’s own condition. 

 Question: How can we create mathematically correct techniques for optimal state estimation and 

control under high partial observability(Wangwongchai et al., 2023), especially when AI models 

are applied to predict missing data? 

 Challenges:  This  entails  partially  observable  Markov  decision  processes  (POMDPs),( 

Kurniawati, 2022) but realistically robot applications would find scaling them impractical. There 
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are  needed  approximate  inference  techniques,  active  perception  strategies,  and  information‐

theoretical approaches to sensing(Taniguchi et al., 2023). 

7. Clarification and Interpretability 

Many AI models applied in robot control have a “black‐box”( Bélisle‐Pipon et al., 2023) quality 

that hinders trust and debugging. 

7.1. Control Through Interpretable and Explainable Artificial Intelligence 

For debugging, certification, and human supervision(Zeraati et al., 2024), knowing why an AI‐

driven robot makes a specific choice is essential. 

 Problem:  How  can  we  create  mathematical  models  to  ensure  that  human  operators  can 

understand  and  explain  the  decision‐making  processes  of  AI‐driven  robot  controllers(Cifci, 

2025)? 

 Challenges:  This  goes  beyond  just  picturing  neural  network  activations.  It  entails  creating 

techniques to draw human‐understandable rules or explanations from intricate policies(Dubey 

et al., 2022), attribute control actions to certain  inputs, and measure the “reasonableness” of a 

robot’s  behavior.  This  may  entail  symbolic  AI  integration,  counterfactual  explanations,  or 

saliency maps(Li et al., 2023). 

8. Real‐Time Limitations and Computational Efficiency 

Most  robotic  applications  demand  real‐time  operation;(Kuznetsov  et  al.,  2023)  yet, whereas 

some sophisticated AI techniques are computationally demanding, 

8.1. Resource‐Constrained AI for Edge Robotics 

A major  difficulty  is  deploying  sophisticated  artificial  intelligence models  on  limited  robot 

hardware (Gupta , 2025) (e.g., limited CPU, GPU, memory, power). 

 Problem:  While  maintaining  performance  and  safety  guarantees,  how  can  we  create 

mathematically optimal techniques for compressing, quantizing, and optimizing AI models for 

effective run on edge robotic systems(Wang et al., 2025)? 

Challenges  include  hardware‐aware  co‐design,  efficient  architectures  (e.g.,  MobileNets)( 

Alhussain, 2024), quantization, and neural network pruning.  Important  is establishing  theoretical 

limits  on  the  performance  loss  caused  by  model  compression  and  guaranteeing  real‐time 

performance. 

8.2. Real‐Time Control and Optimization 

Many control challenges entail real‐time(Flamm et al., 2021), under tight deadlines resolution of 

sophisticated optimization issues. 

Problem: Often with AI‐driven parts, how can we create mathematically efficient algorithms for 

real‐time optimal control and motion planning capable of handling high‐dimensional state spaces 

and non‐linear dynamics(Zhao et al., 2024)? 

 Challenges: This  calls  for progress  in approximate dynamic programming, model predictive 

control (MPC), and numerical optimization(Chacko et al., 2023). Active areas include utilizing 

artificial  intelligence  for warm‐starting  optimization  issues(Sharony  et  al.,  2024),  developing 

effective solvers, or directly learning control policies satisfying real‐time limitations. 
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9. Final Thoughts 

An interesting frontier with great possibility to transform many sectors and facets of daily life is 

the  incorporation  of  artificial  intelligence  into  robotic  control  systems. Unlocking  this  capability 

entirely,  however,  calls  for  solving  a  host  of  fundamental mathematical  unsolved  issues.  From 

guaranteeing the demonstrable safety and dependability of neural network controllers to allowing 

robots to learn effectively, generalize well, and interact naturally with people, every obstacle calls for 

innovative mathematical understanding and serious theoretical frameworks. 

Interdisciplinary study at the interface of control theory, machine learning, optimization, formal 

methods, and applied mathematics  should  reveal answers  to  these  issues.  Improvement  in  these 

fields  not  only  enhances  the  capacities  of  individual  robots  but  also  clears  the  path  for  the 

development of intelligent, dependable, and trustworthy autonomous systems capable of safely and 

efficiently  navigating  complicated,  erratic,  and  human‐centric  surroundings.  Fundamentally  a 

mathematical one, the road to completely autonomous and intelligent robots call for continuous work 

and invention to close the current theoretical gaps. 
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