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Abstract: The convergence of artificial intelligence (Al) and robotics has brought about a fresh period
of autonomous systems able of executing sophisticated jobs in changing and unpredictable settings.
Although great advancements have been achieved, a multitude of unresolved mathematical issues
limits the use of Al-driven robots in safety-critical and real-world uses. Focusing on robustness,
safety, learning, human-robot interaction, and complicated system management, this study
investigates several important unresolved concerns at the crossroads of Al, control theory, and
mathematics. Creating intelligent, dependable, and trustworthy autonomous robots depends on
addressing these obstacles. Several influential open problems are introduced within the folds of this
paper, with final thoughts on mathematizing Al-driven robot control.

Keywords: artificial intelligence (Al); Al-driven robots; Al; machine learning; robotics; reinforcement
learning (RL); deep neural networks (DNNs)

1. Introduction

Advances in artificial intelligence —especially machine learning —are propelling a major change
in the field of robotics. Mostly grounded in classical control theory, conventional robot control often
depends on exact models and controlled surroundings (Such as The convergence of artificial
intelligence (Al) ) and robotics has produced a new era of autonomous systems capable of performing
complex tasks in dynamic and unexpected environments.(Kim et al., 2022). Although significant
innovations have been made, several unsolved mathematical problems restrict the application of Al-
driven robots in safety-sensitive and real-world scenarios, as in Figure 1 (c.f., Kim et al., 2022).
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Figure 1. An ongoing casting procedure.
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Emphasizing robustness, safety, learning, human-robot interaction, and sophisticated system
management, this research explores multiple critical still unanswered questions at the intersection of
artificial intelligence, control theory, and mathematics (Kim et al., 2022). Building very intelligent,
reliable, and trustworthy autonomous robots (Cantucci et al., 2025) depends on overcoming these
challenges. But actual situations are naturally complicated, unpredictable, and dynamic, requiring
more clever and flexible control systems. With its capacity to learn from data (Kim et al., 2022), detect
sophisticated patterns, and make decisions under ambiguity, artificial intelligence provides a great
toolbox for tackling these problems.

Broad range of approaches including reinforcement learning (Beck et al., 2025; Jensen, 2023),
deep learning for perception and decision-making (Aljamal et al., 2025), imitation learning, and
various forms of adaptive control define Al-driven robot control. From negotiating unsorted surfaces
to executing complex manipulating tasks (Manikandan et al., 2025), these approaches have allowed
robots to accomplish amazing tasks.

Still, the change from managed laboratory environments to large-scale actual application
exposes basic theoretical and mathematical deficiencies(Manikandan et al., 2025). This document
seeks to outline some of these important unresolved issues, therefore emphasizing places where strict
mathematical structures are required to guarantee the robustness (Manikandan et al., 2025), safety,
and generalizability of Al-driven robotic systems.

2. Safety Guarantees and Robustness

For Al-driven robots(Dhanwe et al., 2024)—particularly in safety-critical settings (e.g.,
autonomous driving, surgical robots)—the absence of official assurances about their reliability and
safety is one of their most important issues, as depicted in Figure 2 (Dhanwe et al., 2024).
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Figure 2. Al-driven Internet of Things (AlloT) in robotics applications.

2.1. Official Verification of Neural Network Controllers

Deep neural networks (DNNs) (Chan et al., 2024) , used for perception, policy learning, or state
estimation, abound in many contemporary Al-driven robot control systems. Being very opaque
“black boxes,” DNNs complicate greatly formal verification of their behavior (Chan et al., 2024).
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e  Problem: How can we mathematically prove that a neural network controller (Dai et al., 2021)
will always operate within specified safety boundaries, avoid collisions, or maintain stability
under all permissible inputs and environmental conditions?

e  Challenges: Conventional formal verification techniques (Mahmoud et al., 2024) are impractical
given the non-linear, high-dimensional character of DNNs and their sensitivity to hostile attacks.
New mathematical methods are required to examine reachable sets of DNN-controlled
systems(Mahmoud et al., 2024), check Lipschitz continuum features, and formulate probabilistic
safety promises. This entails creating strong techniques for measuring uncertainty flow across
neural networks and incorporating them into control Lyapunov functions (CLFs) or control
barrier functions (CBFs) (Mahmoud et al., 2024; Li et al., 2023).

2.2. Uncertainty Propagation and Quantification

Sensor noise (Wang et al., 2022; Reiser et al., 2025), model errors, unexpected disturbances, and
limited knowledge all contribute to the inherent uncertainty of real-world situations. Reliable
operation is required for Al-driven robots despite this variability(Wang et al., 2022; Reiser et al., 2025).

e  Problem: How can we accurately quantify and propagate uncertainties through complex Al
models and control loops (Schoning & Pfisterer, 2023), ensuring that decision-making accounts
for these uncertainties in a principled manner?

e  Bayesian approaches present an intriguing path, but computationally difficult is their scaling to
high-dimensional robot states (Zakka et al., 2023) and deep learning models. Still an open area
is developing tractable solutions for probabilistic inference(Pfanschilling, et al., 2025), resilient
state estimation (e.g., robust Kalman filters, particle filters for non-Gaussian uncertainties), and
decision-making under extreme uncertainty (e.g., using robust optimization or minimax
control). This covers mathematically (Pfanschilling, et al.,, 2025), defining how downstream
control activities are affected by perception inaccuracies.

2.3. Oppositional Robustness

Particularly deep learning models(Menghani, 2023), artificial intelligence systems are
susceptible to adversarial attacks, in which case tiny, barely noticeable changes to inputs might
produce very erroneous results. For robots, this might show up as misreading instructions,
misidentifying things, or sensing phantom barriers(Barron et al., 2024).

e  Problem: How can we build Al-driven robot control systems that are certainly robust against
adversarial perturbations in their sensor inputs or internal states(Gunawardena et al., 2024)?

e  Challenges: Modern adversarial training approaches might produce few assurances and could
lower performance on clean data (Li et al., 2021). Understanding the geometry of adversarial
instances in high-dimensional state spaces (Geelen, et al., 2023), creating certified robustness
solutions for robotic applications, and designing control laws that are automatically resistant to
such assaults require novel mathematical frameworks. This investigates relations between
control theory (Bin& Parisini, 2023., 2023), game theory, and adversarial machine learning.

3. Adaptation and Learning

Although artificial intelligence’s strength is in its learning, current learning paradigms for robot
control confront major mathematical challenges regarding efficiency, generalization, and continuous
adaptation.

3.1. Reinforcement Learning Sample Efficiency

Although reinforcement learning (RL) (Beck et al., 2025; Jensen, 2023), has had outstanding
performance in simulated environments, its use on actual robots is sometimes hindered by great
sample inefficiency. Training (Beck et al., 2025; Jensen, 2023), a robot in the actual world is expensive,
labor-intensive, and possibly dangerous.
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e  Problem: How can we create mathematically grounded RL systems that learn optimal or near-
optimal control policies with much less real-world contacts(Luo et al., 2024)?

Challenges: This covers research into model-based RL (learning dynamics models), off-policy
learning, transfer learning from simulation to reality (sim-to-real), and efficient exploration
strategies(Da et al., 2025). This mathematically means improving knowledge of the circumstances for
successful policy transfer, developing tighter bounds on sample complexity (de Croon et al., 2022),
and creating best experimental design plans for robot learning. Active research fields include
Bayesian optimization, meta-learning, and information-theoretic approaches to exploration.

3.2. Lifelong and Continuous Learning

Robots used in the real world need to constantly change to new circumstances, dynamic
surroundings, and fresh jobs without forgetting earlier acquired abilities (catastrophic
forgetting)(Aleixo et al., 2023).

e  Problem: How can we mathematically model and solve the issue of lifelong learning for robot
control(Zhu et al., 2024), therefore allowing continuous adaptation and skill acquisition without
performance drop on past tasks?

Challenges: This calls for fresh mathematical models for knowledge representation, memory
management(Song & Li, 2025), and transfer learning with incremental policy and model updating.
Relevant are methods from biologically inspired neural architectures, concept drift adaptation (Xiang
et al., 2023), and online learning. It is essential to create metrics and theoretical guarantees for
measuring and guaranteeing good transfer and to minimize catastrophic forgetting in robotic
applications(Mukherjee et al., 2024).

3.3. Generalization and Out-of-Distribution Robustness

One of the main drawbacks of modern artificial intelligence systems is their weak generalization
to data or circumstances much different from their training distribution (out-of--distribution, OOD)
(Chen et al., 2024). For robots (Malik, 2024), this means that a policy developed in one context might
perform horrifically in another rather similar environment.

e Problem: How can we mathematically characterize and enhance the generalization abilities of
Al-driven robot controllers to fresh(Isreal et al., 2025) unfamiliar settings and duties?

e Challenges: This calls for a deeper knowledge of the inductive biases of learning algorithms (Yan
et al., 2024), the intrinsic dimensionality of robotic tasks, and the creation of domain adaption
methods with robust theoretical guarantees. Mathematical bases for developing more
generalizable robot behaviors can be found in causal inference, invariant learning, and robust

optimization(Wang et al., 2024).

4., Human-Robot Interaction (HRI)

Complex mathematical models are required to comprehend human intent (Winkle et al., 2023),
guarantee safe cooperation, and build trust so that robots may be smoothly and safely integrated into
human surroundings.

4.1. Intent Prediction and Inference
Robots must correctly infer and project human intentions (Kaza et al., 2024), goals, and future
actions for efficient teamwork.
e Problem: How can we enable proactive and cooperative robot behavior by means of strong
mathematical models for real-time human intent inference(Pandya et al., 2024), particularly in

uncertain or partially visible situations?
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e Challenges: Major mathematical problems are quantifying the uncertainty in intent predictions
and creating control policies resistant to misinterpretations(Violos et al., 2025). This also covers

knowledge of cognitive states and human tastes(Pilditch, 2024).

4.2. Shared Autonomy and Variable Autonomy

Many HRI situations include shared control between the person and the robot(Jonnavittula et
al., 2024) or the degree of robot autonomy changes depending on context.

e Problem: How can we mathematically devise optimal control strategies for shared autonomy
systems guaranteeing safety (Proia, 2024) , efficiency, and user satisfaction that flawlessly mix
human input with robot autonomy?

Challenges in this include human factors, optimal control, and dynamic system modeling.

Mathematical models are required for human trust, cognitive load, and error propagation in shared

control loops(Guo et al, 2024). This also entails creating arbitration systems and hand-over
procedures with official assurances (Robinson et al., 2023).

4.3. Robot Decisions Can Have Ethical Ramifications as They Become More Autonomous

Of first importance is guaranteeing honesty(Soori et al., 2023), responsibility, and fairness in
robot behavior.
e Problem: Directly into the mathematical formulation of robot control objectives and learning
algorithms (Zhuang et al., 2022), how can we embed ethical principles and fairness limitations?
Challenges: This is a developing but essential field. It entails transforming abstract ethical ideas
into measurable mathematical limits (e.g., ensuring non-discrimination, minimizing harm,
maximising society benefit)(Lakdawalla et al., 2024). This may include constrained optimization,

multi-objective optimization, and the integration of social welfare functions into control design
(Rahimi et al., 2023).

5. Regulation of Complex Robotic Systems

Managing big, varied, or very dynamic robotic systems presents special mathematical
difficulties.

5.1. Decentralized Control and Multi-Robot Coordination

Often in a dispersed way without a centralized coordinator (Dawood et al., 2025), many real-
world projects involve teams of robots working together to meet shared objectives.

e Problem: How can we create scalable and strong mathematical frameworks for decentralized
control and coordination of big multi-robot systems (Pradhan et al., 2023), therefore guaranteeing
emergent desirable behaviours and preventing undesirable ones?

Challenges in this include swarm intelligence, graph theory, game theory, and distributed
optimization(Cao et al., 2024). A major mathematical difficulty is guaranteeing stability, convergence,
and fault tolerance in decentralized learning and control techniques(Wan et al., 2022). This also covers
constrained control, task delegation, and resource distribution among communications (Pal et al.,
2022).

5.2. Hybrid Systems and Event- Triggered Control

Many robotic systems have hybrid dynamics (Song & Wang, 2025) —that is, a mix of continuous
physical movement and discrete logical transitions (e.g., switching between modes, contact events).
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e Problem: Especially when Al components control the discrete transitions(Jain et al., 2025), how
can we create mathematically precise techniques for designing and validating controllers for
hybrid robotic systems?

e Challenges: This calls for formal methods, discrete event systems (Abbas et al., 2024)), and
continuous control theory. Key mathematical issues are guaranteeing Zeno behavior
avoidance(Qian et al., 2024), stability across mode changes, and robustness to uncertainties in
event detection. Event-triggered control(Scheres et al., 2024) —where control updates occur only

when needed —provides efficiency but complicates stability analysis.

5.3. Soft Robots and Deformable Bodies

Soft robots’ innate compliance and infinite-dimensional state spaces call into question
conventional rigid-body control approaches.

e Problem: Particularly when Al is used to learn their intricate, non-linear dynamics(Qu et al.
2024), how can we create mathematical models and control techniques for very deformable soft

robots?

Challenges: This combines continuum mechanics, functional analysis, and innovative
techniques for state estimation and control of high-dimensional( Della Santina et al., 2023), non- linear
systems. Significant mathematical difficulties arise in learning correct forward and inverse models
for soft robots and developing controllers able to use their compliance for safe interaction.

6. State Estimating and Perception

Robot control is built on accurate state estimation(Nagami & Schwager, 2024) and perception;
artificial intelligence has transformed these fields, but open mathematical challenges still exist.

6.1. Strong Semantic Perception and Sensor Fusion

To create a complete picture of their surroundings (Tan et al., 2024), robots use several sensors
(cameras, LiDAR, IMUs). High-level semantic information can be extracted by Al-driven perception
systems.

e Problem: How can we mathematically fuse heterogeneous sensor data, including semantic
information(Sun & Ren, 2024), in a robust and computationally efficient manner to provide
accurate and reliable state estimates for control?

e Problems: This entails robust estimation approaches, deep learning for feature extraction, and
probabilistic graphical models. An open field is quantifying the uncertainty in semantic labels
and integrating it into state estimation frameworks (e.g., semantic SLAM) (Shu et al., 2023)

Equally important is strong handling of sensor malfunctions, occlusions, and new objects.

6.2. State Estimation with Limited Observability

Many robotic jobs require dealing with limited knowledge(Wu et al.,, 2023) regarding the
surroundings or the robot’s own condition.

e Question: How can we create mathematically correct techniques for optimal state estimation and
control under high partial observability(Wangwongchai et al., 2023), especially when Al models
are applied to predict missing data?

e Challenges: This entails partially observable Markov decision processes (POMDDPs),(

Kurniawati, 2022) but realistically robot applications would find scaling them impractical. There
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are needed approximate inference techniques, active perception strategies, and information-

theoretical approaches to sensing(Taniguchi et al., 2023).

7. Clarification and Interpretability

Many Al models applied in robot control have a “black-box”( Bélisle-Pipon et al., 2023) quality
that hinders trust and debugging.

7.1. Control Through Interpretable and Explainable Artificial Intelligence

For debugging, certification, and human supervision(Zeraati et al., 2024), knowing why an Al-
driven robot makes a specific choice is essential.

e Problem: How can we create mathematical models to ensure that human operators can
understand and explain the decision-making processes of Al-driven robot controllers(Cifci,
2025)?

e Challenges: This goes beyond just picturing neural network activations. It entails creating
techniques to draw human-understandable rules or explanations from intricate policies(Dubey
et al., 2022), attribute control actions to certain inputs, and measure the “reasonableness” of a
robot’s behavior. This may entail symbolic Al integration, counterfactual explanations, or

saliency maps(Li et al., 2023).

8. Real-Time Limitations and Computational Efficiency

Most robotic applications demand real-time operation;(Kuznetsov et al., 2023) yet, whereas
some sophisticated Al techniques are computationally demanding,

8.1. Resource-Constrained Al for Edge Robotics

A major difficulty is deploying sophisticated artificial intelligence models on limited robot
hardware (Gupta, 2025) (e.g., limited CPU, GPU, memory, power).

e Problem: While maintaining performance and safety guarantees, how can we create
mathematically optimal techniques for compressing, quantizing, and optimizing Al models for
effective run on edge robotic systems(Wang et al., 2025)?

Challenges include hardware-aware co-design, efficient architectures (e.g., MobileNets)(

Alhussain, 2024), quantization, and neural network pruning. Important is establishing theoretical

limits on the performance loss caused by model compression and guaranteeing real-time
performance.

8.2. Real-Time Control and Optimization

Many control challenges entail real-time(Flamm et al., 2021), under tight deadlines resolution of
sophisticated optimization issues.

Problem: Often with Al-driven parts, how can we create mathematically efficient algorithms for
real-time optimal control and motion planning capable of handling high-dimensional state spaces
and non-linear dynamics(Zhao et al., 2024)?

e Challenges: This calls for progress in approximate dynamic programming, model predictive
control (MPC), and numerical optimization(Chacko et al., 2023). Active areas include utilizing
artificial intelligence for warm-starting optimization issues(Sharony et al., 2024), developing

effective solvers, or directly learning control policies satisfying real-time limitations.
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9. Final Thoughts

An interesting frontier with great possibility to transform many sectors and facets of daily life is
the incorporation of artificial intelligence into robotic control systems. Unlocking this capability
entirely, however, calls for solving a host of fundamental mathematical unsolved issues. From
guaranteeing the demonstrable safety and dependability of neural network controllers to allowing
robots to learn effectively, generalize well, and interact naturally with people, every obstacle calls for
innovative mathematical understanding and serious theoretical frameworks.

Interdisciplinary study at the interface of control theory, machine learning, optimization, formal
methods, and applied mathematics should reveal answers to these issues. Improvement in these
fields not only enhances the capacities of individual robots but also clears the path for the
development of intelligent, dependable, and trustworthy autonomous systems capable of safely and
efficiently navigating complicated, erraticc and human-centric surroundings. Fundamentally a
mathematical one, the road to completely autonomous and intelligent robots call for continuous work
and invention to close the current theoretical gaps.
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