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Abstract 

The transformation of industrial systems through Industry 4.0 technologies has sparked a growing 
interest in decentralized, intelligent, and cost-effective hardware solutions. Among them, the 
Raspberry Pi family of single-board computers—ranging from the ultra-compact Pico and Zero 
models to the more powerful Raspberry Pi 4 and Compute Modules—has emerged as a versatile 
platform for industrial IoT (IIoT), edge computing, and smart automation. This review aims to 
comprehensively survey academic and industrial research where Raspberry Pi devices, irrespective 
of version or memory specification, have been integrated into Industry 4.0 applications, with a focus 
on domains such as digital twin development, SCADA integration, MQTT-based industrial 
communication, and predictive maintenance. Special emphasis is placed on the Raspberry Pi’s role 
in enabling real-time data acquisition, sensor fusion, and cloud-edge interoperability within 
industrial environments. Furthermore, the review discusses the implications of Raspberry Pi 
deployments in the broader context of the transition to Industry 5.0, where human-centric and 
sustainable practices are becoming central. Through critical analysis of existing literature and 
implementations, this paper highlights current trends, identifies research gaps, and outlines future 
directions for deploying Raspberry Pi platforms as enablers of smart, connected, and adaptive 
manufacturing systems. 

Keywords: Raspberry Pi; industry 4.0; industrial internet of things (IIoT); edge computing; digital 
twin; predictive maintenance; SCADA systems; MQTT protocol; sensor fusion; real-time monitoring; 
protocol conversion; cyber-physical systems (CPS); smart manufacturing; TinyML; Edge-to-Cloud 
communication; on-device analytics; industrial automation; containerization; fog computing; 
human-centric automation (Industry 5.0) 
 

1. Introduction 

The accelerating shift toward Industry 4.0 and the anticipated evolution into Industry 5.0 have 
redefined the way modern industrial systems operate, interact, and evolve. These paradigms with 
regards to control attend to automation, interconnection, edge intelligence, human-computer 
teamwork, and driving real-time data. The control cyber-physical systems (CPS), us Industrial 
Internet of Things (IIoT), and digital twins seamlessly integrate balanced alternating machine and 
human frameworks disciplines, forming its technological backbone. exists There, is an pressing and 
increasing requirement or demand for parallel computing low cost platforms which can reliably 
support ranging from analog signal interfacing towards sensor data acquiring processing intelligent 
control, modeling, and system edge simulation. 

In these circumstances, the single board computers are tailored towards Raspberry Pi which 
serves to transform the perspective of the academic community and industrial society. Initially 
intended as a computing invention for classroom, the Republic Of Pi has shown hands on evolving 
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into more of scientific and engineering applicable platform. Due to its small size, energy effectiveness, 
affordability, along with additional peripheral support, it has been these an ideal selection for varied 
ready to be exploited prototyping and research activities all over different types of institutions. The 
Pi Republic significantly waterproofed industrial experimentation and digital innovation whether 
served as an MQTT lightweight edge broker, cyber SCADA modular node, or PLC local interface. 

An important factor explaining the adoption of the Raspberry Pi is the diversity and scalability 
of its hardware. Users can select a board ranging from the ultra compact Zero, Zero W, and Zero WH 
models, to mid-tier versions like the Model A, A+, B, B+, and 3B, to more powerful platforms like 
Raspberry Pi 4B, Pi 400, and the latest Pi 5. Each model is tailored to varied computational needs, 
memory requirements, and I/O capabilities. These devices, which can run Linux based Operating 
systems, support real time control, edge analytics, scientific modeling, and simulation of industrial 
systems due to their multicore processors, high performance RAM (up to 8GB in some models), USB 
and Ethernet connectivity, GPIO expandability, and Ethernet connectivity. 

With respect to scientific research and industrial engineering, the Raspberry Pi enables novel 
applications in data acquisition, signal processing, machine learning, and digital twin modeling. 

Its ability to converge physical and digital layers allows it to act as a cost-effective interface 
between the field and the cloud. Moreover, its compatibility with modern software stacks — 
including MQTT, Node-RED, OPC-UA, Python, Docker, and SCADA-compatible protocols — 
enhances its relevance in legacy and next-generation industrial infrastructures. 

Despite its broad usage, there remains a lack of comprehensive and focused reviews specifically 
addressing the role of Raspberry Pi in the implementation of Industry 4.0, IIoT, digital twins, edge 
computing, and SCADA-based industrial automation systems. Most existing literature focuses on 
general-purpose use cases or educational projects, overlooking the vast potential and practical 
deployments of Raspberry Pi across industrial domains. This paper addresses that gap by presenting 
a detailed and structured review of the Raspberry Pi’s application across various industrial sectors, 
with a specific focus on its integration into Industry 4.0 frameworks. 

 
Figure 1. Raspberry Pi board housed in a transparent enclosure, connected with peripherals such as Wi-Fi dongle 
and SD card, ready for prototyping in industrial environments. 
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This review also explores the evolving role of the Raspberry Pi in enabling autonomous 
industrial devices, supporting local control logic, facilitating multi-layered system simulation, and 
bridging the gap between physical machinery and virtual representations — a concept central to the 
development of effective digital twins. It positions Raspberry Pi as a foundational building block for 
both cyber-physical convergence and the human-centric innovations envisaged by Industry 5.0. 

 

Figure 2. Raspberry Pi 4 Model B showcasing key features like dual micro HDMI ports, USB 3.0, and Gigabit 
Ethernet, making it suitable for edge computing tasks. 

Fig: Raspberry Pi 4 Model B 

2. Applications of Raspberry Pi in Industry 4.0 

The versatility of the Raspberry Pi platform has led to its widespread adoption across a broad 
range of industrial applications, from factory floors to remote monitoring stations such modern 
industrial communication protocols, Software utilities, and modern sensor technologies allows it to 
function as both a data acquisition unit and an intelligent control device. Regarding Industry 4.0, the 
Raspberry Pi brings an advantage over proprietary industrial solutions due to its compact form factor 
and open-source ecosystem, which is easily scalable as real-time responsiveness, system integration, 
and distributed intelligence deem crucial. Subsequent subsections will detail how Raspberry Pi is 
utilized in major domains of Industry 4.0, beginning with industrial automation and SCADA 
systems. 

2.1. Industrial Automation and SCADA 

The Raspberry Pi’s low cost, flexibility, and ease of use have made it a game changer in industrial 

automation and SCADA systems. Its ability to serve as an economically priced peripheral or stand-

in for traditional PLCs has made it especially popular in both academic and industrial circles. 

Modbus/MQTT Edge Nodes: 

Especially in industrial settings, the Raspberry Pi is widely used as a lower-cost edge node and 
gateway because it interfaces easily with SCADA systems via MQTT, Modbus TCP, and OPC-UA. 
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Zare and Iqbal (2020) developed a low-cost SCADA architecture with real time monitoring utilizing 
Raspberry Pi, Node-RED and MQTT. Also, Aghenta and Iqbal (2019) designed a hybrid SCADA 
system that incorporated cloud-based process control using MQTT and Modbus TCP with a Pi 
serving as the main edge computing node. Further work by Sheba and Mansour (2023) integrated 
distributed sensors into industrial control systems using Modbus TCP and MQTT on Raspberry Pi 
and ESP32. 

Hussain and Krishnaveni (2023) built upon these ideas with a focus on secure communication 
by introducing a multi-level security framework for edge nodes based on Raspberry Pi and Modbus 
TCP within SCADA systems. Nițulescu and Korodi (2020) applied Node-RED for supervisory control 
on Raspberry Pi and other platforms focusing on cross-platform modular and loose-coupling 
integration. All these works demonstrate the feasibility of the Raspberry Pi for industrial applications, 
creating remotely configurable and scalable systems with OTA (Over The Air) updates. 

PLC Communication Hub: 

The use of Ethernet and Wi-Fi in Raspberry Pi makes it compatible with GPIO, UART, I2C, and 
SPI, placing it as a highly flexible communication hub or protocol translation node in IIoT systems. 
Pereira et al. (2023) designed the middleware IIoT gateways ecosystem’s architecture using the 
Raspberry Pi, which successfully interfaced industrial protocol translation and SCADA cloud 
services bridging. Furthermore, Ramachandran (2022) proposed a Purdue Reference Architecture-
compliant Edge-to-Cloud IIoT middleware, implementing Raspberry Pi at the core for bridging inter 
communication among various industrial components. 

Pereira (2022) also showcased the standardized ontology-based gateway on Raspberry Pi 3, 
which IIoT protocols and SCADA-like systems via a translator built on Raspberry Pi. Ferencz et al. 
(2024) investigated architectures of cloud integration in which components based on Raspberry Pi 
were designed to gather data from subsystems and securely bridge it to the cloud. This increases 
modularity and long-term scalability because legacy control systems is easily integrated with 
cloudnative architectures assisting with adaptability. 

Sensor Integration: 

With its versatile ecosystem and easy available GPIO construct, Raspberry Pi is a favorable 
option for real-time sensor integration in industrial settings. As an example, Chuang et al. Raspberry 
Pi-based frameworks for equipment health diagnostics were effectively demonstrated using 
vibration and temperature sensors by predictive maintenance (2019). Mourtzis et al. (2021) also 
propused a predictive maintenance platform utilizing IoT technology with Raspberry Pi for real time 
monitoring and early fault detection in manufacturing environments. Additional validation comes 
from Villegas-Ch et al. (2024), who confirmed AI’s implementation-enhanced real time monitoring 
on Raspberry Pi as useful for safety-critical applications. Sathupadi et al. (2024) enabled predictive 
maintenance through sensor analytics in edge-cloud synergy using the Raspberry Pi Zero 2 W. 
Connected vibration and gas sensors demonstrated early fault detection across industrial equipment 
using systems rooted in Raspberry Pi by Atassi and Alhosban (2023). 

These studies collectively demonstrate the cost-effective, low maintenance, and flexible 
capabilities of Raspberry Pi in real-time automation for industrial safety and maintenance. 
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Figure 3. MQTT-based publish–subscribe communication model where telemetry data is published to a central 
broker, which distributes it to subscribed clients for command and control operations. Devices can both publish 
data and subscribe to commands for bidirectional communication. 

2.2. Merging Industrial Systems and Raspberry Pi Technology 

In the context of the IIoT ecosystem, the Raspberry Pi functions as an edge gateway that 
interconnects field devices with cloud services like AWS IoT Core, Azure IoT Hub, and Google Cloud 
IoT. Its low cost, flexibility, and extensive community support make it especially useful for industrial 
applications in regard to miniature computing requiring adaptable, low-power, programmable 
devices. 

2.2.1. Setting Up Communication From Local Server to Cloud 

The use of the Raspberry Pi to facilitate edge-to-cloud communication in IIoT makes it one of 
the most important devices. His low cost, flexibility, and strong community help make it easier to 
implement data collection and control systems in business. 

Integration with Cloud Platforms 

The use of the Raspberry Pi tends to be more common in underprivileged regions in an effort to 
expand advanced remote operation tools of mobile sensor networks. The local devices usually 
operate low-power MQTT brokers such as Mosquitto and retrieve data using the Modbus, OPC-UA, 
or REST API frameworks and send it to cloud-hosted service data storages for analytical purposes 
and advanced graphic presentation. 
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Integrating AWS, Azure, and Google Cloud Services: 

Jamil et al. (2024) described the design of a sophisticated distributed edge-to-cloud IIoT 
architecture using Raspberry Pi devices, and interfacing with cloud services through MQTT on AWS, 
Azure, and Google Cloud, illustrating inter-platform interaction and compatibility. Real-time 
monitoring applications incorporating IIOT communication through Raspberry Pi edge nodes were 
analyzed in Ramachandran (2022) as utilizing AWS IoT-reserved MQTT topics. Also, Poojara et al. 
(2022) examined the use of serverless data pipelines that connect Raspberry Pi edge stream devices 
with AWS, as well as Google Cloud over MQTT, increasing the ease of maintaining scalable IIoT 
systems. Each of these studies utilizes the Raspberry Pi’s cloud readiness to support its use in 
bridging the edge and cloud layers in industrial automation, promoting its adoption in modern IIoT 
systems as a versatile, affordable, and adaptable device. 

 
Figure 4. Edge-to-Cloud IIoT architecture using Raspberry Pi as an edge node interfacing with industrial sensors 
via I2C, SPI, UART, and ESP modules (ESP8266/ESP32), transmitting data over MQTT to AWS, Azure, and 
Google Cloud for real-time processing and storage using respective IoT, serverless, and analytics services. 

Interoperability and Protocol Transformation 

Constructed with the Raspberry Pi in mind ensures high versatility, transforming it into an 
affordable and efficient protocol converter that facilitates communication between outdated 
technologies and modern IoT frameworks. Featuring modular or containerized designs, Raspberry 
Pi gateways are capable of changing data from classical industrial communication protocols like 
Modbus, facilitating communication with IP-based systems using MQTT or CoAP, and enabling 
diverse systems integration. 

Modbus/MQTT Gateway Development: 

Sun et al. (2019) described the implementation of a Modbus/MQTT gateway using Raspberry Pi 
for industrial cloud applications. Their system was successful in performing protocol conversion and 
data sending to the cloud services over MQTT. Amiri (2021) also suggested an interoperable IIoT 
toolbox that uses Node-RED on Raspberry Pi for converting Modbus signals to MQTT for easy cloud 
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interfacing. Silva and Silva (2019) developed a prototype of a Raspberry Pi based gateway for 
integrating Modbus and MQTT and demonstrated its potential use for interfacing with legacy 
systems within IIoT. Nguyen-Hoang and Vo-Tan (2019) also designed an open-source IIoT gateway 
with MQTT and CoAP for connecting industrial devices to cloud servers which mitigated OT/IT 
interconnectivity issues. Mancheno and Gamboa (2022) expanded on this work with a gateway 
implementation that allowed publishing and subscribing of MQTT topics from Modbus RTU devices, 
thus further supporting the use of Raspberry Pi as a bridging device on IIoT systems. 

Performance Evaluation 

Evaluating the performance of Raspberry Pi in edge and cloud communications is necessary for 
industrial use cases, especially for protocol-heavy IIoT systems. 

MQTT Performance on Raspberry Pi: 

Silva et al. (2021) provided an in-depth evaluation of IoT networking protocols, analyzing the 
performance of MQTT with respect to latency, throughput, and CPU usage alongside its competitor 
CoAP. Their results indicated that the implementation of MQTT on edge devices like Raspberry Pi 
was strikingly efficient, further suggesting that its use for real-time data transfer within IIoT 
ecosystems is feasible. Wiener et al. (2020) built upon this by implementing a stream processing 
pipeline with MQTT and Mosquitto on a Raspberry Pi 3B+, proving its effectiveness in managing the 
distributed data flow of IIoT systems. 

These assessments argue the viability and efficiency of implementing MQTT and OPC UA 
protocols on Raspberry Pi, showcasing it as a robust candidate for diverse and scalable IIoT 
implementations. 

Security Considerations 

While the role of the Raspberry Pi as an edge node in IIoT systems presents interesting 
opportunities, security, particularly in edge-to-cloud communications using MQTT, remains a large 
point of concern. 

Security Challenges in Data Transmission: 

MQTT, by virtue of being lightweight and low overhead, poses significant vulnerabilities when 
not married to encryption like TLS/SSL. Research has shown that unencrypted MQTT streams are 
susceptible to industrial-grade threats like spoofing and message tampering or more broadly known 
as MitM attacks. Suggested at a minimum is the installation of TLS on MQTT brokers, like Mosquitto 
with host TLS, and the enforcement of client certificate authentication or traditional 
username/password. Stronger measures against unprivileged publishing or subscribing will also 
help curb the problem. Citing Zyrianoff (2024) in IoT-centric edge-cloud frameworks who advocates 
the strengthening of edge-to-cloud conduits for tokens and encryption, especially on low-powered 
processors such as Raspberry Pi, is worth mentioning. Also, Silva et al. (2021) in their protocol 
performance in question remarked on the critical need for secure configurations of MQTT, especially 
in transmissions emanating from constrained edge devices to AWS IoT or Azure. 

Along with container hardening, port isolation, and routine firmware updates, these best 
practices provide a reliable baseline for protecting Raspberry Pi’s security in industrial edge-to-cloud 
settings. 

2.2.2. Predictive Maintenance and On-Device Analytics 

The integration of lightweight machine learning (ML) frameworks, such as TensorFlow Lite, 
Edge Impulse, and Scikit-learn, enables Raspberry Pi to perform on-device analytics. This facilitates 
real-time condition monitoring and predictive maintenance while reducing latency and network 
bandwidth demands by processing data directly at the edge. 
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TinyML Frameworks and Edge Inference 

The application of deploying machine learning models (TinyML) on the edge devices with 
constrained resources comes with heightened consideration towards predictive maintenance (PdM) 
operations. As previously mentioned, Njor et al. (2024) reviewed the entire ecosystem of the 
predictive maintenance stack of TinyML, remarking the effectiveness of TFLM on devices like Geeks 
for Geeks Pi. Conclusively, Saraan et al. presented novel architectures of PdM enabled with TinyML, 
underscoring the TensorFlow Lite and uTensor’s applicability in industrial settings. 

Exell (2023) assessed the predictive maintenance prospects of the machine and articulated the 
repositioning of the Raspberry Pi towards the edge as a requirement for anomaly detection. Further 
advancing the direction, Chen et al. (2023) put together a self powered sensor using TinyML which 
they claimed could be applied on Raspberry Pi platforms to remote manage power PdM systems. 
Lastly, de la Fuente et al. (2024) crafted inference neural networks powered by TinyML that could 
handle real time multi diagnostic checks for mining machinery running under aggressive industrial 
environments. 

As a whole these works compleminet each other validating the employment of Rasberry Pi to 
argue over the maturity of embedded intelligence and affirm the responsive scalability of TinyML 
powered strategies designed to facilitate real-time predictive maintenance in industrial IoT. 

Fog Computing Architectures 

Fog computing shifts cloud services closer to the edge of the network. It builds a distributed 
system with edge devices, fog nodes, and a centralized cloud infrastructure for computation, storage, 
and communication. D’Agostino et al. (2024) developed a predictive maintenance solution for 
industrial IoT based on Raspberry Pi and LSTM neural networks that is real-time scalable and fog 
computing compliant. Jouini et al. (2024) also confirmed the use of Raspberry Pi as a fog layer in 
machine learning edge-powered architectures for latency-sensitive applications like predictive 
maintenance and quality control, further reinforcing its value. 

Sensor Fusion and Data Analytics 

Sensor fusion works better with predictive maintenance as it provides data from different 
sources, thus enabling higher model accuracy. Karras et al. (2024) showed how sensor data fusion for 
more accurate diagnostics is possible through scalable analytics with TinyML on Raspberry Pi in 
industrial IoT systems. De la Fuente et al. (2024) advanced work with hierarchical inference networks 
on bone-mounted minable sensors with TinyML, demonstrating the effectiveness of multi-sensor 
fusion on low power edge devices. 

Challenges and Future Directions 

The potential of deploying TinyML on devices with extremely limited resources, such as 
Raspberry Pi, poses challenges in terms of memory restrictions, energy limitations, and model 
refinement. Njor et al. (2024) reviewed the challenges model compression poses and the need for 
more support during model execution. Kallimani et al. (2024) made similar claims in a systematic 
review by highlighting the lack of frameworks and deployment strategies tailored to lower powered 
environments. Arif and Rashid (2025) studied some of the model conversion techniques applicable 
for fog/edge ML model deployments. 

2.2.3. Protocol Conversion and Legacy System Integration 

The Raspberry Pi can efficiently carry out procedure conversions to enable communication with 
older field devices and modern IoT protocol by using its modular framework along with its Linux 
operating system. The use of containerization technologies improves this flexibility since it allows the 
integrated execution of modular services to perform protocol conversions of LoRaWAN, Modbus 
RTU, MQTT, and CoAP. 
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Containerization of LoRaWAN End Node Modules: 

Cilfone et al. (2024) suggested the virtualization of LoRaWAN end nodes through the use of 
Docker containers in conjunction with Raspberry Pi. Each device is packaged in a container and CoAP 
IP communication is established, allowing for IP communication under the constraints of the 
traditional LoRaWAN architecture without modification or increased consumption from the devices. 

CoAP-MQTT Bridge’s Docker Based Implementation: 

Zyrianoff (2024) showed implementation of CoAP/MQTT microservices in Docker containers on 
Raspberry Pi within a versatile IoT framework. The system applied protocol bridging within custom 
Docker containers and application frameworks to enable scalable communication from edge nodes 
based on MQTT to cloud servers. 

Development of Modbus to MQTT Gateway: 

Milenkovic (2020), Iyengar, and Pearson (2024) demonstrated architecture where the Raspberry 
Pi acts as a passthrough gateway from Modbus RTU to MQTT. These architectures allowed the 
industrial devices’ real time data publiShing to cloud servers, seamlessly integrating them into 
modern IIoT networks. 

Performance Evaluation of Protocol Conversion: 

Sharma (2023), for instance, studied the efficiency of protocol conversion on the gateways based 
on Raspberry Pi, specifically looking at latency and message throughput for the conversion from 
LoRaWAN to MQTT. Results underscored its dependability for medium-scale industrial 
implementations. Additional benchmarks by NEPHELE Project (2023) also examined CoAP, MQTT, 
and Modbus orchestration through Docker containers on edge devices, proving their constrained 
resources real-time performance validity. 

2.2.4. Containerization and Edge Computing 

The implementation of containerization solutions, for instance Docker and Kubernetes, on 
Raspberry Pi has greatly increased its functionality as a modular edge compute node. Containers 
offer microservices self-sufficient spaces for IoT systems which makes it possible to deploy work to 
monitor and control in real time, log data, perform analytics, and translate protocols. 

Con-Pi: Distributed Container-Based Edge and Fog Computing 

Mahmud and Toosi (2021) proposed a framework called Con-Pi which is a container-based 
distributed system constructed using clusters of Raspberry Pi. IIoT systems are supported by the 
dynamic allocation of resources and multi-tenance. Con-Pi hosts IoT services in Docker containers, 
enabling the energy aware modular execution of fog applications for heterogeneous and mobile 
Raspberry Pi nodes. 

Containerization of Industrial Workloads using Kubernetes and Balena 

Urblik et al. (2024) studied edge intelligence implementations based on Docker and Kubernetes, 
showing that cluster-enabled Raspberry Pis can efficiently administer industrial application 
containers with some level of Pi orchestration. They advocate further coupling with Balena and K3s 
for easier workload deployment and scaling at the edge. 

The Impact of Containers on Performance in Edge Computing 

Gupta and Nahrstedt (2025) performed a comprehensive evaluation of containers hosted on 
embedded systems like a Raspberry Pi. Their examination of container’s start-up time, CPU/memory 
usage, and networking efficiency offered constructive guidance on configuring Docker at the 
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computational edge whilst maintaining real-time performance to responsiveness thresholds. Similar 
conclusions were drawn by Liu et al. (2021) in their performance evaluation of implementing 
containerization in edge-cloud computing infrastructures which included supporting the Raspberry 
Pi 3B+ as a Docker host in industrial use cases featuring latency-critical operations. 

Lightweight Container Orchestration for Edge Pedestals 

Leskinen (2020) investigated the use of Kubernetes for IIoT applications by deploying a K3s 
based cluster on Raspberry Pi. Their approach demonstrated the balance between orchestration 
burden and resource constrained edges while still enabling scaling. Related research by Donca et al. 
(2024) focused on the secure use of Kubernetes on Raspberry Pi clusters for the purpose of distributed, 
dependable and secure IoT control. 

2.3. Digital Twin Enabler 

The Raspberry Pi has become a pivotal enabler in digital twin architectures, especially for 
localized and cost-sensitive industrial systems. Its versatility, accessibility, and broad ecosystem 
allow it to serve as a reliable interface for real-time data acquisition, control, and simulation 
synchronization. 

2.3.1. Real-Time Mirroring and Simulation Integration 

The linking of sensory information with relevant domain knowledge for reasoning and problem-
solving has been facilitated by Raspberry Pi devices. These provide a connection of low latency with 
the real-world allowing for modeling, monitoring, control, and data exchange. The USB, GPIO, and 
camera modules on these platforms make them interfacing with sensors and actuators capable for 
use in digital twin simulations. 

MATLAB and Simulink Integration 

The handheld computer Raspberry Pi works with MATLAB/Simulink modules that interface 
with digital sensors and actuators for telemetry data in real-time data capturing and control feedback 
loop systems. Although, not much work has been done on the empirical investigations of the 
relationship of Raspberry Pi and Simulink in context of digital twin is available, but the high 
compatibility of Raspberry Pi with MATLAB Embedded Coder toolkit and Simulink Support 
Package for Raspberry Pi ensures the development of prediction and reactive control models in 
simulation loops will be possible. 

Unity and Twinmotion Integration 

A digital twin integrating data streams from Raspberry Pi into a connected vehicle simulation 
was developed by Mohamed et al. (2024) using Unity. This system was equipped with a camera and 
a LIDAR sensor allowing the Unity for control algorithm development to be controlled using real 
mirror data. The benefits of employing real-time visualization in smart manufacturing were recently 
showcased through a monitoring twin for battery production built using Unity and Raspberry Pi by 
Moe (2022) for monitoring and immersive training simulations. 

These studies further integrate the use of Raspberry Pi in digital twin ecosystems, especially as 
a link between the physical sensor networks and simulations in Unity, MATLAB, and Twinmotion. 

Implementations within Smart Environments 

Raspberry Pi systems have been widely applied in smart environments for automation and 
monitoring to maximize energy savings and increase the comfort of the environment’s occupants. 

Smart Room Management: 
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Tancredi et al. (2024) reported a digital twin powered control system in smart rooms that uses 
Raspberry Pi to monitor HVAC and lighting systems along with energy optimization to ensure 
comfort. Hull (2023) reported a temperature management system aimed at sustaining ideal 
temperature conditions in smart greenhouses which was developed on IoT framework using 
Raspberry Pi. 

HVAC Systems: 

Integrating temperature, humidity, and occupancy sensors in HVAC systems with Raspberry Pi 
has proven to be useful. According to Rahman et al. (2024), the authors developed a smart greenhouse 
framework using Raspberry Pi and ESP32 boards to manage the greenhouse’s environmental 
conditions with dynamic control through machine learning-based digital twins. 

Digital Twins in the Food Supply Chain 

Real Time Monitoring: 

A digital twin architecture was developed for food logistics temperature and ventilation 
monitoring, which used a Raspberry Pi for live sensor data collection and forwarding (Jedermann et 
al., 2023). Gonzalez et al. (2022) developed an agricultural monitoring digital twin using Pi-attached 
cameras and climate sensors for satellite telemetry to optimize farming conditions. 

Supply Chain Optimization: 

A responsive and traceable food supply chain was developed using a digital twin-driven 
planning and control system, as described by Maheshwari et al. (2023). Le et al. (2024) performed 
real-time digital twin monitoring throughout the coffee value chain with localized data gathering 
and supply chain visibility, which was executed with a Raspberry Pi. 

These developments demonstrate the immense potential of Raspberry Pi in the development of 
smart, adaptive, energy-efficient systems and their integration with digital twins in food logistics. 

2.3.2. Applications in Pharmaceutical and HVAC Systems 

Integration of the Raspberry Pi into pharmaceuticals and HVAC systems has enabled the design 
of digital twin architectures with functionalities of real-time monitoring, future event simulation, and 
resource allocation optimization. 

Pharmaceutical Uses 

In the field of pharmaceutical engineering, the environment must be controlled in depth in order 
to follow laws and regulations. There is a growing trend of utilizing Raspberry Pi for the temperature, 
humidity, and airborne particulate matter data collection and processing in the cleanrooms and 
production facilities. 

Huang (2023) created a digital twin model for continuous pharmaceutical manufacturing which 
uses advanced control techniques and real-time analytics to manage critical production parameters. 
Roopa and Venugopal (2025) expanded on digital twin frameworks in the healthcare discipline and 
pointed out the importance of edge computing devices such as Raspberry Pi in proactive medicine 
and tailored delivery systems because of real-time sensing and diagnostics. Along the same lines 
Adibi et al. (2024) introduced a digitized twin model for smart healthcare with sensors where 
Raspberry Pi is highlighted for efficient data acquisition and decision making in the pharmaceutical 
field. 

HVAC System Applications 

Raspberry Pi technology is as well incorporated in HVAC systems for monitoring and 
simulation-based control as it is for real-time environmental control. It enables digital twin 
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architecture compatible users to dynamically simulate a system’s performance, energy expenditure, 
and even maintenance predictions. 

Hosamo et al. (2022) merged IoT sensor data with an automatic fault diagnostics system to 
enhance system reliability, prompting the creation of two digital twin frameworks for air handing 
units aimed toward energy consumption reduction. Analyzed also by Salzano et al. (2025), predictive 
maintenance on HVAC systems enabled the use of Raspberry Pi sensors to control real-time models 
monitoring HVAC functionality in educational facilities. Priddy (2024) demonstrated self-sustaining 
digital twins for thermal systems while proposing an adaptive control strategy that leverages real-
time sensor feedback to optimize energy efficiency and reduce operational costs. Singh et al. (2023) 
demonstrated the use of Simulink-integrated digital twins for maintenance forecasting in AC 
machines, featuring on-device edge computing powered by Raspberry Pi. 

2.3.3. Interfacing and Multi-modal Data Streaming 

The modular hardware along with the Linux based operative system of Raspberry Pi enable 
streamlined control of diverse communication interfacing. Its use as a unified network hub in 
industrial IoT settings is being advanced. The containerization capabilities deepen the scope of the 
device to enable real-time multi-modal data and protocol bridging through LoRaWAN, Modbus 
RTU, MQTT, and CoAP. 

Container-Based Virtualization of LoRaWAN End Nodes 

Hasan (2020) evaluated performance benchmarks of CoAP and MQTT against LoRaWAN on 
Raspberry Pi platforms and scrutinized their interaction with cloud systems and data backhaul APIs. 
The work serves as a primary reference for a containerized CoAP-MQTT bridge in low-bandwidth 
settings on a Raspberry Pi. 

Dockerized CoAP-MQTT Bridging 

Sharma (2023) implemented a LoRaWAN-MQTT cloud interfacing scheme based on Python 
services running in Docker containers on Raspberry Pi. The framework was designed to translate 
resource-constrained CoAP into MQTT streams for energetic delivery to cloud services. 
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Figure 5. Comparison of MQTT and CoAP communication models. MQTT follows a publish-subscribe 
architecture with a centralized broker mediating between clients, while CoAP employs a lightweight request-
response model allowing direct peer-to-peer interaction between clients and servers. 

Modbus to MQTT Gateway Development 

Mirza et al. (2024) documented the process of building IoT-enabled Raspberry Pi devices using 
Modbus, CoAP, and MQTT, showcasing real-time sensor data incorporation and compounded data 
output scaling through MQTT broker features. 

Performance Evaluation of Protocol Conversion 

The study conducted by Lalhriatpuii et al. (2024) measuring CoAP, MQTT, HTTP, and 
LoRaWAN’s performance in several IoT applications has verified the feasibility of multi-protocol 
streaming on Raspberry Pi. Performance evaluations of MQTT over LoRaWAN networks regarding 
message loss, throughput, and latency—which are definitively critical for industrial use—were also 
conducted by Al-Masri et al. (2020). 

2.4.1. Real Time Dashboards and Visualization 

Raspberry Pi has emerged as an integral part of construction for real-time dashboards and data 
visualization tools in industrial as well as environmental domains. The availability of versatile open-
source software permits local information harvesting, processing, and display without cloud reliance. 

 

Figure 6. Client-server IoT flow architecture using Raspberry Pi as a client device, with Node-RED for data 
parsing and routing, InfluxDB for time-series data storage, and Grafana for real-time data visualization. The 
architecture enables seamless data flow from edge devices to visual dashboards. 

Case Studies and Applications 

Using Node-RED coupled with InfluxDB and Grafana, numerous studies have monitored 
ecosystems with a Raspberry Pi enabling real-time data visualization and automated decision-
making. 

Smart Campus Monitoring 
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The work of Domínguez-Bolaño et al. (2024) describes the development of a smart campus as an 
IoT ecosystem that enables scalability. They incorporated Raspberry Pi, Node-RED, InfluxDB, and 
Grafana for indoor climate parameter monitoring across university facilities. This flexible system not 
only enabled visualization of data in real time, but also proved useful for broader smart buildings 
contexts. In the same smart university model, Prakash and Vengattaraman (2024) employed similar 
technology to control energy use and enhance responsiveness of the system, using MQTT for 
communication. 

Environmental Monitoring System 

Guerbaoui et al. (2025) presented an entire framework for the Internet of Things which 
encompasses environmental monitoring that integrated sensor data processing using Node-RED at 
MQTT level. InfluxDB was used for time-series storage, while data visualizations were provided by 
Grafana in real-time. The edge system based on Raspberry Pi was capable of monitoring the 
temperature and humidity from distributed sensors which was useful in exploring pollution control, 
as well as for weather monitoring. 

Indoor Environment Sensing 

Biondo (2022) created an advanced indoor air quality (IAQ) monitoring system for smart 
buildings that was designed to operate in real time and uses Raspberry Pi as the central data 
processing unit, along withmultipleenvironmental sensors. The data was transmitted over MQTT 
protocol, managed with Node-RED, stored in InfluxDB, and visualized in dynamic dashboards using 
Grafana. 

Japón (2022) published an easy-to-follow tutorial on programming edge IoT devices with Node-
RED and Grafana, featuring a project where a Raspberry Pi is used with gyroscopes, magnetometers, 
and environmental sensors for monitoring, which highlighted the modular approach of building IoT 
applications. 

Advantages and Effects 

Merging Raspberry Pi with Node-RED, InfluxDB, and Grafana provides distinct benefits as 
outlined in recent studies. 

Economic Efficiency: The adoption of Raspberry Pi and other open-source instruments in 
monitoring solutions significantly minimizes the expenses involved. He et al. (2024) created an ultra-
low power consumption supervisory control system for hybrid power systems and demonstrated 
cost-effective deployment. Omidi et al. (2023) also showcased similar cost advantages in renewable 
energy projects leveraging Node-RED SCADA architecture integrated with Grafana and InfluxDB. 

Broader Applicability: Martikkala (2024) discussed promiseful IoT designs for smart system 
democratization with flexible Pi configurations, including the sensor and monitoring node 
extensibility offered by containerization with Grafana’s distributed architecture. 

Immediate Overseeing: El-Nimr et al. (2018) highlighted Node-RED and Grafana’s capability for 
real-time data collection from PV systems, identifying the stack’s potential for real-time data-
intensive and critical applications. 

Simple Yet Effective Visualization: Ms. Ahmed (2024) and Ranjan et al. (2024) commended the 
minimal coding necessary for time-series alerts, charting, and visualization on Grafana’s dashboard 
interface, citing its integration in monitoring mesh networks and visualizing health data within 
RADAR-IoT under framework Ranjan et al.’s design. 

Combining a Raspberry Pi with Node-RED, InfluxDB, and Grafana creates an integrated system 
for operating real-time environmental and industrial monitoring which is cost-efficient, easy to use, 
and scalable as demonstrated in the studies. 

2.4.2. Edge-Based Machine Learning and Anomaly Detection 
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The use of Raspberry Pi along with light ML frameworks like TensorFlow Lite, and hardware 
accelerators like Coral USB TPU, has been effective for on-device analysis. This configuration 
facilitates real-time oversight and predictive maintenance by carrying out data analysis locally to 
reduce delays and bandwidth consumption. 

 
Figure 7. (a) Logical deployment of an edge–cloud–sensor architecture illustrating data flow from distributed 
sensor nodes to edge servers and centralized cloud systems. (b) Functional structure highlighting the layered 
responsibilities: sensors for data collection, edge for aggregation and anomaly detection, and cloud for storage, 
integration, and advanced analytics. 

Healthcare Applications 

In medicine, implementing ML models on the edge allows for instant reactions to patient 
situations. Subiramaniyam (2024) proposed a smart health monitoring system featuring deep 
learning that incorporates IoT-edge computing powered by Coral USB TPUs. The system achieved 
real-time health metric anomaly detection with low-latency performance. With biometric 
applications in mind, Klymyuk (2020) created an on-edge human tracking system employing 
Raspberry Pi and OpenPose, utilizing TensorFlow Lite which proved high accuracy and prompt 
responsiveness. 

Comparative Evaluation Of Edge Devices 

Garcia-Perez et al. (2023) compiled a benchmarking analysis focusing on edge devices that 
include Raspberry Pi 4 and Coral TPU. The study analyzed inference time, energy efficiency, and 
model fitting, verifying the Raspberry Pi’s edge in the use of light ML processes. DuBois (2021) 
illustrated implemented distributed learning with Raspberry Pi and Coral TPU based networks 
which revealed edge model training in collaborative settings. 

Anomaly Detection in IoT Environments 

Raspberry Pi has been satisfactory employed for anomaly detection on sensor networks. Nair et 
al. (2024) studied Edge AI Applications on embedded system using Tensorflow Lite and Coral TPUs 
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where models such as LSTM-AE and Isolation Forests were used to detect anomalies in temperature 
and motion signals. Aminiyeganeh (2023) verified the efficiency of outlier and missing data detection 
on object detection models tuned with Tensorflow Lite on Raspberry Pi and Coral TPUs. 

Industrial Applications 

In the industrial context, the use of Raspberry Pi and Coral TPUs has been reported for anomaly 
detection on solar farms and on manufacturing processes. Oliveira et al. (2024) advocated that Edge 
AI is of extreme importance for predictive maintenance and real time control and applied embedded 
ML models on devices based on Raspberry Pi in multiple domains. 

Optimization Techniques 

Running ML on Raspberry Pi has been reported to require additional steps such as model 
pruning and quantization. Jouini et al. (2024) reviewed Edge AI implementation tactics including 
CNN-LSTM compression for real-time execution at the edge. Berardini (2024) described DL models 
tailored for behavior recognition on constrained devices like Raspberry Pi and optimized with 
Tensorflow Lite and Coral TPU. 

2.4.3. Time-Series Data Logging and Operational Efficiency 

Raspberry Pi, when used with time series databases like InfluxDB, creates an interface for 
capturing, storing, and analyzing sensor data in real time. This combination has been employed in 
both the industrial and environmental sectors to enhance operational productivity and undergird 
predictive analytics. 

Integration with InfluxDB for Time-Series Data 

InfluxDB’s edge systems architecture is scalable, lightweight and high performance, making it 
an ideal candidate for edge systems based on Raspberry Pi. Das (2024) constructed a SCADA-like 
health and environmental monitoring system with Node-RED, InfluxDB, and Grafana that provided 
real-time visualization and alerting with data fetched from InfluxDB using sensors. Harum et al. 
(2024) developed an automated data logging system for IIoT environments using Raspberry Pi and 
InfluxDB. Their system processed and stored temperature, humidity, and vibration data in real-time. 
Mudaliar and Sivakumar (2020) also performed real-time energy monitoring and showcased the 
system’s ability to collect and timestamp data in granular detail for smart buildings using Raspberry 
Pi and InfluxDB. 
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Figure 8. InfluxDB-based data pipeline showing integration of LPWAN, HTTP/MQTT/CoAP devices, and third-
party inputs for real-time collection of metrics, logs, and traces in time-series databases. 

Operational Efficiency and Predictive Maintenance 

Bounded with InfluxDB’s native time-series analytics features, performance bottlenecks and 
equipment degradation forecasting is possible. Mušović (2024) built a system for predictive analytics 
in industrial automation wherein operational data was captured in real-time using Raspberry Pi 
devices and fed into InfluxDB for ML-driven insights. In the same light, Mtesigwa (2020) 
implemented vibration-sensing techniques using Raspberry Pi to monitor signal time series for 
predictive maintenance and engine condition monitoring. Rayhan (2024) evaluated the use of 
Raspberry Pi and InfluxDB in creating an active magnetic bearing monitoring system. The study 
verified the construction’s ability to record high speed data from the machine for predicting faults. 
Kitadu (2025) further confirmed the use of InfluxDB for developing a data management and analysis 
application in industrial processes using Raspberry Pi, demonstrating the value of InfluxDB in edge-
to-cloud data logging his frameworks. 

Case Studies and Applications 

Environmental Monitoring 

Raspberry Pi based systems have been extensively used in agricultural and environmental 
sectors for monitoring soil moisture, temperature, and even air quality. Gil (2023) created an 
environmental monitoring system for smart farming that utilized Raspberry Pi to store time-series 
data and monitor for certain thresholds in order to notify the farmers. This empowers farmers to 
better manage crop irrigation and increase agro yield. Mudaliar and Sivakumar (2020) also conducted 
an IoT powered real time energy and environment monitoring system using Raspberry Pi and 
InfluxDB for microclimate control. 

Pi Industrial Data Collection 

Within manufacturing industries, a Raspberry Pi has been used for vibration, temperature, and 
machine utilization monitoring through sensor data collection. An industrial diagnosis framework 
was put forth by Bolanowski et al. (2023), where Raspberry Pi acts as a gateway for the diagnostics 
of health and performance. Moreover, Vermesan et al. (2022) developed a real-time edge-
maintenance system that implemented Raspberry Pi for predictive analytics and OEE monitoring. 

Raspberry Pi has been appropriated for home residential purposes, allowing for the tracking of 
energy consumption and the environment through smart home systems. A home energy feedback 
system was developed by Trinh (2016) with Raspberry Pi logging energy consumption and 
presenting the data through visualization dashboards for behavioral change. In addition, Mirza et al. 
(2023) described M2M data logging frameworks harnessed through Raspberry Pi for the control of 
smart appliances and energy management. 

2.5.1. MCSA: Motor Current Signature Analysis 

Analyzing current waveforms of motors provides a great deal of information bioth mechanically 
and electrically. In predictive maintenance, this is referred to as Motor Current Signature Analysis 
(MCSA). The technique is primary to fault detection in motors. Given its low cost and high versatility, 
Raspberry Pi offers great potential for implementing MCSA for both small and industrial devices. 

Integration with Current Sensors 

The interfacing ability of Raspberry Pi with its vast ecosystem makes it possible to achieve real-
time diagnostics of current sensors including: 
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The INA219 is an I2C-compatible high-side current sensor that features voltage, current and 
power measurement. Jung (2023) showed how the INA219 sensor could be utilized with a Raspberry 
Pi 3 for real-time current and voltage sensing in IoT architectures. Their application from IoT systems 
concentrated on pervasive sensing on industrial sites which validated the sensor’s ability for real-
time industrial current monitoring (Jung 2023). 

Equally popular in practice and literature, though not yet cited in this search result, is the 
ACS712 for motor monitoring tasks. The analog output of the sensor, which is linked to AC or DC 
current, makes it compatible with Raspberry Pi through an analog-to-digital converter. Furthermore, 
the sensor has experienced widespread usage in do-it-yourself projects aimed at diagnosing motor 
health. 

The integration of these sensors allows Raspberry Pi based systems to capture data of current 
waveform signals in real time and utilize such data in detection systems or machine learning 
processes to identify rotor defect, bearing degradation or shoulder imbalances. Such systems assist 
greatly in the prevention of unanticipated outages and in the prolongation of equipment life in smart 
manufacturing environments. 

Case Study: Real-Time Data Acquisition 

Raspberry Pi devices have already been validated in real-world scenarios for real-time 
monitoring of current in industrial applications. Raja’s (2023) work showcased the predictive 
maintenance capabilities offered for electric machines by integrating the Raspberry Pi with INA219 
sensors, MQTT, time-series visualization tools, and sensor-enabled predictive maintenance 
frameworks. His approach achieved real-time current monitoring from industrial motors, leveraging 
edge-computation on the Raspberry Pi via sensor-based diagnostics. In a similar vein, V. Noor (2023) 
developed an IoT-enabled electric motor with a machine-learning predictive maintenance solution 
that autonomously monitored and classified current signals, showcasing the Pi’s feature extraction 
and model inference prowess in resource-constrained scenarios. 

Advanced Fault Detection Techniques 

Somewhat newer is the research focus on integrating advanced signal processing and machine 
learning techniques into Motor Current Signature Analysis (MCSA). Although often cited are 
adaptive filters with gradient descent and Functional Principal Component Analysis (fPCA), these 
methods are proprietary to MATLAB/Simulink or Python-based environments, which can be 
operated on Raspberry Pi. While current Pi-focused literature does not directly cite these frameworks, 
they are widely adapted for edge environments, especially when model compression optimization is 
considered for Pi systems. 

Advantages of Raspberry Pi in MCSA 

Cost Efficiency: Predictive maintenance is accessible for small to medium enterprises because 
the cost-effective Raspberry Pi allows for the implementation of solutions that were previously 
restricted to more expensive platforms. 

Versatility: It’s compatibility with I2C, SPI, UART, and GPIO interfaces allows for easy 
integration with current sensors like INA219 or ACS712, and can publish data via MQTT or store it 
using InfluxDB. 

Vibration and Thermal Analysis 

Raspberry Pi’s integration with vibration and thermal sensors elevates its value in condition 
monitoring and predictive maintenance. These systems enable real-time edge analytics, minimizing 
reliance on cloud infrastructure and significantly improving speed and efficiency in fault detection. 

Vibration Analysis with MPU6050 
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The MPU6050 is one of the most popular 6-Axis motion tracking devices which has a gyroscope 
and accelerometer integrated into it. It enables accurate vibration monitoring, which is necessary for 
identifying issues such as imbalance or misalignment in industrial apparatus when interfaced with 
Raspberry Pi through the I2C interface. Turkin and his colleagues (2023) designed a system which 
used Raspberry Pi and MPU6050, to compute frequency domain features using FFT and time-series 
analysis to assess the state of rotating machinery. The system enabled predictive maintenance using 
condition monitoring based vibration diagnostics. 

Also, Bleboo and Aboagye-Otchere (2024) developed an extensive IoT based condition 
monitoring system, collecting 65,536 samples of vibrations using Raspberry Pi 4 for remote 
assessment of induction motors which can be used remotely. This work underscored the importance 
of lower-cost MEMS sensors for high-frequency vibration measurements. 

Thermal Analysis with AMG8833 

Another important device for condition analysis is the AMG8833 thermal camera sensor which 
can create an 8x8 pixelated thermal image. Akpo (2021) created an edge capable diagnosis framework 
employing AMG8833 together with Raspberry Pi which enabled monitoring thermal signatures of 
rotating machines. This system made it possible to detect overheating and irregular distributions of 
heat at comparatively lower temperatures. An IoT system was created by Firmanasyh et al. in 2023 
where a Raspberry Pi and AMG8833 sensor could monitor the temperature and locate thermal 
anomalies in industrial machinery. An overheating problem was also identified using an inexpensive 
real time thermal array (Firmansyah et al., 2023) which assisted in maintenance work. For rotating 
machinery, Akpro (2021) focused on implementing AMD8833 with Raspberry Pi and created an edge 
enabled frame work to observe thermal patterns. Their work also included real-time fault detection 
which was conducted using infrared imaging for predictive maintenance. 
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Figure 9. Sensor modules commonly used in edge-based predictive maintenance systems—(top) Panasonic 
AMG8833 Grid-EYE thermal infrared array sensor for thermal imaging, and (bottom) MPU6050 IMU module 
for capturing motion and vibration data through integrated accelerometer and gyroscope. 

Integrated Vibration & Thermal Monitoring 

A comprehensive edge based condition monitoring system can be achieved by incorporating 
AMG8835 thermal camera and MPU6050 accelerometer. A system that combines these features was 
created Bleboo and Aboagye-Otchere (2024) for induction motors which used Raspberry Pi to collect 
an astonishing 65,000 vibration and thermal images. These two allowed real time assessment of 
operation using both vibration fault classification and heat mapping. 

Real-time monitoring of the vibration and thermal parameters of bearing housings was studied 
by Cardona et al. (2021) using MPU6050 and AMG8833 sensors. Their work proved the feasibility of 
monitoring MEMS sensors in real time to vibration and thermal metrics for predictive diagnostics. 

By applying machine learning on a Raspberry Pi, early warning signs, fault predictions, and 
automated maintenance alerts can be detected to enhance these integrated sensor systems. This 
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transforms traditional asset monitoring into proactive asset management, which is more advanced 
and efficient than traditional systems. 

2.5.3. AI and Sensor Fusion for Predictive Maintenance 

The ability of the Raspberry Pi to support different sensor interfaces alongside its compatibility 
with machine learning frameworks TensorFlow Lite and Scikit-learn add to its edge platform 
capabilities for predictive maintenance tasks. A Raspberry Pi-based system can integrate data from 
vibration, thermal, and current sensors to achieve autonomy in real-time anomaly detection, fault 
classification, and health prognosis, thus eliminating the need for secondary cloud computation. 

Fusion of Sensors 

Sensor fusion combines data from multiple sources in a single sensor to improve reliability, thus 
making the monitoring of equipment more efficient. Mtesigwa (2020) implemented a neural network-
based fault classification model using time-series data from MEMS sensors for an engine condition 
monitoring project with a Raspberry Pi-based vibration sensing platform (Mtesigwa, 2020). 

Vasilache et al. (2024) discussed the role of sensor fusion in improving classification accuracy in 
acoustic, thermal, and vibration predictive maintenance of low-powered systems by deep neural 
networks (Vasilache et al., 2024). 

 
Figure 10. Sensor fusion pipeline integrating diverse sensor inputs (e.g., camera, radar, LiDAR, GPS, IMU, 
microphone) into a unified fusion engine for data alignment, estimation, and decision making, resulting in a 
comprehensive model with enhanced accuracy, reliability, and decision quality. 

Machine Learning Models on Raspberry Pi 

The deployment of machine learning models on Raspberry Pi for on-device analytics has 
attracted various researchers’ attention. Abdulkareem (2024) discussed classifying PC fan failures 
using a vibration-derived neural network and TensorFlow Lite, achieving triumphant classification 
outcomes through edge inference on the Raspberry Pi (Abdulkareem, 2024). Akyaz and Engin created 
a predictive maintenance system for artificial yarn machines which incorporated a Pt100 and IR 
sensor, as well as a vibration sensor. The data was processed using Keras and TensorFlow on a 
Raspberry Pi (Akyaz & Engin, 2024). Moreover, Zhou et al.l presented a deployment strategy for edge 
intelligence-enabled motor fault diagnosis, demonstrating how neural network execution with 
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TensorFlow Lite quantization on a Raspberry Pi provided real-time diagnostic capability (Zhou et al., 
2024). 

This increasing line of research supports the idea that Raspberry Pi works for low-power, cost-
sensitive platforms for advanced predictive maintenance using sensor fusion and edge AI. 

Benefits and Applications 

AI and sensor fusion embedded on a Raspberry Pi have considerable benefits for predictive 
maintenance in industrial and environmental fields: 

Cost-Effectiveness: The versatility offered by a Raspberry Pi allows its use for developing AI-
enabled maintenance systems for budget-constrained small and medium-sized enterprises. Mourtzis 
and Angelopoulos highlight the cost saving advantages of remote monitoring provided by Raspberry 
Pi-based predictive maintenance systems, which reduces deployment and maintenance costs 
(Mourtzis & Angelopoulos, 2020). 

Scalability: The modular design allows Raspberry Pi to be used for the expansion of sensor 
networks over several machines or areas. Anitha et al. showcased this in the maritime area where 
health monitoring using neural networks for marine propulsion systems aboard multiple vessels 
leveraging sensor fusion on Raspberry Pi performed well (Anitha et al., 2024). 

Real-Time Processing: With Raspberry Pi, there is low data transfer and latency with devices, 
especially in marine contexts, where quick decisions need to be made. Algarni et al. presented an 
edge-computing predictive maintenance framework for maritime communication systems which 
emphasized the need for immediate reaction from the Raspberry Pi inference unit (Algarni et al., 
2024). 

Energy efficiency: Khan et al. developed a low-cost sustainable environmental monitoring 
system using Raspberry Pi powered by solar energy which highlighted the non-dependence on 
power sources and flexibility provided by Raspberry Pi, showing its value in continuously remote 
and resource-poor locations (Khan et al., 2024). 

These applications have further advanced within the following sectors: 

Manufacturing: 

The combination of edge computing with your good old smart sensor networks has done 
wonders for real-time motor diagnostics and fault detection systems. These systems require little 
infrastructure, thus allowing motors and machinery to be monitored on an almost-continuous basis. 
This significantly lowers maintenance costs and downtime. Predictive analytics is now able to flag 
the earliest mechanical wear or electrical faults, helping manufacturers schedule maintenance in a 
timely manner. This not only enhances equipment lifespan but optimizes production lines safety 
alongside operational efficiency (Mourtzis & Angelopoulos, 2020). 

Marine Engineering: 

The smart marine applications combine powerful neural networks with other sensors that 
provide real-time insights into mechanical and operational anomalies and engine performance 
through intelligent propulsion monitoring systems. These technologies help with optimizing fuel 
consumption, preserving the mechanical backbone, and maintaining the vessel within the 
environmental regulations. Understanding the dynamics of the engine with the data from various 
onboard sensors allows predicting problems before they surpass certain thresholds, improving 
efficiency and safety (Anitha et al., 2024). 

Environmental Monitoring 

The deployment of low-power autonomous sensing platforms that operate in remote resource 
constrained environments greatly enhanced environmental monitoring. These platforms track critical 
climate variables such as temperature, humidity, and overall air pollution levels. Powered by 
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advances in energy-efficient IoT and edge computing, these systems provide real-time data that can 
aid decision-making in urban planning, agriculture, and even disaster management. These 
technologies are crucial in addressing the emerging concerns of environmental sustainability due to 
their scalability and adaptability (Nayar & Dubey, 2025). 

Raspberry Pi in Industrial Applications: Advantages and Disadvantages 

The Raspberry Pi has emerged as a key component of the ongoing Industry 4.0 and IIoT 
evolution, due to its low-cost, modular, and flexible design which enables real-time data capture, 
control, and analysis. Nonetheless, as industrial automation enhances, its deployment in industrial 
settings needs careful consideration of optimizing capability limitations. 

Comparative Analysis of Raspberry Pi’s Industrial Benefits and Limitations 

Aspect Benefits Limitations 

Cost Raspberry Pi devices are extremely 

cost-effective, making them ideal 

for SME adoption and prototyping 

(Vieira et al.). 

However, they lack the computational 

capabilities of higher-end industrial 

platforms like Jetson or Intel NUC, which can 

limit use in demanding applications 

(Karthikeyan et al.). 

Size Their compact footprint enables 

integration into constrained 

enclosures and mobile or 

embedded systems (Ramzey et al.). 

But with only 26–40 GPIO pins, they can be 

insufficient for large-scale I/O applications 

(Salah, 2021). 

Software Broad OS support (e.g., Raspbian, 

Ubuntu Core) makes the Pi flexible 

for various edge software stacks 

(Behnke & Austad, 2023). 

Yet, standard Raspberry Pi OS does not 

support hard real-time constraints, which 

may hinder its use in safety-critical 

environments (Nguyen & Kortun, 2021). 

Networking The Pi includes Ethernet, Wi-Fi, and 

Bluetooth for connectivity, 

sufficient for many IIoT 

deployments (Babayigit & 

Abubaker, 2023). 

However, its components lack industrial-

grade durability and may be less robust in 

high-vibration or extreme temperature 

environments (Xia et al., 2024). 

Overall, the Raspberry Pi offers enormous value for prototyping, educational purposes, and 
within the bounds of simple to moderately complex industrial applications. However, true 
responsiveness, additional I/O capabilities, and toughness still present challenges that need to be 
solved with additional measures or other systems. 

Advantages 

1. Affordability and Accessibility 
For small- to medium-sized enterprises of $50 or less, the Raspberry Pi is particularly 

economical. This price encourages risk-taking and invention when it comes to educational and 
industrial contexts (Tarjan et al., Waddell & Fry). 
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2. Compact Form Factor 
The compact design of the Raspberry Pi means that it can be employed in areas with very little 

space, such as for embedded industrial monitoring, edge computing, or retrofitting. These benefits 
were described in the context of integration systems where weight and space reduction are of utmost 
importance (Karthikeyan et al.). 

3. Versatile Operating System Support 
It supports a variety of Linux-based operating systems, such as Raspberry Pi OS and Ubuntu 

Core, which broadens the scope of industry applications developers can design or implement 
solutions with (Culic et al.). This diversity of operating system stems encourages application 
development and makes changes in production easier (Culic et al.). 

4. Connectivity Options 
The capability to support Ethernet, Wi-Fi, and Bluetooth makes the integration of Raspberry Pi 

into industrial networks seamless. Establishing these measures allows for reliable real-time data 
collection as well as remote monitoring. Research indicates that its implementation in IIoT paradigms 
demonstrates its versatility for edge-cloud communication (Alasmary, 2023; Kelkar, 2024). 

Limitations 

1. Performance Constraints 
Raspberry Pi is satisfactory for basic monitoring and control, however, processing power 

limitations make it insufficient for compute intensive tasks like advanced AI inference or large scale 
real-time analytics. His comparisons with edge devices such as NVIDIA Jetson brought to light the 
Pi’s shortcomings in terms of CPU/GPU throughput and memory bandwidth (Karthikeyan et al., 
2023). 

2. Limited GPIO and I/O Capabilities 
The Pi has 26-40 GPIO pins, which is significantly lower than many of their competitors and 

limits the possibilities of integrating into an I/O rich system. In addition, the ports associated with 
industrial communication standards such as RS-485, CAN, or 4-20 mA current loops require some 
additional hardware interfaces or HATs (hardware add-ons) for compatibility (Salah, 2021). 

3. Real-Time Operating System Limitations 
The current OS for Raspberry Pi, Raspbian, does not provide real time scheduling. Alternative 

solutions such as real-time Linux kernels do exist but come with additional PREEMPT-RT patches 
that require a lot of work to set up which is, frankly, daunting for many prospective users targeting 
high-reliability control systems (Nguyen & Kortun, 2021). 

4. Endurance and Dependability in Extreme Conditions 
The Raspberry Pi cannot tolerate high temperature ranges or extreme dust, vibration, and 

humidity. For industrial use-case scenarios, additional sturdiness is often required by means of 
rugged cases or I/O peripherals, such as the Compute Module Industrial Kit or the external I/O 
switches (Xia et al., 2024). 

Defensive Measures 
For those bounding constraints, a number of actions can be taken: 
1. Implementation of Industrial Raspberry Pi Models 
The Strato Pi and Revolution Pi optimize the Raspberry Pi’s operational efficiency further by 

having greater resilience to damaging environmental conditions. More stringent IIoT environments 
can be supported with these devices due to the integration of industrial-grade I/O ports, larger power 
and energy mitigated heat dissipation, increased operational temperature range, and wider 
applicable temperature range. As noted by Tomzik (2022), it is \crucial to add adequate ruggedized 
covers with certain boundaries to ensure reliable Pi-based hardware for industrial purposes. 

2. Addition of Real-Time Operating Systems (RTOS) 
RTOS addition, or the implementation of real-time Linux patches, allow for better 

responsiveness in time-crucial tasks. Connects to control frameworks that use dedicated 
microcontrollers based on the Raspberry Pi platform exist within the realm of RTOS powered control 
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systems, as shown in Abbas’s (2011) work on power-efficient task management for embedded 
systems. Khalil (2023) further argues that RTOS deployment is essential in ensuring system 
responsiveness by decreasing delays in response/decision time, thereby guaranteeing predictable 
performance in IoT gateways. 

3. External I/O Expansion 
The use of HATs (Hardware Attached on Top) or expansion racks can alleviate the issues 

concerning GPIO limitations. For instance, Wan (2016) illustrates the advantages RT controllers gain 
from modular I/O expansion for control cabinets, akin to Raspberry Pi HAT implementations in 
distributed IIoT systems. The addition of Raspberry Pi compatible CAN shields, RS-485 modules, 
and analog input boards augment interfacing capabilities without needing alterations to the base 
board. 

4. Protective Enclosures 
The sonic overwhelming effects of dust, moisture, vibration, temperature changes, and other 

destructive forces are reliably eliminated through encasing Raspberry Pi devices in rugged 
enclosures. These custom shells serve to extend the life of the devices by protecting them and 
preserving compliance with safety standards which is mandated in physical deployments of lower 
cost systems integrated into civil infrastructure. 

In addition to addressing the constraints of Raspberry Pi in industrial settings, these methods 
enable new possibilities for implementing scalable IIoT systems that are robust and cost-efficient. 

Conclusion 

The Raspberry Pi has developed into one of the most remarkable and affordable options in 
industrial automation and IIoT, blending unique versatility with affordability and modularity. Its 
value as a flexible computing platform is evident in its overwhelming acceptance throughout almost 
all areas like SCADA systems, predictive maintenance, digital twins, or edge computing. Notably, 
the Raspberry Pi must be further evaluated in regards to the limitations of its processing power, 
available interfaces, lack of native real-time features, and environmental vulnerability. However, 
deploying strategies like real-time OS modifications, industrial-grade design, increased I/O, and 
harsh environmental enclosures are proven to solve the vast majority of the challenges. The cost-
efficient and easily adjustable Raspberry Pi is transformative when strategically deployed in 
borderlining industrial-grade applications, enabling rapid evolution towards smart, adaptive, and 
interconnected manufacturing environments. 
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