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Abstract

This study presents a multimodal evaluation of five freely accessible large language model (LLM)
chatbots —ChatGPT, Gemini, Copilot, DeepSeek, and Perplexity —across a range of chemistry-related
tasks. These tasks included generating molecular and Lewis structures, interpreting chemical images,
visualizing experimental datasets, and explaining key chemical concepts such as polarity,
hybridization, and conjugation. While all chatbots demonstrated strong conceptual reasoning and
verbal explanation skills, none were able to produce chemically accurate Lewis structures or
molecular diagrams. In contrast, all models successfully interpreted reaction schemes, identified
functional groups, and analyzed the Wisconsin Diagnostic Breast Cancer dataset using box plots,
histograms, principal component analysis (PCA), and hierarchical cluster analysis (HCA). The
chatbots also generated illustrations based on style-specific prompts, revealing creative diversity but
inconsistent labeling. One chatbot was effectively integrated into a classroom setting to support real-
time data analysis. These findings highlight the current strengths of LLMs in text-based chemical
reasoning and data visualization, while underscoring their limitations in structural accuracy.
Continued advancements in multimodal training and domain-specific fine-tuning are essential to
enhance their reliability in chemistry education.

Keywords: chatbot; Large Language Model; Artificial Intelligence; ChatGPT; DeepSeek; Copilot;
Gemini; Perplexity

1. Introduction

The advent of Large Language Models (LLMs) has marked a transformative era in artificial
intelligence, particularly in their capacity to reshape digital interactions across healthcare, education,
and economic sectors.[1]. Within educational contexts specifically, these Al systems have introduced
paradigm-shifting capabilities in personalized instruction, adaptive tutoring, and dynamic content
creation. Contemporary LLM implementations - including ChatGPT (OpenAl), Gemini (Google),
Copilot (Microsoft), DeepSeek, and Perplexity - have achieved remarkable linguistic fluency,
enabling natural language interactions accessible through common digital platforms. Their
integration into learning ecosystems offers significant pedagogical advantages: facilitating
immediate formative feedback, enhancing learner motivation, and providing intuitive access to
complex problem-solving across STEM and humanities disciplines - all through conversational
interfaces requiring no technical specialization.[2]

In the healthcare domain, large language models (LLMs) such as ChatGPT, Gemini, and Copilot
have contributed to improving prostate cancer literacy [3]. Several tools—including Bard, Bing,
ChatGPT, Claude, and Gemini—have been employed in ophthalmology-related studies, particularly
for multiple-choice examinations. These tools have been applied to answer patient inquiries, provide
medical advice, support patient education, assist in triage, facilitate diagnosis and differential
diagnosis, and contribute to surgical planning [4]. In eye care, ChatGPT has enhanced access to
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critical information, improved patient engagement, and streamlined triage processes [5].
Additionally, Copilot, Gemini, and ChatGPT-4 have been utilized for the interpretation of Western
blot results [6]. Claude, Copilot, Gemini, ChatGPT, and Perplexity have also been employed to
support postgraduate students in successfully passing the Specialty Certificate Examination in
Dermatology [7].

In chemistry education, LLMs offer a compelling yet underexplored opportunity. Chemistry is
inherently multimodal: learning often depends on interpreting symbolic, visual, and spatial
information. Students are expected to construct and decode molecular structures, Lewis diagrams,
orbital representations, and reaction mechanisms —skills that require both conceptual understanding
and visual literacy.[8-12] While LLMs excel in linguistic tasks and factual recall, their ability to
process or generate chemical imagery accurately remains a significant limitation.[13,14]

Recent studies suggest that although LLMs can describe chemical principles correctly, they
frequently struggle with visual conventions and structural accuracy. For example, when prompted
to generate Lewis structures or stereoisomeric diagrams, models often produce distorted or
chemically invalid results.[15,16] This discrepancy raises concerns about the pedagogical reliability
of these tools, particularly in introductory courses where students rely heavily on accurate visual aids
to develop foundational understanding.[17]

Chatbots such as ChatGPT have been widely used in chemical education for tasks including
scientific writing assignments,[18] enhancing critical thinking skills [19], answering chemistry
questions [20-22], and writing lab reports. While chatbots can now upload datasets and generate
images, their ability to create visualizations—such as box plots, histograms, principal component
analysis plots, and supervised classification models—has not yet been described in the literature. This
is a recent development, as only recently have chatbots gained the capability to handle data and
produce graphical outputs. [23].

At the same time, the integration of image input and interpretation capabilities in modern LLMs
introduces promising pathways for chemistry education. Multimodal models—capable of processing
both text and images—can now identify functional groups in chemical diagrams, recognize reaction
types from schemes, and classify molecular properties from image prompts .[24,25] These features
may be particularly useful in visual tasks such as distinguishing between polar and nonpolar
molecules, understanding the significance of conjugated systems in natural dyes, or interpreting
organic transformations like reduction and hydrolysis. Such affordances point to a future where Al
could serve as a conceptual scaffold, enabling students to explore chemical ideas interactively, even
if the model lacks perfect visual precision.[26,27]

This study aims to evaluate the capabilities and limitations of five widely available LLM-based
chatbots —ChatGPT, Gemini, Copilot, DeepSeek, and Perplexity —in supporting chemistry education
across a range of representational formats. Specifically, we assess their ability to: (1) generate
molecular and Lewis structures; (2) create illustrative images; (3) generate plots such as PCA score
plots, dendrograms , box plots , and histograms (4) does classificatory models such as random forest
(5) accurately interpret reaction schemes and chemical images; and (5) interpret and generate images
within classroom learning contexts. Our approach involves iterative prompting and performance
benchmarking using chemistry tasks commonly encountered at the high school and undergraduate
levels.

Findings indicate that while the chatbots show strong conceptual understanding —consistently
identifying functional groups, stereochemistry, hybridization, and polarity—they struggle
significantly with structure generation. No tool was able to reliably construct valid Lewis structures,
and only a few could attempt molecular visualizations at all. Despite this, all models were capable of
interpreting image-based prompts with reasonable accuracy, recognizing compounds like methanol
in transesterification reactions or the reduction of allicin to a disulfide.

Taken together, these results provide a nuanced perspective on the current role of LLMs in
chemistry education. While their linguistic and reasoning capacities are impressive, their visual
representation skills are still in early stages of development. These findings support the cautious
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integration of LLMs as supplementary tools—useful for conceptual reinforcement and chemical
reasoning, but not yet reliable as primary sources for visual content. Future improvements in
multimodal training and domain-specific fine-tuning will be essential to unlock the full educational
potential of these Al systems.

2. Materials and Methods

The chatbots s used in this study were described in Table 1. The study was conducted in May to
August 2025. ChatGPT, Gemini, Perplexity interactions were performed using the free versions of
each tool, accessed directly through the Microsoft Edge browser. The Copilot 365 version was used
in this study. It is free for Microsoft Windows users.

The Wisconsin Breast Cancer Dataset used in sections 4-6 was provided in the supporting
information.

Table 1. Versions of Freely Accessible Large Language Models Employed in This Study (June 2025).

Tool Free Version (June 2025)
ChatGPT GPT-4o0
Gemini Gemini 2.5 Flash
Perplexity GPT-40
DeepSeek DeepSeek-R3-V2
Copilot Copilot M365 (GPT-40)

4.2. Supervised Methods

Classification Metrics for Cancer Recognition

When evaluating a model for a cancer recognition contest, a variety of metrics are used to
measure its performance from different angles. Here's a breakdown of the key metrics you've listed:

Precision vs. Recall

In cancer recognition, a positive prediction means the model says the patient has cancer, and a
negative prediction means the model says the patient does not have cancer.

Precision: Answers the question, "Of all the patients the model predicted have cancer, how many
actually have it?" High precision is crucial when a false positive (telling a healthy person they have
cancer) is highly undesirable, as it can lead to unnecessary treatments or stress.

Recall (Sensitivity): Answers the question, "Of all the patients who actually have cancer, how
many did the model correctly identify?" High recall is critical in cancer detection because a false
negative (failing to detect cancer in a sick person) can have severe consequences, delaying vital
treatment.

F1-Score

The F1-Score is the harmonic mean of precision and recall, providing a single score that balances
both metrics. It is particularly useful when you need a model that performs well on both fronts,
especially if there is an uneven distribution of cancer and non-cancer cases in your dataset.

Confusion Matrix

The Confusion Matrix provides a complete breakdown of your model's predictions versus the
actual outcomes. It's a table that shows:

True Positives (TP): The number of actual cancer cases that the model correctly identified.

True Negatives (TN): The number of actual non-cancer cases that the model correctly identified.

False Positives (FP): The number of non-cancer cases that the model incorrectly identified as
cancer.

False Negatives (FN): The number of actual cancer cases that the model failed to detect.

ROC-AUC Score

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.1250.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 August 2025 d0i:10.20944/preprints202508.1250.v1

4 of 27

The ROC-AUC Score (Receiver Operating Characteristic-Area Under Curve) measures the
model's ability to distinguish between classes. A score of 1.0 means the model can perfectly
differentiate between cancer and non-cancer cases, while a score of 0.5 indicates a model that is no
better than random guessing.

Cross-Validation Scores

Cross-Validation Scores assess the stability and generalizability of your model. Instead of just
splitting the data once, cross-validation divides the dataset into multiple parts (e.g., 5-fold). The
model is trained and tested five times, with a different part of the data held out each time. The scores
from each "fold" are then averaged, providing a more reliable estimate of how the model will perform
on new, unseen data. In this study it was used 5 fold-cross validation

3. Building Images
3.1. Generating the Structure of Thalidomide

This section aimed to evaluate whether chatbots are capable of generating chemical structures.
As a model compound, thalidomide was selected due to its well-known role in stereochemistry
education [28]. Thalidomide exists as two enantiomers: the (R)-thalidomide, which exhibits sedative
properties, and the (S)-thalidomide, which is teratogenic and responsible for severe birth defects. Its
historical and pharmacological significance makes it a common example for illustrating the
importance of chirality in drug development.

DeepSeek provided a description of thalidomide but stated that it could not generate images,
instead supplying links to the compound’s structures on PubChem and ChemSpider.

ChatGPT initially returned an incorrect structure (Figure 1a). However, when prompted with
“you provided me with a wrong structure”, it produced the correct structures (Figure 1b).

Gemini, in its first attempt, also returned an incorrect structure (Figure 1c). When prompted
with “you provided me with a wrong structure”, it generated Figure 1d. After a second prompt— “you
provided a wrong structure again” —it produced Figure 1le. Subsequently, it stated “I cannot generate the
image” and provided a ResearchGate article containing the thalidomide structure.

Perplexity initially returned an incorrect structure (Figure 2a). When prompted with “you
provided me with a wrong structure”, it again produced an incorrect result (Figure 2b). After a second
prompt— “you provided a wrong structure again” —it stated that the image generation limit had been
reached and suggested upgrading to the paid version.

Copilot also generated incorrect structures. On its seventh attempt, it returned another incorrect
structure (Figure 2c) and redirected the user to the ACS.org website, where the correct structure could

be found.
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Figure 1. Thalidomide structures generated by ChatGPT in its first (a) and second (b) attempts, and by Gemini
in its first (c), second (d), and third (e) attempts.
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Figure 2. Thalidomide structures generated by Perplexity in its first (a) and second (b) attempts, and by Copilot

in its seventh (c) attempt.

3.2. Building the Simple Molecules Lewis Structure

Constructing Lewis structures and analyzing molecular geometry and hybridization are
fundamental topics in general chemistry. In this section, we evaluated the ability of chatbots to
generate Lewis structures for a selection of molecules commonly taught at the introductory level, it
was prompt, generate the Lewis structure of BF;, CH,, NHs, PCls, PCls, SF4, SFe, XeF,, and XeF,. In
this example, the prompt was tested multiple times form May to August 2025.

All chatbots were able to provide accurate and consistent descriptions of central atom
hybridization, molecular geometry, and polarity, as summarized in Table 1 by DeepSeek.

Table 2. Molecules, hybridizations, geometry and polarity of molecules. It was built by DeepSeek.

Molecule Hybridization Geometry Polarity
BF; spe Trigonal planar Nonpolar
CH, spe Tetrahedral Nonpolar
NH; spe Trigonal pyramidal Polar
PCl; spe Trigonal pyramidal Polar
PCls sped Trigonal bipyram. Nonpolar
SF, sped See-saw Polar
SF spedo Octahedral Nonpolar
XeF, sped Linear Nonpolar
XeFy spedo Square planar Nonpolar

When the prompt was entered into ChatGPT between May and August 2025, incorrect chemical
structures were produced. For example, Figures 3a, 3b, and 3c were generated in May, July, and
August 2025, respectively.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 3. Lewis structures produced by ChatGPT in a) May, b) July, and c) August 2025.

Both Gemini and Perplexity demonstrated an ability to describe the geometry of molecules
rather than providing a visual representation. For example, Perplexity described XeF, as a central
xenon atom bonded to four fluorine atoms with two lone pairs, resulting in a square planar shape.

Similarly, Gemini described SF¢ by detailing its octahedral shape: a central sulfur atom forms six
single bonds with six fluorine atoms, holding 12 valence electrons with no lone pairs.

However, a key difference emerged in August 2025. When prompted to generate these images,
Gemini explicitly stated, "I apologize, but I cannot create images of the Lewis structures you
requested. My image generation tool is not equipped to produce the precise scientific diagrams
needed for chemical structures." This response highlights a limitation in Gemini's ability to create
accurate visual representations, even as it could provide a detailed textual description of the
molecular geometry.

Copilot, when used as ChatGPT, provided inaccurate molecular structures even after multiple
tests conducted from May to August. The Lewis structures could not be reliably generated. Figure 4
illustrates the inaccuracies in the constructed Lewis structures.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 4. Lewis structures produced by Copilot in a) July and b) August 2025.

3.3. Comparing NHs and NFs Polarities

Comparing the polarities of NH3 and NF3 is a classic example in general chemistry used to
illustrate how molecular geometry influences molecular polarity. When prompted with the question:
"Between NH; and NFs;, which molecule is more polar, and why? Illustrate both Lewis structures and
describe the direction and magnitude of their dipole moments," all chatbots correctly identified NH;
as the more polar molecule. This was typically justified by referencing the greater electronegativity
of fluorine compared to hydrogen and the resulting net dipole orientation.

The reported dipole moments were generally consistent, with values of approximately 1.47 D
for NH; and 0.23 D for NF;, aligning with standard literature. However, despite the conceptual
accuracy in their explanations, none of the chatbots were able to generate correct Lewis structures,
even for these relatively simple molecules.

NF; and NHj3 are simple molecules, yet none of the chatbots were able to generate accurate
images of them, even after the prompt was tested multiple times between May and August 2025.
Figure 5 illustrates some of the Lewis structures produced by ChatGPT (Figure 5a) and Copilot
(Figure 5b) in August 2025.

NH3 NF3 a) NH3 NF3 b)

! ] ! ]
N N N
H/I!I\H F/l\F H/I\

Towards N Towards F Towards N Towards F
1.47D 0.23D 1.47D 0.23D

N
H F7LOF

Figure 5. NH3 and NF3 Lewis structures built by a) ChatGPT and b) Copilot in August.

3.4. Building Illustrations

The April 2025 front cover of the Journal of Chemical Education was created using ChatGPT,[29]
highlighting how chatbots were also used to enhance scientific manuscripts through tasks such as
text improvement.[30-32] Motivated by this, it was tested how different chatbots perform in
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generating an illustration. It was prompt “Illustrated a battle between ChatGPT, DeepSeek, Copilot,
Perplexity and Gemini”

In April 2025, Copilot produced an illustration featuring six robots; however, it did not specify
which robot represented which chatbot (Figure 6a). ChatGPT, by contrast, successfully created a
battle scene between five characters, each clearly labeled with the name of its corresponding chatbot
(Figure 6b). Gemini generated a colorful illustration, but it included six characters and failed to name
or distinguish them (Figure 6d). Perplexity generated an image featuring four distinct humanoid
robots positioned together. The robots exhibit unique visual designs (e.g., differing in shape, color,
or mechanical features) it include identifying logos distinguish them as specific models or characters,
but the Perplexity Robot was not shown in the ilustration (Figure 6c).

P
COPILILOT PERPLEXEXS MIN //

GE MEMINI

Figure 6. Illustration of a battle between chatbots using a) Copilot, b) ChatGPT, c¢) Gemini, and d) Perplexity in
April 2025.

When the prompt was retested in August 2023, each Al model provided a unique interpretation.
ChatGPT generated a battle between five cavaliers, each clearly identified with a chatbot's name and
logo (Figure 7a). Gemini's illustration featured a battle of six magical characters; while five were
labeled with a chatbot's name, the sixth character was simply marked with a question mark (Figure
7b). Copilot built a scene with six characters; however, one of the characters remained unidentified
(Figure 7c). Perplexity's result included five characters, but only four were named, and all four names
were misspelled (Figure 7d).
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Figure 7. Ilustration of a battle between chatbots using a) ChatGPT, b) Gemini, c) Copilot, and d) Perplexity, In
August 2025.

3.5. Building Illustrations in Studio Ghibli Animations

In March 2025, a trend emerged on social media in which users shared stylized images inspired
by Studio Ghibli animations—often using the prompt, “illustrate in the style of Studio Ghibli a battle
between ChatGPT, DeepSeek, Copilot, Perplexity, and Gemini.” Motivated by this trend, each of
these chatbots was asked to generate illustrations in the Studio Ghibli style.

In April, Copilot and Gemini returned images featuring more than five characters, but without
labels or clear associations between the figures and the individual chatbots. In contrast, ChatGPT
produced a charming Ghibli-style illustration in which each character was distinctly and
unambiguously linked to a specific chatbot (Figure 8).

Gem?ni" \
N
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Figure 8. Illustration of a battle between chatbots builds in style studio Ghibli using ChatGPT, in March 2025.

In May, the same labeling issue persisted: both Copilot and Gemini again produced images with
more than five characters, but without assigning chatbot names to the individual figures. Copilot's
image had a Star Wars theme (Figure 9a), while Gemini depicted magical fantasy characters (Figure
9b). Perplexity provided an illustration featuring humanoid robots in combat; however, only four
were shown, and while the robots were labeled, the Perplexity robot itself was missing (Figure 9c).
Once again, ChatGPT delivered a clear battle scene with five distinct, properly labeled characters—
each representing a specific chatbot (Figure 9d).

In August 2025, the illustrations were regenerated to ensure consistency and clarity (Figure 10).
Gemini returned an image with six magical characters, two of which were labeled as ChatGPT (Figure
10a). ChatGPT again illustrated a battle with five unique figures, each accurately named after a
different chatbot (Figure 10b). Perplexity provided a scene featuring five fantasy adventurers;
however, only four names were given, and they bore no clear connection to the actual chatbot names
(Figure 10c). Finally, Copilot produced a combat scene with six figures, each bearing a chatbot’s
name—though notably, two of the characters were labeled as Copilot (Figure 10d).

A notable outcome of this exercise is that each chatbot consistently produced visually and
stylistically distinct interpretations of the same prompt—highlighting their differing design
philosophies and creative capacities.

X, share

Figure 9. Illustration of a battle between chatbots builds in style studio Ghibli using a) Copilot, b) Gemini, c)
Perplexity, and d) ChatGPT, in May 2025.
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Figure 10. lustrations build in style studio Ghibli using a) Gemini, b) ChatGPT, c) Perplexity, and d) Copilot, in
August 2025.

4. Plotting Your Dataset

This section was devoted to shown how dataset can be analyzed and plotted using chatbots.
This section was build in August 2025 since chatbots can upload spreadsheets,[2,23] it used the
publicly available Wisconsin Diagnostic Breast Cancer (WDBC.csv; supporting information) dataset,
obtained from the UCI Machine Learning Repository, was used for this study [33-36]. It consists of
569 observations, each corresponding to a digitized image of a fine needle aspirate (FNA) of a breast
mass. The dataset contains 30 numerical features extracted from these images (each one explained
in detail in WDBC.docx; supporting information), which describe various morphological
characteristics of the cell nuclei present in the sample. These features are computed from ten original
measurements—namely, radius, texture, perimeter, area, smoothness, compactness, concavity,
concave points, symmetry, and fractal dimension—each reported as a mean, standard error, and
worst-case (i.e., largest value). All features are continuous and have been scaled for analysis.

In addition to these descriptors, each sample is labeled as either malignant or benign, based on
clinical diagnosis. There are 357 benign and 212 malignant cases in the dataset.

4.1. Building Box Plots

Box plots are statistical visualizations that summarize the distribution of a dataset by displaying
its median, quartiles, and potential outliers [37-39]. They are particularly useful for comparing
groups, such as malignant and benign tumor classifications, by highlighting differences in central
tendency and variability across features like mean radius, texture, and perimeter.

It was prompt - Generate a grouped box plot comparing the distributions of mean radius, mean
texture, and mean perimeter features, stratified by diagnosis (Malignant vs. Benign). Chatbots build
box plots comparing those parameters as shown in Figure 11.
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Figure 11. the  box plots  formean  radius, mean  texture, and mean perimeter,

comparing Malignant and Benign diagnoses. Generated by Copilot in August 2025.

Copilot visualized each feature in separate plots (Figure 11), an approach that facilitates scale-
sensitive comparisons across features. In contrast, Gemini (Figure 12a) and ChatGPT (Figure 12b)
consolidated all features into single composite plots. The plots clearly demonstrate that the malignant
group exhibits larger mean radius, mean texture, and mean perimeter values compared to the benign

group.
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Figure 12. he box plot displays the distribution of mean radius, mean texture, and mean perimeter grouped by
diagnosis (Malignant or Benign) build by a) Gemini and b) ChatGPT.
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4.2. Building Histograms

Histograms, on the other hand, illustrate the frequency distribution of a single variable by
grouping data into bins [40,41]. They provide insight into the shape of the data—whether it's skewed,
uniform, or normally distributed —and are effective for identifying patterns such as clustering or gaps
within malignant and benign tumor measurements.

Chatbots were prompted to generate grouped histograms comparing the distributions of mean
radius, mean texture, and mean perimeter features, stratified by diagnosis (Malignant vs. Benign). The
resulting histograms are shown in Figure 13. Gemini presented the data using bar plots with distinct
colors for benign and malignant cases (Figure 13a). ChatGPT (Figure 13b) and Copilot (Figure 13c)
produced similar visualizations, where each group is represented by a different color and the area
between the two distributions is shaded to highlight the overlap.

These plots clearly demonstrate that the malignant group exhibits higher values for mean radius,
mean texture, and mean perimeter when compared to the benign group.
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Figure 13. the grouped histograms comparing the distributions of mean radius, mean texture, and mean
perimeter features, stratified by Malignant and Benign diagnoses a) Gemini, b) ChatGPT, c) Copilot.

4.2. Building Heatmaps and Correlations

A heatmap is a data visualization technique that uses color gradients to represent the magnitude
of values in a matrix. In the Wisconsin Breast Cancer dataset, the heatmap was employed to display
the correlation coefficients between pairs of numerical features. When prompted with 'Build the
heatmap of this dataset,’ Gemini, Copilot, and ChatGPT each generated heatmaps. Figure 14 presents
an example of a heatmap produced using Copilot." Perplexity and DeepSeek do not generate the plot,
those chatbots just provided scripts in pythons
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Heatmap of Feature Correlations in Wisconsin Breast Cancer Dataset

(7 7% 025023041008 1 B0 3o ElIXH0.15.0.460.56%70.19005
LR 02102103700 1 EE 0 29 XXTRE0.120.390.51 11014000
0.8

mean concavity -0,680.30):-0.690.52( XL ARIJEF0.500. 620. 30[E 041051
mean concave points J21029fFELN Flo 55 L LEEIRE0.460.17 111002,/ 0,690.030.490.440.620:100.26(X F0.29 L1 L 10450677/ (0.380.37

-06

radius error -0/680.2804

texture error .mc.sgaomosqoao.ozo.no.lsn.z: n.zzo.n0.400.230.190.130.41o.nﬂo.n 0.100.080.070.090.070.120.130.05
perimeter error -0.670.2811 (11 0.300.50.66. - 0.310.04[X0.22{ IR LRT10.150.420.36 0.560.270.24 11 0.20(5 11} 0.130.340.420.550.110.09

area error 1:/10.26 1/ [1-110.250.460.620.690.221 ) LEE0.1 10X TIRI0.080.280.270.420.130.13(.1:/10.20)7/ 11 410.130.280.390.540.070.02 ™M
smoothness error JIEZ0I0IRELLEY 0.330.140.100,030.190.400.160.400.150.08P040.340.270.330.410.4313 zzo.ow.no.x
compactness error -04217190.2504210.32@0,670.‘90.420,560.360.230.420.280 34fRITIT ) 70.39/¥%0.200.140.260.200.230.680.640.480.280.59

concavity error -0.190.140.230.210.250,570,690.440.340.450.330.190.360.270.27 1 /AR 4//0.31 - 0.190.100.230.190.170.480.660.440.200.44
concave points error -0.380,160.410.370.330,640,680,620.390.340.510.230,560.420.33 1 )2 AR0.310.610.360.090.390.340.220.450.550.600.140.31
symmetry error JET00MNTIT0.200230.180:100450.350.240410.270.130.410.390.310. 31000 37 FELL LR TIRE 1 110,060.04(£0.390.08 -02
fractal dimension error 00 117 0.280510. : : 130433 37 )70170.390.380.220110.59
o0 220480571 £0240.09
00.30f30.70.350230.360.370.360.230.22

¥ 2¥E0.260.230.395 0.0 X 03718 0.240.530.520.270.14

) - 00

worst symmetry -0.160.110.190.140.390.510.410.38 /- 0.330.03{8 £0.110.07,5810.280.200.140.390.110.240.230.270.210.490.610.530.508Kel80.54

worst fractal dimension . zo.un.owszu 90.510.54 ¥
§2ersEEE - EEEEEEEEEEE .

€ £ 838 ¢ ] ¢ 8 % ¢ 5 o & & g £ g8 5 853 g2

2 8 2 5 E 3 R EE S EEEEEE ]

E! 28 2 3 3 2 e 88 £ <5 g8 55838 ¢ EE

& gE Y & @ 3 g ® £ 5 38 ¢g 2 s 8 22 EE S 87T

g E c g2 g E £ 8828 ¢85 EE g 822

£ S g5 s g 82 5 ¢ E E B 4 O 5 5§ 28

£ E S g e g E S 2o g £8 328 ¢

H < 5§ 8§ g 2 ) % £

Figure 14. Heatmap build using Copilot.

Chatbots can be employed to identify both the strongest and weakest correlations within a
dataset. For example, when prompted with 'Which features exhibited the strongest correlations in
this dataset?’, the chatbots were able to interpret the heatmap and return precise results. Table 3,
generated by Copilot, highlights the most highly correlated pairs of numerical features —primarily
among tumor size metrics such as radius, perimeter, and area. These strong relationships indicate
redundancy and potential multicollinearity, which are important considerations for feature selection
and model optimization. Similarly, when prompted with 'Which features exhibited the weakest
correlations in this dataset?', the chatbots were also able to identify the least related feature pairs.
Table 4, created by Copilot, presents these weakest correlations in the dataset. Perplexity and
ChatGPT produced similar outputs, confirming the consistency of chatbot-based analysis in detecting
correlation patterns

Table 3. Top 10 Strongest Feature Correlations in the Wisconsin Breast Cancer Dataset: .

Feature 1 Feature 2 Correlation
mean perimeter mean radius 0.998
worst perimeter worst radius 0.994

mean radius mean area 0.987
mean perimeter mean area 0.987
worst area worst radius 0.984

Table 4. Top 10 weakest Feature Correlations in the Wisconsin Breast Cancer Dataset: .

Feature 1 Feature 2 Correlation
mean fractal dimension radius error +0.0001
worst perimeter fractal dimension error -0.0010
worst texture fractal dimension error -0.0032
mean area worst fractal dimension +0.0037
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mean perimeter fractal dimension error -0.0055

"The chatbots are capable of generating correlation plots when prompted with requests such as:
'Construct correlation plots for the following feature pairs: (i) mean perimeter vs. mean radius, and
(if) mean fractal dimension vs. radius error.' In their initial attempts, Copilot, Gemini, and ChatGPT
successfully produced meaningful plots (Figure 15). An example of the correlation plots generated
by Gemini is shown in Figure 15. In contrast, DeepSeek and Perplexity were unable to generate these
plots.
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Figure 15. Correlation plots between a) mean perimeter vs. mean radius, and (b) mean fractal dimension vs.

radius error.

5. Unsupervised Methods: PCA and HCA

Unsupervised methods in machine learning are a class of algorithms that work with unlabeled
data to identify hidden patterns and intrinsic structures. Unlike supervised methods, which require
a labeled training dataset, unsupervised algorithms aim to discover relationships and organize data
independently[42].

The ability of chatbots to perform unsupervised methods is particularly interesting in the
classroom, as undergraduate and graduate chemometrics courses often struggle to provide graphical
user interface (GUI) software for such applications.[43] While there are good free options available
through coding platforms such as Python and R [44-46], many students are unfamiliar with
programming, which can limit their accessibility.

5.1. Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is an unsupervised technique primarily used for
dimensionality reduction. Its goal is to transform high-dimensional data into a smaller set of
variables, called principal components, that capture the most significant variance in the original data
[40,43,47-51]. By identifying the new axes along which the data varies the most, PCA allows for the
visualization and simplification of complex datasets without losing crucial information [52].

The prompt "Build the score plot" was submitted to the chatbots, and the resulting score plots
were generated (Figure 16). ChatGPT (Figure 16a), Copilot (Figure 16b), and Gemini (Figure 16c)
produced identical plots, with benign and malignant samples represented in distinct colors. In the
PCA score plot (Figure 16), a clear separation is observed between malignant (purple) and benign
(yellow) cases. Malignant samples are primarily distributed on the right side of the plot, while benign
cases are predominantly clustered on the left. This separation indicates that the first two principal
components effectively discriminate between the two diagnostic groups.

Principal Component 1 (PC1) accounts for 44.27% of the total variance, and Principal
Component 2 (PC2) captures 18.97%, providing a combined explanation of approximately 63% of the
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overall variability in the dataset. These results highlight the effectiveness of Principal Component
Analysis (PCA) in visualizing and summarizing the diagnostic structure of the data.

PCA Score Plot of Breast Cancer Dataset

PC2 (18.97% variance)

PCA Score Plot

25

a)

5
Princioal Comoonent 1(44.27%)

Diagnosis
o malignant
® benign

c)

Principal Component 2
&

5
Principal Component 1

Figure 16. The PCA score plot has been rebuilt to show the percentage of variance explained by each principal

component build using a) ChatGPT, b) Gemini, and c) Copilot.

PCA works by identifying the directions of maximum variance in the data. If the data is not
normalized, features with a larger range of values (and thus, higher variance) will have a
disproportionately strong influence on the principal components. This can lead to misleading results
where the principal components are simply reflecting the scale of the original features rather than the
underlying structure of the data. Standardization, a common form of normalization, ensures that all
features are on the same scale, so that each feature's contribution is based on its actual importance
and not its magnitude [52-56]. All chatbots correctly identified that the data required standardization
prior to PCA analysis and automatically standardized the dataset before generating the score plots.

5.2. Hierarchical Cluster Analysis (HCA)

Hierarchical Cluster Analysis (HCA) is an unsupervised method used for clustering or grouping
similar data points [57]. It builds a hierarchy of clusters, represented visually by a tree-like diagram
called a dendrogram. HCA can be performed in one of two ways: agglomerative, which starts with
each data point as its own cluster and then merges the closest clusters, or divisive, which begins with
all data points in a single cluster and then splits it iteratively [58-60].

The prompt "Build an HCA for this dataset” was submitted to the chatbots. In response, the
chatbot generated a dendrogram (Figure 17), which illustrates the hierarchical organization of the
data based on similarity. In the dendrogram, shorter vertical lines represent higher intra-cluster
similarity. A clear separation between benign (yellow) and malignant (purple) cases is evident, with
each group forming distinct clusters at relatively high linkage distances. These results demonstrate
that hierarchical cluster analysis (HCA) effectively distinguishes samples based on their diagnostic
classification.
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using Gemini. HCA as PCA need data standardization and all chatbots correctly identified that the data required
standardization prior to HCA analysis and automatically standardize the dataset before generating the

dendrogram (Figure 17).

6. Supervised Methods

Big data-driven workflow combining LLM were frequently used.[61,62] This section explains
how chatbots can be sued tighter with supervised methods. Random Forest is a machine learning
algorithm applicable to both classification and regression tasks. Fundamentally, it is an ensemble
method, meaning that it combines multiple decision trees to produce more accurate and robust
predictions. In this study, chatbots were prompted to perform statistical analyses by uploading data
and applying a Random Forest classification model [63-65]. For instance, when asked to “Determine
the Precision, Recall, F1-Score, and ROC-AUC Score for the Random Forest classification with 5-fold
cross-validation,” Copilot, ChatGPT, and Gemini each, in their first attempt, provided valid models,
as summarized in Table 5. While the specific parameters varied slightly among the chatbots, all
produced reliable classifications.

In addition to performance metrics, the chatbots were capable of generating graphical outputs.
For example, when prompted with “Create a feature importance visualization for the Random Forest
classification of the Wisconsin Breast Cancer dataset,” the chatbots returned feature importance plots.
Figure 18 shows the plot generated by Copilot showing the variables with larger importance in the
random forest classificatory model. The confusion matrix could also be constructed by the chatbots;
when prompted with “Build the Confusion Matrix for 5-fold cross-validation using Random Forest,”
ChatGPT, Copilot, and Gemini successfully produced confusion matrices. Figure 19 shows the
confusion matrix generated by Copilot, which indicates that the classifier correctly identified 345
benign and 198 malignant cases. It misclassified 12 malignant cases as benign (false negatives), which
is particularly critical in medical diagnostics, as it may result in missed or delayed treatment.
Additionally, 14 benign cases were misclassified as malignant (false positives), potentially causing
unnecessary anxiety or treatment.
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Table 5. presents a consolidated comparison of the performance metrics obtained from Random Forest

classification models generated by the three chatbots.

Metric Copilot ChatGPT Gemini Key Observations

Precision 95.27% 94.2% 95.29% All models show similar
precision (94.2-95.3%)

Recall 92.49% 92.5% 92.97% Recall consistently ~92.5-93%
across models

F1-Score 93.80% 93.3% 94.04% Balanced performance in all
versions

ROC-AUC 94.84% 0.945 (94.5%) 99.15% Second Copilot shows

exceptional AUC (99.15%)

Table 6. Comparative table summarizing the performance of the three Random Forest configurations

implemented by each chatbot.

Parameter ChatGPT Gemini Copilot Impact Analysis
More trees — better
n_estimators (Trees) 200 100 100
stability but slower
max_depth (Tree None Unlimited depth risks
10 10
Depth) (unlimited) overfitting
criterion (Split Rule) Gini Gini Gini Standard for classification
Higher values prevent
min_samples_leaf 2 1 1
overfitting
random_state 42 42 42 Ensures reproducibility
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Top 15 Feature Importances in Random Forest
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Figure 18. This plot highlights the most influential features in predicting breast cancer diagnosis. Features

like worst area, worst concave points, and mean concave points are among the top contributors generated by

Copilot.
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Figure 19. Aggregated Confusion Matrix - Random Forest (5-Fold Cross Validation) build using Copilot.
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7. Image Interpretation

Recently, chatbots can also upload and analyze images.[13,14]. To evaluate the ability of chatbots
to interpret chemical reaction schemes, we selected a question involving a transesterification reaction.
The chatbots were presented with the following prompt:

"One of the chemical recycling techniques for the polymer PET [poly(ethylene terephthalate)]
produces methyl terephthalate and ethanediol, as shown in the reaction scheme (Figure 20), and
occurs through a transesterification reaction. Compound A, represented in the reaction scheme, is:"

This question required chatbots to recognize the structural components in the image and apply
their understanding of the transesterification mechanism to correctly identify Compound A. All
chatbots successfully identified Compound A as methanol, demonstrating a satisfactory level of
chemical reasoning in this case.

For example, DeepSeek responded:

"The correct Compound A is methanol, as it provides the CH;O- group needed to form methyl
terephthalate.”

This result indicates that chatbots can correctly associate reaction mechanisms with visual
representations, at least for relatively straightforward organic transformations.

COOCH,
Altas temperaturas
O, (0} S ik e pressao . OH
_ >
o T n " Ho
PET N COOCH,

Figure 20. Transesterification of PET: Under high temperature and pressure.

Subsequently to evaluate the ability of chatbots to integrates multiple layers of chemical
understanding that go beyond simple recall. The chatbots were presented with the following prompt:

The odor that remains on the hands after contact with garlic can be eliminated by using a
"stainless steel soap", composed of stainless steel (74%), chromium, and nickel. The main advantage
of this “soap” is that it does not wear out with use. Consider that the main substance responsible for
garlic’s odor is allicin (structure I), and that to eliminate the odor, it must be transformed into
structure II. In the conversion from I to II (Figure 21), the “soap” acts as a(n) __.

All chatbots successfully identified that it was a reduction, since an oxygen atom was lost.

For example, ChatGPT responded:

"The correct Compound A is methanol, as it provides the CH3;O- group needed to form methyl
terephthalate.”

Structure I (allicin) is a sulfoxide (with an S=O bond).

Structure I is a disulfide (R-S-5-R), with no oxygen.

This means the transformation involves the reduction of a sulfoxide to a disulfide.
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Structure | (allicin)

CH,=CH—CH,—S—S8—CH,—CH=CH,

Structure ll

Figure 21. Chemical transformation of allicin (Structure I), the compound responsible for garlic’s odor, into a
disulfide (Structure II).

Subsequently to evaluate the ability of chatbots to integrates multiple layers of chemical
understanding that go beyond simple recall. The chatbots were presented with the following prompt:

The use of dyes in the food industry is widespread, and the preference for natural dyes has been
increasingly explored for various reasons. Below are shown three structures of natural dyes Figure
22. The common property among these structures that gives color to these compounds is the presence
of:

All chatbots successfully identified that natural dyes had conjugated bonds.

For example, Copilot responded:

Conjugated systems consist of alternating single and double bonds, which allow electrons to
delocalize across the molecule. Conjugation allows for electron delocalization, which lowers the
energy required to excite electrons. This is the main reason many organic compounds appear colored.
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Figure 22. Structures of natural pigments: Bixin (from annatto), Lycopene (from tomato), and p-Carotene (from

carrot and orange), all of which are carotenoids with antioxidant properties.

8. Image Interpretation and Generation in Classroom

The ability of chatbots to analyze data and generate visual representations can be effectively
integrated into laboratory teaching. For instance, in a lab session, students measured the density of
water using three types of glassware: a beaker (B), a volumetric pipette (V), and a graduated pipette
(G). The learning objective was to demonstrate that the beaker is not suitable for accurate volume
measurements, whereas pipettes are more appropriate tools for this purpose[66].

This objective was successfully achieved, as the results clearly showed that the pipettes provided
more accurate and precise measurements than the beaker. Accuracy was assessed by how close the
measured values were to the reference value (1.00 mg/mL), and precision was evaluated based on
the interquartile range (IQR), with smaller IQR values indicating higher precision. The chatbot also
identified an outlier in the graduated pipette group (0.6544 mg/mL), further enriching the analysis
and discussion.

At the end of the class, students wrote their results on the chalkboard, and an image of the data
was captured and uploaded to the ChatGPT application using a student's smartphone (Figure 23a).
The prompt used was: "Build box plot for each group and discuss the results." In response, ChatGPT
generated the boxplots (Figure 23b) and provided a data-driven discussion. The boxplots clearly
showed that the beaker yielded less precise results (larger IQR) compared to the pipettes, and that
the pipettes were more accurate, as their median values were closer to the reference density (1.00
mg/mL).

The integration of ChatGPT into the laboratory session enabled real-time data interpretation and
visualization, enhancing the learning process. Each student was able to generate and analyze
boxplots directly on their own smartphone, promoting engagement and deeper understanding of the
concepts discussed.
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Figure 23. a) Water density determined by students during a general chemistry laboratory class, b) box plot
generated of the obtained data using ChatGPT.

All chatbots used in this study were accessible via the Play Store. They could be installed on
smartphones and employed to generate images and interpret data in the context of laboratory classes.

Conclusions

This study provides a comprehensive and multimodal assessment of five freely accessible large
language model (LLM) chatbots —ChatGPT, Gemini, Copilot, DeepSeek, and Perplexity —within the
context of chemistry education. While all models demonstrated strong conceptual reasoning, verbal
fluency, and the ability to interpret chemical images and datasets, they consistently failed to generate
chemically accurate molecular and Lewis structures. This limitation underscores a critical gap in their
current multimodal capabilities, particularly in tasks requiring precise visual representation.

Despite these shortcomings, the chatbots excelled in data-driven tasks, including statistical
visualization (box plots, histograms), unsupervised learning (PCA, HCA), and supervised
classification (Random Forest), often producing results comparable to traditional software. Their
integration into classroom settings—especially for real-time data analysis and visualization—
demonstrated their potential to enhance student engagement and support inquiry-based learning.
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Overall, LLM-based chatbots represent a promising supplementary tool for chemistry
instruction, particularly in reinforcing theoretical concepts and facilitating exploratory data analysis.
However, their current limitations in structural accuracy and scientific illustration suggest that they
should not yet replace domain-specific software for visual tasks. Future improvements in multimodal
training, chemical structure rendering, and domain-specific fine-tuning will be essential to fully
unlock their educational and research potential in the chemical sciences.
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