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Abstract 

This study presents a multimodal evaluation of five freely accessible large language model (LLM) 
chatbots—ChatGPT, Gemini, Copilot, DeepSeek, and Perplexity—across a range of chemistry-related 
tasks. These tasks included generating molecular and Lewis structures, interpreting chemical images, 
visualizing experimental datasets, and explaining key chemical concepts such as polarity, 
hybridization, and conjugation. While all chatbots demonstrated strong conceptual reasoning and 
verbal explanation skills, none were able to produce chemically accurate Lewis structures or 
molecular diagrams. In contrast, all models successfully interpreted reaction schemes, identified 
functional groups, and analyzed the Wisconsin Diagnostic Breast Cancer dataset using box plots, 
histograms, principal component analysis (PCA), and hierarchical cluster analysis (HCA). The 
chatbots also generated illustrations based on style-specific prompts, revealing creative diversity but 
inconsistent labeling. One chatbot was effectively integrated into a classroom setting to support real-
time data analysis. These findings highlight the current strengths of LLMs in text-based chemical 
reasoning and data visualization, while underscoring their limitations in structural accuracy. 
Continued advancements in multimodal training and domain-specific fine-tuning are essential to 
enhance their reliability in chemistry education. 

Keywords: chatbot; Large Language Model; Artificial Intelligence; ChatGPT; DeepSeek; Copilot; 
Gemini; Perplexity 
 

1. Introduction 
The advent of Large Language Models (LLMs) has marked a transformative era in artificial 

intelligence, particularly in their capacity to reshape digital interactions across healthcare, education, 
and economic sectors.[1]. Within educational contexts specifically, these AI systems have introduced 
paradigm-shifting capabilities in personalized instruction, adaptive tutoring, and dynamic content 
creation. Contemporary LLM implementations - including ChatGPT (OpenAI), Gemini (Google), 
Copilot (Microsoft), DeepSeek, and Perplexity - have achieved remarkable linguistic fluency, 
enabling natural language interactions accessible through common digital platforms. Their 
integration into learning ecosystems offers significant pedagogical advantages: facilitating 
immediate formative feedback, enhancing learner motivation, and providing intuitive access to 
complex problem-solving across STEM and humanities disciplines - all through conversational 
interfaces requiring no technical specialization.[2] 

In the healthcare domain, large language models (LLMs) such as ChatGPT, Gemini, and Copilot 
have contributed to improving prostate cancer literacy [3]. Several tools—including Bard, Bing, 
ChatGPT, Claude, and Gemini—have been employed in ophthalmology-related studies, particularly 
for multiple-choice examinations. These tools have been applied to answer patient inquiries, provide 
medical advice, support patient education, assist in triage, facilitate diagnosis and differential 
diagnosis, and contribute to surgical planning [4]. In eye care, ChatGPT has enhanced access to 
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critical information, improved patient engagement, and streamlined triage processes [5]. 
Additionally, Copilot, Gemini, and ChatGPT-4 have been utilized for the interpretation of Western 
blot results [6]. Claude, Copilot, Gemini, ChatGPT, and Perplexity have also been employed to 
support postgraduate students in successfully passing the Specialty Certificate Examination in 
Dermatology [7]. 

In chemistry education, LLMs offer a compelling yet underexplored opportunity. Chemistry is 
inherently multimodal: learning often depends on interpreting symbolic, visual, and spatial 
information. Students are expected to construct and decode molecular structures, Lewis diagrams, 
orbital representations, and reaction mechanisms—skills that require both conceptual understanding 
and visual literacy.[8–12] While LLMs excel in linguistic tasks and factual recall, their ability to 
process or generate chemical imagery accurately remains a significant limitation.[13,14] 

Recent studies suggest that although LLMs can describe chemical principles correctly, they 
frequently struggle with visual conventions and structural accuracy. For example, when prompted 
to generate Lewis structures or stereoisomeric diagrams, models often produce distorted or 
chemically invalid results.[15,16] This discrepancy raises concerns about the pedagogical reliability 
of these tools, particularly in introductory courses where students rely heavily on accurate visual aids 
to develop foundational understanding.[17] 

Chatbots such as ChatGPT have been widely used in chemical education for tasks including 
scientific writing assignments,[18] enhancing critical thinking skills [19], answering chemistry 
questions [20–22], and writing lab reports. While chatbots can now upload datasets and generate 
images, their ability to create visualizations—such as box plots, histograms, principal component 
analysis plots, and supervised classification models—has not yet been described in the literature. This 
is a recent development, as only recently have chatbots gained the capability to handle data and 
produce graphical outputs. [23]. 

At the same time, the integration of image input and interpretation capabilities in modern LLMs 
introduces promising pathways for chemistry education. Multimodal models—capable of processing 
both text and images—can now identify functional groups in chemical diagrams, recognize reaction 
types from schemes, and classify molecular properties from image prompts .[24,25] These features 
may be particularly useful in visual tasks such as distinguishing between polar and nonpolar 
molecules, understanding the significance of conjugated systems in natural dyes, or interpreting 
organic transformations like reduction and hydrolysis. Such affordances point to a future where AI 
could serve as a conceptual scaffold, enabling students to explore chemical ideas interactively, even 
if the model lacks perfect visual precision.[26,27] 

This study aims to evaluate the capabilities and limitations of five widely available LLM-based 
chatbots—ChatGPT, Gemini, Copilot, DeepSeek, and Perplexity—in supporting chemistry education 
across a range of representational formats. Specifically, we assess their ability to: (1) generate 
molecular and Lewis structures; (2) create illustrative images; (3) generate plots such as PCA score 
plots, dendrograms , box plots , and histograms (4) does classificatory models such as random forest 
(5) accurately interpret reaction schemes and chemical images; and (5) interpret and generate images 
within classroom learning contexts. Our approach involves iterative prompting and performance 
benchmarking using chemistry tasks commonly encountered at the high school and undergraduate 
levels. 

Findings indicate that while the chatbots show strong conceptual understanding—consistently 
identifying functional groups, stereochemistry, hybridization, and polarity—they struggle 
significantly with structure generation. No tool was able to reliably construct valid Lewis structures, 
and only a few could attempt molecular visualizations at all. Despite this, all models were capable of 
interpreting image-based prompts with reasonable accuracy, recognizing compounds like methanol 
in transesterification reactions or the reduction of allicin to a disulfide. 

Taken together, these results provide a nuanced perspective on the current role of LLMs in 
chemistry education. While their linguistic and reasoning capacities are impressive, their visual 
representation skills are still in early stages of development. These findings support the cautious 
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integration of LLMs as supplementary tools—useful for conceptual reinforcement and chemical 
reasoning, but not yet reliable as primary sources for visual content. Future improvements in 
multimodal training and domain-specific fine-tuning will be essential to unlock the full educational 
potential of these AI systems. 

2. Materials and Methods 

The chatbots s used in this study were described in Table 1. The study was conducted in May to 
August 2025. ChatGPT, Gemini, Perplexity interactions were performed using the free versions of 
each tool, accessed directly through the Microsoft Edge browser. The Copilot 365 version was used 
in this study. It is free for Microsoft Windows users.  

The Wisconsin Breast Cancer Dataset  used in sections 4-6 was provided in the supporting 
information.  

Table 1. Versions of Freely Accessible Large Language Models Employed in This Study (June 2025). 

Tool Free Version (June 2025) 
ChatGPT GPT-4o 
Gemini Gemini 2.5 Flash 

Perplexity GPT-4o 
DeepSeek DeepSeek-R3-V2 

Copilot Copilot M365 (GPT-4o) 

4.2. Supervised Methods 

Classification Metrics for Cancer Recognition 
When evaluating a model for a cancer recognition contest, a variety of metrics are used to 

measure its performance from different angles. Here's a breakdown of the key metrics you've listed: 
Precision vs. Recall 
In cancer recognition, a positive prediction means the model says the patient has cancer, and a 

negative prediction means the model says the patient does not have cancer. 
Precision: Answers the question, "Of all the patients the model predicted have cancer, how many 

actually have it?" High precision is crucial when a false positive (telling a healthy person they have 
cancer) is highly undesirable, as it can lead to unnecessary treatments or stress. 

Recall (Sensitivity): Answers the question, "Of all the patients who actually have cancer, how 
many did the model correctly identify?" High recall is critical in cancer detection because a false 
negative (failing to detect cancer in a sick person) can have severe consequences, delaying vital 
treatment. 

F1-Score 
The F1-Score is the harmonic mean of precision and recall, providing a single score that balances 

both metrics. It is particularly useful when you need a model that performs well on both fronts, 
especially if there is an uneven distribution of cancer and non-cancer cases in your dataset. 

Confusion Matrix 
The Confusion Matrix provides a complete breakdown of your model's predictions versus the 

actual outcomes. It's a table that shows: 
True Positives (TP): The number of actual cancer cases that the model correctly identified. 
True Negatives (TN): The number of actual non-cancer cases that the model correctly identified. 
False Positives (FP): The number of non-cancer cases that the model incorrectly identified as 

cancer. 
False Negatives (FN): The number of actual cancer cases that the model failed to detect. 
ROC-AUC Score 
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The ROC-AUC Score (Receiver Operating Characteristic-Area Under Curve) measures the 
model's ability to distinguish between classes. A score of 1.0 means the model can perfectly 
differentiate between cancer and non-cancer cases, while a score of 0.5 indicates a model that is no 
better than random guessing. 

Cross-Validation Scores 
Cross-Validation Scores assess the stability and generalizability of your model. Instead of just 

splitting the data once, cross-validation divides the dataset into multiple parts (e.g., 5-fold). The 
model is trained and tested five times, with a different part of the data held out each time. The scores 
from each "fold" are then averaged, providing a more reliable estimate of how the model will perform 
on new, unseen data. In this study it was used 5 fold-cross validation 

3. Building Images 

3.1. Generating the Structure of Thalidomide 

This section aimed to evaluate whether chatbots are capable of generating chemical structures. 
As a model compound, thalidomide was selected due to its well-known role in stereochemistry 
education [28]. Thalidomide exists as two enantiomers: the (R)-thalidomide, which exhibits sedative 
properties, and the (S)-thalidomide, which is teratogenic and responsible for severe birth defects. Its 
historical and pharmacological significance makes it a common example for illustrating the 
importance of chirality in drug development. 

DeepSeek provided a description of thalidomide but stated that it could not generate images, 
instead supplying links to the compound’s structures on PubChem and ChemSpider. 

ChatGPT initially returned an incorrect structure (Figure 1a). However, when prompted with 
“you provided me with a wrong structure”, it produced the correct structures (Figure 1b). 

Gemini, in its first attempt, also returned an incorrect structure (Figure 1c). When prompted 
with “you provided me with a wrong structure”, it generated Figure 1d. After a second prompt—“you 
provided a wrong structure again”—it produced Figure 1e. Subsequently, it stated “I cannot generate the 
image” and provided a ResearchGate article containing the thalidomide structure. 

Perplexity initially returned an incorrect structure (Figure 2a). When prompted with “you 
provided me with a wrong structure”, it again produced an incorrect result (Figure 2b). After a second 
prompt—“you provided a wrong structure again”—it stated that the image generation limit had been 
reached and suggested upgrading to the paid version. 

Copilot also generated incorrect structures. On its seventh attempt, it returned another incorrect 
structure (Figure 2c) and redirected the user to the ACS.org website, where the correct structure could 
be found. 
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Figure 1. Thalidomide structures generated by ChatGPT in its first (a) and second (b) attempts, and by Gemini 
in its first (c), second (d), and third (e) attempts. 

 

Figure 2. Thalidomide structures generated by Perplexity in its first (a) and second (b) attempts, and by Copilot 
in its seventh (c) attempt. 

3.2. Building the Simple Molecules Lewis Structure  

Constructing Lewis structures and analyzing molecular geometry and hybridization are 
fundamental topics in general chemistry. In this section, we evaluated the ability of chatbots to 
generate Lewis structures for a selection of molecules commonly taught at the introductory level, it 
was prompt, generate the Lewis structure of BF₃, CH₄, NH₃, PCl₃, PCl₅, SF₄, SF₆, XeF₂, and XeF₄. In 
this example, the prompt was tested multiple times form May to August 2025. 

All chatbots were able to provide accurate and consistent descriptions of central atom 
hybridization, molecular geometry, and polarity, as summarized in Table 1 by DeepSeek. 

Table 2. Molecules, hybridizations, geometry and polarity of molecules. It was built by DeepSeek. 

Molecule Hybridization Geometry Polarity 
BF₃ sp� Trigonal planar Nonpolar 

CH₄ sp� Tetrahedral Nonpolar 

NH₃ sp� Trigonal pyramidal Polar 
PCl₃ sp� Trigonal pyramidal Polar 
PCl₅ sp�d Trigonal bipyram. Nonpolar 
SF₄ sp�d See-saw Polar 
SF₆ sp�d� Octahedral Nonpolar 

XeF₂ sp�d Linear Nonpolar 

XeF₄ sp�d� Square planar Nonpolar 

When the prompt was entered into ChatGPT between May and August 2025, incorrect chemical 
structures were produced. For example, Figures 3a, 3b, and 3c were generated in May, July, and 
August 2025, respectively. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 August 2025 doi:10.20944/preprints202508.1250.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1250.v1
http://creativecommons.org/licenses/by/4.0/


 6 of 27 

 

 

Figure 3. Lewis structures produced by ChatGPT in a) May, b) July, and c) August 2025. 

Both Gemini and Perplexity demonstrated an ability to describe the geometry of molecules 
rather than providing a visual representation. For example, Perplexity described XeF₄ as a central 
xenon atom bonded to four fluorine atoms with two lone pairs, resulting in a square planar shape. 

Similarly, Gemini described SF₆ by detailing its octahedral shape: a central sulfur atom forms six 
single bonds with six fluorine atoms, holding 12 valence electrons with no lone pairs. 

However, a key difference emerged in August 2025. When prompted to generate these images, 
Gemini explicitly stated, "I apologize, but I cannot create images of the Lewis structures you 
requested. My image generation tool is not equipped to produce the precise scientific diagrams 
needed for chemical structures." This response highlights a limitation in Gemini's ability to create 
accurate visual representations, even as it could provide a detailed textual description of the 
molecular geometry. 

Copilot, when used as ChatGPT, provided inaccurate molecular structures even after multiple 
tests conducted from May to August. The Lewis structures could not be reliably generated. Figure 4 
illustrates the inaccuracies in the constructed Lewis structures. 
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Figure 4. Lewis structures produced by Copilot in a) July and b) August 2025. 

3.3. Comparing NH3 and NF3 Polarities 

Comparing the polarities of NH₃ and NF₃ is a classic example in general chemistry used to 
illustrate how molecular geometry influences molecular polarity. When prompted with the question: 
"Between NH₃ and NF₃, which molecule is more polar, and why? Illustrate both Lewis structures and 
describe the direction and magnitude of their dipole moments," all chatbots correctly identified NH₃ 
as the more polar molecule. This was typically justified by referencing the greater electronegativity 
of fluorine compared to hydrogen and the resulting net dipole orientation. 

The reported dipole moments were generally consistent, with values of approximately 1.47 D 
for NH₃ and 0.23 D for NF₃, aligning with standard literature. However, despite the conceptual 
accuracy in their explanations, none of the chatbots were able to generate correct Lewis structures, 
even for these relatively simple molecules.  

NF₃ and NH₃ are simple molecules, yet none of the chatbots were able to generate accurate 
images of them, even after the prompt was tested multiple times between May and August 2025. 
Figure 5 illustrates some of the Lewis structures produced by ChatGPT (Figure 5a) and Copilot 
(Figure 5b) in August 2025. 

 
Figure 5. NH3 and NF3 Lewis structures built by a) ChatGPT and b) Copilot in August. 

3.4. Building Illustrations 

The April 2025 front cover of the Journal of Chemical Education was created using ChatGPT,[29] 
highlighting how chatbots were also used to enhance scientific manuscripts through tasks such as 
text improvement.[30–32] Motivated by this, it was tested how different chatbots perform in 
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generating an illustration. It was prompt “Illustrated a battle between ChatGPT, DeepSeek, Copilot, 
Perplexity and Gemini” 

In April 2025, Copilot produced an illustration featuring six robots; however, it did not specify 
which robot represented which chatbot (Figure 6a). ChatGPT, by contrast, successfully created a 
battle scene between five characters, each clearly labeled with the name of its corresponding chatbot 
(Figure 6b). Gemini generated a colorful illustration, but it included six characters and failed to name 
or distinguish them (Figure 6d). Perplexity generated an image featuring four distinct humanoid 
robots positioned together. The robots exhibit unique visual designs (e.g., differing in shape, color, 
or mechanical features) it include identifying logos distinguish them as specific models or characters, 
but the Perplexity Robot was not shown in the ilustration (Figure 6c).  

 

Figure 6. Illustration of a battle between chatbots using a) Copilot, b) ChatGPT, c) Gemini, and d) Perplexity in 
April 2025. 

When the prompt was retested in August 2023, each AI model provided a unique interpretation. 
ChatGPT generated a battle between five cavaliers, each clearly identified with a chatbot's name and 
logo (Figure 7a). Gemini's illustration featured a battle of six magical characters; while five were 
labeled with a chatbot's name, the sixth character was simply marked with a question mark (Figure 
7b). Copilot built a scene with six characters; however, one of the characters remained unidentified 
(Figure 7c). Perplexity's result included five characters, but only four were named, and all four names 
were misspelled (Figure 7d). 
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Figure 7. Ilustration of a battle between chatbots using a) ChatGPT, b) Gemini, c) Copilot, and d) Perplexity, In 
August 2025. 

3.5. Building Illustrations in Studio Ghibli Animations 

In March 2025, a trend emerged on social media in which users shared stylized images inspired 
by Studio Ghibli animations—often using the prompt, “illustrate in the style of Studio Ghibli a battle 
between ChatGPT, DeepSeek, Copilot, Perplexity, and Gemini.” Motivated by this trend, each of 
these chatbots was asked to generate illustrations in the Studio Ghibli style. 

In April, Copilot and Gemini returned images featuring more than five characters, but without 
labels or clear associations between the figures and the individual chatbots. In contrast, ChatGPT 
produced a charming Ghibli-style illustration in which each character was distinctly and 
unambiguously linked to a specific chatbot (Figure 8). 
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Figure 8. Illustration of a battle between chatbots builds in style studio Ghibli using ChatGPT, in March 2025. 

In May, the same labeling issue persisted: both Copilot and Gemini again produced images with 
more than five characters, but without assigning chatbot names to the individual figures. Copilot's 
image had a Star Wars theme (Figure 9a), while Gemini depicted magical fantasy characters (Figure 
9b). Perplexity provided an illustration featuring humanoid robots in combat; however, only four 
were shown, and while the robots were labeled, the Perplexity robot itself was missing (Figure 9c). 
Once again, ChatGPT delivered a clear battle scene with five distinct, properly labeled characters—
each representing a specific chatbot (Figure 9d). 

In August 2025, the illustrations were regenerated to ensure consistency and clarity (Figure 10). 
Gemini returned an image with six magical characters, two of which were labeled as ChatGPT (Figure 
10a). ChatGPT again illustrated a battle with five unique figures, each accurately named after a 
different chatbot (Figure 10b). Perplexity provided a scene featuring five fantasy adventurers; 
however, only four names were given, and they bore no clear connection to the actual chatbot names 
(Figure 10c). Finally, Copilot produced a combat scene with six figures, each bearing a chatbot’s 
name—though notably, two of the characters were labeled as Copilot (Figure 10d). 

A notable outcome of this exercise is that each chatbot consistently produced visually and 
stylistically distinct interpretations of the same prompt—highlighting their differing design 
philosophies and creative capacities. 

 

Figure 9. Illustration of a battle between chatbots builds in style studio Ghibli using a) Copilot, b) Gemini, c) 
Perplexity, and d) ChatGPT, in May 2025. 
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Figure 10. lustrations build in style studio Ghibli using a) Gemini, b) ChatGPT, c) Perplexity, and d) Copilot, in 
August 2025. 

4. Plotting Your Dataset 

This section was devoted to shown how dataset can be analyzed and plotted using chatbots. 
This section was build in August 2025 since chatbots can upload spreadsheets,[2,23] it used the 
publicly available Wisconsin Diagnostic Breast Cancer (WDBC.csv; supporting information) dataset, 
obtained from the UCI Machine Learning Repository, was used for this study [33–36]. It consists of 
569 observations, each corresponding to a digitized image of a fine needle aspirate (FNA) of a breast 
mass. The dataset contains 30 numerical features extracted from these images  (each one explained 
in detail in WDBC.docx; supporting information), which describe various morphological 
characteristics of the cell nuclei present in the sample. These features are computed from ten original 
measurements—namely, radius, texture, perimeter, area, smoothness, compactness, concavity, 
concave points, symmetry, and fractal dimension—each reported as a mean, standard error, and 
worst-case (i.e., largest value). All features are continuous and have been scaled for analysis. 

In addition to these descriptors, each sample is labeled as either malignant or benign, based on 
clinical diagnosis. There are 357 benign and 212 malignant cases in the dataset.  

4.1. Building Box Plots 

Box plots are statistical visualizations that summarize the distribution of a dataset by displaying 
its median, quartiles, and potential outliers [37–39]. They are particularly useful for comparing 
groups, such as malignant and benign tumor classifications, by highlighting differences in central 
tendency and variability across features like mean radius, texture, and perimeter. 

It was prompt - Generate a grouped box plot comparing the distributions of mean radius, mean 
texture, and mean perimeter features, stratified by diagnosis (Malignant vs. Benign). Chatbots build 
box plots comparing those parameters as shown in Figure 11. 
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Figure 11. the box plots for mean radius, mean texture, and mean perimeter, 
comparing Malignant and Benign diagnoses. Generated by Copilot in August 2025. 

Copilot visualized each feature in separate plots (Figure 11), an approach that facilitates scale-
sensitive comparisons across features. In contrast, Gemini (Figure 12a) and ChatGPT (Figure 12b) 
consolidated all features into single composite plots. The plots clearly demonstrate that the malignant 
group exhibits larger mean radius, mean texture, and mean perimeter values compared to the benign 
group. 

 
Figure 12. he box plot displays the distribution of mean radius, mean texture, and mean perimeter grouped by 
diagnosis (Malignant or Benign) build by a) Gemini and b) ChatGPT. 
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4.2. Building Histograms 

Histograms, on the other hand, illustrate the frequency distribution of a single variable by 
grouping data into bins [40,41]. They provide insight into the shape of the data—whether it's skewed, 
uniform, or normally distributed—and are effective for identifying patterns such as clustering or gaps 
within malignant and benign tumor measurements. 

Chatbots were prompted to generate grouped histograms comparing the distributions of mean 
radius, mean texture, and mean perimeter features, stratified by diagnosis (Malignant vs. Benign). The 
resulting histograms are shown in Figure 13. Gemini presented the data using bar plots with distinct 
colors for benign and malignant cases (Figure 13a). ChatGPT (Figure 13b) and Copilot (Figure 13c) 
produced similar visualizations, where each group is represented by a different color and the area 
between the two distributions is shaded to highlight the overlap. 

These plots clearly demonstrate that the malignant group exhibits higher values for mean radius, 
mean texture, and mean perimeter when compared to the benign group. 

 

Figure 13. the grouped histograms comparing the distributions of mean radius, mean texture, and mean 
perimeter features, stratified by Malignant and Benign diagnoses a) Gemini, b) ChatGPT, c) Copilot. 

4.2. Building Heatmaps and Correlations 

A heatmap is a data visualization technique that uses color gradients to represent the magnitude 
of values in a matrix. In the Wisconsin Breast Cancer dataset, the heatmap was employed to display 
the correlation coefficients between pairs of numerical features. When prompted with 'Build the 
heatmap of this dataset,' Gemini, Copilot, and ChatGPT each generated heatmaps. Figure 14 presents 
an example of a heatmap produced using Copilot." Perplexity and DeepSeek do not generate the plot, 
those chatbots just provided scripts in pythons  
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Figure 14. Heatmap build using Copilot. 

Chatbots can be employed to identify both the strongest and weakest correlations within a 
dataset. For example, when prompted with 'Which features exhibited the strongest correlations in 
this dataset?', the chatbots were able to interpret the heatmap and return precise results. Table 3, 
generated by Copilot, highlights the most highly correlated pairs of numerical features—primarily 
among tumor size metrics such as radius, perimeter, and area. These strong relationships indicate 
redundancy and potential multicollinearity, which are important considerations for feature selection 
and model optimization. Similarly, when prompted with 'Which features exhibited the weakest 
correlations in this dataset?', the chatbots were also able to identify the least related feature pairs. 
Table 4, created by Copilot, presents these weakest correlations in the dataset. Perplexity and 
ChatGPT produced similar outputs, confirming the consistency of chatbot-based analysis in detecting 
correlation patterns 

Table 3. Top 10 Strongest Feature Correlations in the Wisconsin Breast Cancer Dataset: . 

Feature 1 Feature 2 Correlation 
mean perimeter mean radius 0.998 

worst perimeter worst radius 0.994 
mean radius mean area 0.987 

mean perimeter mean area 0.987 
worst area worst radius 0.984 

Table 4. Top 10 weakest Feature Correlations in the Wisconsin Breast Cancer Dataset: . 

Feature 1 Feature 2 Correlation 
mean fractal dimension radius error +0.0001 

worst perimeter fractal dimension error −0.0010 
worst texture fractal dimension error −0.0032 

mean area worst fractal dimension +0.0037 
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mean perimeter fractal dimension error −0.0055 

"The chatbots are capable of generating correlation plots when prompted with requests such as: 
'Construct correlation plots for the following feature pairs: (i) mean perimeter vs. mean radius, and 
(ii) mean fractal dimension vs. radius error.' In their initial attempts, Copilot, Gemini, and ChatGPT 
successfully produced meaningful plots (Figure 15). An example of the correlation plots generated 
by Gemini is shown in Figure 15. In contrast, DeepSeek and Perplexity were unable to generate these 
plots. 

 

Figure 15. Correlation plots between a) mean perimeter vs. mean radius, and (b) mean fractal dimension vs. 
radius error. 

5. Unsupervised Methods: PCA and HCA 

Unsupervised methods in machine learning are a class of algorithms that work with unlabeled 
data to identify hidden patterns and intrinsic structures. Unlike supervised methods, which require 
a labeled training dataset, unsupervised algorithms aim to discover relationships and organize data 
independently[42]. 

The ability of chatbots to perform unsupervised methods is particularly interesting in the 
classroom, as undergraduate and graduate chemometrics courses often struggle to provide graphical 
user interface (GUI) software for such applications.[43] While there are good free options available 
through coding platforms such as Python and R [44–46], many students are unfamiliar with 
programming, which can limit their accessibility. 

5.1. Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is an unsupervised technique primarily used for 
dimensionality reduction. Its goal is to transform high-dimensional data into a smaller set of 
variables, called principal components, that capture the most significant variance in the original data 
[40,43,47–51]. By identifying the new axes along which the data varies the most, PCA allows for the 
visualization and simplification of complex datasets without losing crucial information [52]. 

The prompt "Build the score plot" was submitted to the chatbots, and the resulting score plots 
were generated (Figure 16). ChatGPT (Figure 16a), Copilot (Figure 16b), and Gemini (Figure 16c) 
produced identical plots, with benign and malignant samples represented in distinct colors. In the 
PCA score plot (Figure 16), a clear separation is observed between malignant (purple) and benign 
(yellow) cases. Malignant samples are primarily distributed on the right side of the plot, while benign 
cases are predominantly clustered on the left. This separation indicates that the first two principal 
components effectively discriminate between the two diagnostic groups.  

Principal Component 1 (PC1) accounts for 44.27% of the total variance, and Principal 
Component 2 (PC2) captures 18.97%, providing a combined explanation of approximately 63% of the 
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overall variability in the dataset. These results highlight the effectiveness of Principal Component 
Analysis (PCA) in visualizing and summarizing the diagnostic structure of the data. 

 
Figure 16. The PCA score plot has been rebuilt to show the percentage of variance explained by each principal 
component build using a) ChatGPT, b) Gemini, and c) Copilot. 

PCA works by identifying the directions of maximum variance in the data. If the data is not 
normalized, features with a larger range of values (and thus, higher variance) will have a 
disproportionately strong influence on the principal components. This can lead to misleading results 
where the principal components are simply reflecting the scale of the original features rather than the 
underlying structure of the data. Standardization, a common form of normalization, ensures that all 
features are on the same scale, so that each feature's contribution is based on its actual importance 
and not its magnitude [52–56]. All chatbots correctly identified that the data required standardization 
prior to PCA analysis and automatically standardized the dataset before generating the score plots. 

5.2. Hierarchical Cluster Analysis (HCA) 

Hierarchical Cluster Analysis (HCA) is an unsupervised method used for clustering or grouping 
similar data points [57]. It builds a hierarchy of clusters, represented visually by a tree-like diagram 
called a dendrogram. HCA can be performed in one of two ways: agglomerative, which starts with 
each data point as its own cluster and then merges the closest clusters, or divisive, which begins with 
all data points in a single cluster and then splits it iteratively [58–60]. 

The prompt "Build an HCA for this dataset" was submitted to the chatbots. In response, the 
chatbot generated a dendrogram (Figure 17), which illustrates the hierarchical organization of the 
data based on similarity. In the dendrogram, shorter vertical lines represent higher intra-cluster 
similarity. A clear separation between benign (yellow) and malignant (purple) cases is evident, with 
each group forming distinct clusters at relatively high linkage distances. These results demonstrate 
that hierarchical cluster analysis (HCA) effectively distinguishes samples based on their diagnostic 
classification. 
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Figure 17. The Hierarchical Cluster Analysis (HCA) dendrogram for the Wisconsin Breast Cancer dataset built 
using Gemini. HCA as PCA need data standardization and all chatbots correctly identified that the data required 
standardization prior to HCA analysis and automatically standardize the dataset before generating the 
dendrogram (Figure 17). 

6. Supervised Methods 

Big data-driven workflow combining LLM were frequently used.[61,62] This section explains 
how chatbots can be sued tighter with supervised methods.  Random Forest is a machine learning 
algorithm applicable to both classification and regression tasks. Fundamentally, it is an ensemble 
method, meaning that it combines multiple decision trees to produce more accurate and robust 
predictions. In this study, chatbots were prompted to perform statistical analyses by uploading data 
and applying a Random Forest classification model [63–65]. For instance, when asked to “Determine 
the Precision, Recall, F1-Score, and ROC-AUC Score for the Random Forest classification with 5-fold 
cross-validation,” Copilot, ChatGPT, and Gemini each, in their first attempt, provided valid models, 
as summarized in Table 5. While the specific parameters varied slightly among the chatbots, all 
produced reliable classifications. 

In addition to performance metrics, the chatbots were capable of generating graphical outputs. 
For example, when prompted with “Create a feature importance visualization for the Random Forest 
classification of the Wisconsin Breast Cancer dataset,” the chatbots returned feature importance plots. 
Figure 18 shows the plot generated by Copilot showing the variables with larger importance in the 
random forest classificatory model. The confusion matrix could also be constructed by the chatbots; 
when prompted with “Build the Confusion Matrix for 5-fold cross-validation using Random Forest,” 
ChatGPT, Copilot, and Gemini successfully produced confusion matrices. Figure 19 shows the 
confusion matrix generated by Copilot, which indicates that the classifier correctly identified 345 
benign and 198 malignant cases. It misclassified 12 malignant cases as benign (false negatives), which 
is particularly critical in medical diagnostics, as it may result in missed or delayed treatment. 
Additionally, 14 benign cases were misclassified as malignant (false positives), potentially causing 
unnecessary anxiety or treatment. 
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Table 5. presents a consolidated comparison of the performance metrics obtained from Random Forest 
classification models generated by the three chatbots. 

Metric Copilot  ChatGPT Gemini Key Observations 

Precision 95.27% 94.2% 95.29% All models show similar 

precision (94.2-95.3%) 

Recall 92.49% 92.5% 92.97% Recall consistently ~92.5-93% 

across models 

F1-Score 93.80% 93.3% 94.04% Balanced performance in all 

versions 

ROC-AUC 94.84% 0.945 (94.5%) 99.15% Second Copilot shows 

exceptional AUC (99.15%) 

Table 6. Comparative table summarizing the performance of the three Random Forest configurations 
implemented by each chatbot. 

Parameter ChatGPT Gemini Copilot Impact Analysis 

n_estimators (Trees) 200 100 100 
More trees → better 

stability but slower 

max_depth (Tree 

Depth) 
10 10 

None 

(unlimited) 

Unlimited depth risks 

overfitting 

criterion (Split Rule) Gini Gini Gini Standard for classification 

min_samples_leaf 2 1 1 
Higher values prevent 

overfitting 

random_state 42 42 42 Ensures reproducibility 
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Figure 18. This plot highlights the most influential features in predicting breast cancer diagnosis. Features 
like worst area, worst concave points, and mean concave points are among the top contributors generated by 
Copilot. 

 

Figure 19. Aggregated Confusion Matrix – Random Forest (5-Fold Cross Validation) build using Copilot. 
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7. Image Interpretation 

Recently, chatbots can also upload and analyze images.[13,14]. To evaluate the ability of chatbots 
to interpret chemical reaction schemes, we selected a question involving a transesterification reaction. 
The chatbots were presented with the following prompt: 

"One of the chemical recycling techniques for the polymer PET [poly(ethylene terephthalate)] 
produces methyl terephthalate and ethanediol, as shown in the reaction scheme (Figure 20), and 
occurs through a transesterification reaction. Compound A, represented in the reaction scheme, is:" 

This question required chatbots to recognize the structural components in the image and apply 
their understanding of the transesterification mechanism to correctly identify Compound A. All 
chatbots successfully identified Compound A as methanol, demonstrating a satisfactory level of 
chemical reasoning in this case. 

For example, DeepSeek responded: 
"The correct Compound A is methanol, as it provides the CH₃O– group needed to form methyl 

terephthalate." 
This result indicates that chatbots can correctly associate reaction mechanisms with visual 

representations, at least for relatively straightforward organic transformations. 

 

Figure 20. Transesterification of PET: Under high temperature and pressure. 

Subsequently to evaluate the ability of chatbots to integrates multiple layers of chemical 
understanding that go beyond simple recall. The chatbots were presented with the following prompt: 

The odor that remains on the hands after contact with garlic can be eliminated by using a 
"stainless steel soap", composed of stainless steel (74%), chromium, and nickel. The main advantage 
of this “soap” is that it does not wear out with use. Consider that the main substance responsible for 
garlic’s odor is allicin (structure I), and that to eliminate the odor, it must be transformed into 
structure II. In the conversion from I to II (Figure 21), the “soap” acts as a(n) ___. 

All chatbots successfully identified that it was a reduction, since an oxygen atom was lost. 
For example, ChatGPT responded: 
"The correct Compound A is methanol, as it provides the CH₃O– group needed to form methyl 

terephthalate." 
Structure I (allicin) is a sulfoxide (with an S=O bond). 
Structure II is a disulfide (R–S–S–R), with no oxygen. 
This means the transformation involves the reduction of a sulfoxide to a disulfide. 
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Figure 21. Chemical transformation of allicin (Structure I), the compound responsible for garlic’s odor, into a 
disulfide (Structure II). 

Subsequently to evaluate the ability of chatbots to integrates multiple layers of chemical 
understanding that go beyond simple recall. The chatbots were presented with the following prompt: 

The use of dyes in the food industry is widespread, and the preference for natural dyes has been 
increasingly explored for various reasons. Below are shown three structures of natural dyes Figure 
22. The common property among these structures that gives color to these compounds is the presence 
of:   

All chatbots successfully identified that natural dyes had conjugated bonds. 
For example, Copilot responded: 
Conjugated systems consist of alternating single and double bonds, which allow electrons to 

delocalize across the molecule. Conjugation allows for electron delocalization, which lowers the 
energy required to excite electrons. This is the main reason many organic compounds appear colored. 
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Figure 22. Structures of natural pigments: Bixin (from annatto), Lycopene (from tomato), and β-Carotene (from 
carrot and orange), all of which are carotenoids with antioxidant properties. 

8. Image Interpretation and Generation in Classroom  

The ability of chatbots to analyze data and generate visual representations can be effectively 
integrated into laboratory teaching. For instance, in a lab session, students measured the density of 
water using three types of glassware: a beaker (B), a volumetric pipette (V), and a graduated pipette 
(G). The learning objective was to demonstrate that the beaker is not suitable for accurate volume 
measurements, whereas pipettes are more appropriate tools for this purpose[66]. 

This objective was successfully achieved, as the results clearly showed that the pipettes provided 
more accurate and precise measurements than the beaker. Accuracy was assessed by how close the 
measured values were to the reference value (1.00 mg/mL), and precision was evaluated based on 
the interquartile range (IQR), with smaller IQR values indicating higher precision. The chatbot also 
identified an outlier in the graduated pipette group (0.6544 mg/mL), further enriching the analysis 
and discussion. 

At the end of the class, students wrote their results on the chalkboard, and an image of the data 
was captured and uploaded to the ChatGPT application using a student's smartphone (Figure 23a). 
The prompt used was: "Build box plot for each group and discuss the results." In response, ChatGPT 
generated the boxplots (Figure 23b) and provided a data-driven discussion. The boxplots clearly 
showed that the beaker yielded less precise results (larger IQR) compared to the pipettes, and that 
the pipettes were more accurate, as their median values were closer to the reference density (1.00 
mg/mL). 

The integration of ChatGPT into the laboratory session enabled real-time data interpretation and 
visualization, enhancing the learning process. Each student was able to generate and analyze 
boxplots directly on their own smartphone, promoting engagement and deeper understanding of the 
concepts discussed. 
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Figure 23. a) Water density determined by students during a general chemistry laboratory class, b) box plot 
generated of the obtained data using ChatGPT. 

All chatbots used in this study were accessible via the Play Store. They could be installed on 
smartphones and employed to generate images and interpret data in the context of laboratory classes. 

Conclusions 

This study provides a comprehensive and multimodal assessment of five freely accessible large 
language model (LLM) chatbots—ChatGPT, Gemini, Copilot, DeepSeek, and Perplexity—within the 
context of chemistry education. While all models demonstrated strong conceptual reasoning, verbal 
fluency, and the ability to interpret chemical images and datasets, they consistently failed to generate 
chemically accurate molecular and Lewis structures. This limitation underscores a critical gap in their 
current multimodal capabilities, particularly in tasks requiring precise visual representation. 

Despite these shortcomings, the chatbots excelled in data-driven tasks, including statistical 
visualization (box plots, histograms), unsupervised learning (PCA, HCA), and supervised 
classification (Random Forest), often producing results comparable to traditional software. Their 
integration into classroom settings—especially for real-time data analysis and visualization—
demonstrated their potential to enhance student engagement and support inquiry-based learning. 
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Overall, LLM-based chatbots represent a promising supplementary tool for chemistry 
instruction, particularly in reinforcing theoretical concepts and facilitating exploratory data analysis. 
However, their current limitations in structural accuracy and scientific illustration suggest that they 
should not yet replace domain-specific software for visual tasks. Future improvements in multimodal 
training, chemical structure rendering, and domain-specific fine-tuning will be essential to fully 
unlock their educational and research potential in the chemical sciences. 
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