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Abstract:

Background: The genetic variants identified by three large genome-wide association studies
(GWAS) of educational attainment were used to test a polygenic selection model.

Methods: Average frequencies of alleles with positive effect (polygenic scores or PS) were
compared across populations (N=26) using data from 1000 Genomes. A null model was created
using frequencies of random SNPs.

Results: Polygenic selection signal of educational attainment GWAS hits is high among a handful
of SNPs within genomic regions replicated across GWAS publications. A polygenic score
comprising 9 SNPs predicts population 1Q (r=0.88), outperforming 99% of the polygenic scores
obtained from sets of random SNPs (Monte Carlo p= 0.011). Its predictive power remains
unaffected after controlling for spatial autocorrelation (Beta= 0.83).The largest polygenic score
(161 SNPs) exhibits similar predictive power (Beta=0.8). Random polygenic scores are moderate
predictors of population 1Q (thanks to spatial autocorrelation), and their predictive power increases
logarithmically with the number of SNPs, indicating an exponential reduction in noise.
Conclusion: This study provides guidance for using GWAS hits together with random SNPs for
testing polygenic selection using Monte Carlo simulations.
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1. Introduction

Over the last decade, population geneticists have recognized that most traits are highly polygenic,
and hence have moved away from the study of genetic evolution using the single-gene, Mendelian
approach, towards models that examine many genes together (i.e. polygenic models).

Signals of polygenic selection can be identified by various methods, such as correlation of allele
frequencies [1-4] and the regression of population average of trait values on polygenic scores
(PS) [2,5-7], which have been successfully applied to human stature [5-7] and cognitive abilities
[2]. This paper has several aims: to test the presence of correlated frequencies among GWAS
hits and the predictive power of polygenic scores (average frequencies of GWAS alleles with
positive effect), independently of spatial autocorrelation. A null model will be built using a large
set of random SNPs and the polygenic selection model will be tested against it. A prediction is
that the polygenic selection model provides a better fit to the data (i.e. average population 1Q).
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Piffer [8] identified 9 genomic loci (table S1) that were replicated across the three largest GWAS
of educational attainment published to date [9-11]. The 9 loci contain GWAS significant alleles
that were found to be in strong LD (r>0.8). One locus was replicated across three GWAS [9-11]
and the same SNP (rs9320913) was found in two of them[9,11]. The population frequencies of
the 9 pairs (one member belonging to each GWAS publication) of alleles were highly correlated
(r=0.919), hence the SNPs published in [4] were used. Thus, this set of 9 SNPs was considered
the best candidate for analysis of natural selection on educational attainment and related
phenotypes (e.g. general cognitive ability or gca). Another set of 7 SNPs that reached significance
in the UK Biobank and another database was identified by [11]. In addition, the full sets of 74 and
162 SNPs (respectively, the new hits and those found after pooling together different datasets)
from the latest GWAS of educational attainment [11] will be employed. Average estimated
population 1Q will be used as the phenotype of interest and main dependent variable in the
analyses. This choice can be justified by its privileged status in psychometric research and its
robust genetic correlation (r= around 0.7) with educational performance [12] and attainment [13].
Moreover, the GWAS hits identified by the three educational GWAS also predict general cognitive
ability in their samples [9-11]. A re-analysis of the Okbay et al. dataset revealed that the polygenic
score also predicts general intelligence (3.6%) compared to 2% for the 2013 polygenic score [12].

2. Materials and Methods

Rietveld et al. [9] produced 3 SNPs reaching GWAS significance for educational attainment.
Davies et al. [10] reported 1115 SNPs reaching GWAS significance, of which 15 were
independent signals for educational attainment. 942 SNPs were found on 1000 Genomes. Among
the 15 independent signals, one (2:48696432_G_A) was missing.

Okbay et al. [11] reported 74 SNPs associated with years of education. 70 were found in 1000
Genomes (the other 4 variants were flagged because they had more than 3 different alleles). An
additional 162 SNPs were reported in the pooled meta-analysis (161 were found in 1000
Genomes).

A Monte Carlo simulation was performed using a random dataset, consisting of a large sample
(N=7369) of matched random unlinked SNPs (downloaded from 1000 Genomes, phase 3).

The empirical value p= (r+1)/(n+1) was calculated, where r is the number of runs whose Pearson’s
correlation coefficient ( r x population 1Q) was higher than the one found using the actual (GWAS-
derived) polygenic score; n= total number of runs. The correct formula was provided by Davison
& Hinkley [14].

Matching was carried out using SNPSNAP[5], by feeding the 9 SNPs and setting LD r? <0.1 (for
EUR). Fst distances were obtained from [2].Population IQ estimates were obtained from [8]. 1Q
previously published were used also to guarantee that the values were not created ad hoc.
Analyses were run using R [16]
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3. Results

A correlation between all the variables (i.e. SNPs frequencies) was run on the entire random
dataset (Suppl. File 1). This produced a very large correlation matrix (N=27,147,396 for the lower
triangle).

The average correlation coefficient was 0.058 (SD=0.537). The slightly positive value is likely due
to the differential representation of minor alleles among populations. The same analysis was
applied to the educational attainment GWAS hits (table 1).

The signal in the GWAS hits seems to be concentrated within a small subset of SNPs, possibly
the 9 replicated loci and the 7 cross-replicated hits (r=0.153 and 0.125, respectively). Null results
(table 1) were obtained for the 600+ SNPs from the largest GWAS of human height [17].

Since there was some LD between the 9 quasi-replicated SNPs, only one SNP per chromosome
was retained, yielding 6 unlinked SNPs. This gave a “pure” (LD-free) measure of correlation. The
average correlation was slightly higher than for the 9 SNPs (r=0.140), implying that LD did not
produce the correlation among the full set of 9 hits.

Table 1. Average intercorrelation between allele frequencies.

Average r SD SE
9 replicated loci 0.153 0.570 0.076
6 replicated loci | 0.140 0.573 0.138
(linkage pruned)
7 cross-replicated | 0.125 0.455 0.117
SNPs
74 EduYears SNPs | 0.003 0.496 0.011
(Okbay et al., 2016)
161 SNPs, Pooled | 0.004 0.495 0.004
meta-analysis [11]
691 Height SNPs [16] 0.006 0.514 0.006

Correlation between polygenic scores and population IQ

The polygenic score computed using the 9 SNPs was highly correlated (r=0.88) to an estimate
[2] of average population 1Q (fig. 1). A Monte Carlo simulation was run using 818 PS computed
from groups of 9 SNPs taken from the random dataset. The average correlation between
population 1Q and the random polygenic scores was 0.22 (N=818). The slightly positive correlation
can be interpreted as an effect of spatial/phylogenetic autocorrelation [8]. Indeed, the correlation
between population IQ and the polygenic score of all the random SNPs (N=7369) was r=0.425,
suggesting again the presence of phylogenetic autocorrelation. The increase in the correlation
coefficients moving up from low (9)to high SNPs number (7k+) is due to the reduction in the noise
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associated with each SNP. Because the correlation coefficients were not normally distributed (fig.
2), z-score computation was not appropriate. Hence, a Monte Carlo approach was used: the
percentile corresponding to a correlation coefficient r=0.88 was found to be 99% (using the 818
random polygenic scores), implying that the result is highly significant (produced only 1 out of 100
times using random sets of SNPs). This procedure is equivalent to the traditional estimation of
Monte Carlo p value, where p= r+1/n+1 (see Methods). That is, over a total of 819 runs, a
correlation coefficient equal to or higher than 0.88 occurred 8 times, producing p= 0.011.

Figure 1. Correlation between population IQ and polygenic score.
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The correlation between the 7 SNPs PS and population 1Q was r=0.832. The correlation between
the 161 SNPs polygenic score and population 1Q was high (r=0.854), corresponding to the 98th
percentile in the simulation (using PS comprising 161 random SNPs each). The 161 SNPs and
the 9 SNPs polygenic scores were strongly correlated (r= 0.949).

Conversely, the 74 SNPs did not have much predictive power (r=0.655).
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Figure 2. Distribution of correlation coefficients (r population IQ x sets of nine random
SNPs).
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Controlling for spatial autocorrelation

The presence of spatial autocorrelation in a dataset means that the cases are not independent
leading to an overestimation of degrees of freedom and, in the case of positive autocorrelation,
an inflation in the correlation between two or more variables. The source of spatial autocorrelation
in population genetics datasets is the similarity caused by admixture among neighbouring
populations, and the differences caused by random drift. Demonstrating that the alleles predict
population-level differences in average phenotypic values above and beyond that predicted on
the basis of migration, drift etc, provides evidence for a model of polygenic selection.

Population 1Q was regressed on the “random PS” (computed using the 7k+ random SNPs) and
the 9 GWAS hits PS. The model was significant (Adjusted R-squared: 0.815;

F-statistic: 49.4 on 2 and 20 DF, p= 1.829e-08).The random PS had low predictive power
(B=0.247),whereas the 9 GWAS hits PS had strong predictive power (Beta=0.826). Similar results
were obtained for the 161 SNPs PS (table 2) (Adjusted R-squared: 0.7251

F-statistic: 30.01 on 2 and 20 DF, p: 9.514e-07).

Moreover, Fst distances were also used to partial out spatial autocorrelation, following the method
outlined in [1], similar to Mantel test [18]. The correlation between Fst distances and IQ distances
was moderate (r=0.588), pointing out the presence of spatial autocorrelation. Multiple regression
was performed with 9 SNPs and Fst as predictors and population 1Q as dependent variable.
Significant models (respectively for 9 and 161 SNPs) were obtained (Adjusted R-squared: 0.503,
F-statistic: 128.5 on 2 and 250 DF, p< 2.2e-16), (Adjusted R-squared: 0.7251,F-statistic: 30.01
on 2 and 20 DF, p=9.514e-07) (table 2).
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Table 2. Multiple regression with random SNPs and GWAS hits

Variable Beta t sig VIF
PS 9 GWAS hits | 0.826 8.794 2.62e-08 1.048
Random PS 0.246 2.625 0.0162 1.048
PS 9 distances | 0.524 9.024 <2e-16 1.713
Fst Distances 0.250 4.305 2.4e-05 1.713
PS 161 GWAS | 0.804 6.750 1.45e-06 1.135
hits

Random PS 0.148 1.245 0.228 1.135
PS 161 | 0.456 7.063 1.61e-11 1.912
Distances

Fst Dist 0.274 4.241 3.14e-05 1.912

How does the number of SNPs affect the correlation between average population phenotypic
value (i.e. IQ) and polygenic score?

A polygenic score computed from a higher number of SNPs should reduce the noise in the data.
In order to test this model, polygenic scores were created using different number of SNPs over
the random SNPs dataset. The correlation of each polygenic score with population 1Q was
computed. The data followed a logarithmic function (figure 3), and the log regression model was
compared to a linear model: the former had a much better fit to the data (Adjusted R-squared:
0.939, F-statistic: 185.2 on 1 and 11 DF, p-value: 3.16e-08) compared to the latter (F-statistic:
7.568 on 1 and 11 DF, p-value: 0.019).
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Figure 3. Relationship between number of SNPs and predictive power.
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4. Discussion

The method of correlating allele frequencies seems to have low power to detect signals of
polygenic selection and picks up the signal only for the most powerful genetic loci. Simply
computing polygenic scores (average of allele frequencies with positive GWAS beta) seems a
more powerful method to detect polygenic adaptation. The polygenic score obtained from 9 quasi-
replicated SNPs is a good candidate for estimating selection strength on educational attainment:
it outperforms 99% of the polygenic scores obtained from random SNPs (Monte Carlo p= 0.011)
, it has high predictive power (Beta= 0.88), being robust to tests controlling for spatial
autocorrelation (table 2). Despite the lack of internal covariance (table 1) in the larger polygenic
score (161 SNPs), its predictive power was strong (Beta= 0.8, after partialling out autocorrelation),
outperforming 98% of the random polygenic scores.

The reliability of random polygenic scores increases as a logarithmic function of the number of
SNPs, even with random SNPs, hence independently of selection signal and instead due to the
reduction in noise. The correlation with population 1Q asymptotically approaches a value around
0.45 (which can be interpreted as the degree of spatial autocorrelation in the dataset). Thus, the
predictive power of polygenic scores should be scaled in proportion to the number of SNPs
composing them (i.e. simulations with random SNPs need to be performed using the same
number of SNPs as those of the GWAS hits polygenic scores).

It should also be pointed out that it is most likely not the SNPs or the polygenes per se that explain
the group differences in 1Q. These are probably only indicators, picking up signal of differential
selection strength, supposedly acting on many other genes, scattered across the genome, whose
association with 1Q is not known yet. A prediction is thus that as future GWAS will produce more
hits, they will fit the pattern found by this study.
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A limitation of this study is the reliance on GWAS hits for a complex phenotype such as
educational attainment, which shares the majority of additive genetic variation with general
intelligence, but also other personality and health-related traits [12,19]. It is possible that there are
other SNPs affecting cognitive variables unrelated to educational attainment and these may not
necessarily be subject to the same selection pressures. Future studies should carry out “deep
phenotyping” with SNPs from each chromosomal region that has produced hits in the educational
attainment studies, to find out which of them are related to 1Q (and its components, such as long-
term memory, working memory, and abstract reasoning), and which are related to non-cognitive
traits such as ambition, self-control, preference for abstract thinking, or incompetence in practical
pursuits. There are reports indicating that school success is as much related to preferences and
personality as to intelligence, and that these non-cognitive traits, if properly measured, are as
heritable as 1Q [20].

Another limitation is the reliance on estimates of population 1Q as the phenotypic variable, which
are not perfectly accurate, besides reflecting environmental and economic differences between
populations.
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