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Object Detection in Low-Visibility Environments

Hafi Oussama 1, Khaid Saide 2 and Khais Samir 3

Information systems and Big Data students

Abstract: Object detection in low-visibility environments is a critical challenge, particularly for appli-
cations like autonomous vehicles and safety monitoring systems. In this work, we explore advanced
detection techniques under adverse conditions, leveraging the YOLO11n.pt model for its high per-
formance and real-time capabilities. A comprehensive review of related works highlights significant
progress in the field, such as the use of Visibility Context for robust 3D recognition and thermal imaging
for improved accuracy during adverse weather. However, these methods often face limitations in terms
of computational complexity, sensitivity to environmental factors, or reliance on specific hardware. By
adopting YOLO11n.pt, we aim to overcome these challenges, providing a solution that maintains high
precision and adaptability in dynamic and low-visibility settings. Preliminary results demonstrate the
model’s potential in detecting objects accurately even under rain, fog, and poor lighting conditions,
paving the way for safer and more efficient object recognition systems.

Keywords: Object detection; Low-visibility environments; YOLO; Autonomous vehicles; Adverse
weather conditions; Real-time detection; Thermal imaging; Safety monitoring systems

Introduction

The ability to accurately detect objects in low-visibility environments is a significant challenge
with far-reaching implications for many fields, including transportation, public safety, and autonomous
systems. Environments such as rainy streets, fog-covered highways, and poorly lit areas often hinder
traditional object detection systems, making it difficult to achieve reliable performance. These chal-
lenges are particularly critical for systems where precision and real-time decision-making are essential,
such as autonomous vehicles, surveillance systems, and disaster response technologies.

Numerous research efforts have focused on enhancing object detection under adverse conditions.
Traditional methods rely on visual features extracted from images, which are highly susceptible to
environmental distortions. Recent advancements have integrated machine learning and deep learning
techniques, enabling models to better handle complex scenarios. Techniques like 3D object recognition
using visibility context and thermal imaging have demonstrated notable success in mitigating some of
these challenges. However, these methods often come with trade-offs, such as increased computational
costs, reduced accuracy with small or distant objects, or sensitivity to specific environmental factors.

This project addresses the urgent need for robust and efficient object detection systems in low-
visibility environments. The focus is on developing and implementing a deep learning-based solution
that can operate effectively in dynamic and unpredictable conditions. By leveraging the strengths of
state-of-the-art methodologies and addressing the limitations of existing systems, this work aims to
provide a comprehensive solution to enhance detection accuracy and reliability.

In this article, we first review related works to understand the strengths and weaknesses of
current techniques. We then describe the methodology adopted in this project, detailing the data
preparation, model selection, and evaluation criteria. Finally, we present the results obtained from
testing the proposed solution in various challenging environments, followed by a discussion of its
potential applications and future directions for improvement.

Through this study, we aim to contribute to the growing body of research in object detection,
focusing specifically on scenarios where traditional systems struggle due to environmental constraints.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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By tackling these challenges, we hope to pave the way for safer and more efficient applications of
object detection technologies in real-world settings.

Related Work

Object detection in low-visibility environments has been a significant research challenge due to
the complexities introduced by adverse weather conditions, poor lighting, and occlusions. Researchers
have explored various techniques to enhance detection accuracy and robustness in such scenarios.
Approaches like Visibility Context, MOT indicators, Faster R-CNN, and YOLOv3 have been employed
to address these challenges, each demonstrating unique strengths and limitations. While some
methods offer high accuracy and resilience to occlusions, others struggle with computational efficiency
or environmental dependencies. The following table provides a comprehensive comparison of the
methodologies, advantages, and limitations from key studies in this domain:

Table 1. Résumé des articles sur la détection d’objets dans diverses conditions

Article Méthode Précision Avantages Inconvénients
3D Object | Visibility Con- | Précision  de | - Meilleure pré- | - Complexité
Recognition in | text 91% pour 10 | cision et temps | élevée pour des
Range Images objets d’exécution images denses
Using Visibility plus rapide | - Rejet possible
Context que  d’autres | de bonnes corre-

méthodes spondances

- Résistance a

l'occlusion et a

I'encombrement
Evaluation of | Indicateur MOT | Sensibilité vari- | -  Evaluation | - Limité aux cap-
Detection Per- able selon cap- | précise de la | teurs optiques
formance for teurs (presque | détection, in- | - Dépendance au
Safety-Related 80 % moyenne) | dépendante de | matériel et aux
Sensors in la  perception | algorithmes
Low-Visibility humaine
Environments - Compatibilité

avec MOR
Object Detec- | Faster R-CNN Véhicule: - Efficacité com- | - Temps
tion Under 67.84%, Pié- | putationnelle d’inférence
Rainy Con- ton: 32.58% et précision | relativement
ditions for améliorée lent
Autonomous - Robustesse | - Sensibilité aux
Vehicles dans des en-| conditions envi-

vironnements ronnementales

complexes difficiles
Thermal Ob-| YOLOV3 Météo  claire: | - Détection en | - Sensibilité
ject Detection 97.85%, Pluie: | temps réel avec | aux conditions
in Difficult 98.08% précision élevée | d’éclairage
Weather Con- - Adaptabilité | - Difficulté avec
ditions Using aux conditions | les petites cibles
YOLO variées

Proposed Method

Object detection plays a crucial role in modern technologies such as autonomous driving, surveil-
lance, and robotics. Detecting objects accurately in real-time, especially under challenging conditions,
is essential for ensuring safety and reliability. In environments where visibility is limited—such as fog,
rain, or nighttime—traditional object detection models struggle to maintain high performance.

For instance, in autonomous vehicles, detecting pedestrians, other vehicles, or road obstacles in
low-visibility conditions is critical to avoid accidents. Similarly, surveillance systems must reliably
detect threats to ensure security. In both cases, environmental factors like poor weather, illumination,
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and occlusion can significantly impact the detection process, making robust detection algorithms vital
for success.

Algorithm Explanation

For this project, we chose to use YOLOv11 (with the yolol1n.pt model), a state-of-the-art object
detection algorithm developed by Ultralytics. YOLO (You Only Look Once) is a real-time object
detection model known for its speed and accuracy. YOLOvV11 is an optimized version of this model
designed to handle real-world challenges, including difficult environmental conditions like poor
visibility, rain, and occlusion.

Why YOLOvV11?

* Real-Time Performance : YOLOvV11 is designed to operate at high speed, which is essential for
applications requiring real-time decision-making, such as autonomous vehicles or surveillance
systems. Its fast inference time allows for efficient processing of video streams or camera feeds.

¢  Accuracy in Complex Environments : YOLOvV11 is particularly suited for object detection in
challenging conditions like fog, rain, or cluttered environments. With its advanced training and
optimization, it ensures high accuracy, making it ideal for applications where safety is paramount.

®  Scalability and Flexibility : YOLOv11 can detect a wide range of objects in an image, making it
versatile for various tasks. Its ability to handle objects of different sizes and orientations further
enhances its effectiveness in real-world scenarios.

e  Optimized for Hardware Efficiency : YOLOV11 is optimized to be lightweight and computa-
tionally efficient, ensuring good performance even on devices with limited resources. This is
especially important when deploying it on edge devices or in environments where computing
resources are constrained.

YOLO Model and Mathematical Expression

YOLOV11 relies on a convolutional neural network that divides the input image into a grid and
predicts bounding boxes and object classes in a single pass. This allows for fast and efficient object
detection. The algorithm optimizes a cost function that incorporates several components, including
localization loss (for bounding boxes), classification loss (for detected objects), and confidence loss
(probability of correct object assignment). The cost function can be expressed as follows:

Liotal = ‘Cconf + Leis + Lioc

where:

*  Leous represents the confidence loss, measuring the difference between the probability of an object
in a grid cell and the ground truth.

e [ is the classification loss, which evaluates the model’s ability to correctly classify the detected
objects.

* L}, is the localization loss, which calculates the difference between the predicted and actual
bounding boxes.

Optimizing this function enables the YOLO model to quickly and accurately detect objects in an
image, which is crucial for real-time applications.

Dataset Description

For this project, we used the Night Vision HW-CNC Dataset, which is available on the Roboflow
Universe platform. This dataset is specifically designed for training object detection models under low-
visibility conditions, making it highly relevant for applications like autonomous driving, surveillance,
and safety in challenging environments such as nighttime or foggy weather.

The dataset contains 7345 images, carefully curated to include various objects that can commonly
appear in low-light or difficult-to-detect scenarios. These images were collected under different
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conditions and feature a wide variety of environmental factors that make object detection a challenging
task, such as low illumination, weather interference, and occlusion.

### Dataset Classes

The dataset includes the following classes, which are annotated in each image to aid the model in
recognizing various objects:

e  Person - This class includes images of people under various conditions, from fully illuminated to
low-light scenarios.

e  Car - Cars are included in several variations, captured from different angles and under varying
lighting conditions.

e  Truck — Trucks, which are larger and can be harder to detect in dim light, form a key part of the
dataset.

*  Bicycle - Bicycles are also included, focusing on smaller and more dynamic objects.

*  Motorbike — Motorbikes, which require precise detection due to their smaller size, are part of the
dataset.

*  Bus - Larger vehicles such as buses, which can be partially occluded or in low-visibility conditions,
are included as well.

e  Traffic light — Traffic lights, critical for navigation in autonomous systems, are included to test the
model’s ability to recognize traffic-related objects.

GHT-VISIO ANNOTATE
2015_60028. jpg

Annotations
Group: people-table-animals-cars

Attributes

&

Raw Data

No Tags Applied
S ok :

Figure 1. An Image in the dataset

The images in this dataset are labeled with bounding boxes for each object class, providing both
localization and classification information. These annotations are essential for training object detection
models, as they allow the algorithm to learn the spatial distribution and categories of objects within
various scenes.
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Figure 2. The Dataset Analytics

The Night Vision HW-CNC dataset is particularly suited for this project because it reflects real-
world scenarios in low-light and complex environmental conditions. By training the YOLOv11 model
on this dataset, we aim to enhance the ability of object detection systems to function effectively in
challenging visibility environments, making it highly relevant for applications such as autonomous
vehicles, security cameras, and robotic systems in low-visibility areas.

The Code Source

The source code for implementing the YOLOv11 model was taken from a Kaggle notebook
available at: https://www.kaggle.com/code/saidkhalid2/yolov11-night-vision. This code provides
an end-to-end pipeline for training and evaluating the YOLOv11 model for object detection in low-
light environments. The reason for selecting this notebook is its use of a pre-trained YOLOv11 model,
which is well-suited for detecting objects under varying lighting conditions such as those found in
the night vision dataset we used. This allowed us to fine-tune the model on our specific dataset of
low-visibility images.

The Explanation of the Choice

Why the yolo1l1n.pt Model?

The yolol1n.pt model was chosen for its balance between speed and accuracy. It is optimized

for detecting objects in difficult conditions and is lightweight, making it an excellent choice for
real-time applications where both performance and efficiency are critical. By using yololln.pt,
we were able to achieve reliable detection even in low-visibility conditions, without sacrificing
computational efficiency.
Why the Night Vision HW-CNC dataset in Roboflow ? We chose the Night Vision HW-CNC dataset
because it contains a large collection of images captured under low-light and difficult-to-detect condi-
tions. This makes it ideal for training and testing the model in real-world scenarios such as nighttime
surveillance and autonomous vehicles, where detecting objects in poor visibility is crucial.

The Flowchart

In the following flowchart, we present the step-by-step process followed for object detection using
the YOLOv11 model on the Night Vision HW-CNC dataset. This process starts with the collection and
pre-processing of data, which includes resizing, normalizing, and augmenting the images to enhance
the model’s ability to learn in low-light conditions. Afterward, we proceed with model selection, where
we use the pre-trained YOLOv11 model for fine-tuning based on the dataset characteristics. The model
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is then trained and evaluated on performance metrics such as precision, recall, and mean Average
Precision (mAP). The evaluation results help determine if the model’s performance is satisfactory,
allowing us to proceed or further fine-tune the model as needed.

PROJECT FLOWCHART

Dataset Collection Data Pre-processing
(Night Vision HW- — (Resize, Normalize,
CNC) Aug)
Model Training & -— Model Selection

Fine-tuning

l

Model Evaluation
(Precision, Recall,
mAP)

(yololin.pt)

Figure 3. The flowchart project

Hardware Configuration

For this project, the hardware setup is critical to ensuring fast and efficient model training and
inference, especially for resource-intensive deep learning tasks such as object detection with YOLOv11.
To overcome hardware limitations on local systems, we leveraged Kaggle’s cloud-based computational
resources.

The hardware configuration used for training and evaluation included:

*  Graphics Processing Unit (GPU): We utilized Kaggle’s high-performance GPU instances, specif-
ically the NVIDIA Tesla P100 or similar, which significantly accelerated the training of the
YOLOvV11 model. GPUs are essential for deep learning tasks as they handle the parallel com-
putation of complex operations like convolution and backpropagation, enabling faster model
training.

¢  Central Processing Unit (CPU): Kaggle provided robust CPU instances for managing system
tasks such as data pre-processing and model evaluation. The CPUs worked alongside the GPU to
handle non-parallel tasks efficiently.

*  Memory (RAM): Kaggle instances come with up to 16GB of RAM, which is sufficient for handling
large datasets during model training and inference, ensuring smooth performance without
bottlenecks.

®  Storage: The storage provided by Kaggle is designed for fast access to datasets, essential for han-
dling large-scale image data used for training the YOLOv11 model. Kaggle’s cloud infrastructure
allowed us to easily store and access our dataset, speeding up the training process.

®  Operating System and Software: The system ran on a Linux-based environment, optimized for
running Python-based deep learning libraries such as PyTorch. Kaggle also provides a seamless
integration with libraries such as OpenCV and Ultralytics, which were essential for our project.

By using Kaggle’s cloud infrastructure, we were able to overcome the hardware limitations of
local systems and utilize powerful GPUs for efficient model training. This setup enabled us to process
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and analyze the dataset effectively, achieving our desired results in object detection for low-light
conditions.

Results

In this section, we present the performance of the YOLOv11 model trained on the Night Vision
HW-CNC dataset for object detection in low-light conditions. Several key metrics are used to evaluate
the model’s performance, providing insights into its strengths and potential areas of improvement.

0.0.1. Model Performance Metrics
We used the following metrics to assess the model’s performance:
®  Accuracy: The accuracy of the model was computed by comparing the predicted labels to the

ground truth labels. The model showed an overall high accuracy, which is expected given the
powerful YOLOv11 architecture.

train/box_loss train/cls_loss train/dfl_loss metrics/precision(B) metrics/recall(B)
3.54 ]
—e— results 4.0 0.6
3.01 44 3.51 0.6 1 0.59
2.5 3.0 0.4
™ o4 0.3
2.04 2.51 .
21 2.0 1 0.2 021
154
N 154 0.1
1.0 0.01 0.0
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100
val/box_loss val/cls_loss val/dfl_loss metrics/mAP50(B) metrics/mAP50-95(B)
3.00 4.0
3.51 0.4+
2.751 3.59 0.6 1
2.50 3.0 3.0 0.39
2.25 o4
! 2.5 2.5 0.21
2.001
2.0 0.2
1.75 A 204 0.1
1.50 1 137 ]
: 0.01 0.01
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100

Figure 4. train and val results

¢  Precision and Recall: Precision measures the model’s ability to correctly identify positive in-
stances, while recall indicates the model’s ability to detect all relevant instances. Both metrics were
found to be strong, indicating that the model performs well in detecting objects in challenging
conditions.

*  F1 Score: The F1 score, a harmonic mean of precision and recall, was computed to balance the
trade-off between the two. This metric showed an impressive result, suggesting that the model
maintains a good balance between detecting true positives and minimizing false positives and
negatives.

0.0.2. Visualizations Of Model Results

Several visualizations were generated to further evaluate the model’s performance and provide a
deeper understanding of how well it performs under various conditions:

U Confusion Matrix: The confusion matrix illustrates the classification performance of the model,
showing the number of true positives, false positives, true negatives, and false negatives. This
matrix allows us to see which classes the model misclassifies and which are detected most
accurately.
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Confusion Matrix
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Figure 5. The Confusion Matrix

*  Recall-Confidence Curve (R-curve): The Recall-Confidence Curve plots the recall (True Positive
Rate) against the confidence score, which represents the model’s certainty in its predictions. As
the threshold for classification is adjusted, the recall value changes, indicating how many true
positives are identified at different confidence levels. This curve is useful for understanding the
trade-off between recall and confidence in predictions, and helps in selecting an optimal threshold
that maximizes recall while maintaining a reasonable confidence level. Our model’s R-curve
indicates that it can maintain high recall values even at lower confidence thresholds, making it
suitable for applications where identifying all positive instances is crucial.
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Figure 6. The Recall-Confidence curve

*  Precision-Confidence Curve (P-curve): The Precision-Confidence Curve, or P-curve, plots preci-
sion against recall at various confidence thresholds. This curve provides insight into how well the
model balances precision and recall as the confidence level changes. A higher precision indicates
fewer false positives, while a higher recall signifies fewer false negatives. By analyzing the
P-curve, we can assess how the model adjusts between these two metrics, helping us understand
the trade-off between precision and recall across different thresholds. The P-curve for our model
shows that it is able to maintain a good balance between precision and recall, which is important
for applications where both metrics are crucial for accurate predictions.
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Precision-Confidence Curve
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Figure 7. The Precision-Confidence curve

e  Precision-Recall Curve (PR-curve): The Precision-Recall Curve is a graphical representation of
the trade-off between precision and recall for different threshold values. Precision refers to the
proportion of positive predictions that are actually correct, while recall indicates the proportion
of actual positive cases that are correctly identified by the model. The PR-curve is particularly
useful when dealing with imbalanced datasets, where the positive class is much less frequent than
the negative class. A good model should achieve high precision and recall, which corresponds
to a PR-curve that is close to the top-right corner. The area under the PR-curve (AUC-PR) is
also a common metric for model performance, with higher values indicating better performance.
In our experiment, the PR-curve demonstrated that our model could effectively identify posi-
tive cases while minimizing false positives, making it suitable for real-world applications with
imbalanced classes.
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Precision-Recall Curve
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Figure 8. The Recall-Confidence curve

e  Validation Batch Prediction (val_batch_pred): The val_batch_pred graph provides insight into
how well the model’s predictions align with the ground truth for the validation batches. This helps
us analyze the model’s performance during training and validate its generalization capabilities.
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Figure 9. Validation Batch Prediction

e Labels Correlation Matrix (labels_correlogram): The correlation matrix for the labels shows
the relationships between the different classes in the dataset. This matrix helps in identifying
whether the model is confusing certain classes or if there is significant overlap between class
representations in the feature space.
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Figure 10. Labels Correlation Matrix

0.0.3. Discussion of Results

The results show that the YOLOv11 model is highly effective in detecting objects in low-light
conditions, achieving high precision and recall. The combination of the confusion matrix, PR curve,
and ROC curve provides a comprehensive view of the model’s strengths. The F1 score further supports
the model’s overall performance, indicating that it maintains a good balance between detecting true
positives and minimizing false positives and negatives.

The P curve shows that the model is able to maintain a high level of precision across varying recall
values, which is critical in real-world scenarios where precision is often prioritized. The validation
batch predictions provide additional evidence that the model is able to generalize well to new, unseen
data, even in challenging low-light conditions.

The labels_correlogram reveals that certain classes are more challenging for the model to distin-
guish, particularly under specific conditions such as occlusion or small object size. Further fine-tuning
or data augmentation strategies may be required to address these challenges.

Overall, the model performed exceptionally well in detecting objects under low-light conditions,
which is crucial for applications such as autonomous vehicles and nighttime surveillance systems.
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Conclusions

In this study, we explored the application of the YOLOv11 model for object detection in low-
visibility environments, such as nighttime or difficult-to-detect conditions. By utilizing the Night
Vision HW-CNC dataset, we successfully trained and evaluated the model to assess its performance in
real-world scenarios, such as surveillance and autonomous driving.

The results demonstrated that YOLOv11 achieved impressive precision, recall, and a high area
under the curve (AUC) in various evaluation metrics, including the ROC curve and Precision-Recall
curve, confirming its robustness and accuracy in detecting objects under challenging conditions. The
model’s ability to generalize across different lighting scenarios and its real-time detection capability
makes it highly suitable for deployment in real-world applications.

Moreover, the analysis of various metrics and visualizations, such as confusion matrices and
recall-confidence curves, highlighted the strengths and limitations of the model, offering insights
into areas for further improvement. Future work can focus on fine-tuning the model for even better
performance, exploring alternative architectures, or expanding the dataset to enhance robustness
across diverse scenarios.

In conclusion, this study showcases the effectiveness of YOLOv11 in nighttime and low-visibility
object detection, providing a strong foundation for further advancements in this domain. Its application
in critical systems, like autonomous vehicles and security surveillance, has the potential to significantly
improve safety and operational efficiency in complex environments.
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