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Abstract: Background: Cardiovascular disease (CVD) is very spread in countries with a Western style
diet, representing one of the major causes of morbidity. Genetic factors, obesity, diabetes,
dyslipidemia, smoking, and ageing are risk factors for CVD outcome. From a pathogenic point of
view, the condition of low-grade inflammation of the arteries leads to endothelial damage, and
atherosclerosis development. Nowadays, a broad range of drugs is available to treat CVD, but many
of them are associated with side effects. Therefore, alternative therapeutic remedies need to be
discovered even in combination with conventional drugs. A balanced diet rich in fruits and
vegetables, e.g., the Mediterranean diet, has been shown to lower the incidence of CVD. Plant-derived
polyphenols are ingested with food, and these compounds can exert beneficial effects on human
health, such as antioxidant, and anti-inflammatory activities. Objective: In the present review, the
cellular and molecular bases of the beneficial effects of polyphenols on the prevention and treatment
of CVD will be pointed out. Methods: This review has been accomplished on the basis of literature
review spanning mainly in the last 2 decades. Results: We found in this respect, that an increased
dietary intake of polyphenols is associated with a parallel decrease in chronic disease incidence, even
including CVD. Conclusion: Despite a plethora of preclinical studies, more clinical trials are needed
for a more appropriate treatment of CVD with polyphenols.

Keywords: cytokines; dendritic cells; immunotherapy; macrophages; myocardial infarction; T
lymphocytes

Introduction

Cardiovascular disease represents one of the major causes of morbidity in countries adopting
Western lifestyles with an annual expectation of deaths by 2030 that exceeds 23.6 million [1]. The term
CVD encompasses a variety of conditions, such as coronary artery disease (CAD), stroke, peripheral
artery disease, hypertension, cerebrovascular disease, and heart failure (HF). Among risk factors of
CVD, genetic factors, obesity, diabetes, dyslipidemia, smoking, and ageing account for the occurrence
of CVD [2,3]. The above conditions lead to endothelial cell dysfunction, oxidative stress, proliferation
of smooth muscle cells, and fibroblasts, with conversion of macrophages to foam cells within the
artery walls [4]. Furthermore, the condition of vascular low-grade inflammation promotes
atherosclerotic plaque formation, ultimately, causing HF [5] . Therapeutically, a broad range of drugs
is available for the treatment of CVD, i.e., statins, angiotensin- converting enzyme inhibitors,
angiotensin receptor blockers, calcium channel blockers, fibrates, and beta-blockers, however, many
of them are associated with side effects[6]. Therefore, there is a need to discover and apply innovative
therapies even in combination with conventional ones for a more appropriate management of CVD
[7,8]. It is known that a balanced diet is beneficial for preventing CVD. In fact, consumption of fruits
and vegetables has been shown to decrease the incidence of CVD. In this respect, Mediterranean diet
(MD) decreases inflammatory biomarkers, e.g., interleukin (IL)-1 beta, IL-5 and C-Reactive Protein

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.1911.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 May 2025 d0i:10.20944/preprints202505.1911.v1

2 of 24

(CRP), thus, preventing chronic disease outcome[7,9-11]. In this framework. PREDIMED study
demonstrated that MD based on the high consumption of fruits, vegetables, whole grains, and extra
virgin olive oil (EVOO) was associated with a reduced risk of CVD[12]. Of note, dietary interventions
aimed at reducing low-grade inflammation, have led to divergent results due to differences in tested
dietary compounds and chosen inflammatory markers [13,14]. Plant-derived compounds contained
in food possess beneficial effects to human health. Among these natural products, polyphenols can
be found in fruits, vegetables, seeds, nuts, as well as in red wine, tea, coffee, extra virgin EVOO, and
chocolate [15-19]. Nowadays, the human population is more aware about the beneficial effects of
polyphenols, and their dietary intake has increased, with a parallel decrease in chronic disease, even
including CVD[20]. In the present review, classification, pharmacological activities, and main
mechanisms of action of polyphenols will be described. Experimental and clinical evidence of the
beneficial effects of these natural compounds on CVD will be discussed..

Classification and General Properties of Polyphenols

Polyphenols are classified according to the number of phenolic rings, and the structural elements
they bind [16]. They can be divided into four main classes: flavonoids; non-flavonoids stilbenes;
phenolic acids; and lignans (Error! Reference source not found.) [21]. Flavonoids are naturally
occurring compounds, which encompass six categories: flavanones, flavones, flavanols, isoflavones,
flavan-3ols, and anthocyanidins (Error! Reference source not found.) [22] . Structurally, they possess
two aromatic rings and a heterocyclic ring with a C6-C3-C6 configuration (Error! Reference source
not found.). They are contained in plants as glycoside and non-glycosylated conjugate compounds,
and their type of structure influences bioavailability[23]. Stilbenes, e.g., resveratrol (RES), are
composed of two phenyl residues linked by a two-carbon methylene bridge, which can be
glycosylated, methylated, or prenylated by specific enzymes (Error! Reference source not found.)
[24]. Among flavonoids, flavonols, and flavan-3- ols have been object of intensive research. The
flavonol quercetin exhibits antihypertensive effects by acting on the contraction of smooth muscles
in renal blood vessels, producing vasodilation[25]. Among flavan-3-ols, epigallocatechin-3-gallate
(EGCQG) is mostly present in green tea, and is endowed with antioxidant, anti-inflammatory, and
antiatherogenic properties[26]. Among stilbenes, RES is the most studied compound for its anti-
inflammatory, antioxidant, anti-proliferative, anti-apoptotic, and mitochondrial protective

effects[27].
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Figure 1. Classification of polyphenols. Polyphenols are natural compounds found in plant-based foods and

beverages. Their classification into different subclasses like phenolic acids, flavonoids, stilbenes and lignans is
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reported. The chemical formula of these molecules is also reported. Reproduced with permission from Caiati et

al. [7].
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Figure 2. Classification of flavonoids. Flavonoids are a subclass of polyphenols and can be classified into
flavonols, flavones, isoflavones, flavanones, antho-cyanidins and flavanols based on their ring structure as here
illustrated. Flavonoids have diverse biological activities and potential health benefits, including antioxidant and

anti-inflammatory effects. Reproduced with permission from Caiati et al. [7].

Absorption of Polyphenols

In the stomach, polyphenols are digested by pepsin, and peristaltic movements in the presence
of a low pH into particles, even less than 500 microns in diameter [28]. The passage of polyphenols
from the stomach to the small intestine occurs at a pH around 7, and then, pancreatic and biliary
enzymes become activated[29]. Polyphenols under the form of aglycons enter the intestinal
epithelium according to different modalities. For instance, polyphenols with low molecular weight,
i.e., phenolic acids, flavonoid aglycon, tea polyphenols, and cocoa polyphenols (epicatechin,
procyanidin B2, and catechin) are absorbed by passive diffusion[30]. Another way of polyphenol
absorption is the sodium-glucose transport through the sodium-glucose-linked transporter 1
(SGLT1)[31]. Accordingly, glycosides may be absorbed by SGTL1 in small amounts, and then, re-
secreted into the digestive system, or they may be further digested by a cytosolic glucosidase[32].
Thus, polyphenols can undergo transepithelial transport through a monocarboxylic acid transporter,
as in the case of caffeic acid, and ferulic acid (Error! Reference source not found.) [33]. Most
polyphenols are absorbed in the large intestine, where they are digested by bacteria of the gut
microbiota via glycosylation, hydroxylation, demethylation, deconjugation, ring cleavage,
hydrolysis, epimerization, and chain shortening processes[34]. Polyphenols, once absorbed into the
enterocytes of the small intestine, and before entering circulation, undergo the phase II of enzymatic
detoxification with production of sulfates, glucuronides, and methylated derivatives [35]. Polyphenol
bioavailability and accumulation in tissues depend on the multidrug resistance associated proteins,
which are ATP-dependent efflux transporters, and referred to as phase III metabolism[36]. Then,
polyphenols reach the blood stream mostly coupled to proteins, and the liver via the portal
circulation, where they are conjugated to O-sulphate or O-glucuronide forms (a second phase
metabolism), and finally are eliminated through kidneys[37]. (Table 1)
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Table 1. Antioxidant Activity of Polyphenols.

1.1 Scavenging activity depends on the donation of an electron or H atom from a hydroxyl group
to afree radical [42]

1.2 A catechol group in the structure of polyphenols is associated with antioxidant
activity[39]

1.3 The phenolic core of quercetin and catechin scavenges reactive oxygen species (ROS),

acting as a buffer or collecting electrons[40]

1.4 Polyphenols inhibit enzymes, such as xanthine oxidase and nicotinamide adenine

dinucleotide phosphatase, thus, reducing the generation of ROS [41]

1.5 Quercetin exhibits the best capacity to chelate metal ions[117]

Antioxidant Properties of Polyphenols

Polyphenols behave as potent antioxidant agents thanks to catechol groups, and hydroxylation
patterns, such as the 3-hydroxyl group in flavanols or electron shortage in anthocyanins[38]. Using
the ferric reducing ability power, it has been demonstrated that the presence of a catechol ring in the
structure of polyphenols is associated with their antioxidant activity[39]. Reactive oxygen species
(ROS), i.e.,superoxide, hydrogen peroxide, and hypochlorous acid, are scavenged by quercetin, and
catechin through the phenolic core, acting as buffer or collecting electrons [40]. Furthermore,
polyphenols have been shown to inhibit enzymes that generate ROS, such as xanthine oxidase, and
nicotinamide adenine dinucleotide phosphatase[41]. Among polyphenols, quercetin has the best
capacity to chelate metal ions due to its low redox potential, thus preventing the production of ROS
[27]. Scavenging activity of polyphenols is connected to their ability to donate an electron or H atom
from an aromatic hydroxyl group to a free radical, thus abrogating its effect [42]. The antioxidant
capacity of polyphenols in vivo is lower than in vitro, since it can be mimicked by other
compounds[43]. For instance, in vivo, the polyphenol-mediated antioxidant activity exerted by apple
consumption is mostly due to the metabolic effect of fructose on urate.

Effects of Polyphenols on the Vascular Endothelium

The major function of endothelial cells (ECS) is to regulate the vascular tone[44]. The endothelial
(e) nitric oxide (NO) synthase (eNOS) generates NO from L- arginine, that, in turn, acts on the
vascular smooth muscles, thus, triggering guanyl cyclase, with accumulation of cyclic guanosine
monophosphate, which activates the protein kinase G, thus leading to vasorelaxation. Furthermore,
the endothelium-derived hyperpolarizing factor causes vasorelaxation, targeting the K+ channels in
the vasculature. Also, prostacyclin 12 (PGI2), generated during the cyclooxygenase (COX) pathway,
leads to vasodilation. On the other hand, endothelial products, such as angiotensin II (ANG II),
endothelin-1 (ET-1), and thromboxane (TXA) A2 play vasoconstrictive effects[45]. NO generation
accounts for the main effects of polyphenols on the endothelium[46]. In this respect, red wine
polyphenols are a potent inducer of serum NO in healthy subjects after 30 min from ingestion[47]. In
vitro studies have demonstrated that healthy human peripheral blood monocytes are additional
source of NO, thus contributing to the vasodilation after ingestion of red wine[16]. In this regard,
short term oral treatment of normotensive rats with red wine polyphenols decreased blood
pressure[48]. Such an effect depends on the induction of the gene responsible for inducible NO
synthase, and COX-2 in the arteries, as well as on the calcium ion -dependent pathway[49]. In this
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last respect, RES and quercetin have been shown to induce increase in calcium concentration by
opening the potassium channels or inhibiting Ca2+ ATP-ase within the endoplasmic reticulum of ECs
[50]. Evidence has been provided that red wine polyphenols enhance endothelial NO production via
the redox-responsive PI3/Akt channel, the increase in intracellular protein-Ca2+, and tyrosine
phosphorylation with activation of eNOS[51,52]. Apart from NO generation, polyphenols exhibit
other effects of the endothelium via increased release of PGI2 [53]. In fact, in vitro and in vivo studies,
using cocoa extracts rich in procyanidins, demonstrated that the ratio leukotrienes to PGI2 was
reduced. Moreover, polyphenols can increase endothelial NO by decreasing levels of
phosphodiesterases (PDE)-2 and PDE-4[54]. (Table 2)

Table 2. Effects of Polyphenols on the Vascular Endothelium.

2.1 Polyphenol-induced nitric oxide (NO) generation from endothelial cells and monocytes

contributes to artery vasodilation[16,46,47]

2.2 Inrats, ingestion of red wine polyphenols generates hypotension through activation
of inducible NO synthase, cyclooxygenase-2, and calcium ion-dependent pathway in
the arteries[49,50]

2.3 Red wine polyphenols trigger endothelial NO production via the PI3/Akt pathway,

the increase in intracellular protein-Ca2+, and tyrosine phosphorylation[51,52]

2.4 Cocoa extracts rich in procyanidins cause vasodilation via increased release of

prostacyclin I12[53]

2.5 Polyphenols increase endothelial NO by decreasing phosphodiesterase (PDE)-2, and
PDE-4[54]

Anti-Inflammatory Activity of Polyphenols

Inflammation is a response of the body to various stimuli, even including pathogens, mechanical
insults, and damaged tissue. Pro-inflammatory cytokines,e.g., interleukin (IL)-1 beta, IL-6, IL-8, and
tumor necrosis factor (TNF)-alpha, as well as various enzymes, such as COX, lipooxigenase (LOX),
and protein kinase are responsible for the inflammatory response . With special reference to the role
of polyphenols, there is evidence that red wine polyphenols can in vitro reduce the production of pro-
inflammatory cytokines, blocking the activation of the NF-kB pathway[55]. Moreover, red wine
polyphenols can interfere with endotoxin binding to Toll-Like Receptor (TLR)-4, thus, abrogating the
nuclear factor kappa-light chain enhancer of activated B cells (NF-kB) pathway with interruption of
pro-inflammatory cytokine release[56]. Also, polyphenols contained in the fermented grape marc
(FGM) induce activation of Foxp3+ T regulatory cells, with release of the anti-inflammatory cytokine,
IL-10[57]. In addition, FGM reduces the respiratory burst of neutrophils and basophils in in vitro
experiments, playing an antioxidant and anti- inflammatory activity[58]. Quercetin has been found
to dampen the generation of prostaglandins, leukotrienes, and TAXs, abrogating production of COX
and LOX[59,60]. In fact, both COX and LOX mediate the formation of arachidonic acid, which, in
turn, fuels inflammation via release of IL-1 beta, and IL-8. The nucleotide-binding domain and
leucine-rich repeat containing receptors (NLRs) belong to the family of pattern recognition receptors
(PRR), triggering inflammatory responses upon danger and cell damage signals. Among them,
NLRP3 inflammasome is a multiprotein complex, which activates the inflammatory caspase-1 [61].
Caspase-1 cleaves and maturates the pro-inflammatory cytokines, IL-1 beta and IL-18, as well as the
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protein gasodermin, contributing to the release of the above mediators, thus, initiating the cell death
pyroptosis [62] . Activation of NLRP3 inflammasome is involved in CVD even including
atherosclerosis, myocardial infarction, and cardiac remodeling[63]. In this framework, in the middle
cerebral artery occlusion/reperfusion model, supplementation of various polyphenols decreased
levels of NLRP3 [64]. This event is associated with the downregulation of IL-1 beta, and IL-18 in the
serum or brain tissue[65]. In the myocardial ischemia (MI)/reperfusion model, certain polyphenols,
i.e.,, RES and flavone in vivo reduced levels of caspase-1 and IL-1 beta in the myocardial tissue[66,67].
In all these studies, the decrease in NLRP3 levels was associated with improvement of clinical
markers[64]. Clinically, aged male subjects at high cardiovascular risk underwent acute
administration of aged wine with decrease in Tir2, Nlrp3, and Il1receptor genes[68]. (Table 3)

Table 3. Anti-Inflammatory Activity of Polyphenols.

3.1 Red wine polyphenols reduce the production of pro-inflammatory cytokines,
inhibiting the NF-kB pathway, and/or activating T regulatory cells, with release of the
anti-inflammatory cytokine, interleukin (IL)-10[16,57]

3.2 Fermented grape marc reduces the respiratory burst of human neutrophils, and
basophils[58]

3.3 Quercetin decreases the release of IL-1 beta, and IL-8, abrogating the generation of

cyclooxygenase and lipoxygenase[59,60]

3.4 Polyphenols dampen the activity of the inflammasome NLRP3, with downregulation
of caspasel, IL-1 beta, and IL18[63-66]

3.5 Reduction of NLRP3 is associated with improvement of clinical markers, as seen in
aged male subject at high cardiovascular risk following acute administration of red
wine[64,68]

Anti-Atherogenic Effects of Polyphenols

Atherosclerosis represents a pathogenic common denominator of various diseases, including
CAD, ischemic stroke, and peripheral artery disease [69]. This disease stems from the endothelial
damage provoked by several offending factors that then drive augmentation of ROS in the blood.
Those offending factors have been recently reported [7,70]: in brief, they are largely man-made like
stress, pollutants of all sorts (especially those contained in the food like farming chemicals, fertilizers,
pesticides and herbicides like glyphosate), drugs, processed food, tabacco smoking, air pollution,
alcohol, cosmetic and cleaning products, heavy metal, chronic infections, electromagnetic radiation
(cellular phone, cell-tower emitting radiation), ionizing radiation (in particular those medically
derived like computed tomography scan and angiography), intravascular prosthesis like arterial
stents. Diabetes per se induces tissue damage and it terribly enhances the damaging effects of the
previously mentioned atherogenic factors so dramatically enhancing formation of ROS [7]. From a
pathogenic point of view, increased levels of ROS further enhance endothelial damage, with the
intervention of neutrophils, macrophages, and platelets [71]. In fact, prolonged contact of ECs with
hydrogen peroxide, peroxynitrite, and oxidized low density lipoproteins (ox-LDL), leads to severe
damage of the endothelium[7,69,72]. One of the initial consequence of coronary endothelial
dysfunction is the reduction of NO production and the ensuing microvascular vasoconstriction at
rest. This kind of derangement canbe spotted with positron emission tomography (PET) since
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it causes myocardial dishomogeneous perfusion at rest [73] and is the mechanism that explains the
angiographic slow coronary phenomenon as recently demonstrated [74].

Then such a strong oxidative drive involve LDL microparticles that get oxidated too. This
causes the first step of atherosclerotic plaque formation, that is the generation of oxidized LDLs,
which pass through the endothelial barrier, eliciting cytotoxic effects and the inflammatory
response[75], since ox-LDL microparticles are modified substances that elicit strong immunologic
reaction. Focusing on the molecular biology details, activated ECs express adhesins, i.e., vascular cell
adhesion-1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), and E- selectins, which allow
transmigration of monocytes and T cells into the arterial wall [76]. Particularly, monocytes engulf ox-
LDL, becoming foam cells, which accumulate as fatty bands in the artery walls[77]. Then, a stabilized
plaque is formed, which can break under prolonged inflammation [78]; this happens only in case of
prolonged and unstopped exposure to those factors generating ROS with consequent escalating
concentration of ox-LDL. Ruptured plaques cause thrombosis, which may lead to heart attacks,
ischemic strokes, and peripheral ischemia [79]. There is evidence that polyphenols can exert beneficial
effects on atherosclerosis. In cholesterol-fed rabbits, administration of red wine polyphenols
decreased neointimal growth, lipid accumulation, and inflammation in the iliac arteries[80]. In
hamsters, red wine supplementation reduced neointimal hyperplasia, inhibiting the entry of
monocytes into the arterial wall [81]. Clinically, there is evidence that purple grape juice reduced the
levels of plasmatic ox-LDL in patients with CAD[82]. Such an effect has been shown to depend on
the production of NO by polyphenols, as also supported by others[83,84] (Table 4). However the
main radical approach that can stop progression and start regression of atherosclerosis is the
elimination of those damaging factors (mentioned before) that create ROS and cause chronic
endothelium inflammation and ox-LDL [85].

Table 4. Anti-Atherogenic Effects of Polyphenols.

4.1 In cholesterol-fed rabbits and in hamsters administration of red wine polyphenols
decreases neo-intimal growth, lipid accumulation, and entry of monocytes in the

iliac arteries[80,81]

4.2 In patients with coronary artery disease, supplementation of purple grape juice

reduces levels of oxidized lipoproteins through generation of nitric oxide[82-84]

Focus on the Cardiovascular Effects of Relevant Polyphenols

Flavan-3-Ols

Flavan-3 Ols (Error! Reference source not found.) represent the most abundant polyphenols in
fruits, vegetables, red wine, green tea, and cocoa [86]. They encompass monomeric, oligomeric, and
polymeric compounds. Monomeric forms include catechin, epicatechin, gallocatechin,
epigallocatechin, epicatechin-3-O-gallate, and EGCG (Error! Reference source not found.).
Oligomers or polymers are known as proanthocyanidins, while polymers composed of epicatechin
or catechin are termed procyanidins. The antioxidant activity of flavan-3-ols is based on their ability
to donate an electron or to chelate metal ions, thus, stopping, ROS production[87]. At the same time,
flavan-3-ols maintain mitochondrial activity, while enhancing antioxidative enzymes involved in
ROS scavenging [88,89]. The anti-inflammatory activity of flavan-3 -ols depends on the regulation of
gene expression involved in cardiometabolic health. Particularly, they act on endothelial
transcription factor GATA-2, the NF-kB p105 subunit, forkhead box C1, and peroxisome proliferator-
activated receptor gammal[90]. In addition, flan-3-ols target different miRNA, regulating cellular
pathways involved in cell adhesion, cellular signaling, and immune response[91]. Of note, cocoa
flavan-3-ols metabolites enhance ApOAI expression, which represents the major component of high-
density lipoproteins, thus exerting antiatherogenic properties[92]. The cardioprotective effects of
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flavan-3-ols have been attributed to two major microbial-derived metabolites, namely, the hydroxy-
phenyl-gamma-valerolactones, and their derived hydroxy- phenyl valeric acids [93]. These
metabolites have in vivo shown hypotensive activity in rats, and in vitro abrogation of monocyte
adhesion to ECs treated with tumor necrosis factor (TNF)-alpha[94]. Another flavan-3-ol metabolite,
the protocatechuic acid, diminished diabetic cardiomyopathy in rats, stimulating glucose
metabolism, improving oxidative stress, and reducing inflammation[95]. Flavan-3-ols have been
shown to act on gut dysbiosis, improving cardiac function. In fact, a metabolite from the gut
microbiota, trimethylamine N-oxide (TMAO) has been associated with CVD pathogenesis in terms
of increased cholesterol levels, and higher risk of atherosclerosis[96]. In this respect, the intake of
cocoa and red berry flavan-3- ols reduces TMAO levels, improving cardiovascular markers in healthy
aging adults[97]. Various clinical trials have been conducted, using cocoa flavan-3-ols in patients with
CVD. In hypertensive individuals, consumption of dark chocolate led to a reduction of systolic blood
pressure (SBP), and diastolic blood pressure (DBP) in comparison to baseline[98]. In another study,
in essential hypertensive subjects, with impaired glucose tolerance, receiving 100g/day chocolate, a
reduction of both SBP, and DBP, and an increase in flood- mediated dilation (FMD) were
observed[99]. In patients with CAD receiving dietary high-flavan-3-ol intervention, an increase in
brachial artery FMD, and a reduction in SBP were recorded[100]. In patients with congestive HF,
intake of flavan-3-ol-rich chocolate improved FMD[101]. Other studies have been conducted with
green tea catechins in both healthy, and unhealthy individuals. In healthy volunteers aged between
21 and 70 years, receiving two capsules of Camelia sinensis for 3 months, a reduction of SBP was
observed[102]. In another group of healthy adult men aged 18-35 years, administration of 450 mg
sour tea led to a reduction of SBP and DPB[103]. In healthy postmenopausal women, acute ingestion
of catechin-rich green tea improved postprandial glucose status, while increasing serum thioredoxin
levels, but no changes in cardiovascular risk factors were observed[104]. In overweight women aged
19-57 years, receiving low-calorie diet along with 3 capsules of green-tea or placebo capsules, a
decrease in SBP, and DPB were observed in both groups[105]. Another trial conducted in healthy
male volunteers, supplemented with an aqueous green tea extract, showed no alterations of cardiac
risk factors[106]. Also, minor effects on cardiovascular risk markers were observed following tea
catechin administration to active older people[107]. Taken together, the above data suggests that
studies with polyphenols conducted in both healthy and unhealthy individuals has led to contrasting
results.

Resveratrol

Stilbenes, and, particularly, RES (Error! Reference source not found.) despite a low
bioavailability possess a strong antioxidant activity in vitro. RES protects cardiomyocytes, and ECS
against ROS effects, inhibiting NADPH oxidases, while increasing the mitochondrial respiratory
chain enzymes[108]. RES acts upregulating SIRT1, that, in turn, induces deacetylation of NF-kB, and
enhancement of superoxide dismutase (SOD), catalase and glutathione peroxidase 1[109,110].
Furthermore, RES can reverse eNOS uncoupling, upregulating GCH1 expression in apolipoprotein
E knockout mice[111]. Also, RES activates Nrf-2, which, in turn, increases cellular antioxidant content
in placenta of sows and piglets[112]. As a potent anti-inflamamtory agent, RES can inhibit the
expression of pro-inflammatory cytokines, downregulating TLR4 expression, and silencing NF-kB
activity[113,114]. Moreover, RES can inhibit VCAM-1, ICAM-1, and E-selectin, suppressing the TNF-
alpha-induced NF-kB activation[115]. RES inhibits COX-1 and COX-2 enzymes via SIRT1 activation,
thus, decreasing PGE2 and TAX2, and consequently inflammation[116]. In patients with systolic HF,
RES administration improved clinical conditions by inhibiting oxidative phosphorylation in
leukocytes, gene expression encoding B cell receptors, and leukocyte extravasation signal[117]. ROS-
mediated overexpression of (MAPKSs) is involved in cardiac hypertrophy and remodeling[118]. RES
can stimulate MKP-1 and downregulate mTOR, thus dampening mitogen-activated protein kinase
(MAPK) activity, with reduction of cardiac and endothelial hypertrophy[119,120]. With special
reference to cardiac fibrosis, it has been reported that RES can mitigate in rats cardia fibroblast
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activity, downregulating the transforming-growth factor-beta/Smad 2/3 signaling pathway via
overexpression of the Smad 7 inhibitor protein and silencing miR-17 gene[121]. RES can modulate
endothelial function, inhibiting overproduction of the vasoconstrictive agent, ET-1, enhancing eNOS
phosphorylation, with increase in No production[122]. There is evidence that upregulation of ET-,
and decrease in NO are involved in the pathogenesis of atherosclerosis[123]. The effects of RES on
mitochondrial biogenesis have been documented. In fact, RES activates the AMPK/SIRT1/PGC1 alpha
pathway, with enhancement of Nrf-1 and Nrf-2 transcription factors, thus, attenuating high-glucose
oxidative stress, and cardiomyocyte apoptosis in diabetic mice[124]. As far as clinical trials are
concerned, the effects of RES have been studied in patients with hypertension. In one study, long-
term administration of RES could reduce hypertension along with standard medical therapy[125]. In
a meta- analysis, in hypertensive subjects daily RES consumption reduced SBP, but not DBP[126].
Conversely, in other two studies the hypotensive effects of RES were not confirmed[117,127]. With
special reference to vascular protection, RES long-term administration improved the FMD of the
brachial artery in overweight and hypertensive individuals, stable CAD patients, and patients with
metabolic syndrome, respectively[128-130]. In another study, acute RES administration to
hypertensive patients improved FMD without changes of SBP[131]. A systematic review and meta-
analysis have provided evidence that RES can modify lipid profile, diabetes and inflammation
associated with atherosclerosis in metabolic syndrome patients[132-134]. A few clinical trials have
been conducted in patients with HF. In post-MI patients, administration of 10 mg/day RES for 3
months improved the diastolic function[129]. In patients with angina pectoris, RES supplementation
at 20 mg/day for 2 months reduced serum levels of the N-terminal prohormone brain natriuretic
peptide (NT-proBNP) [135]. In patients with symptomatic systolic HF, 100 mg/day RES
supplementation improved systolic and diastolic function, as well as serum biomarkers, such as NT-
proBNP and IL-1 and II-6 levels[117].

Curcumin

Curcumin (diferuloyl methane) is a natural polyphenol extracted from the rhizomes of the
thurmeric plant (Curcuma longa L.) [136]. Structurally, curcumin possesses a constitutional double
bond, thus behaving as an electron donor, which mitigates ROS effects[137]. Furthermore, curcumin
exerts anti- inflammatory effects, as well as modulation of lipid metabolism, and of the immune
system [138]. In cadmium-induced hypertensive rats, curcumin administration normalized vascular
dysfunction and blood pressure[139]. Similar results were achieved in Sprague rats with lead acetate
and cadmium chlorate-induced hypertension[140]. Furthermore, in spontaneous hypertensive rats,
curcumin administration attenuated the coronary artery damage[141]. Also, in ANG-II-induced
hypertensive rat model curcumin administration reduced the ANG-II type-I receptor-mediated
vasoconstriction, thus preventing hypertension[142]. A few clinical trials have been conducted in
hypertensive patients using curcumin. A group of 14 men and 24 women with an average blood
pressure of 121-140/81-90 mm Hg received cavacurmin (500 mg), eicosapentaenoil acid, astaxanthin,
and gamma linolenic acid for 4 weeks[143]. A significant decrease of SBP was observed only in
women. In refractory or relapsing lupus nephritis patients, administration of curcumin (500 mg) for
3 months led to a significant decrease of SBP[144]. Moreover, a combination of curcumin and
galactomannan (500 mg) was administered to obese subjects, with a declining trend in blood
pressure, and aortic stiffness, and an increase in anti-inflammatory cytokines [145]. Conversely, in
another study a 12-week treatment of healthy middle-aged and older adults with 200 mg curcumin
did not modify blood pressure despite a reduction of oxidative stress and improvement of endothelial
function[146]. Previously, evidence has been provided thar RES and curcumin in combination could
lower oxidative stress, inflammation, and tumor growth[147]. Such a combination improved
endothelial function, inhibiting the gene regulatory activity of TNF-alpha, and abrogating the NF-kB
pathway.

Extra Virgin Olive Oil Polyphenols
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EVOO represents a food supply endowed with antioxidant and anti-inflammatory
activities[148]. EVOO is mainly composed of monosaturated fatty acids, alpha- tocopherol, and
polyphenols[149]. The phenylethanoid derivatives, hydroxytyrosol (HT), and thyrosol are the major
polyphenols contained in EVOO[150]. HT is the most studied EVOO polyphenol in terms of anti-
inflammatory activity and CVD prevention. In healthy male Wistar rats, HT administration inhibited
collagen-induced platelet aggregation in whole blood[151]. This effect has been attributed to the
inhibition of platelet synthesis of TxB2, production of vascular PGI2, and increase in vascular NO.
Also, HT alkyl ether derivatives exerted similar effects, thus acting as anti-aggregating agents at the
endothelial level [152]. In human clinical trials, HT has been studied for its capacity to attenuate the
pathogenesis of atherosclerosis. In 30 hypercholesterolemic volunteers (aged 20-70 years),
administration of HT derived from Coratina olives led to a normalization of SBP and lipid
profile[153]. Similar results were achieved through supplementation of Body Lipid, containing HT,
berberine, coenzyme Q10, and monacolin K to hypercholesteremic individuals[154]. In another
study, administration of HT and punicalagin to adult population improved dyslipidemia, and
decreased SBP and DBP in an adult population [155]. HT and punicalagin increased endothelial
capacity and reduced ox-LDL. Furthermore, in 40 healthy volunteers administration of HT (15
mg/day for 3 weeks) increased in blood samples antioxidant activity, oxidation biomarkers (thiols)
and SOD1, while malonedialdehyde (MDA) and NO metabolites were decreased[156]. Conversely,
in another study administration of HT to human volunteers with mild hyperlipidemia did not
influence CVD biomarkers, while levels of vitamin C increased[157]. In this framework, a very recent
study based on the supplementation of 15 mg HT/day to patients 24 h after stroke for 45 consecutive
days led to encouraging results[158]. In fact, a decrease in glycated hemoglobin and DBP and a
modulation of the expression of gene encoding for apolipoproteins were recorded. A limitation of
these studies is the possible co-presence of other compounds that can also contribute to the efficacy
of the treatment. This is the case of trials conducted with dietary supplementation of EVOO, where
the effects of polyphenols cannot be distinguished from that of other components, such as
unsaturated fatty acids.

Cardiovascular Effects of Wheat Polyphenols

Wheat (Triticum sp.) is largely used all over the wor s evidence that 2-3 servings/ day of whole
wheat grains reduce the risk of CVDs[160]. Among phenolic acids, ferulic acid is the major
component of wheat, and the number of hydroxyl groups correlates with its antioxidant
potential[161]. Experimentally, extracts enriched in ferulic, synaptic, and p-coumaric acids
downregulated pro-inflammatory cytokines, and chemokine/interferon-gamma-inducible protein 10
kDa[162]. Furthermore, fermented wheat germ polyphenols could reduce lipid metabolism in
hyperlipidemic rats, activating the AMPK pathway. Clinically, wheat aleurone improved redox
status in overweight/obese individuals at higher risk of CVD [163]. Ferulic acid could lower total
cholesterol, triglycerides, MAD, C-RP in hyperlipidemic individuals, thus preventing atherosclerosis
outcome[164]. The role of quercetin, a flavonol, contained in whole wheat grain, has preclinically
been investigated. Its athero-protective effects have been ascribed to the suppression of inflammation
and apoptosis [165] . Quercetin derivatives can induce regression of atheromatous plaques, triggering
autophagy, and inhibiting the breakdown of elastin, macrophage infiltration, and production of both
matrix-metallo-proteinase 9, and adhesion molecules[166,167]. Also, quercetin could prevent
cardiac/ischemia and/or reperfusion injury through regulation of the PI3K/Akt pathway[168]. (Table
5).
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Table 5. Cardiovascular Effects of Polyphenols.

5.1 Flavan-3-Ols

5.1a-Flavan-3-ols metabolites, hydroxy-phenyl-gamma-valerolactones, hydroxy-phenyl
valeric acid, and protocatechuic acid exhibit hypotensive activity in rats and
decrease diabetic cardiomyopathy, with reduction of inflammatory biomarkers[93-
95]

5.1b- Cocoa flavan-3-ols supplementation reduces trimethylamine-N oxide in healthy
individuals, systolic blood pressure (5BP), and diastolic blood pressure (DBP) in
hypertensive individuals, and in patients with coronary artery disease, while
increasing flood-mediated dilation (FMD)[98,99,101]

5.1c- Administration of green tea catechins to healthy volunteers decreased SBP, and
DBP, and improvedpostprandial glucose status, while lowering serum thioredoxin
levels[102-104]

5.1d- No effects of green tea catechin supplementation were observed in healthy male

volunteers, activeolder people, and overweight women[105-107]

5.2 Resveratrol (RES)

5.2a- In rodents, RES mitigates cardiac, endothelial hypertrophy, and cardiac fibrosis,
dampening MAPK activity and transforming-growth factor-beta/Smad 2/3 signaling
pathway[119-121]

5.2b- RES inhibits endothelin-1, with production of nitric oxide, and prevention of

atherosclerosis [123]

5.2¢- In diabetic mice, RES attenuated high-glucose oxidative stress, and cardiomyocyte

apoptosis through enhancement of Nrf-1, and Nrf-2 transcription factors[124]

5.2d- In patients with hypertension, RES administration reduced hypertension[125,126],

while in other two studies such an effect was not confirmed[117,127,142]

5.2e- In hypertensive patients, stable coronary artery disease patients, and patients with
metabolic syndrome, long term RES administration improved the FMD of the
brachial artery[128-131]

5.2f- RES administration can modify the lipid profile, diabetes, and inflammation in

patients with atherosclerosis[132-134]

5.2g- In patients with heart failure, RES administration improved both systolic and
diastolic function,reducing the serum levels of the N-terminal prohormone brain
natriuretic peptide[117,129,135]
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5.3 Curcumin
5.3a- In hypertensive rat models, curcumin administration normalized vascular function,

attenuating coronary artery damage[139-142]

5.3b- In hypertensive patients, refractory or relapsing lupus nephritis patients and obese
subjects curcumin reduced blood pressure, with an increase in anti-inflammatory
cytokines[143-145]

5.3c- In another study, curcumin did not modify blood pressure in healthy middle-aged
and older adults[146]

5.4 Extra Virgin Olive Oil (EVOO)
5.4a- Hydroxytyrosol (HT) inhibited platelet aggregation in rats, decreasing

thromboxane B2, and prostacyclin, while increasing nitric oxide [151,152]

5.4b- In hypercholesterolemic individuals, HT administration normalized the lipid
profile, with reduction of SBP, and DBP study, HT [153-155]. In another

administration did not modify lipid profile and cardiovascular biomarkers[157]

5.4c- In patients with stroke, administration of HT 24 h after stroke decreased glycated
hemoglobin and DPB[158]

Adverse Efeects of Polyphenols

A few side effects attributed to polyphenol administration have been recorded. For instance, RES
administration to humans may lead to emesis, mild hepatic dysfunction, and diarrhea[169,170]. In
rats, high oral doses of RES (3g/Kg/day) provoked nephrotoxicity[171]. Also, flavonoids can cause
mild gastrointestinal symptoms, insomnia, headache, palpitations and increase in serum
transaminases[172,173]. Other side effects of polyphenol ingestion are represented by a reduced
gastrointestinal transport of folic acid, thiamine, and iron[174].

Conclusions and Future Trends

There is a large body of evidence that polyphenols exert antioxidant, and anti-inflammatory
activities, thus, regulating major pathways involved in cellular activation , and metabolism. In this
respect, polyphenols exert beneficial effects on CVD, such as stroke, hypertension, and HF. For
example, MD is a balanced diet, which promotes human health, even including prevention of CVD.
However, dietary foods contain many compounds, e.g., vitamins, minerals, polyphenols and
unsaturated fatty acids, all endowed with protective effects in the host. Therefore, in this review
emphasis has been placed on the cardioprotective effects of single polyphenols alone or a
combination between them, to rule out potential effects of other dietary compounds. Undoubtedly,
preclinical studies conducted with a variety of polyphenols suggest their beneficial effects on CVD.
On the other hand, clinical trials are still a few and, sometimes, based on a low number of participants.
Therefore, the actual effects of polyphenol intake on human healthy and unhealthy population need
a more robust confirmation with more clinical trials.
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Abbreviations

ANGII Angiotensin II

CAD Coronary Artery Disease

COX Cyclooxygenase

CRP C-Reactive Protein

CVD Cardiovascular Disease

DBP Diastolic Blood Pressure

ECs Endothelial Cells

EGCG Epigallo-Catechin-Gallate

ENOS Endothelial Nitric Oxide Synthase
ET-1 Endothelin-1

EVO Extra Virgin Olive Oil

FGM Fermented Grape Marc

FMD Flood-Mediated Dilation

HF Heart Failure

ICAM Intercellular Adhesion Molecule-1
IL Interleukin

LOX Lipoxigenase

MAD Malondialdehyde

MAPK Mitogen-Activated Protein Kinase
MD Mediterranean Diet

MI Myocardial Ischemia

NF-kB Nuclear Factor Kappa-Light Chain Enhancer of Activated B cells
NLRs Nucleotide-Binding Domain and Leucine-Rich Repeat Containing Receptors
NO Nitric Oxide

oxLDL Oxidized Lipoproteins
Phosphodiesterase (PDE)

PG Prostaglandin

PGI2 Prostacyclin-12

PRR Pattern Recognition Receptors
PVAs Hydroxy-Phenyl-Valeric Acids
PVLs Hydroxy-Phenyl-Gamma-Valerolactones
RES Resveratrol

ROS Reactive Oxygen Species

SBP Systolic Blood Pressure

SGLT1 Sodium-Glucose-Linked Transporter 1
SOD Superoxide Dismutase

TXA Thromboxane

TMAO Trimethyl-Amine-Oxide

TNF Tumor Necrosis Factor-alpha
VCM Vascular Cell Adhesion-1
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