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In this paper, we study the global existence and exponential decay for a dynamic con-

tact problem between a Timoshenko beam with second sound and two rigid obstacles,

of which the heat flux is given by Cattaneo’s law instead of the usual Fourier’s law.

The main difficulties arise from the irregular boundary terms, from the low regularity

of the weak solution and from the weaker dissipative effects of heat conduction in-

duced by Cattaneo’s law. By considering related penalized problems, proving some a

priori estimates and passing to the limit, we prove the global existence of the solutions.

By considering the approximate framework, constructing some new functionals and

applying the perturbed energy method, we obtain the exponential decay result for

the approximate solution, and then prove the exponential decay rate to the original

problem by utilizing the weak lower semicontinuity arguments.
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1 Introduction

In this paper, we investigate the mechanical behavior of thermoelastic Timoshenko homogeneous

beam, of natural length l, which may come in contact with two rigid obstacles (see Figure 1). We

denote by ϕ = ϕ(x, t), ψ = ψ(x, t), θ = θ(x, t) and q = q(x, t) the transverse displacement, angle,

relative temperature and heat flow, respectively, we consider the following system:

ρ1ϕtt(x, t)− k [ϕx(x, t) + ψ(x, t)]x + αϕt(x, t) = 0, (x, t) ∈ (0, l)× (0, T ),

ρ2ψtt(x, t)− bψxx(x, t) + k [ϕx(x, t) + ψ(x, t)]−mθx(x, t) = 0, (x, t) ∈ (0, l)× (0, T ),

θt(x, t) + rqx(x, t)−mψxt(x, t) = 0, (x, t) ∈ (0, l)× (0, T ),

τqt(x, t) + q(x, t) + rθx(x, t) = 0, (x, t) ∈ (0, l)× (0, T ),

(1.1)

with the initial conditions

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), x ∈ [0, l],

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), x ∈ [0, l], (1.2)

θ(x, 0) = θ0(x), q(x, 0) = q0(x), x ∈ [0, l]
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and

ϕ(0, t) = 0, ψ(0, t) = 0, q(0, t) = 0, t ∈ [0, T ], (1.3)

ψx(l, t) = 0, θ(l, t) = 0, t ∈ [0, T ], (1.4)

for some given functions ϕ0, ϕ1, ψ0, ψ1, θ0, q0. The coefficients ρ1, ρ2, b, k, α,m and τ represent

the mass density, the moment of mass inertia, the rigidity coefficient of cross section, the shear

modulus of elasticity, the coefficient of the damping force, the coupling coefficient depending on

the material properties and the thermal diffusivity, respectively, with ρ1, ρ2, k, b, τ, α ∈ R+ and

m ∈ R \ {0}.

Figure 1: A thermoelastic Timoshenko beam and the tip at x = l with clearance g = g1 + g2.

The tip at x = l is modeled with the Signorini non-penetration condition, see [20, 27]. In

particular, the tip with gap g is the asymmetrical so that g = g1 + g2, where g1 > 0 and g2 > 0

are, respectively, the upper and lower clearances, when the system is at rest (see Figure 1). Then,

the right end of the beam is assumed to move vertically only between two stops, namely

−g2 ≤ ϕ(l, t) ≤ g1, t ∈ (0, T ). (1.5)

We denote by σ(t) the shear stress at x = l, i.e.,

σ(t) := k[ϕx(l, t) + ψ(l, t)].

We require that when there is no contact, namely −g2 < ϕ(l, t) < g1, the right end is free and

σ(t) = 0. On the other hand, when u(l, t) is in contact, namely ϕ(l, t) = −g2 or ϕ(l, t) = g1,

the stress is opposite to the displacement: σ(t) ≥ 0 if ϕ(l, t) = −g2 and σ(t) ≤ 0 if ϕ(l, t) = g1.

Accordingly, we prescribe

−σ(t) ∈ ∂X (ϕ(l, t)), t ∈ [0, T ], (1.6)

where ∂X denotes the subdifferential of the indicator function X

X (ϕ) =

{
0, if − g2 < ϕ < g1,

+∞, otherwise,

namely

∂X (ϕ) =


(−∞, 0], if ϕ = −g2,

0, if − g2 < ϕ < g1,

[0,+∞) , if ϕ = g1.
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Many researchers got interested in studying the dynamics contact problems involving only a

single displacement and/or a single variation of temperature, see for example [2, 3, 20, 21, 27,

36, 42]. Carlson [11] and Day [17] found that two or more materials may come in contact as a

result of thermoelastic expansion or contraction in industrial processes. Copetti [14], Kuttler and

Shillor [26] proposed the dynamic evolution of a thermoviscoelastic rod which may contact or

impact a rigid or reactive obstacle, whereas the exponential energy decay rate for weak solutions

of a thermoelastic rod, contacting a rigid obstacle, has been analyzed in [34]. Copetti [15] proved

existence and uniqueness results and proposed finite element approximations in space with back-

ward Euler discretization in time for a contact problem in generalized thermoelasticity under the

theory of thermoelasticity proposed by Green and Lindsay [23]. Berti and Naso [9] considered the

existence and longtime behavior of solutions for a dynamic contact problem between a nonlinear

viscoelastic beam and two rigid obstacles. Afterward, thermal effects have been also taken into

account in [6, 8], where Berti et al. proved the existence and uniqueness of the solution as well

as the exponential decay of the related energy.

Timoshenko beam with thermal contribution have been investigated by many authors and

some results related to global existence and decay properties have been obtained, see for example

[12, 13, 18, 19, 22, 24, 28, 31, 33, 41, 44]. For the case of nonlinear internal frictional damping and

without thermal effects, we refer the readers to Boussouira [1], Rivera and Racke [35], Raposo

et al. [40] and Soufyane [43]. The boundary stabilization and boundary control have been

studied in [25, 46] (see also references therein). Arantes and Rivera in [4] proved that the energy

associated with the thermoelastic Timoshenko beam system decays exponentially as time goes

to infinity. Meanwhile, a great number of researchers have devoted considerable amount time

studying Timoshenko beam with contact problems. For instances, in [5], Araruna et al. showed the

existence of solutions and the exponential stability of the energy for a contact problem associated

with an elastic Timoshenko beam and a rigid obstacle under the assumption of a dissipative

boundary feedback. Berti et al. [7] proved global existence in time of solutions and exponential

decay for a dynamic contact problem between a Timoshenko beam and two rigid obstacles. In

[16], well-posedness and fully discrete approximations for a dynamic contact problem between a

viscoelastic Timoshenko beam and a deformable obstacle was analyzed.

In the above-mentioned result of Berti et al. [7], the heat dissipation is given through Fourier’s

law. As it is well known, by using the Fouriers law for the heat conduction, the thermal effect

is propagated in an infinite speed in thermoelasticity. To overcome this physical paradox, many

theories have been developed. Lord and Shulman [30] suggested that Fouriers law was replaced

by Cattaneos law to describe the heat conduction, which transforms the classical thermoelastic

system into the thermoelastic system with second sound, in which the thermal disturbance is

propagated in a finite speed. Over the past decade, sevaral asymptotic behavior results have been

obtained for the thermoelasticity system with second sound ([10, 29, 32, 37, 38, 39, 45]). Berti et

al. [8] investigated a dynamic contact problem describing the mechanical and thermal evolution

of a damped extensible thermoviscoelastic beam under the Cattaneo law.
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Motivated by these results, the aim of the present paper is to establish a global in time

existence result to problem (1.1)-(1.6) and analyze its longtime behavior. In particular, we prove

that the system possesses an energy decaying exponentially as time goes to infinity. Problem (1.1)-

(1.6) can be regarded as an extension and improvement of Berti et al. [7] to the thermoelastic

Timoshenko beam with second sound. It has been shown in [22] that the dissipative effects of heat

conduction induced by Cattaneo’s law are usually weaker than those induced by Fourier’s law,

and the coupling via Cattaneo’s law may cause loss of the exponential decay usually obtained in

the case of coupling via Fouriers law. The main difficulties also arise from the irregular boundary

terms induced by the constraint (1.6) and from the low regularity of the weak solution. In order

to prove the global existence result, we consider an approximate version of problem (1.1)-(1.6) by

introducing a normal compliance condition as regularization of the Signorini condition (1.6). We

first prove a well-posedness result for the penalized problem by means of a Faedo-Galerkin scheme,

and then derive suitable a priori estimates and pass to the limit in the regularization parameter

obtaining the existence of a solution to the original problem. In order to get the exponential

decay result to problem (1.1)-(1.6), we consider the approximate framework. By introducing a

suitable Lyapunov functional and using the multiplier method, we first obtain the exponential

decay result for the approximate solution. Then, under weak lower semicontinuity arguments, we

prove the exponential decay rate for a solution to the original problem.

The paper is organized as follows. In Section 2, a variational formulation of problem (1.1)-(1.6)

has been introduced and the main results have been stated. In Section 3, we study the existence

of a weak solution to problem (1.1)-(1.6). The exponential stability result is proved in Section 4.

2 Main results

To give a variational formulation of the problem, we introduce the following spaces:

V =
{
f ∈ H1(0, l) : f(0) = 0

}
,

K = {ϕ ∈ V : −g2 ≤ ϕ(l) ≤ g1} ,

H =
{
f ∈ H1(0, l) : f(l) = 0

}
.

The initial data

(ϕ0, ψ0, θ0, q0) ∈ K × V × L2(0, l)× L2(0, l), (ϕ1, ψ1) ∈ [L2(0, l)]2. (2.1)

We define

E(t) := E(t, ϕ, ψ, θ, q) =
1

2

∫ l

0

[
ρ1|ϕt(x, t)|2 + ρ2|ψt(x, t)|2 + |θ(x, t)|2 + τ |q(x, t)|2

+k|ϕx(x, t) + ψ(x, t)|2 + b|ψx(x, t)|2
]

dx (2.2)

as the energy associated with system (1.1)-(1.5).
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Definition 2.1 Let ϕ0, ψ0, θ0, q0, ϕ1, ψ1 be given as in (2.1) and 0 < T ≤ ∞. We say that

(ϕ,ψ, θ, q) is a weak solution to problem (1.1)-(1.6) when

ϕ ∈W 1,∞(0, T ;L2(0, l)) ∩ L∞(0, T ;K),

ψ ∈W 1,∞(0, T ;L2(0, l)) ∩ L∞(0, T ;V),

θ ∈ L∞(0, T ;L2(0, l)),

q ∈ L∞(0, T ;L2(0, l)),

with initial data satisfying (1.2), the inequality∫ T

0

∫ l

0
{−ρ1ϕt(x, t)[ωt(x, t)− ϕt(x, t)] + k[ϕx(x, t) + ψ(x, t)][ωx(x, t)− ϕx(x, t)]

+αϕt(x, t)[ω(x, t)− ϕ(x, t)]}dxdt ≥ ρ1
∫ l

0
ϕ1(x)[ω(x, 0)− ϕ0(x)]dx, (2.3)

for every ω ∈W 1,1(0, T ;L2(0, l)) ∩ L2(0, T ;K) such that ω(·, T ) = ϕ(·, T ), and the equations∫ T

0

∫ l

0
{−ρ2ψt(x, t)Xt(x, t) + bψxXx(x, t) + k[ϕx(x, t) + ψ(x, t)]X (x, t)

+mθ(x, t)Xx(x, t)} dxdt = ρ2

∫ l

0
ψ1(x)X (x, 0)dx, (2.4)

∫ T

0

∫ l

0
{−θ(x, t)nt(x, t)− rqε(x, t)nεx(x, t) +mψxnt(x, t)} dxdt

=

∫ l

0
[θ(x, 0)−mψx(x, 0)]n(x, 0)dx, (2.5)

∫ T

0

∫ l

0
{−τq(x, t)yt(x, t) + qε(x, t)y(x, t) + rθx(x, t)y(x, t)}dxdt

=

∫ l

0
τq(x, 0)y(x, 0)dx, (2.6)

for every X ∈ W 1,1(0, T ;L2(0, l)) ∩ L2(0, T ;V) such that X (·, T ) = ψ(·, T ), for every n ∈
W 1,1(0, T ;L2(0, l) ∩ L2(0, T ;H)) and y ∈ W 1,1(0, T ;L2(0, l) ∩ L2(0, T ;V)) such that y(·, T ) = 0,

n(·, T ) = 0.

Here are the main results of the paper.

Theorem 2.2 (Global existence) Under assumption (2.1), there exists a weak solution (in the

sense of Definition 2.1) of problem (1.1)-(1.6).

By a regularization, a priori estimates, and passage to the limit procedure, the proof of this

result will be carried out in Section 3. In Section 4, we shall prove the following exponential decay

result.

Theorem 2.3 (Exponential decay) Let ϕ be a weak solution to problem (1.1)-(1.6) provided by

Theorem 2.2. Then there exist two positive constants R and ω, independent of t, such that

E(t) ≤ RE(0)e−ωt, for all t ≥ 0. (2.7)
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3 Global existence

In this section, we show that the solution for problem (1.1)-(1.6) is global. Firstly, in Section 3.1,

we approximate problem (1.1)-(1.6) by a penalization procedure and we prove well-posedness for

the regularized problem (Proposition 3.1 below). Then, in Section 3.2, we show that a sequence

of approximate solutions converges to a solution to the original problem.

3.1 Approximating problem

For any ε > 0, we introduce the families of initial data (ϕε0, ψ
ε
0, θ

ε
0, q

ε
0)ε>0, satisfying

(ϕε0, ψ
ε
0, θ

ε
0, q

ε
0) ∈ [H2(0, l) ∩ K]× [H2(0, l) ∩ V]×H× V, (ϕε1, ψ1)

ε ∈ [H1(0, l)]2. (3.1)

We introduce a penalized version of problem (1.1)-(1.6) by regularizing the Signorini contact

condition with a normal compliance condition. We consider the following system:

ρ1ϕ
ε
tt(x, t)− k [ϕεx(x, t) + ψε(x, t)]x + αϕεt (x, t) = 0, (x, t) ∈ (0, l)× (0, T ),

ρ2ψ
ε
tt(x, t)− bψεxx(x, t) + k [ϕεx(x, t) + ψε(x, t)]−mθεx(x, t) = 0, (x, t) ∈ (0, l)× (0, T ),

θεt (x, t) + rqεx(x, t)−mψεxt(x, t) = 0, (x, t) ∈ (0, l)× (0, T ),

τqεt (x, t) + qε(x, t) + rθεx(x, t) = 0, (x, t) ∈ (0, l)× (0, T ),

(3.2)

together with
ϕε(x, 0) = ϕε0(x), ϕεt (x, 0) = ϕε1(x), x ∈ [0, l],

ψε(x, 0) = ψε0(x), ψεt (x, 0) = ψε1(x), x ∈ [0, l],

θε(x, 0) = θε0(x), qε(x, 0) = qε0(x), x ∈ [0, l].

(3.3)

The boundary conditions at x = 0 are

ϕε(0, t) = 0, ψε(0, t) = 0, qε(0, t) = 0, t ∈ [0, T ]. (3.4)

At the tip x = l, for t ∈ [0, T ], we set

ψεx(l, t) = 0, θε(l, t) = 0, σε(t) = σ̃ε(t), (3.5)

where

σε(t) = k[ϕεx(l, t) + ψε(l, t)],

σ̃ε(t) = −1

ε

{
[ϕε(l, t)− g1]+ − [−ϕε(l, t)− g2]+

}
− εϕεt (l, t). (3.6)

Here and in the sequel, [f ]+ := max{f, 0} denotes the positive part of a function f .

Henceforth, we will also use the following functionals:

Jε(t) =
1

2ε

{
|[ϕε(l, t)− g1]+|2 + |[−ϕε(l, t)− g2]+|2

}
, (3.7)

Eε(t) = Eε(t) + Jε(t), (3.8)

where Eε(t) = E(t, ϕε, ψε, θε, qε).
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Proposition 3.1 (Existence of an approximate solution) Given any T > 0, problem (3.2) has a

solution
ϕn,ε ∈W 2,∞(0, T ;L2(0, l)) ∩W 1,∞(0, T ;H1(0, l)) ∩ L∞(0, T ;H2(0, l)),

ψn,ε ∈W 2,∞(0, T ;L2(0, l)) ∩W 1,∞(0, T ;H1(0, l)) ∩ L∞(0, T ;H2(0, l)),

θn,ε ∈W 1,∞(0, T ;L2(0, l)) ∩ L∞(0, T ;H1(0, l)),

qn,ε ∈W 1,∞(0, T ;L2(0, l)) ∩ L∞(0, T ;H1(0, l)),

(3.9)

with initial data satisfying (3.1), (3.3) and compatible with the boundary conditions (3.4)-(3.6)

for t = 0.

Proof. (Construction of Faedo-Galerkin approximations) Let {wj}∞j=1, be a basis of V and

{ξj}∞j=1 is basis of H such that w1 = ϕε0, w2 = ϕε1, w3 = ψε0, w4 = ψε1, w5 = qε0 and ξ1 = θε0. We

construct the approximate solutions of the form

ϕn,ε(x, t) =
n∑
j=1

hnj (t)wj(x), ψn,ε(x, t) =
n∑
j=1

pnj (t)wj(x),

θn,ε(x, t) =

n∑
j=1

unj (t)ξj(x), qn,ε(x, t) =

n∑
j=1

vnj (t)wj(x),

verifying, for j = 1, ..., n,∫ l

0
{ρ1ϕn,εtt (x, t)wj(x) + k[ϕn,εx (x, t) + ψn,ε(x, t)]wjx(x) + αϕn,εt (x, t)wj(x)}dx

− σ̃n,ε(t)wj(l) = 0, (3.10)

∫ l

0
{ρ2ψn,εtt (x, t)wj(x) + bψn,εx (x, t)wjx(x) + k[ϕn,εx (x, t) + ψn,ε(x, t)]wj(x)

−mθn,εx (x, t)wj(x)}dx = 0, (3.11)

∫ l

0
[θn,εt (x, t)ξj(x)− rqn,ε(x, t)ξjx(x) +mψn,εt (x, t)ξjx(x)] dx = 0, (3.12)

∫ l

0
[τqn,εt (x, t)wj(x) + qn,ε(x, t)wj(x)− rθn,ε(x, t)wjx(x)] dx = 0, (3.13)

where

σ̃n,ε(t) = −1

ε

{
[ϕn,ε(l, t)− g1]+ − [−ϕn,ε(l, t)− g2]+

}
− εϕn,εt (l, t)

and initial data
ϕn,ε(x, 0) = ϕε0(x), ϕn,εt (x, 0) = ϕε1(x), x ∈ [0, l],

ψn,ε(x, 0) = ψε0(x), ψn,εt (x, 0) = ψε1(x), x ∈ [0, l],

θn,ε(x, 0) = θε0(x), qn,ε(x, 0) = qε0(x), x ∈ [0, l].

(3.14)

Accordingly, the standard theory of ordinary differential equations guarantees, under Lipschitz

conditions, system (3.10)-(3.13) appended by initial conditions (3.14) admits a local solution. We
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now need the a priori estimates that permit us to extend the solution to the whole interval [0, T ],

for any T > 0.

(A priori estimates) We multiply (3.10) by hnjt, (3.11) by pnjt, (3.12) by unj , (3.13) by vnj ,

respectively, summing over j and adding the resulting equations, we infer

d

dt
En,ε(t) + α

∫ l

0
|ϕn,εt (x, t)|2dx+

∫ l

0
|qn,ε(x, t)|2dx = σ̃n,ε(t)ϕn,εt (l, t),

where En,ε(t) = E(t, ϕn,ε, ψn,ε, θn,ε, qn,ε). Note that if we denote by f− = max{−f, 0} the negative

part of a function f , we have f+ft = f+(f+ − f−)t = f+f+t =
1

2

d

dt
[f+]2. Thus, the previous

equality becomes

d

dt
En,ε(t) + α

∫ l

0
|ϕn,εt (x, t)|2dx+

∫ l

0
|qn,ε(x, t)|2dx+ ε|ϕn,εt (l, t)|2 = 0.

An integration over (0, t) and initial conditions (3.14) ensure that

En,ε(t) +
1

2ε

{
|[ϕn,ε(l, t)− g1]+|2 + |[−ϕn,ε(l, t)− g2]+|2

}
≤ K, (3.15)

where K is a positive constant independent of n. Note that for any ϕε0 ∈ K we get that σ̃n,ε(0) =

−εϕn,εt (l, 0).

After a differentiation of Eqs. (3.10)-(3.13) with respect to t, we have∫ l

0
{ρ1ϕn,εttt (x, t)wj(x) + k[ϕn,εxt (x, t) + ψn,εt (x, t)]wjx(x) + αϕn,εtt (x, t)wj(x)}dx

− σ̃n,εt (t)wj(l) = 0, (3.16)

∫ l

0
{ρ2ψn,εttt (x, t)wj(x) + bψn,εxt (x, t)wjx(x) + k[ϕn,εxt (x, t) + ψn,εt (x, t)]wj(x)

−mθn,εxt (x, t)wj(x)}dx = 0, (3.17)

∫ l

0
[θn,εtt (x, t)ξj(x)− rqn,εt (x, t)ξjx(x) +mψn,εtt (x, t)ξjx(x)] dx = 0, (3.18)

∫ l

0
[τqn,εtt (x, t)wj(x) + qn,εt (x, t)wj(x)− rθn,εt (x, t)wjx(x)] dx = 0. (3.19)

We multiply (3.16) by hnjtt, (3.17) by pnjtt, (3.18) by unjt, (3.19) by vnjt, summing over j and

adding the resulting equations, we have

d

dt
En,εt (t) + α

∫ l

0
|ϕn,εtt (x, t)|2dx+

∫ l

0
|qn,εt (x, t)|2dx+ ε|ϕn,εtt (l, t)|2 = −1

ε
Bn(t)ϕn,εtt (l, t), (3.20)

where En,εt (t) = E(t, ϕn,εt , ψn,εt , θn,εt , qn,εt ) and En,εt (t) , Bn(t) are defined as follows

En,εt (t) :=
1

2

∫ l

0

[
ρ1|ϕn,εtt (x, t)|2 + ρ2|ψn,εtt (x, t)|2 + b|ψxt(x, t)|2

]
dx
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+
1

2

∫ l

0

[
k|ϕn,εxt (x, t) + ψn,εt (x, t)|2 + τ |qn,εt (x, t)|2 + |θn,εt (x, t)|2

]
dx,

Bn(t) =
d

dt

{
[ϕn,ε(l, t)− g1]+ − [−ϕn,ε(l, t)− g2]+

}
.

In addition, by applying the Young’s and Sobolev’s inequalities and noting that |(f+)t| ≤ |ft|,
we can estimate the last term in (3.20) as follows (see [7])

1

ε
|Bn(t)||ϕn,εtt (l, t)|

≤ε
2
|ϕn,εtt (l, t)|2 + Cε|Bn(t)|2

≤ε
2
|ϕn,εtt (l, t)|2 + Cε

∫ l

0
|ϕn,εxt (x, t) + ψn,εt (x, t)|2dx+ Cε

∫ l

0
|ψn,εxt (x, t)|2dx,

where Cε is a positive constant depending on ε but independent of n, which is allowed to vary

even in the same formula. From (3.20), we have

d

dt
En,εt (t) + α

∫ l

0
|ϕn,εtt (x, t)|2dx+

∫ l

0
|qn,εt (x, t)|2dx+

ε

2
|ϕn,εtt (l, t)|2

≤Cε
∫ l

0
|ϕn,εxt (x, t) + ψn,εt (x, t)|2dx+ Cε

∫ l

0
|ψn,εxt (x, t)|2dx. (3.21)

An integration over (0, t) implies

En,εt (t) +

∫ t

0

∫ l

0

[
α|ϕn,εtt (x, t)|2 + |qn,εt (x, t)|2

]
dxdt

≤En,εt (0) + Cε

∫ t

0

∫ l

0

[
|ϕn,εxt (x, t) + ψn,εt (x, t)|2 + |ψn,εxt (x, t)|2

]
dxdt. (3.22)

We can show that the second order energy is initially bounded, independently of n, namely

En,εt (0) :=
1

2

∫ l

0

[
ρ1|ϕn,εtt (x, 0)|2 + ρ2|ψn,εtt (x, 0)|2 + |θn,εt (x, 0)|2 + τ |qn,εt (x, 0)|2

]
dx

+
1

2

∫ l

0

[
k|ϕn,ε1x (x) + ψn,ε1 (x)|2 + b|ψn,ε1x (x)|2

]
dx

is bounded independently of n. To this aim, we multiply (3.10) by hnjtt, we sum up over j = 1, ..., n

and we let t→ 0. By (3.14), we have∫ l

0

{
ρ1|ϕn,εtt (x, 0)|2 + k[ϕε0x(x) + ψε0(x)]ϕn,εxtt(x, 0) + αϕε1(x)ϕn,εtt (x, 0)

}
dx

− σ̃n,ε(0)ϕn,εtt (l, 0) = 0.

After an integration by parts and owing to the compatibility conditions (3.4)-(3.6) for t = 0, we

find ∫ l

0

{
ρ1|ϕn,εtt (x, 0)|2 − k[ϕε0xx(x) + ψε0x(x)]ϕn,εtt (x, 0) + αϕε1(x)ϕn,εtt (x, 0)

}
dx

+ {k[ϕε0x(l) + ψε0(l)]− σ̃n,ε(0)}ϕn,εtt (l, 0) = 0.
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In the light of Hölder’s inequality and Young’s inequality, we deduce that there exists a constant

C independent of n such that∫ l

0
|ϕn,εtt (x, 0)|2dx ≤ C

∫ l

0
[|ϕε0xx(x)|2 + |ψε0x(x)|2 + |ϕε1(x)|2]dx ≤ C.

Similarly, multiplying (3.11) by pnjtt, (3.12) by unjt, summing up over j = 1, ..., n and letting t→ 0,

we get ∫ l

0
|ψn,εtt (x, 0)|2dx ≤ C

∫ l

0
[|ψε0xx(x)|2 + |ϕε0x(x)|2 + |θε0x(x)|2]dx ≤ C

and ∫ l

0

{
|θn,εt (x, 0)|2 + rqε0x(x)θn,εt (x, 0)−mψε1x(x)θn,εt (x, 0)

}
dx = 0,

which leads to the inequality∫ l

0
|θn,εt (x, 0)|2dx ≤ C

∫ l

0
[|qε0x(x)|2 + |ψε1x(x)|2]dx ≤ C.

Finally, multiplying (3.13) by vnjt, summing up over j = 1, ..., n and letting t→ 0, we obtain∫ l

0

{
τ |qn,εt (x, 0)|2 + qn,ε0 (x)qn,εt (x)− rθn,ε0x q

n,ε
t (x, 0)

}
dx = 0,

then, we have ∫ l

0
|qn,εt (x, 0)|2dx ≤ C

∫ l

0
[|qε0(x)|2 + |θε0x(x)|2]dx ≤ C.

By (3.1), we infer that

En,εt (0) ≤ C
∫ l

0

[
|ϕε0xx(x)|2 + |ψε0xx(x)|2 + |θε0x(x)|2 + |qε0(x)|2 + |ϕε1(x)|2 + |ψε1x(x)|2

]
dx ≤ C.

Thus, from (3.22) and applying Gronwall’s inequality, we find that En,εt (t) is bounded in [0, T ].

(Passage to the limit) Inequalities (3.15) and (3.22) guarantee that

ϕn,ε is bounded in W 2,∞(0, T ;L2(0, l)) ∩W 1,∞(0, T ;H1(0, l)),

ψn,ε is bounded in W 2,∞(0, T ;L2(0, l)) ∩W 1,∞(0, T ;H1(0, l)),

θn,ε is bounded in W 1,∞(0, T ;L2(0, l)),

qn,ε is bounded in W 1,∞(0, T ;L2(0, l)),

[ϕn,ε(l, t)− g1]+ is bounded in L∞(0, T ),

[−ϕn,ε(l, t)− g2]+ is bounded in L∞(0, T ).

Therefore we deduce, up to a subsequence, the convergence

ϕn,ε ⇀ ϕε weak∗ in W 2,∞(0, T ;L2(0, l)) ∩W 1,∞(0, T ;H1(0, l)),
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ψn,ε ⇀ ψε weak∗ in W 2,∞(0, T ;L2(0, l)) ∩W 1,∞(0, T ;H1(0, l)),

θn,ε ⇀ θε weak∗ in W 1,∞(0, T ;L2(0, l)),

qn,ε ⇀ qε weak∗ in W 1,∞(0, T ;L2(0, l)),

[ϕn,ε(l, t)− g1]+ ⇀ [ϕε(l, t)− g1]+ weak∗ in L∞(0, T ),

[−ϕn,ε(l, t)− g2]+ ⇀ [−ϕn,ε(l, t)− g2]+ weak∗ in L∞(0, T ).

By standard procedure, by letting n→∞ in (3.10), we recover (3.2) and the initial and boundary

conditions (3.3)-(3.6). In particular, from equations (3.2)3 and (3.2)4, we deduce that θεx, q
ε
x ∈

L∞(0, T ;L2(0, l)) and hence the regularity (ϕε, ψε, θε, qε) verifies the regularity specified in (3.9).

Proposition 3.2 (Uniqueness) For any T > 0, the solution (ϕε, ψε, θε, qε) to problem (3.2), with

initial data satisfying (3.3) and compatible with the boundary conditions (3.4)-(3.6), is unique.

Proof. Let (ϕε, ψε, θε, qε) and (Φε,Ψε,Θε,Υε) be two solutions of (3.2), (3.4)-(3.6) whose regu-

larity is specified by (3.9). We define

U ε := ϕε − Φε, Qε : ψε −Ψε, Rε := θε −Θε, Sε := qε −Υε,

satisfying

ρ1U
ε
tt(x, t)− k [U εx(x, t) +Qε(x, t)]x + αU εt (x, t) = 0, (x, t) ∈ (0, l)× (0, T ),

ρ2Q
ε
tt(x, t)− bQεxx(x, t) + k [U εx(x, t) +Qε(x, t)]−mRεx(x, t) = 0, (x, t) ∈ (0, l)× (0, T ),

Rεt (x, t) + rSεx(x, t)−mQεxt(x, t) = 0, (x, t) ∈ (0, l)× (0, T ),

τSεt (x, t) + Sε(x, t) + rRεx(x, t) = 0, (x, t) ∈ (0, l)× (0, T ),

with the initial conditions

U ε(x, 0) = 0, U εt (x, 0) = 0, x ∈ [0, l],

Qε(x, 0) = 0, Qεt (x, 0) = 0, x ∈ [0, l],

Rε(x, 0) = 0, Sε(x, 0) = 0, x ∈ [0, l]

(3.23)

and

U ε(0, t) = 0, Qεt (0, t) = 0, Rε(0, t) = 0, Sε(0, t) = 0, (3.24)

Qε(l, t) = Qεx(l, t) = 0, Rε(l, t) = 0, Sε(l, t) = 0, ςε(t) = ς̃ε(t), t ∈ [0, T ], (3.25)

where

ςε(t) = k[U εx(l, t) +Qε(l, t)],

ς̃ε(t) = −1

ε

{
[ϕε(l, t)− g1]+ − [−ϕε(l, t)− g2]+ − [Φε(l, t)− g1]+ + [−Φε(l, t)− g2]+

}
− εU εt (l, t).

Multiplying (3.16) by U εt , (3.17) by Qεt , (3.18) by Rε, (3.19) by Sε and integrating over [0, l],

we get

d

dt
E(t, (U ε, Qε, Rε, Sε)) + α

∫ l

0
|U εt (x, t)|2dx+

∫ l

0
|Sε(x, t)|2dx = ς̃ε(t)U εt (l, t). (3.26)
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In view of the relation |f+ − g+| ≤ |f − g|, we obtain the estimate∣∣[ϕε(l, t)− g1]+ − [−ϕε(l, t)− g2]+ + [Φε(l, t)− g1]+ − [−Φε(l, t)− g2]+
∣∣

≤2|ϕε(l, t)− Φε(l, t)| = 2|U ε(l, t)|.

By means of Poincaré’s inequality and the Sobolev embedding theorem, we have

ς̃ε(t)U εt (l, t) =− 1

ε

{
[ϕε(l, t)− g1]+ − [−ϕε(l, t)− g2]+ − [Φε(l, t)− g1]+

+[−Φε(l, t)− g2]+
}
U εt (l, t)− ε|U εt (l, t)|2

≤2

ε
|U ε(l, t)||U εt (l, t)| − ε|U εt (l, t)|2

≤− ε

2
|U εt (l, t)|2 + Cε|U ε(l, t)|2

≤− ε

2
|U εt (l, t)|2 + Cε

∫ l

0
|U εx(x, t)|2dx.

A substitution into (3.26) leads to

d

dt
E(t, U ε, Qε, Rε, Sε) + α

∫ l

0
|U εt (x, t)|2dx+

∫ l

0
|Sε(x, t)|2dx+

ε

2
|U εt (l, t)|2 ≤ CEε(t).

In view of initial conditions (3.23)-(3.25), E(0, U ε, Qε, Rε, Sε) = 0. Thus, by the Gronwall

lemma, we find that E(t, U ε, Qε, Rε, Sε) = 0 on [0, T ]. This implies that (ϕε, ψε, θε, qε) =

(Φε,Ψε,Θε,Υε), and our conclusion follows.

3.2 Proof of Theorem 2.2

The idea is to consider a sequence of approximate solutions (provided by Proposition 3.1) and

to show their convergence (as ε → 0) to a weak solution of problem (1.1)-(1.6). Given data

(ϕε0, ψ
ε
0, θ

ε
0, q

ε
0) ∈ K×V ×L2(0, l)×L2(0, l), (ϕ1, ψ1) ∈ [L2(0, l)]2, let us consider the sequences of

functions (ϕε0, ψ
ε
0, θ

ε
0, q

ε
0), (ϕε1, ψ

ε
1) with the regularity expressed in (3.1) and such that

(ϕε0, ψ
ε
0, θ

ε
0, q

ε
0)→ (ϕ0, ψ0, θ0, q0) ∈ V × V × L2(0, l)× L2(0, l),

(ϕε1, ψ
ε
1)→ (ϕ1, ψ1) ∈ [L2(0, l)]2.

(3.27)

Multiplying equations (3.2)1, (3.2)2, (3.2)3, (3.2)4, by ϕεt , ψ
ε
t , θ

ε, qε and summing up the resulting

equations. An integration over (0, l) and boundary conditions (3.4)-(3.6) lead to

d

dt
Eε(t) + α

∫ l

0
|ϕεt (x, t)|2dx+

∫ l

0
|qε(x, t)|2dx+ ε|ϕεt (l, t)|2 = 0, (3.28)

where the functional Eε is defined in (3.8). Now we integrate over t, by (3.1)1 and Jε(0) = 0, we

have

Eε(t) +

∫ t

0

[
α

∫ l

0
|ϕεt (x, s)|2dx+

∫ l

0
|qε(x, s)|2dx+ ε|ϕεt (l, s)|2

]
ds ≤ Eε(0) ≤ K, (3.29)

where K is a positive constant independent of ε. By (3.29), we obtain the estimate

Jε(t) =
1

2ε

{
|[ϕε(l, t)− g1]+|2 + |[−ϕε(l, t)− g2]+|2

}
≤ K. (3.30)
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The boundedness of Eε(t) implies the existence of a subsequence, we get

ϕε ⇀ ϕ weak∗ in W 1,∞(0, T ;L2(0, l)) ∩ L∞(0, T ;H1(0, l)),

ψε ⇀ ψ weak∗ in W 1,∞(0, T ;L2(0, l)) ∩ L∞(0, T ;H1(0, l)),

θε ⇀ θ weak∗ in L∞(0, T ;L2(0, l)),

qε ⇀ q weak∗ in L∞(0, T ;L2(0, l)).

(3.31)

Moreover, we have

εϕεt (l, ·)→ 0 in L2(0, T ). (3.32)

Next, we will prove that (ϕ,ψ, θ, q) is a weak solution to problem (1.1)-(1.6). Inequality (3.30)

assures that ϕ(·, t) ∈ K for all t ∈ [0, T ]. Now, let ω ∈ W 1,1(0, T ;L2(0, l)) ∩ L2(0, T ;K) such

that ω(·, T ) = ϕ(·, T ). Multiplying (3.2)1 by ω − ϕε and integrate over (0, T )× (0, l). By taking

(3.5)-(3.6) into account, we obtain∫ T

0

∫ l

0
{−ρ1ϕεt (x, t)[ωt(x, t)− ϕεt (x, t)] + k[ϕεx(x, t) + ψε(x, t)][ωx(x, t)− ϕεx(x, t)]

+αϕεt (x, t)[ω(x, t)− ϕε(x, t)]} dxdt ≥ ρ1
∫ l

0
ϕε1(x)[ω(x, 0)− ϕε0(x)]dx.

Similarly, from (3.2)2, (3.2)3 and (3.2)4, we have∫ T

0

∫ l

0
{−ρ2ψεt (x, t)Xt(x, t) + bψεxXx(x, t) + k[ϕεx(x, t) + ψε(x, t)]X (x, t)

+mθε(x, t)Xx(x, t)} dxdt = ρ2

∫ l

0
ψε1(x)X (x, 0)dx,

∫ T

0

∫ l

0
{−θε(x, t)nt(x, t)− rqε(x, t)nεx(x, t) +mψεxnt(x, t)}dxdt

=

∫ l

0
[θε(x, 0)−mψεx(x, 0)]n(x, 0)dx,

∫ T

0

∫ l

0
{−τqε(x, t)yt(x, t) + qε(x, t)y(x, t) + rθεx(x, t)y(x, t)} dxdt

=

∫ l

0
τqε(x, 0)y(x, 0)dx,

for every X ∈ W 1,1(0, T ;L2(0, l)) ∩ L2(0, T ;V) such that X (·, T ) = 0, for every n ∈ W 1,1(0, T ;

L2(0, l)) ∩ L2(0, T ;H)) such that n(·, T ) = 0 and for every y ∈ W 1,1(0, T ;L2(0, l)) ∩ L2(0, T ;V))

such that v(·, T ) = 0. Next, we pass to the limit as ε → 0 in the previous relations. By [5], one

can obtain the relations

lim
ε→0

sup

∫ T

0

∫ l

0

{
ρ1|ϕεt (x, t)|2 − k[ϕεx(x, t) + ψε(x, t)]ϕεx(x, t)− αϕε(x, t)ϕεt (x, t)

}
dxdt
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=

∫ T

0

∫ l

0

{
ρ1|ϕεt (x, t)|2 − k[ϕεx(x, t) + ψε(x, t)]ϕεx(x, t)− αϕε(x, t)ϕεt (x, t)

}
dxdt,

which allows us to pass to the limit in the nonlinear terms even though the convergences are

only weak. Accordingly, in view of convergences (3.31) and (3.32), we recover (2.3)-(2.6). This

completes the proof.

4 Exponential decay

In this section, we prove an exponentially stability result of system (1.1)-(1.6). We introduce the

following Lyapunov functional:

Lε(t) = Eε(t) + δ1I
ε
1(t) + δ2I

ε
2(t) + δ3I

ε
3(t), (4.1)

where

Iε1(t) =

∫ l

0
[ρ1ϕ

ε
t (x, t)ϕ

ε(x, t) + ρ2ψ
ε
t (x, t)ψ

ε(x, t)]dx+
α

2

∫ t

0
|ϕε(x, t)|2dx+

ε

2
|ϕε(l, t)|2, (4.2)

Iε2(t) = −
∫ l

0
ρ2

[∫ x

0
θε(y, t)dy

]
ψεt (x, t)dx, (4.3)

Iε3(t) = −
∫ l

0
τ

[∫ x

0
θε(y, t)dy

]
qε(x, t)dx, (4.4)

for δ1, δ2, δ3 are positive constants which will be fixed later.

It is easy to check that, by using Young’s inequality, Poincaré’s inequality and Sobolev em-

bedding theorem, there exist two constants β1 and β2 such that

β1Eε(t) ≤ Lε(t) ≤ β2Eε(t). (4.5)

Next, we estimate the derivative of Lε(t) according to the following lemmas.

Lemma 4.1 Let (ϕε, ψε, θε, qε) be the solution provided by Proposition 3.1. Then there holds

d

dt
Iε1(t) ≤ρ1

∫ l

0
|ϕεt (x, t)|2dx+ ρ2

∫ l

0
|ψεt (x, t)|2dx− k

∫ l

0
|ϕεx(x, t) + ψε(x, t)|2dx

− (b−mη1)
∫ l

0
|ψεx(x, t)|2dx− 2Jε(t) +

m

4η1

∫ l

0
|θε(x, t)|2dx, (4.6)

where Cp is a Poincaré constant, Jε(t) is defined in (3.7) and η1 is a positive constant to be

chosen later.

Proof. By differentiating (4.2) with respect to t and by means of equation (3.2), we have

d

dt

{∫ l

0
[ρ1ϕ

ε
t (x, t)ϕ

ε(x, t) + ρ2ψ
ε
t (x, t)ψ

ε(x, t)]dx

}
14
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=ρ1

∫ l

0
|ϕεt (x, t)|2dx+ k

∫ l

0
[ϕεx(x, t) + ψε(x, t)]xϕ

ε(x, t)dx− α

2

d

dt

∫ l

0
|ϕε(x, t)|2dx

+ ρ2

∫ l

0
|ψεt (x, t)|2dx+ b

∫ l

0
ψεxx(x, t)ψε(x, t)dx− k

∫ l

0
[ϕεx(x, t) + ψε(x, t)]ψε(x, t)dx

+m

∫ l

0
θεx(x, t)ψε(x, t)dx.

By Hölder’s inequality and Young’s inequality, we get

d

dt

{∫ l

0
[ρ1ϕ

ε
t (x, t)ϕ

ε(x, t) + ρ2ψ
ε
t (x, t)ψ

ε(x, t)]dx+
α

2

∫ l

0
|ϕε(x, t)|2dx

}
=ρ1

∫ l

0
|ϕεt (x, t)|2dx− k

∫ l

0
[ϕεx(x, t) + ψε(x, t)]2dx+ ρ2

∫ l

0
|ψεt (x, t)|2dx

− b
∫ l

0
|ψεx(x, t)|2dx+m

∫ l

0
θεx(x, t)ψε(x, t)dx+ σε(t)ϕε(l, t)

≤ρ1
∫ l

0
|ϕεt (x, t)|2dx− k

∫ l

0
[ϕεx(x, t) + ψε(x, t)]2dx+ ρ2

∫ l

0
|ψεt (x, t)|2dx

− (b−mη1)
∫ l

0
|ψεx(x, t)|2dx+

m

4η1

∫ l

0
|θε(x, t)|2dx+ σ̃ε(t)ϕε(l, t). (4.7)

For the last term on the right-hand side of (4.7), we can obtain

σ̃ε(t)ϕε(l, t) =− 1

ε

{
[ϕε(l, t)− g1]+ − [−ϕε(l, t)− g2]+

}
ϕε(l, t)− εϕε(l, t)ϕεt (l, t)

≤− 1

ε
[ϕε(l, t)− g1]+[ϕε(l, t)− g1] +

1

ε
[−ϕε(l, t)− g2]+[ϕε(l, t) + g2]

− ε

2

d

dt
|ϕε(l, t)|2

≤− 1

ε

[
|[ϕε(l, t)− g1]+|2 + |[−ϕε(l, t)− g2]+|2

]
− ε

2

d

dt
|ϕε(l, t)|2

=− 2Jε(t)− ε

2

d

dt
|ϕε(l, t)|2.

Substituting into the previous inequality, we reach the conclusion.

Lemma 4.2 Let (ϕε, ψε, θε, qε) be the solution provided by Proposition 3.1. Then there holds

d

dt
Iε2(t) ≤− mρ2

2

∫ l

0
|ψεt (x, t)|2dx+ kη2

∫ l

0
|ϕεx(x, t) + ψεx(x, t)|2dx

+ bη2

∫ l

0
|ψεx(x, t)|2dx+

r2ρ2
2m

∫ l

0
|qε(x, t)|2dx

+

[
b

4η2
+

lk

4η2
+m

] ∫ l

0
|θε(x, t)|2dx, (4.8)

for a positive constant η2 to be chosen later.

Proof. By using (3.2)-(3.3) and (3.5), we find

d

dt
Iε2(t) =− ρ2

∫ l

0

[∫ x

0
θεt (y, t)dy

]
ψεt (x, t)dx− ρ2

∫ l

0

[∫ x

0
θε(y, t)dy

]
ψεtt(x, t)dx
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=ρ2

∫ l

0

[∫ x

0
rqεy(y, t)dy −

∫ x

0
mψyt(y, t)dy

]
ψεt (x, t)dx− b

∫ l

0

[∫ x

0
θε(y, t)dy

]
ψεxx(x, t)dx

+ k

∫ l

0

[∫ x

0
θε(y, t)dy

]
[ϕεx(x, t) + ψε(x, t)] dx−m

∫ l

0

[∫ x

0
θε(y, t)

]
θεx(x, t)dx. (4.9)

We now estimate the right-hand side of (4.9). For a positive constant η2, by Young’s inequality,

we get

ρ2

∫ l

0

[∫ x

0
rqεy(y, t)dy −

∫ x

0
mψyt(y, t)dy

]
ψεt (x, t)dx

=rρ2

∫ l

0

[∫ x

0
qεy(y, t)dy

]
ψεt (x, t)dx−mρ2

∫ l

0

[∫ x

0
ψyt(y, t)dy

]
ψεt (x, t)dx

≤r
2ρ2
2m

∫ l

0
|qε(x, t)|2dx+

mρ2
2

∫ l

0
|ψεt (x, t)|2dx−mρ2

∫ l

0
|ψεt (x, t)|2dx. (4.10)

By Hölder’s inequality, Young’s inequality, Poincaré’s inequality and (3.4), (3.5), we have

−b
∫ l

0

[∫ x

0
θε(y, t)dy

]
ψεxx(x, t)dx ≤ bη2

∫ l

0
|ψεx(x, t)|2dx+

b

4η2

∫ l

0
|θε(x, t)|2dx, (4.11)

k

∫ l

0

[∫ x

0
θε(y, t)dy

]
[ϕεx(x, t) + ψε(x, t)] dx ≤kη2

∫ l

0
|ϕεx(x, t) + ψε(x, t)|2dx

+
lk

4η2

∫ l

0
|θε(x, t)|2dx, (4.12)

−m
∫ l

0

[∫ x

0
θε(y, t)dy

]
θεxdx = m

∫ l

0
|θε(x, t)|2dx. (4.13)

Combining (4.9)-(4.13), we arrive at (4.8).

Lemma 4.3 Let (ϕε, ψε, θε, qε) be the solution provided by Proposition 3.1. Then there holds

d

dt
Iε3(t) ≤− [r − η3l]

∫ l

0
|θε(x, t)|2dx+

[
rτ +

mτ

4η3
+

1

4η3

] ∫ l

0
|qε(x, t)|2dx

+mτη3

∫ l

0
|ψεt (x, t)|2dx, (4.14)

for a positive constant η3 to be chosen later.

Proof. By using (3.2)-(3.3) and (3.5), we find

d

dt
Iε3(t) =−

∫ l

0
τ

[∫ x

0
θεt (y, t)dy

]
qε(x, t)dx−

∫ l

0
τ

[∫ x

0
θε(y, t)dy

]
qεt (x, t)dx

=−
∫ l

0
τ

[
−
∫ x

0
rqεx(y, t)dy +

∫ x

0
mψεxt(y, t)dy

]
qε(x, t)dx

−
∫ l

0

[∫ x

0
θε(y, t)dy

]
[−qε(x, t)− rθεx(x, t)] dx.
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Integrating by parts, we obtain

d

dt
Iε3(t) =rτ

∫ l

0
|qε(x, t)|2dx−mτ

∫ l

0
ψεt (x, t)q

ε(x, t)dx+

∫ l

0

[∫ x

0
θε(y, t)dy

]
qε(x, t)dx

− r
∫ l

0
|θε(x, t)|2dx.

By means of Hölder’s inequality, Young’s inequality, Poincaré’s inequality, we deduce (4.14).

Proof of Theorem 2.3. From (3.28), (4.6), (4.8) and (4.14), then from (4.1), we obtain

d

dt
Lε(t) ≤− [α− δ1ρ1]

∫ l

0
|ϕεt (x, t)|2dx−

[
δ2mρ2

2
− δ1ρ2 − δ3mτη3

] ∫ l

0
|ψεt (x, t)|2dx

− k [δ1 − δ2η2]
∫ l

0
|ϕεx(x, t) + ψε(x, t)|2dx− [δ1(b−mη1)− δ2bη2]

∫ l

0
|ψεx(x, t)|2dx

−
[
δ3(r − η3l)−

δ1m

4η1
− δ2

(
b

4η2
+

lk

4η2
+m

)]∫ l

0
|θε(x, t)|2dx

−
[
1− δ2r

2ρ2
2m

− δ3
(
rτ +

mτ

4η3
+

1

4η3

)]∫ l

0
|qε(x, t)|2dx− 2δ1J

ε(t)− ε|ϕεt (l, t)|2.

In fact, we first choose η1 <
b

2m
, η3 <

r

2l
and δ2 <

m
r2ρ2

small enough so that
b−mη1 > 0,

r − η3l > 0,

1− δ2r
2ρ2

2m
> 0.

By choosing δ3 <
1

2
(
rτ+mτ

4η3
+ 1

4η3

) small enough, we have

1− δ2r
2ρ2

2m
− δ3

(
rτ +

mτ

4η3
+

1

4η3

)
> 0.

Next, we take δ1 <
α
ρ1

and η2 <
δ1
2δ2

such that
α− δ1ρ1 > 0,

δ1 − δ2η2 > 0,

δ1(b−mη1)− δ2bη2 > 0.

Once δ2, δ3 are fixed, we take δ1 < min
{
δ2mρ2
2ρ2

− δ3mτη3
ρ2

, 4η1δ3m (r − η3l)− 4η1δ2
m

(
b

4η2
+ lk

4η2
+m

)}
so that 

δ2mρ2
2
− δ1ρ2 − δ3mτη3 > 0,

δ3(r − η3l)−
δ1m

4η1
− δ2

(
b

4η2
+

lk

4η2
+m

)
> 0,

combined with δ1 <
α
ρ1

, we can obtain

δ1 < min

{
α

ρ1
,
δ2mρ2

2ρ2
− δ3mτη3

ρ2
,
4η1δ3
m

(r − η3l)−
4η1δ2
m

(
b

4η2
+

lk

4η2
+m

)}
.
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Hence, We infer the estimate

d

dt
Lε(t) ≤ −C0Eε(t) ≤ −

C0

β2
Lε(t),

with a positive constant C0. By direct integration over (t0, t), we have

Lε(t) ≤ Lε(0)e
−C0
β2
t
,

which, combined with (4.5) with M =
C2

β1
and γ =

C0

β2
, we can obtain

Eε(t) ≤MEε(0)e−γt. (4.15)

By (3.1), we get

Jε(0) =
1

2ε

{
|[ϕε(l, 0)− g1]+|2 + |[−ϕε(l, 0)]+|2

}
= 0.

Accordingly, we have Eε(0) = Jε(0) + Eε(0) = Eε(0). In view of (4.15), the inequality

Eε(t) ≤ Eε(t) ≤MEε(0)e−γt = MEε(0)e−γt

holds. By passing to lim
ε→0

inf and on account of (3.27) and (3.31), we reach the conclusion.
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[34] J. E. Muñoz Rivera and M. de Lacerda Oliveira, Exponential stability for a contact problem

in thermoelasticity, IMA J. Appl. Math. 58 (1997), no. 1, 71–82.

20

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 February 2017                   doi:10.20944/preprints201702.0038.v1

http://dx.doi.org/10.20944/preprints201702.0038.v1
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