Pre prints.org

Article Not peer-reviewed version

RAP-Optimizer: Resource-Aware
Predictive Model for Cost Optimization
of Cloud AlaaS Applications

Kaushik Sathupadi,, Ramya Avula , Arunkumar Velayutham , Sandesh Achar i

Posted Date: 8 October 2024
doi: 10.20944/preprints202410.0504 v1

Keywords: Deep Neural Network, Dynanimc Dropout Control, Overfitting Mitigation, Simulated Annealing,
AlaaS, Cloud Resource Optimization, Cost-Efficiency, Resource Utilization, Profit Margin Enlarging.

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3897184
https://sciprofiles.com/profile/3896594
https://sciprofiles.com/profile/3900843
https://sciprofiles.com/profile/2444738

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 October 2024 d0i:10.20944/preprints202410.0504.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
RAP-Optimizer: Resource-Aware Predictive Model for
Cost Optimization of Cloud AlaaS Applications

Kaushik Sathupadi !, Ramya Avula 2, Arunkumar Velayutham 3 and Sandesh Achar 4*

Staff Engineer, Google LLC, Sunnyvale, CA

Business Information Developer Consultant Company, Carelon Research, Celina, TX
Cloud Software Development Engineer and Technical Lead at Intel, Arizona, USA
Department of Software Engineering, Walmart Global Tech, Sunnyvale, CA, USA
Correspondence: sandeshachar26@gmail.com;

o WO =

Abstract: Al-driven applications are rapidly growing, and more applications are joining the market competi-
tion. As a result, the Al-as-a-Service (AlaaS) model is experiencing rapid growth. Many of these Alaas-based
applications are not properly optimized initially. Once they start experiencing a large volume of traffic, different
challenges start revealing themselves. One of these challenges is maintaining a profit margin for the sustain-
ability of the AlaaS application-based business model, which depends on the proper utilization of computing
resources. This paper introduces the Resource Award Predictive (RAP) model for AlaaS cost optimization called
RAP-Optimizer. It is developed by combining a Deep Neural Network (DNN) with the simulated annealing
optimization algorithm. It is designed to reduce resource underutilization and minimize the number of active
hosts in cloud environments. It dynamically allocates resources and handles API requests efficiently. The RAP-
Optimizer reduces the number of active physical hosts by an average of 5 per day, leading to a 45% decrease in
server costs. The impact of the RAP-Optimizer has been observed over a 12-month period. The observational data
show a significant improvement in resource utilization. It effectively reduces operational costs from $2,600 to
$1,250 per month. Furthermore, the RAP-Optimizer increases the profit margin by 179%, from $600 to $1,675 per
month. The inclusion of the Dynamic Dropout Control (DDC) algorithm in the DNN training process mitigates
overfitting, achieving a 97.48% validation accuracy and a validation loss of 2.82%. These results indicate that the
RAP-Optimizer effectively enhances resource management and cost-efficiency in AlaaS application, making it a

valuable solution for modern cloud environments.

Keywords: deep neural network; dynanimc dropout control; overfitting mitigation; simulated annealing; AlaaS;

cloud resource optimization; cost-efficiency; resource utilization; profit margin enlarging

1. Introduction

The current cloud application trends demonstrate the rapid growth of Al-driven applications
powered by AlaaS as the back-end [1]. As a result, the demand for efficient resource utilization has
become paramount [2]. Many innovative cloud-based services, particularly those adopting the Al-as-
a-Service (AlaaS) model, suffer from underutilization of resources, leading to escalating operational
costs [3]. The initial resource utilization assumptions regarding the resource limitation of these
applications change as the number of users and API requests increases. That is why service providers
face the challenge of managing their physical and virtual resources effectively while maintaining the
Quality of Services (QoS) [4]. The RAP-Optimizer presented in this paper addresses these issues by
optimizing resource allocation and minimizing the number of active hosts in AlaaS environments.
This system not only reduces server costs but also improves resource efficiency. As a result, it leads
to better profit margins and energy savings. The potential of the RAP-Optimizer lies in its ability to
dynamically balance API request loads across cloud servers. This is how it prevents the unnecessary
activation of additional resources and ensures sustainable and scalable cloud operations.

The proposed RAP-Optimizer has been developed by integrating a Deep Neural Network
(DNN) [5] with the Simulated Annealing algorithm [6] to create a robust framework for real-time
resource management. The DNN predicts the optimal configuration for virtual machines (VMs) based

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202410.0504.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 October 2024 d0i:10.20944/preprints202410.0504.v1

20f21

on real-time data analysis, while the Simulated Annealing algorithm helps optimize resource allocation
by minimizing the number of active hosts. Additionally, the system incorporates a Dynamic Dropout
Control (DDC) algorithm to mitigate overfitting issues during the model training phase. The RAP-
Optimizer operates in a multi-stage workflow, beginning with resource analysis through the Resource
Analyzer (RAN) algorithm, which identifies underutilized hosts and redistributes API requests to
ensure optimal cloud resource usage. By consolidating workloads and deactivating idle hosts, the
system is able to enhance energy efficiency while maintaining the agreed Quality of Service (QoS) for
users. The key contributions of this paper are summarized as follows:

¢ Dynamic Resource Optimization: A novel integration of DNN and Simulated Annealing for

dynamically balancing API requests and resource utilization across active cloud hosts.
¢ Cost Reduction Mechanism: Demonstrated significant server cost reduction through the RAP-

Optimizer, leading to improved profit margins and reduced energy consumption.
* Multi-Stage Optimization Workflow: Introduction of a multi-stage workflow utilizing the RAN
algorithm for comprehensive resource analysis, ensuring effective redistribution of workloads

across physical and virtual machines.
¢ Handling Overfitting with DDC: An innovative Dynamic Dropout Control (DDC) algorithm

integrated into the DNN to overcome overfitting during model training and enhance prediction

accuracy.
¢ Revenue Margin Increase: The proposed system improved profit margins by 179% over 12

months, increasing the average profit margin from $600 to $1,675.

The remainder of this paper is organized as follows. The literature review has been presented in
Section II. Section III provides an in-depth problem analysis, identifying the challenges that led to the
development of the RAP-Optimizer. Section IV outlines the methodology, describing the integration
of DNN, Simulated Annealing, and the RAN algorithm, along with the dataset preparation and
feature normalization steps. Section V presents the experimental results and evaluations, including the
performance analysis of the proposed system and its ability to optimize cloud resource usage. Section
VI discusses the limitations and potential future improvements for the RAP-Optimizer. Finally, Section
VII concludes the paper, summarizing the key findings and contributions.

2. Literature Review

Resource optimization in cloud computing has been a widely researched topic, particularly in the
context of Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS). However, there remains
a significant gap in addressing optimization strategies specifically tailored for Al-as-a-Service (AlaaS)
models, which are characterized by fluctuating workloads and high computational demands [7]. This
section reviews recent studies on cloud resource optimization, workload balancing, and overfitting
issues in deep learning models, identifying gaps that the proposed RAP-Optimizer aims to address.

2.1. Cloud Resource Optimization

According to the survey conducted by Mohammadzadeh et al., [8], resource optimization for tra-
ditional cloud services, such as virtual machine (VM) allocation and CPU/RAM resource distribution,
is the predominant field of research in cloud resource optimization. Alaa$S differs from traditional
cloud services, which require real-time, scalable computation [9]. Furthermore, most solutions, like the
Hill-Climbing (HC) algorithm, operate reactively and often activate new physical hosts without fully
utilizing existing resources, resulting in higher operational costs [10]. The proposed RAP-Optimizer ad-
dresses this gap by integrating a DNN with Simulated Annealing [6] to dynamically allocate resources
based on real-time workloads and optimize resource utilization.

2.2. Workload Balancing and API Request Handling

Numerous studies have examined workload balancing in cloud environments [11-13]. However,
these approaches generally focus on static or semi-dynamic strategies that do not adapt quickly to the

https://doi.org/10.20944/preprints202410.0504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 October 2024 d0i:10.20944/preprints202410.0504.v1

30f21

rapidly changing workload patterns seen in AlaaS platforms. For example, Kumar et al. [14] presented
an approach for balancing workloads across cloud servers but did not consider the possibility of
reducing the number of active hosts when resources are underutilized. Additionally, [15] emphasized
load distribution based on CPU and memory but did not consider network bandwidth and other critical
factors such as disk I/O [16]. In contrast, the RAP-Optimizer efficiently reallocates API requests by
utilizing fewer physical hosts while ensuring maximum CPU and memory utilization, thus overcoming
the limitations of static workload balancing methods.

2.3. Qverfitting in Deep Neural Networks

Handling overfitting in DNNSs is an active field of research with numerous regularization tech-
niques [17]. According to Alnagashi [18] et al., dropout is an effective way to mitigate the overfitting
issue. A review conducted by Salehin et al. [19] on different dropout techniques reveals that most
approaches use a fixed dropout rate. The literature shows that while Dropout can be effective, it is
not adaptive to different layers of the network, leading to either underfitting or overfitting in com-
plex applications [20]. This paper fills this gap by introducing the Dynamic Dropout Control (DDC)
algorithm, which dynamically adjusts the dropout rate layer-by-layer, reducing the overfitting issue
without compromising the model’s predictive performance.

2.4. Energy-Efficient Cloud Systems

The optimization of energy consumption in cloud data centers has been explored in various
studies [21-23]. The primary focus of these is to reduce energy consumption by consolidating VMs or
activating power-saving modes on underutilized hosts [24]. However, the existing methods primarily
focus on reducing the number of active physical hosts without considering the trade-off between
resource optimization and maintaining service quality [25]. The proposed RAP-Optimizer not only
reduces the number of active hosts by an average of five per day, but it also improves resource
utilization, resulting in substantial energy savings without degrading Quality of Service (QoS).

2.5. Revenue Impact and Cost Optimization

Revenue impact and corresponding cost optimization is an under-explored field of research for
AlaaS [26]. Multiple studies revolve around traditional cloud services [27-29]. However, these studies
do not account for the dynamic and unpredictable nature of AlaaS platforms, where the operational
cost can escalate quickly due to inefficient resource management [30]. The RAP-Optimizer directly
addresses this gap by significantly reducing server costs—by 45% on average—while maintaining
consistent service delivery. This allows AlaaS platforms to stabilize their profit margins over time,
which is often overlooked in traditional cloud optimization research.

3. Problem Analysis and Objective

This paper developed a solution for an Al-driven image enhancement web application. It follows
the Al-as-a-Service model with a pay-as-you-go billing method. The initial margin between server
cost and the overall subscription fee of the application is convenient. However, eventually, with the
popularity, the margin narrowed down. As a result, the application’s revenue flow started impacting
the business model’s overall sustainability. Figure 1. The reason behind this fall in revenue is the
increase in the number of active hosts. Further investigation shows the computing resources in the
active hosts are not fully utilized. Although there are scopes for handling more API calls with the
existing hosts, the system activates new hosts. As a result, the operational cost increases. The challenge
is identifying the under-utilized host servers, allocating the new requests to these hosts, and reducing
the number of active hosts. In this way, the operational cost can be minimized, increasing the profit
margin at a sustainable level. The proposed methodology has been developed to achieve this objective.

https://doi.org/10.20944/preprints202410.0504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 October 2024 d0i:10.20944/preprints202410.0504.v1

40f21

3000

2500

2000

1500

UsD

1000

500

Months

—o—Server Cost —e—Return Revenue Margin

Figure 1. The relation among server cost, return of the investment, and revenue margin.

Dataset Preparation and Processing DNN Training and Utilization
=] N 88
g
==
System Normalization Dataset Learning Deep Neural Classification
Log Splitting Algorithm Network
s s
e ! =N =
Application Log to Data Sub- Data-flow API
Log Csv Cleaning directories Management Algorithm Interface
RAP-Optimizer
f" [+] [E = D05 °°°°-L°g
- oL = =
<« -—<—> = | =—O0e«—»
= - - 59
= = (2] = —a
Cloud Resource RSL Deep-Annealing Communication API
Server Analysis Formation Algorithm Management Interface

Figure 2. The methodological overview of the proposed RAP-Optimizer.
4. Methodology

The proposed methodology starts with dataset processing, constructed from the experiment’s
Alaa$S application log files. Later, a well-optimized DNN architecture is developed to predict the
appropriate configuration for a service request. After that, an innovative approach of reducing the
overfitting effect and shifting to balance learning is incorporated into the network during the training
process. The trained DNN has been used to develop the RAP-Optimizer, which consists of a resource
analysis module, resource space landscape, and a novel Deep-Annealing algorithm.

https://doi.org/10.20944/preprints202410.0504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 October 2024 d0i:10.20944/preprints202410.0504.v1

50f21

4.1. Dataset Preparation

This study uses a unique dataset prepared from the AlaaS application log and a sample of the
dataset is presented in Table 1. The application maintains three types of log files, which are the Activity
Log (Logac), System Log (Logst), and Application Log (Logap)- The relationships among these logs are
illustrated in Figure 3. The Log,. keeps track of the user interaction, Logs; is responsible for keeping
track of computational resource usage, and Log;, is dedicated to application-related data. All data
from these logs have been converted into Comma Separated Value (CSV) format [31]. After that, the
instances have been categorized into five classes as presented in Table 1. The Pearson Correlation
Coefficient (PCC) score, calculated using Equation 1, has been used to identify the relevant features
that have a strong correlation with the five classes [32].

Table 1. A modified sample of the dataset with all target variables.

Peak Active API Initiation | Service vCPU VRAM | vDisk | Energy Cloud
Frequency | Time (hours) | Count Requests (GB) (GB) Usage (Wh) | Configuration
2 0.25 12 1500 2 15 0.6 10 Basic

4 0.45 30 1800 4 2.5 1 40 Standard

7 15 220 6200 5 4 2.5 50 Intermediate
8 3.2 340 8300 7 6 3.5 75 Advanced

11 5.8 550 11200 9 8 5 95 Premium

-):?:1<Xi - X)(Yi - ?)
VEL (X = R)2/X, (¥ - V)2

In Equation 1, X; represents the individual feature values, Y; stands for the individual target
variable, X is the mean of the features, Y is the mean of the target variable, and n is the total data
points. It generates the linear correlation score (1) between X and Y with a range from —1 to +1 where
the former represents a perfect negative correlation, and the latter means a perfect positive correlation.

1)

... |\ System
Application | < Log /

Log \ - y

I N
Activity
Log

Features with
Correlations

Feature
Space

Figure 3. The overlapping features from three different log files.

4.1.1. Dataset Description

The dataset contains records of the experimental application for 365 days. After cleaning, there
are 1,42,784 instances in the dataset. The feature variables are Peak Frequency, Active Time (hours),
API Initiation Count, Service Requests, Virtual CPU, Virtual RAM (GB), Virtual Disk (GB), Energy

https://doi.org/10.20944/preprints202410.0504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 October 2024 d0i:10.20944/preprints202410.0504.v1

6 of 21

Usage (Wh), and Cloud Configuration. Except for the target variable, all other features are numerical.
The target variable is categorical, which has five categories.

4.1.2. Dataset Cleaning

The CSV file constructed from Log,c, Logst, and Log,p contains numerous incomplete rows.
These rows were created for multiple reasons, including incomplete service requests, APl initialization
failure, and network issues. In addition, there are multiple duplicate rows. The uncleaned dataset has
1,63,150 instances. This dataset has been cleaned by following the mathematical principle defined in
Equation 2.

C'={yeC|Vz€Zy; #null})

In Equation 2, C represents the uncleaned dataset. It contains # records, where C = v, Y2, ..., Yn
and each y; corresponds to the it" observation vector across all variables Z = z1, zp, ..., zp. The cleaned
dataset C includes only those observations from C where no variable in the observation vector is
missing, denoted by "null." Additionally, outliers from C, determined using the mean . and standard
deviation o, have been eliminated based on the rule in Equation 3 [33]. A data pointy € C is classified
as an outlier if it satisfiesy < yc —b-0. or y > yu.+b-o,, where b is a constant set to 3 according
to the empirical 68-95-99.7 rule. The result is a dataset C with no outliers [34].

The cleaned dataset C* has no missing values or outliers. Although this process reduces the
number of entries, the final count is 1,42,784 after cleaning, which is sufficient to train a deep neural
network (DNN) to classify the target variables using the input features.

4.1.3. Feature Normalization

The feature variables exhibit a wide range of variations in the dataset, so feature normalization is
essential [35]. Z-Score normalization has been chosen to normalize the features because it effectively
handles data with varying scales and distributions. Figure 4 illustrates the difference in data range
before and after performing the normalization. The Z-Score normalization process for a feature x; is
defined in Equation 4 [36].

/ X; — ‘Z,l
1 X
Xp= ———— 4)
Ox
(a) Before Z-Score Normalization (b) After Z-Score Normalization
1.54
10000 -
E 1.04
8000 A i
©
3 E o5
f=4 o
S 60001 z
g “g’, 0.0
o
> 4000 4
g -05
s
2000 A 10
ol | e S R N A A
o) > g o N N N o) > g o N N N N
e“c R & (’ooo 0@4& \\d \(;z: \(;2: @\\ é‘(' R & (Io\’(\ o@é & \(;b Q §0
& & N & & ¢ & N o & 8 & &
<« ¢ <° & & ¢ & <« ¢ ° &) &
A <& &8 & N A <& & & N
® g & & O E g & & &
VS} Q\ 12 Q/(\Z v{}, Q\ %) Q/(\?/

Figure 4. The feature variable ranges before and after performing the Z-score normalization.

https://doi.org/10.20944/preprints202410.0504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 October 2024 d0i:10.20944/preprints202410.0504.v1

7 of 21

In Equation 4, x; is the original feature value, yi, is the mean of the feature x, oy is the standard
deviation of the feature x, and x;- is the normalized feature value. After applying Z-Score normalization,
the feature values are transformed such that the dataset has a mean of zero and a standard deviation
of one, ensuring all features contribute equally during model training [37].

4.1.4. Dataset Splitting

Ullah et al. [38] conducted a systematic review on Machine Learning (ML) applications, and
it shows that most of the state-of-the-art approaches use 70:15:15 dataset splitting ratio of training,
testing, and validation dataset respectively. The same ratio was used in this study. There are a total of
1,42,784 instances in the cleaned dataset. At the 70:15:15 ratio, there are 99,948 instances for training,
21,417 instances for training, and the same number for validation.

4.2. Network Architecture

The proposed RAP-Optimizer uses a six-layer six-layer, fully connected deep neural network,
as shown in Figure 5. The network architecture has been carefully designed to predict the cloud
configuration requirements when Alaa$S applications are initiated. An innovative Dynamic Dropout
Control (DDC) algorithm has been integrated with the network to adjust the dropout rate of each layer
dynamically for optimal unbiased performance. The network has four hidden layers, with 32 hidden
neurons in each layer. The input layer is designed to accept an input vector ¢ € R®, representing eight
different features denoted by #, where 7 = 8. The working principle of the input layer is expressed by
Equation 5, which transposes the input vectors [39].

g: [61/52/-”1671]T (5)
Input Layer Hidden Layers Output Layer
I ()——co—
X I V‘V Cl—>
X2 : A‘z:i C2——>
' 0

Figure 5. The network architecture of the 6-layer deep fully connected Neural Network.

In the proposed network, each of the four hidden layers processes its input x!!~1 using a weight
matrix Q), a bias vector ", and applies the Rectified Linear Unit (ReLU) activation function, denoted
as ¢(+), described in Equation 7. For layer /, the transformation is formulated in Equation 6, where
I =1,2,...,5 and the dimensions of the weight matrices and bias vectors are ol ¢ R32x8 and
7 e R%, respectively [40].

1 = g(alx! =1 4 glh) ©

oo
M):{g >0 @)

0 otherwise.

https://doi.org/10.20944/preprints202410.0504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 October 2024 d0i:10.20944/preprints202410.0504.v1

8 of 21

The output layer of this neural network contains five nodes corresponding to the five output
classes. The activation function used in this layer is the Softmax function, described in Equation 8§,
which converts the raw output values into probabilities. Given an input ¢, the logits ¢; are obtained
through a linear transformation, followed by the Softmax function to compute the probabilities v; for
each class i, wherei =1,...,5 [41].

expl(c) .
L1 expl) ©

U; =

4.3. Training the Network

The network is trained using the back-propagation algorithm [42]. During the forward pass, input
data & propagates through the network, and each layer I calculates its output x!! as a function of the
input from the previous layer x' -1, employing its weight matrix Y, bias vector ZI", and activation
function ¢!}, This process continues through all layers until the output prediction # is made. The
prediction is then compared to the true labels v using a loss function, defined in Equation 9, which
measures the difference between predicted and actual values [43]. In this equation, I represents the
number of output classes, v; is the true label, and 9; is the predicted probability for class i [44].

I
L(v,0) = =) vilog(0;))
i=1

4.3.1. Learning Algorithm

The Adaptive Moment Estimation (ADAM) optimizer is used to update the weights of the
network’s hidden nodes. Initially, the vectors jp and v are set to zero, and the time step 7 is initialized
to zero. The learning rate is represented by «, and B and f, are the decay rates for moment estimates,
initialized to 0.90. At each time step T, the gradients V.7 (0) with respect to the parameters 6 are
calculated. The updates for yr and v are defined by Equations 10 and 11 [45].

pr = Bipir—1 + (1= B1)VeT (0) (10)

ve = Bave1 + (1= B2)(VeJ (6))* (11)

The bias-corrected estimates for jir and v, are given by Equations 12 and 13.

A~ Ut

fir = % (12)
1-p1
- Vt
= 1
Vr 1- 43 (13)
Finally, the weights w are updated using Equation 14, where € is a small constant for numerical
stability.

w=w-— aL (14)

Vi + €

At the 70:15:15 ratio, there are 99,948 instances for training, 21,417 instances for training, and the
same number for validation.

4.3.2. Learning Curve

The training dataset contains 99,948 instances. To enhance training efficiency, mini-batches of
size 64 are utilized. The learning curve, depicting the progress of both accuracy and loss for training
and validation, is presented in Figure 6. It showcases the network’s performance over 50 epochs with

https://doi.org/10.20944/preprints202410.0504.v1

doi:10.20944/preprints202410.0504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 October 2024

9 of 21

1,11,550 iterations, taking approximately 8 hours and 27 minutes to complete. The validation accuracy
achieved is 97.48%, with a validation loss of 2.82%, while the training accuracy and loss are 95.15%
and 4.85%, respectively.

Accuracy and Loss Curves

1.0 1.0
—— Training Accuracy —— Training Loss
Validation Accuracy —— Validation Loss
y Y
0.8 0.8
0.6 1 ‘ 0.6
9
g AN a
=1 V' S
S ’ S
<
0.4 1 0.4
/ ‘
0.2 ‘ 0.2
0.0 +— T T T r " 0.0
0 10 20 30 40 50

Figure 6. The learning progress in terms of training accuracy, validation accuracy, training loss, and
validation loss.

4.3.3. DDC Algorithm

During the development phase of the RAP-Optimizer, it was observed that the network overfits
after training. The number of hidden layers and nodes of the existing layers was reduced to minimize
overfitting. After the modification, the network exhibits underfitting characteristics. Table 2 shows
different configurations explored during the development and the characteristics of the network
along with other parameters. To ensure balanced fitting, the innovative DDC algorithm, presented
as Algorithm 1, was developed and integrated into the network. It gradually discovers the optimal
number dropout rate for different hidden layers and balances an overfitting network.

Table 2. Impact of Different Network Configurations on Overfitting and Underfitting Characteristics in
the RAP-Optimizer.

Network Number of Neurons - .
Configuration Hidden Layers | per Layer Characteristics | Observed Behavior
In1t1a.1) 6 30 Overfitting High training accuracy, low validation
Configuration accuracy.
Modified Overfitting persists, validation accuracy

. . 5 32 Overfitting slightly improves but still significantly
Configuration 1 .

lower than training.

Mod{ﬁed] 4 0 Overfitting Mode.rate. overfitting; slight 1mpr0vemeqt
Configuration 2 in validation performance, but gap remains.
Modified 3 16 Overfitti Reduced overfitting but validation accuracy
Configuration 3 vernting still does not match training accuracy.
Modl.ﬁecl] 4 3 Underfitting Mo.del starts underfitting; both training and
Configuration 4 validation accuracy are low.
Modified . Significant underfitting; both accuracies
Configuration 5 4 4 Underfitting remain low, model complexity too reduced.
Modified . Underfitting persists, accuracy too low for
Configuration 6 2 16 Underfitting both training and validation.
Modified s Severe underfitting; network too shallow to

N . 1 32 Underfitting
Configuration 7 capture complex patterns.

https://doi.org/10.20944/preprints202410.0504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 October 2024 d0i:10.20944/preprints202410.0504.v1

10 of 21

Algorithm 1 Dynamic Dropout Control (DDC) Algorithm

1: Input: Trained network N, Training set X;,,;,,, Validation set X,,;, Initial dropout rate pp, Number
of layers L, Dropout increment Ap, Threshold ¢

2: Output: Modified network with minimized overfitting
3: Initialize p < po

4: Compute initial accuracies Accyrgiy, ACCyar
50 A <= AcCygin — ACCyal

6: while A > 6 do

7: for [=1toLdo

8: if first iteration then

9: h!!l < Dropout(hl], p)
10: else
11: Increase dropout: ? —p+Ap
12: h!'l « Dropout(hl”, p)
13: end if
14: end for
15: Recompute Accyygin, ACCyy

16: Update A < AcCtrgin — ACCyal
17: end while
18: Return A with reduced overfitting

4.4. RAP-Optimizer

The proposed RAP-Optimizer is an innovative approach that starts with resource analysis. After
that, the resource space landscape is generated to evaluate the resource distribution. Finally, it combines
DNN with the Simulated Annealing optimization to optimize the cloud resource optimization without
compromising the service quality.

4.4.1. Resource Analysis

The RAP-Optimizer starts with resource analysis, performed using the Resource Analyzer (RAN)
algorithm, presented as Algorithm 2, developed in this study. The RAN algorithm requires access
and scanning permission for both Virtual Machines (VMs) and their physical hosts. Initially, it scans
the entire system, identifies the active VMs through their unique ID (VID), retrieves their current
configurations, and fetches the source consumption history. After that, it explores the physical hosts
supporting the VMs. It performs similar operations on physical hosts. Finally, it scans the idle physical
hosts. The RAN algorithm maintains a Resource Status Table (RT) which is frequently updated. Based
on the resource consumption, it generates a Resource Space (RS) represented by bar graphs.

Algorithm 2 Resource Analyzer (RAN) Algorithm

1: procedure RAN_OPTIMIZER

2: Input: Access permissions for VMs and physical hosts

3 Output: RS, Updated RT

4 Initialize: RT < Init(RoutingTable)

5: Scan system and fetch VMs and Hosts

6: forvm € VMs do > For each VM
7 Identify active VMs: vm <— ID(vm)

8 Get VM configurations: c¢fg(vm)

9: Fetch resource history: res_hist(vm)
10: end for
11: for host € Hosts do > For each host
12: Get host configurations: c¢fg(host)
13: Fetch resource history: res_hist(host)

14: end for

15: Scan idle hosts: idle_hosts <— Scan(Hosts)

16: Update: RT < Update(cfg, res_hist)

17: Generate: RS < (VID, Resource)

18: return RS, RT > Return both Resource Space and Routing Table
19: end procedure

https://doi.org/10.20944/preprints202410.0504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 October 2024 d0i:10.20944/preprints202410.0504.v1

11 0f21

4.4.2. Resource Space Landscape (RSL)

The RAN algorithm returns the RS and RT, where the VM configurations, current resource
consumption rate, IDs of the VMs (VID), corresponding physical hosts, and other relevant data are
available. These data are used to prepare the RSL, showing active VMs in physical hosts. The RSL of a
random instance is illustrated in Figure 7. The data center offering the AlaaS consists of 16 physical
hosts. According to the organization’s policy, a maximum of 10 VMs are allowed concurrently in a
single host to maintain the Terms of Services (TOS). Each physical host is powered by a 10-core CPU
with 128GB primary memory.

!

Active Virtual Machines
O = N W A U O O 0 O

IR IR IR CIR IR IR S I I U e N
CEEELEIITIILEES
Physical Hosts Serving the VMs

Figure 7. The State Space Landscape shows the number of active VMs running on hosts.

4.4.3. Deep-Annealing Algorithm

The RAP-Optimizer combines the DNN presented in Section 4.2 and the Simulated Annealing
algorithm, which has been named as Deep-Annealing and presented in Algorithm 3. The process starts
by connecting to the AlaaS Data Center (AIDC) with permission to access the status of all physical
and virtual devices. It applies the RAN Analyzer algorithm to retrieve the Resource Space (RS) and
Resource Table (RT), which include the VM configurations, current resource usage, and corresponding
physical hosts. These outputs provide a comprehensive view of the system’s Resource Space (RSS).
After that, the deep-annealing algorithm utilizes the DNN to predict the VM configuration and
respond to the request for subsequent Al services. The Deep-Annealing algorithm identify hosts for
VM deployment. It explores potential hosts iteratively, evaluating the cost (cost) and objective (obj)
functions to select a suitable host. The process begins at a high-temperature state, allowing probabilistic
acceptance of less optimal solutions to escape local minima. The HasCapacity() function is used to
check whether the current host has sufficient resources for the new VM whose configuration was
predicted by the DNN. If there are sufficient resources, the VM is deployed using CreateInstance(). If
the current host lacks the required resources, the algorithm utilizes NextHost(), which selects another
host based on a probability distribution influenced by the current temperature, allowing for a broader
exploration of the available configurations.

https://doi.org/10.20944/preprints202410.0504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 October 2024 d0i:10.20944/preprints202410.0504.v1

12 of 21

Algorithm 3 Deep-Annealing Algorithm

AIDC + Connect(credentials)

(RS,RT) < RAN Analyzer(AIDC)

. Cyam — DNN(RS, RT)

RSS « RetrieveResourceSpace(RS, RT)

: Initialize temperature T

. (Hstart) < Simulated Annealing(RSS, obj, cost, T)
: while —InstanceCreated and T > Ty, do

if HasCapacity (Hstart, Cyyr) then

PN AP

9: Createlnstance(Hsygyt,

10: InstanceCreated < True

11: else

12: Hgort +— NeXtHOSt(HStWt,RSS, T)
13: Decrease temperature T < &T

14: end if

15: end while

16: for vm € AIDC do

17: if CanMigrate(vm, Hstqrt) then
18: Migrate(vm, Hstart)

19: end if

20: end for

If the initially selected host lacks sufficient resources for the VM deployment, NextHost() identi-
fies alternative hosts based on a probability distribution influenced by the current temperature T. This
ensures the search process avoids local optima and explores a wider range of configurations. As the
temperature gradually decreases with each iteration by a factor «, the exploration process narrows
down to focus on more optimal hosts for VM deployment. Once a suitable host is found and the VM
instance is deployed, the algorithm evaluates potential migrations for existing VMs to optimize overall
resource usage. The function CanMigrate() checks whether a VM can be moved to a host that offers
better resource efficiency, and if migration is feasible, the Migrate() function performs the transfer.
This process ultimately aims to consolidate workloads, improve resource utilization, and reduce the
operational costs associated with idle hosts.

5. Experimental Result and Evaluation

5.1. Evaluation Metrics

The overall performance of the RAP-Optimizer depends on the prediction quality of the DNN
developed in this study. The performance of this DNN has been evaluated using accuracy, precision,
recall, and Fl-score. These are the most frequently used evaluation metrics for Machine Learning
approaches [46]. These metrics are defined in Equations 15, 16, 17, and 18, respectively, which are
dependent on True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN).
This study retrieves these values from the confusion matrix illustrated in Figure 8.

Precision = % (16)
Recall = TPTi—ipFN 17)
F1 Score — 2 x (Precision x Recall) (18)

Precision + Recall

https://doi.org/10.20944/preprints202410.0504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 October 2024 d0i:10.20944/preprints202410.0504.v1

13 of 21

ol 2.65%

Advanced 25 30 20

Basic | 20 Eyakl 30 10 | 50 2.3%

30 gy 20

Intermediate 26%

Premium | 40 15 2.3%

Standard | 20 60

True Class

8.0% 97.2%

Predicted Class

Figure 8. The confusion matrix obtained from the test dataset with 21,417 instances.

Apart from ML performance evaluation metrics, the RAP-Optimizer performance has been
evaluated based on the capability of reducing the number of active hosts, improving API request
management, and resource optimization [11,47]. Besides, the overall objective achievement has been
used as an evaluation metrics as well.

5.2. Confusion Matrix Analysis

The confusion matrix analysis reveals the performance of the classification model across five
target classes: Basic, Standard, Intermediate, Advanced, and Premium, with an overall accuracy of
96.1%. The precision values vary slightly among the classes, with Basic achieving the highest precision
at 97.7%, followed by Premium at 97.7%, Intermediate at 97.4%, Advanced at 97.3%, and Standard at
96.9%. Recall values indicate how well the model identifies each class, with Premium leading at 98.0%,
followed by Basic at 97.3%, Standard at 97.2%, Intermediate at 97.4%, and Advanced at 97.2%. The
F1-scores, which balance precision and recall, are consistent across the classes, with Basic at 97.5%,
Standard at 97.0%, Intermediate at 97.4%, Advanced at 97.3%, and Premium at 97.8%. These metrics
suggest that the model performs well overall, but slight variations exist between classes in terms of
how accurately they are classified and identified.

5.3. K-Fold Cross Validation

K-Fold Cross-Validation is a robust method used to evaluate the performance of machine learning
models by splitting the dataset into multiple folds. In this analysis, six folds were used, as shown
in Table 3, with slight variations observed across each fold for metrics such as accuracy, precision,
recall, and F1-score. The average values were calculated across all folds to provide a reliable overall
assessment. Accuracy remained consistent, ranging from 96.0% to 96.4%, while precision ranged
between 97.3% and 97.7%. Recall and Fl-score also showed slight variations, with recall values
between 96.8% and 97.6%, and Fl-scores between 97.0% and 97.3%. The spider chart in Figure 9
visually represents the performance across the metrics, emphasizing the stability and effectiveness of
the model across the different folds, providing confidence in its generalizability.

https://doi.org/10.20944/preprints202410.0504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 October 2024 d0i:10.20944/preprints202410.0504.v1

14 of 21

Table 3. Performance Evaluation using K-Fold Cross-Validation.

Metrics Fold1 | Fold2 | Fold3 | Fold4 | Fold5 | Fold6 | Average
Accuracy | 0.962 0.961 0.964 0.96 0.963 0.961 0.9618
Precision [0.975 0.976 0.973 0.977 0.974 0.976 0.9751
Recall 0.97 0.969 0.971 0.968 0.97 0.969 0.9695
F1-Score 0.972 0.971 0.973 0.97 0.972 0.971 0.9715

Fold 1
0.98

0.975

Average Fold 2
Fold 6 Fold 3
Fold 5 Fold 4
— Accuracy =—Precision Recall =—F1-Score

Figure 9. The resource configuration prediction performance analysis using k-fold cross validation.

5.4. Active Physical Host

Table 4 presents a comparative analysis of the number of active hosts per 24 hours before and
after the implementation of the Deep-Annealing algorithm over a twelve-week period. Before the
introduction of the algorithm, the average number of active hosts per day was recorded at 33. With
the deployment of the Deep-Annealing algorithm, this average was reduced to 28 active hosts per
day, signifying an average reduction of 5 hosts. This demonstrates the efficacy of the Deep-Annealing
algorithm in optimizing resource utilization within the data center environment.

Table 4. The number of active hosts per 24 hours before and after using the Deep-Annealing algorithm.

Weeks Number of Active Host Per 24 hours Reduction
Without Deep-Annealing With Deep-Annealing
1 36 30 6
2 29 22 7
3 37 33 4
4 31 27 4
5 35 29 6
6 33 27 6
7 39 34 5
8 30 25 5
9 38 32 6
10 32 27 5
11 34 28 6
12 29 24 5
Average | 33 28 5

https://doi.org/10.20944/preprints202410.0504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 October 2024 d0i:10.20944/preprints202410.0504.v1

15 of 21

A closer examination, illustrated in Figure 10, reveals a fluctuating yet consistently positive impact
of the Deep-Annealing algorithm across the weeks. The most notable improvement was observed in
the second week, where the number of active hosts was reduced by 7, from 29 without the algorithm
to 22 with it. The least improvement was seen in weeks 3 and 4, where a reduction of 4 hosts was
achieved. Weeks 1, 5, 6, 9, and 11 saw a reduction of 6 hosts, while weeks 7, 8, 10, and 12 observed
a decrease of 5 hosts. These results underscore the capacity of the Deep-Annealing algorithm to
effectively manage and reduce the number of active hosts required to support the operational demands
of a Saa$S application data center.

45
40
35
30
25
20
15
10

5

0
1 2 3 4 5 6 7 8 9 10 11 12

= Without Deep-Annealing ———With Deep-Annealing

Figure 10. The comparison of the number of active hosts before and after using the Deep-Annealing
algorithm.

5.5. Request Optimization

Table 5 presents the resource utilization and API request handling before and after implementing
the proposed RAP-Optimizer. Initially, all physical hosts were active, handling a random number
of API requests, with some hosts underutilized in terms of CPU and RAM. After applying the
RAP-Optimizer, the system efficiently allocated API requests to fewer hosts, maximizing resource
utilization before activating additional hosts. As a result, five physical hosts were placed into idle
mode, conserving resources and reducing energy consumption. The remaining hosts handled the
same workload but at higher efficiency, utilizing their CPU and RAM to near full capacity. Before
the method was implemented, many hosts processed fewer API requests, with CPU cores and RAM
underutilized. For example, hosts 4, 6, and 10 handled only a fraction of their capacity, running only 3
to 7 APl requests, leaving a significant portion of resources idle. After applying the Deep-Annealing
method, these API requests were consolidated onto hosts with higher resource availability, allowing
some physical hosts to transition into idle mode. This approach optimized resource utilization across
the active hosts while reducing operational overhead. The results, as shown in Table 5, demonstrate
that the proposed system can handle the same number of API requests using fewer physical hosts,
which leads to significant resource savings and improved data center efficiency.

https://doi.org/10.20944/preprints202410.0504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 October 2024 d0i:10.20944/preprints202410.0504.v1

16 of 21

Table 5. API request handling and resource optimization before and after using the Deep-Annealing

algorithm.

Host Resource Capacity API Requests Before RAP-Optimizer API Requests After RAP-Optimizer

CPU (Cores) RAM (GB) Processed CPU Cores Processed CPU Cores
1 10 128 12 8 18 10
2 10 128 15 9 20 9
3 10 128 16 10 22 10
4 10 128 7 5 Handled by Host 1-3 Idle Mode
5 10 128 14 9 19 10
6 10 128 6 4 Handled by Host 1-3 Idle Mode
7 10 128 9 7 18 9
8 10 128 13 8 20 9
9 10 128 10 6 16 9
10 10 128 5 3 Handled by Host 5-9 Idle Mode
11 10 128 8 6 Handled by Host 5-9 Idle Mode
12 10 128 4 3 Handled by Host 5-9 Idle Mode

5.6. Resource Optimization

The RAP-Optimizer demonstrates significant resource optimization potential. Figure 11 shows
the before and after effect comparison. Initially, before implementing the RAP-Optimizer, the server
costs steadily increased from $200 to $2,600 over the 12 months, as the system inefficiently activated
additional hosts to handle the growing number of API requests. This led to underutilized resources
and inflated operational costs. After applying the proposed RAP-Optimizer, the server cost was
reduced each month, stabilizing at around $1,250 by the 12th month. This reduction is attributed to the
system’s ability to consolidate API requests to fully utilize existing active hosts before activating new
ones. As a result, unnecessary activation of hosts was minimized, leading to significant cost savings.

3500
3000
2500
A 2000 //
% 1500
1000
500
0
1 2 3 4 5 0 7 8 9 10 11 12
MONTHS
—o— Server Cost (Before) (USD) ~—Server Cost (After) (USD) Return (Before) (USD)
——Return (After) (USD) —k—Revenue Margin (Before) (USD) Revenue Margin (After) (USD)

Figure 11. The cost optimization before and after using the proposed method.

Despite the optimization, the application’s return remained consistent, showing that user demand
and subscription revenues were unaffected by the changes. The table highlights a clear increase in
the revenue margin after optimization—from an initial margin of $300 in the first month, the margin
grew to $1,750 by the 12th month. This improvement demonstrates the effectiveness of the proposed
system in reducing operational costs while maintaining consistent service delivery, thus ensuring
the profitability and sustainability of the Al-driven image enhancement web application over time.
By efficiently managing resources and reducing the number of active hosts, the system successfully
increases profit margins, even as server usage grows.

5.7. Objective Achievement

The primary objective of this study is to increase the profit margin. After implementing the
proposed RAP-Optimizer, server cost, return, and revenue margin have been observed for 12 months.
During this observation period, the existing approach and the system with RAP-Optimizer were active
simultaneously. The number of users allowed to use the optimized system was kept similar to the
existing system for fair comparison. The data observed over the 12-month period are listed in Table

https://doi.org/10.20944/preprints202410.0504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 October 2024 d0i:10.20944/preprints202410.0504.v1

17 of 21

6. After using the RAP-Optimizer, on average, the server cost was reduced by approximately 45%,
dropping from an initial $2,600 to a stable $1,250 by the 12th month. This resulted in an average
monthly cost reduction of $1,150. In parallel, the profit margin increased from an average of $600 per
month before optimization to $1,675 after optimization, reflecting a 179% increase in profit over the
12-month period. Additionally, the reduction in the number of active hosts, as shown in Table 5, led to
more efficient resource utilization, ensuring that the same number of API requests were handled with
fewer servers, further driving operational cost savings and profit maximization.

Table 6. Numerical Analysis of the Objective Achievement.

Months Server Cost in USD Return in USD Revenue Margin in USD

Before After Before After Before After
1 200 150 500 500 300 350
2 500 400 1200 1200 700 800
3 800 650 1800 1900 1000 1250
4 1100 800 2200 2300 1100 1500
5 1500 900 2500 2600 1000 1700
6 1800 1000 2600 2700 800 1700
7 2000 1100 2700 2800 700 1700
8 2100 1150 2750 2800 650 1650
9 2200 1200 2800 2850 600 1650
10 2400 1200 2900 2900 500 1700
11 2500 1250 2900 2950 400 1700
12 2600 1250 3000 3000 400 1750

6. Limitations and Future Scope

While the proposed RAP-Optimizer has shown promising results in reducing operational costs
and optimizing resource utilization, there are several areas where the approach can be further improved.
This section outlines the key limitations of the current system and proposes future directions to enhance
its functionality, scalability, and efficiency in handling cloud-based Al services.

6.1. Resource Utilization Focus

One limitation of the proposed RAP-Optimizer is that it primarily focuses on optimizing CPU
and memory utilization, while other critical factors, such as network bandwidth, disk I/O, and latency,
are not fully considered. These elements play some role in the overall system performance. When the
number of traffic increases, the impact of these elements becomes more vital. One of the approaches
to overcome the limitations is to expand the dataset features and incorporate these elements as well.
However, the scope of this extension will be explored in the subsequent version of this study.

6.2. Uniform API Request Handling

The experimenting AlaaS application offers image processing services only. As a result, the cloud
servers don’t have any configuration variations. However, applications that offer multi-modal services,
such as audio and video processing, will depend on multiple different hardware configurations at
the back end. As a result, selecting the appropriate hardware to transfer the API call will require
an additional logical layer to make appropriate decisions. The proposed RAP-Optimizer doesn’t
incorporate this complexity. This is another limitation of this approach. A potential solution to
overcome this weakness is categorizing the API requests based on their nature, which will be explored
in the future of this method.

The RAP-Optimizer considers that all API requests can be uniformly distributed across available
hosts, without accounting for hardware differences or the geographical location of hosts, which may
affect response times or performance. Addressing this limitation could involve enhancing the system
to factor in host-specific attributes like hardware capabilities and geographic proximity, allowing for
smarter resource allocation that reduces latency and improves service quality.

6.3. Predictive Optimization Approach

The current version of the proposed RAP-Optimizer is a predictive approach. The overall
effectiveness of the process depends on the accuracy of the prediction. One of the major weaknesses
of this approach is if the configurations are predicted incorrectly, the RAP-Optimizer fails to handle

https://doi.org/10.20944/preprints202410.0504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 October 2024 d0i:10.20944/preprints202410.0504.v1

18 of 21

it. One of the solutions to overcome this limitation is to incorporate the false positive rate into the
decision-making process. The potential of this solution will be explored in the future scope of this
study.

6.4. Single-Cloud Focus

Multi-cloud or hybrid architectures offer more flexibility and cost-effective structure. The pro-
posed AlaaS application runs on a single-cloud architecture, so the entire experiment is conducted
on it. The findings are relevant, and the proposed approach is suitable for single-cloud architecture
only. This is one of the weaknesses of the proposed system. However, hundreds of AlaaS runs on
single-cloud architecture, which makes the proposed approach feasible and effective. The subsequent
version of this paper will focus on multi-cloud or hybrid-cloud architecture in the future.

7. Conclusion

The RAP-Optimizer presented in this paper demonstrated an effective way to overcome the
challenge of resource utilization and cost optimization in AlaaS applications. Although it focuses
on an image enhancement application only, this study plays an instrumental role in creating the
blueprint for optimization techniques for similar applications. This study also demonstrated an
innovative application of the combination of DNN and Simulated Annealing algorithm in cloud
resource optimization. The experimental results presented in this paper show significant reductions in
the number of active physical hosts and server costs without compromising service quality. Over a
twelve-month observation period, the RAP-Optimizer achieved an average reduction of 45% in server
costs. It further shows a 179% increase in profit margins, clearly highlighting the practical benefits of
the system. The DNN was designed and trained in this study to predict the resource configuration
and maintain high classification accuracy across all five service classes. The confusion matrix shows
that the DNN achieved 97.48% validation accuracy. K-fold cross-validation was performed to validate
the performance. In the cross-validation, the performance of the DNN prediction remained consistent
for all folds. That means the DNN is both accurate and well-trained and has good generalization
capability. Besides, the introduction of the unique Dynamic Dropout Control (DDC) algorithm
contributed to mitigating the overfitting effects. Combining the Simulated Annealing algorithm with
the DNN unblocked a new dimension of Alaas cloud resource optimization, which dynamically
manages the cloud resources. It effectively reduces the number of active hosts, which maximizes
the existing resource utilization without activating new physical hosts, which saves a significant
amount of resources and energy. This efficiency directly translates into improved sustainability and
cost-effectiveness for AlaaS applications.

The innovative design, effective performance, and real-world positive impact on enlarging profit
margin in AlaaS application business demonstrated the potential of the proposed RAP-Optimizer.
Despite multiple advantages, the RAP-Optimizer suffers from certain limitations. Excluding other
resources except for CPU and memory utilization, lack of heterogeneous API request management
analysis, and experiment on the single-cloud environment are some of the limitations of the exper-
iment presented in this paper. In conclusion, the RAP-Optimizer provides a scalable, efficient, and
cost-effective solution for resource management in cloud-based Al services, offering substantial im-
provements in operational efficiency, energy savings, and profit margins. As Al-driven applications
continue to grow in scale and complexity, solutions like the RAP-Optimizer will play a crucial role in
ensuring that cloud resources are utilized to their fullest potential, paving the way for more sustainable
and profitable cloud-based business models.

Author Contributions: Conceptualization, K.S. and S.A.; methodology, R.A. and A.V,; software, K.S. and A.V.;
validation, K.S., R.A., and S.A.; formal analysis, K.S. and R.A.; investigation, R.A. and A.V.; resources, S.A.; data
curation, R.A.; writing—original draft preparation, K.S. and R.A.; writing—review and editing, A.V. and S.A;
visualization, K.S. and S.A.; supervision, S.A.; project administration, K.S. and R.A.; funding acquisition, S.A. All
authors have read and agreed to the published version of the manuscript.

https://doi.org/10.20944/preprints202410.0504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 October 2024 d0i:10.20944/preprints202410.0504.v1

19 of 21

Funding: This research did not receive any specific grant from funding agencies in the public, commercial, or
not-for-profit sectors.

Data Availability Statement: The data utilized in this study were generated from an AlaaS application and are
considered confidential. However, the data can be made available upon reasonable request. Requesters must
agree to the terms and conditions, which stipulate that the data cannot be used for any commercial or research
purposes without prior permission from the owner.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Deng, S.; Zhao, H.; Huang, B.; Zhang, C.; Chen, F; Deng, Y.; Yin,].; Dustdar, S.; Zomaya, A.Y. Cloud-native
computing: A survey from the perspective of services. Proceedings of the IEEE 2024.

2. Tuli, S.; Mirhakimi, F; Pallewatta, S.; Zawad, S.; Casale, G.; Javadi, B.; Yan, F.; Buyya, R.; Jennings, N.R. Al
augmented Edge and Fog computing: Trends and challenges. Journal of Network and Computer Applications
2023, 216, 103648.

3. Badshah, A.; Ghani, A.; Siddiqui, L.F,; Daud, A.; Zubair, M.; Mehmood, Z. Orchestrating model to improve
utilization of IaaS environment for sustainable revenue. Sustainable Energy Technologies and Assessments 2023,
57,103228.

4. Horchulhack, P; Viegas, EK.; Santin, A.O.; Ramos, EV.; Tedeschi, P. Detection of quality of service
degradation on multi-tenant containerized services. Journal of Network and Computer Applications 2024,
224,103839.

5. Miikkulainen, R.; Liang, J.; Meyerson, E.; Rawal, A ; Fink, D.; Francon, O.; Raju, B.; Shahrzad, H.; Navruzyan,
A.; Duffy, N.; others. Evolving deep neural networks. In Artificial intelligence in the age of neural networks and
brain computing; Elsevier, 2024; pp. 269-287.

6. Pardalos, PM.; Mavridou, T.D. Simulated annealing. In Encyclopedia of Optimization; Springer, 2024; pp. 1-3.

7. Zhou, G; Tian, W,; Buyya, R.; Xue, R.; Song, L. Deep reinforcement learning-based methods for resource
scheduling in cloud computing: A review and future directions. Artificial Intelligence Review 2024, 57, 124.

8. Mohammadzadeh, A.; Chhabra, A.; Mirjalili, S.; Faraji, A. Use of whale optimization algorithm and its
variants for cloud task scheduling: a review. Handbook of Whale Optimization Algorithm 2024, pp. 47-68.

9. Musabimana, B.B.; Bucaioni, A. Integrating Alaa$S into Existing Systems: The Gokind Experience. Interna-
tional Conference on Information Technology-New Generations. Springer, 2024, pp. 417-426.

10. Kurian, A.M.; Onuorah, M.J.; Ammari, HM. Optimizing Coverage in Wireless Sensor Networks: A Binary
Ant Colony Algorithm with Hill Climbing. Applied Sciences 2024, 14, 960.

11. Faruqui, N.; Yousuf, M.A; Kateb, F.A.; Hamid, M.A.; Monowar, M.M. Healthcare As a Service (HAAS):
CNN-based cloud computing model for ubiquitous access to lung cancer diagnosis. Heliyon 2023, 9.

12. Hossen, R.; Whaiduzzaman, M.; Uddin, M.N.; Islam, M.].; Faruqui, N.; Barros, A.; Sookhak, M.; Mahi, M.].N.
Bdps: An efficient spark-based big data processing scheme for cloud fog-iot orchestration. Information 2021,
12,517.

13. Achar, S.; Faruqui, N.; Bodepudi, A.; Reddy, M. Confimizer: A novel algorithm to optimize cloud resource
by confidentiality-cost trade-off using bilstm network. IEEE Access 2023.

14. Kumar, P; Kumar, R. Issues and challenges of load balancing techniques in cloud computing: A survey.
ACM computing surveys (CSUR) 2019, 51, 1-35.

15. Xu, W,; Jang-Jaccard, J.; Singh, A.; Wei, Y.; Sabrina, F. Improving performance of autoencoder-based network
anomaly detection on nsl-kdd dataset. IEEE Access 2021, 9, 140136-140146.

16. Shi, J.; Fu, K;; Wang, J.; Chen, Q.; Zeng, D.; Guo, M. Adaptive QoS-aware Microservice Deployment with
Excessive Loads via Intra-and Inter-Datacenter Scheduling. IEEE Transactions on Parallel and Distributed
Systems 2024.

17. Vuillod, B.; Zani, M.; Hallo, L.; Montemurro, M. Handling noise and overfitting in surrogate models based
on non-uniform rational basis spline entities. Computer Methods in Applied Mechanics and Engineering 2024,
425,116913.

18. Alnagashi, FA.K.Q.; Rahim, N.A.; Shukor, S.A.A.; Hamid, M.H.A. Mitigating Overfitting in Extreme
Learning Machine Classifier Through Dropout Regularization. Applied Mathematics and Computational
Intelligence (AMCI) 2024, 13, 26-35.

https://doi.org/10.20944/preprints202410.0504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 October 2024 d0i:10.20944/preprints202410.0504.v1

20 of 21

19. Salehin, I; Kang, D.K. A review on dropout regularization approaches for deep neural networks within the
scholarly domain. Electronics 2023, 12, 3106.

20. Zhang, Z.; Xu, Z.Q.J. Implicit regularization of dropout. IEEE Transactions on Pattern Analysis and Machine
Intelligence 2024.

21. Poobalan, A.; Sangeetha, S.; Shanthakumar, P. Performance Optimization and Energy Minimization of Cloud
Data Center Using Optimal Switching and Load Distribution Model. Sustainable Computing: Informatics and
Systems 2024, p. 101013.

22. Buyya, R, Ilager, S.; Arroba, P. Energy-efficiency and sustainability in new generation cloud computing: A
vision and directions for integrated management of data centre resources and workloads. Software: Practice
and Experience 2024, 54, 24-38.

23. Katal, A.; Choudhury, T.; Dahiya, S. Energy optimized container placement for cloud data centers: a
meta-heuristic approach. The Journal of Supercomputing 2024, 80, 98-140.

24. Mongia, V. EMaC: Dynamic VM Consolidation Framework for Energy-Efficiency and Multi-metric SLA
Compliance in Cloud Data Centers. SN Computer Science 2024, 5, 643.

25. Rajagopalan, A.; Swaminathan, D.; Bajaj, M.; Damaj, I.; Rathore, R.S.; Singh, A.R.; Blazek, V.; Prokop, L.
Empowering power distribution: Unleashing the synergy of IoT and cloud computing for sustainable and
efficient energy systems. Results in Engineering 2024, p. 101949.

26. Sun, Y.; Wang, Z.].; Deveci, M.; Chen, Z.S. Optimal releasing strategy of enterprise software firms facing the
competition from cloud providers. Expert Systems with Applications 2024, 236, 121264.

27. Khan, A.Q.; Matskin, M.; Prodan, R.; Bussler, C.; Roman, D.; Soylu, A. Cloud storage cost: a taxonomy and
survey. World Wide Web 2024, 27, 36.

28. Nezafat Tabalvandani, M.A.; Hosseini Shirvani, M.; Motameni, H. Reliability-aware web service composition
with cost minimization perspective: a multi-objective particle swarm optimization model in multi-cloud
scenarios. Soft Computing 2024, 28, 5173-5196.

29. Chi, Y,; Dai, W,; Fan, Y,; Ruan, J.; Hwang, K.; Cai, W. Total cost ownership optimization of private clouds: a
rack minimization perspective. Wireless Networks 2024, 30, 3855-3869.

30. Moreira, L.ER.; Moreira, R.; Travengolo, B.A.N.; Backes, A.R. An Artificial Intelligence-as-a-Service Archi-
tecture for deep learning model embodiment on low-cost devices: A case study of COVID-19 diagnosis.
Applied Soft Computing 2023, 134, 110014.

31. Debinski, M.; Breitinger, F.; Mohan, P. Timeline2GUI: A Log2Timeline CSV parser and training scenarios.
Digital Investigation 2019, 28, 34—43.

32. Jayaweera, C.; Aziz, N. Reliability of principal component analysis and Pearson correlation coefficient, for
application in artificial neural network model development, for water treatment plants. IOP Conference
Series: Materials Science and Engineering. IOP Publishing, 2018, Vol. 458, p. 012076.

33. Faruqui, N.; Yousuf, M.A.; Chakraborty, P.; Hossain, M.S. Innovative automation algorithm in micro-
multinational data-entry industry. Cyber Security and Computer Science: Second EAI International
Conference, ICONCS 2020, Dhaka, Bangladesh, February 15-16, 2020, Proceedings 2. Springer, 2020, pp.
680-692.

34. Racherla, S; Sripathi, P.; Faruqui, N.; Kabir, M.A.; Whaiduzzaman, M.; Shah, S.A. Deep-IDS: A Real-Time
Intrusion Detector for IoT Nodes Using Deep Learning. IEEE Access 2024.

35. Demircioglu, A. The effect of feature normalization methods in radiomics. Insights into Imaging 2024, 15, 2.

36. Geem, D.; Hercules, D.; Pelia, R.S.; Venkateswaran, S.; Griffiths, A.; Noe,].D.; Dotson, J.L.; Snapper, S.;
Rabizadeh, S.; Rosh,].R.; others. Progression of Pediatric Crohn’s Disease Is Associated With Anti-Tumor
Necrosis Factor Timing and Body Mass Index Z-Score Normalization. Clinical Gastroenterology and Hepatology
2024, 22, 368-376.

37. Trivedi, S.; Patel, N.; Faruqui, N. NDNN based U-Net: An Innovative 3D Brain Tumor Segmentation
Method. In 2022 IEEE 13th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference
(UEMCON)(pp. 0538-0546), 2022.

38. Ullah, U.; Garcia-Zapirain, B. Quantum machine learning revolution in healthcare: a systematic review of
emerging perspectives and applications. IEEE Access 2024.

39. Faruqui, N.; Yousuf, M.A; Whaiduzzaman, M.; Azad, A.; Alyami, S.A.; Lio, P.; Kabir, M.A.; Moni, M.A.
SafetyMed: a novel IoMT intrusion detection system using CNN-LSTM hybridization. Electronics 2023,
12,3541.

https://doi.org/10.20944/preprints202410.0504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 October 2024 d0i:10.20944/preprints202410.0504.v1

21 of 21

40. Shahiwala, A.F; Qawoogha, S.S.; Faruqui, N. Designing optimum drug delivery systems using machine
learning approaches: A prototype study of niosomes. AAPS PharmSciTech 2023, 24, 94.

41. Faruqui, N.; Yousuf, M.A.; Whaiduzzaman, M.; Azad, A.; Barros, A.; Moni, M.A. LungNet: A hybrid deep-
CNN model for lung cancer diagnosis using CT and wearable sensor-based medical IoT data. Computers in
Biology and Medicine 2021, 139, 104961.

42. Wang, L; Ye, W,; Zhu, Y,; Yang, F; Zhou, Y. Optimal parameters selection of back propagation algorithm in
the feedforward neural network. Engineering Analysis with Boundary Elements 2023, 151, 575-596.

43. Xie, G.; Lai, J. An interpretation of forward-propagation and back-propagation of dnn. Pattern Recognition
and Computer Vision: First Chinese Conference, PRCV 2018, Guangzhou, China, November 23-26, 2018,
Proceedings, Part II 1. Springer, 2018, pp. 3-15.

44. Cong, S.; Zhou, Y. A review of convolutional neural network architectures and their optimizations. Artificial
Intelligence Review 2023, 56, 1905-1969.

45. Paula, L.P.O,; Faruqui, N.; Mahmud, I.; Whaiduzzaman, M.; Hawkinson, E.C.; Trivedi, S. A novel front door
security (FDS) algorithm using GoogleNet-BiLSTM hybridization. IEEE Access 2023, 11, 19122-19134.

46. Hossain, M.E.; Faruqui, N.; Mahmud, I; Jan, T.; Whaiduzzaman, M.; Barros, A. DPMS: Data-Driven
Promotional Management System of Universities Using Deep Learning on Social Media. Applied Sciences
2023, 13, 12300.

47. Kaur, H.; Anand, A. Review and analysis of secure energy efficient resource optimization approaches for
virtual machine migration in cloud computing. Measurement: Sensors 2022, 24, 100504.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

https://doi.org/10.20944/preprints202410.0504.v1

	Introduction
	Literature Review
	Cloud Resource Optimization
	Workload Balancing and API Request Handling
	Overfitting in Deep Neural Networks
	Energy-Efficient Cloud Systems
	Revenue Impact and Cost Optimization

	Problem Analysis and Objective
	Methodology
	Dataset Preparation
	Dataset Description
	Dataset Cleaning
	Feature Normalization
	Dataset Splitting

	Network Architecture
	Training the Network
	Learning Algorithm
	Learning Curve
	DDC Algorithm

	RAP-Optimizer
	Resource Analysis
	Resource Space Landscape (RSL)
	Deep-Annealing Algorithm

	Experimental Result and Evaluation
	Evaluation Metrics
	Confusion Matrix Analysis
	K-Fold Cross Validation
	Active Physical Host
	Request Optimization
	Resource Optimization
	Objective Achievement

	Limitations and Future Scope
	Resource Utilization Focus
	Uniform API Request Handling
	Predictive Optimization Approach
	Single-Cloud Focus

	Conclusion
	References

