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Highlights 

• The modelling of real-world systems in the field of automatic control is necessary for multiple 
objectives, including process simulation, control system design, and optimization of 
numerous processes. 

• The process of AI-based models development can be divided into four stages: structure or 
architecture design, training, validation and use. 

• There are many models basing on artificial neural networks and machine learning, which 
were applied in different configurations to solve specific technological problems. 

• Multi-layered perceptron networks with backpropagation training (the Levenberg-Marquardt 
algorithm) seem to be most frequently used model for training and short-time predictions. 

• For optimization of processes, machine learning algorithms should be rather applied.  

Abstract: Environmental monitoring systems play a crucial role in assessing environmental quality, 
detecting limits exceedances, and predicting potential ecological episodes. These systems rely on 
the measurement of various variables at specific locations and time intervals over an extended 
period. The concept of environmental monitoring encompasses the assessment of health and safety 
issues for public and environmental health purposes. Pollution of the atmosphere and water, climate 
change, and natural disasters are among the consequences of continuous industrial and municipal 
development and human interference in natural ecosystems. To address these challenges and to 
protect human lives and the environment, with a special concern on mitigating the ecological effects 
of industrial development, advanced technical solutions, including the technologies associated with 
artificial intelligence (artificial neural networks ANNs, machine learning ML) have been developed. 
These technologies offer powerful tools for analysing the vast amount of data collected by 
monitoring systems and extracting valuable insights. By applying ANNs and machine learning 
algorithms, environmental monitoring systems can effectively process and interpret the measured 
variables to assess environmental quality. Despite challenges and limitations, such as data quality 
and interpretability of AI models, ongoing research and interdisciplinary collaboration are paving 
the way for the successful implementation of AI in environmental monitoring, ultimately 
supporting informed decision-making and sustainable resource management. While several review 
papers have explored the theory of artificial intelligence (AI), here I aim to review the application of 
ANNs and ML, in environmental aspects, specifically in automotive and industrial emissions 
toxicity measurements, as well as atmospheric pollution prevention. By examining the potential of 
AI in these domains, the paper contributes to understanding the role of advanced technologies in 
environmental monitoring and protection. 

Keywords: artificial neural networks; machine learning; environmental protection; air pollution; 
atmosphere; pollutants emission prediction; forecasting; data security 
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1. Introduction 

The environmental protection issues have been still gathering more attention of governments, 
scientists, and society. Atmosphere and water pollution, climatic changes, and natural disasters are 
the effect of continuous industrial and municipal development and human interference into natural 
ecosystems. The progress in science and technology is observed almost everywhere in the world, and 
currently most of new advanced technical solutions are mainly targeted to protect human lives, to 
protect the environment and to face the ecological effects of industrial development.  

Environmental monitoring systems are set up to define procedures related to tracing of 
environment quality and to alerting in circumstances of limits exceedances or potential future 
ecological episodes. From a technical point of view, monitoring systems are based on measurements 
of a series of variables repeated at one or more locations under prearranged conditions in space and 
time over a long period [1]. The concept of environmental monitoring is based on the assessment of 
health and safety problems for public and environmental health purposes. The entire system consists 
of: (1) inspection and correction action, i.e. measurements and data collection; (2) planning, i.e., 
setting up of targets and objectives in the aspects of environmental protection; (3) implementation 
and operation, i.e., setting up of procedures in response to emergencies and alerts; (4) management, 
i.e., experts advisory board dealing with knowledge of environment and processes in ecosystems 
(Figure 1). 

 

Figure 1. The general mechanism of environmental monitoring systems (source: own preparation on 
the base on [1]). 

Artificial intelligence has already found its interest in almost every area of technology. At the 
same time, it is continuously improved to fully replace a human in activities in the near future, such 
as cooking, telemarketing, or driving a car. The first mentions of the application of neural networks, 
which are the most well-known representative of AI, occurred in the scientific literature in the middle 
of the XX age. However, the authors met many technical limitations when applied in the form and 
manner that had been used at that time. Interest in AI was raised again in the 1980s of the XX era 
when a novel concept of non-linearity between input and output signals was introduced [2]. This 
model, commonly known as the Hopfield model (HM), was introduced by Hopfield in 1982 [3]. The 
HM consists of some specific states, called neurones, which are fully connected by synaptic weights 
[4], which in some way reflect the neurobiological theory of the processing of neural signals in the 
brain. This new approach has created a wave of interest, not only among scientists related to AI, but 
also in most other scientific areas, like economy or environmental protection. 

Many review papers on the theory of artificial intelligence have been found in the literature, i.e. 
[2,4–10]. However, here in this paper, the possibility of artificial intelligence in some environmental 
aspects has been reviewed. Here I focused on artificial neural networks (ANN) and machine learning 
(ML) and on the application of their different forms in systems of automotive and industrial 
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emissions toxicity measurements, and atmospheric pollution prevention. The aim of this paper is to 
collect and combine procedures described by other Authors and to extract the most important 
elements of modelling process. Afterwards, the creation of a unique path of application of AI-
augmented models in other problem-solving mechanisms will be possible. 

2. Basics of Artificial Neural Networks and Machine Learning 

2.1. Artificial Neural Networks 

As mentioned above, artificial neural networks had been designed in order to mimic the function 
of a biological neurone whose task is to process the signals from the whole organism through the 
dendrites (Figure 2) with a specific synaptic strength through the axons to the brain. 

 

Figure 2. The anatomy of human neural cells (source: a photo from www.freepik.com, descriptions – 
own preparation). 

The output signal is a function of input signals from several neurones, which create nets or layers. 
These input signals are characterized by a weight, which is a real number (Figure 3). The greater the 
magnitude of the weight, the greater the effect of signal encouragement. The weight values of 
neurones in a network are significant because they determine the computational properties of the 
network, and network training is achieved by modifying these weights appropriately [2].  

 

Figure 3. The simplified scheme with mathematical relations of artificial neural network (source: own 
preparation). 
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The Hopfield model networks are the simplest structures. They are fully connected neural 
networks. It means that to obtain the local minimum energy, neural networks are made of many 
neurones connected with each other and create a kind of spin-glass model. The feedforward neural 
networks (FFNN) were the first layered neural networks. They consist of one input layer, one hidden 
layer and one output layer. However, the signal moves just forward. Multilayered backpropagation 
neural networks (Figure 4) were invented and developed as a further step. The neural networks of 
this kind are able to train and learn signal processing in forward and back-propagation.  

 

Figure 4. The scheme of multi-layered neural network with backpropagation (source: own 
preparation). 

Typical multilayered ANNs have a structure of different layers of neurones, where neurones in 
each layer are fully connected to the neurones of the next layer. An output signal from a first layer is 
an input signal for a second layer, etc. The ANNs of this type are found to be sufficient in 
generalization and classification abilities and, therefore, the learning performance is more effective 
as well. The quality of classification and prediction in the networks is determined by learning 
algorithms. What is important, is that the complex topology of NNs does not guarantee the optimal 
final performance. The more complex the architecture of NNs, the higher are the costs of 
computational time and energy [4]. Thus, the fully connected (FC) structures of ANNs are 
recommended to be replaced by sparsely connected graphs such as small-world (SW), scale-free (SF), 
and random networks. 

Due to the fact that ANNs do not require an understanding and detailed knowledge of the 
processes occurring in the atmosphere or other environmental compartments, the ANNs are a 
suitable alternative to commonly used computational models, like for real-time air quality forecasting 
models (RT-AQFs) [11,12]. Models of this kind are sensitive to many factors, such as the scale and 
quality of the parameters involved in the model, computationally expensive, and dependent on large 
databases of several input parameters, of which some may not be available [5,13]. However, Russo et 
al., 2013 [14] advise to implement models with an optimal amount of datasets. The minimisation of 
data in input layer improves the predictive power of ANNs. On the other site, according to 
Antanasijević et al., 2013 [15] the wide availability of the input parameters used in ANNs can 
overcome the lack of data and basic environmental indicators in many countries, which can prevent 
or seriously hinder the forecasting of particulate matter (PM) emission. 
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Prediction by a well-trained ANN is usually much faster than conventional simulation programs 
or mathematical models, as no lengthy iterative calculations are required to solve differential 
equations using numerical methods; however, the selection of an appropriate neural network 
topology is important in terms of model accuracy and model simplicity. Gürgen et al., 2018 [16] paid 
attention; one problem that should be considered in the training procedure is overfitting wherein the 
obtained ANN memorises the training examples and does not learn the ability to generalise unseen 
data. Early stopping is one of the practical solutions to this problem. 

Cabaneros et al., 2019 [5] reviewed that in the literature there is no clear instruction on how to 
build neural networks, what kind of ANN model should be applied, and what topology of learning 
algorithms should be designed for specific goals like chemistry or ecological data. This makes the 
application of ANNs a bit limited despite that computational software allowing for neural network 
design is continuously improved and developed. Jakeman et al., 2007 [17] introduced some general 
guidelines to help with the development of environmental models. Adoption of these outlines by 
modelers, through fuller execution and reporting of the steps, benefits the model-building 
community and decision-making about model recommendations. Finally, Cabaneros et al. 2019 [5] 
outlined the procedures for designing artificial neural architectures for the purposes of the prediction 
and forecasting of pollutant concentrations. Cabaneros et al. 2019 point out that each step of the 
overall model development process should be justified explicitly. Moreover, the development of 
artificial neural networks is problem-specific, and it is not possible to outline one instruction. 
However, the general protocols, which are summarised in Figure 5, may be useful to modelers who 
work on other environmental aspects.  

 

Figure 5. Decision-making route in designing of artificial neural networks (source: own preparation) 

2.2. Machine Learning 

Machine learning is a set of algorithms which are equipped with a dedicated system serving 
data of different kinds processing. The computer can be trained and to learn based on data and 
machine learning methods. ML has been explored in last decades and there were three main 
technologies trends which fuelled this development [9]: 

• While sensing and Internet of Things (IoT) technologies have been rapidly advanced, more data 
amounts were collected; 

• Access to powerful and affordable computational resources is better than with the design of 
machine-oriented chips like GPUs (Graphic Processor Units) or TPUs (Tensor Processing Units). 

• Advanced machine learning algorithms have been developed and validated. 

According to Crisci et al., 2012 [8], the ML is a classical but widely studied statistical method for 
data science. It covers the standard steps of data processing like classification, regression, clustering, 
density estimation, etc. However, the tools, such as techniques and strategies, characterised by 
massive algorithms and computational resources applied in big data science with a large number of 
variables and complex data structures make ML unique. 
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Generally speaking, the evaluated sample is split into two subsamples: one which is trained – a 
learning sample, and the one that is evaluated – a test sample. The model is evaluated over the 
training set, and its performance is studied using the evaluation sample. To reduce any bias due to 
the random choice of the evaluation sample, the loss is averaged over several random splits of the 
data (Figure 6) [8].  

 

Figure 6. Optimal ML model for training and evaluation (source: own preparation on the base on [8]). 

There are many computational tools within the machine learning concepts which may be 
applied for ecological data treatment. Crisci et al., 2012 [8] reviewed different algorithms and their 
mathematical basis and tested them for their own research. The performances of ML model 
approaches, such as general additives models or classification and regression trees (CART), have 
been presented and the data obtained were then compared. Moreover, some possible extensions for 
CART were proposed, like bagging, random forest, boosting, support vector machines, projection 
pursuit, and nearest neighbours. These extensions were developed mainly due to instability of the 
CART model with respect to changes in the training sample. The aggregated models, which are 
created thanks to the extensions, are more stable in training and learning processes. However, the 
application of these extensions refers to some specific situations dependent on what kind of 
information do we need to obtain. Generally, ML is a fully developed statistical data analysis method 
that allows for prediction and forecasting of specific extremes based on ecological data of any kind. 
Machine learning found its application in building as well, however, the model algorithms need to 
be still improved [7,9]. 

3. AI-Augmented Environmental Monitoring Systems vs. Data Security 

The utilization of artificial intelligence for automated decision making and predictive analytics, 
along with the remarkable advancements in sensor technology and robotics, will probably 
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revolutionize the perspectives and responses of individuals, communities, governments, and private 
entities towards climate and ecological transformations. Pandemic situation has triggered the 
acceleration of digitization and automation trend in many areas in order to ensure the supply chains. 
For many years, countries on the whole have world invested much money in technology associated 
with artificial intelligence, robotics and sensors. China, United States and France are global pioneers 
in development of AI-based technological applications, including the areas of aquaculture, forestry 
and agriculture. In the period from 2007 to 2020 they pumped over 7 billion USD into the 
implementation of AI-augmented technology [18]. Smart cities base on AI-associated technology 
including traffic management systems, smart policing, lightning control, facial recognition, smart 
waste disposal systems. Moreover, it turned out that agriculture and forestry are prominent sectors 
in development and deployment of AI-based systems, for instance for management and control of 
irrigation systems of farms and plants [18]. In Figure 7 it was showed how looks like the mechanisms 
of environmental monitoring systems work when AI-augmented technology is incorporated in there. 
The described flowchart provides a structured framework for environmental monitoring, utilizing 
artificial intelligence techniques to collect, process, analyse, and interpret data. It allows for informed 
decision-making, proactive actions, and preventive measures to safeguard the environment and 
address potential risks or challenges identified through the monitoring process. The data processing 
stage is crucial for extracting meaningful information from the collected environmental data using 
artificial intelligence techniques. It involves preprocessing the data, selecting an appropriate model, 
training and optimizing the model, and utilizing it for prediction and inference tasks. This stage lays 
the foundation for the subsequent analysis and interpretation of the environmental data to support 
decision-making and management in environmental monitoring systems. 
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Figure 7. The process of environmental monitoring system with incorporated AI-augmented mechanisms of data processing (source: own preparation). 

 

P
re

p
rin

ts
 (w

w
w

.p
re

p
rin

ts
.o

rg
)  |  N

O
T

 P
E

E
R

-R
E

V
IE

W
E

D
  |  P

o
s
te

d
: 1

9
 J

u
ly

 2
0
2
3
                   d

o
i:1

0
.2

0
9
4
4
/p

re
p

rin
ts

2
0
2
3
0
7
.1

2
9

8
.v

1

https://doi.org/10.20944/preprints202307.1298.v1


 9 

 

According to The Royal Society [19], in the near future every controlling system will be fully 
digitized, creating so called “digital twins” which are a real big data from AI-augmented analysis of 
ecological data. This digital infrastructure will enable to establish “control loops” across sectors and 
as a result real data simulation, exploration, optimisation and risk identification will be possible. The 
trend of digitization and automation forces innovations in IT solutions due to the increasing amount 
of data which need to be stored. Therefore, the higher computational capacity and larger virtual space 
are a need. Here I and many authors before identified a huge risk related to data security. In today’s 
world, personal data protection is a crucial aspect of new technology implementation. Both personal 
data and ecological data must be secured in order to avoid their releasing. In the application of 
artificial intelligence in environmental monitoring systems, several threats related to data security 
have been identified. These threats include:  

• Proper interpretation of bias in AI algorithms: AI algorithms are designed to learn from data, 
but if the data used for training is biased, the algorithms can perpetuate and amplify that bias. 
This can lead to inaccurate or unfair decision-making in environmental monitoring, affecting the 
integrity and effectiveness of the systems. 

• Full automation of systems and substitution of humans: While automation can enhance 
efficiency, relying solely on machines to replace human involvement in environmental 
monitoring may lead to the neglect of critical human insights, intuition, and judgment. Over-
reliance on machines for cost reduction purposes could potentially overlook important 
contextual factors and compromise the accuracy and effectiveness of monitoring efforts. 

• Cyberattacks: As AI systems in environmental monitoring become more interconnected and 
reliant on networked infrastructure, they become vulnerable to cyberattacks. Malicious actors 
could exploit security vulnerabilities to manipulate or sabotage data, compromise the integrity 
of monitoring systems, or gain unauthorized access to sensitive information.  

• Cascading failures: AI systems are complex and interconnected, which means that a failure or 
error in one component can potentially propagate and lead to widespread consequences. In 
environmental monitoring systems, a cascading failure in AI algorithms or infrastructure could 
compromise the accuracy of data analysis, decision-making processes, and ultimately, the 
effectiveness of monitoring efforts.  

• Ethical and legal aspects of data storage: The use of AI in environmental monitoring generates 
vast amounts of data, including potentially sensitive information. The ethical and legal aspects 
of storing, managing, and securing this data pose challenges. Ensuring privacy, consent, data 
ownership, and compliance with relevant regulations and frameworks are critical to maintaining 
trust and safeguarding the rights of individuals and organizations involved. 

• Overall, addressing these identified threats is crucial for the responsible and effective 
deployment of AI in environmental monitoring systems, promoting data security, fairness, 
accountability, and ethical considerations. 

4. Application of Artificial Intelligence in Environmental Data Management 

4.1. Atmospheric Pollution 

Both neural networks and machine learning have found their application in predicting the 
distribution of pollutants in the atmosphere and forecasting the levels of concentration of pollutants, 
such as PM10 or ozone in ambient air. Many different algorithms were applied by different authors. 
Table 1 summarizes the AI models and data preprocessing methods applied in chosen several papers 
as well as general conclusions which Authors came up with while solving specific problems by 
application of artificial neural networks or machine learning algorithms. Shortly, each approach 
undertaken by other Authors was concluded that artificial neural networks and machine learning are 
very promising methods to track the changes in atmospheric pollution and, thanks to that, to alert 
the society about possible emergencies. Perez and Reyes, 2006 [20] compared the application of neural 
networks reflecting the linear and nonlinear models. In their work a three-layer feed neural network 
as a nonlinear model and a special neural network with no hidden layer as a linear model were 
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applied. Nonlinear models gave better results than linear models in the forecast of air pollution by 
PM10 from the perspective of 24 h. Antanasijević et al., 2013 [15] came up with similar conclusions. 
The ANN model has shown very good performance and demonstrated that the forecast of PM10 
emission up to two years can be made successfully and accurately and were three times better than 
the predictions obtained from the conventional multilinear regression and principal component 
regression models that were trained and tested using the same datasets and input variables. The 
advantages of few predictors (the multilayer perceptron, radial basis function, Elman network, and 
support vector machine) combined in the ensemble were also presented by Siwek and Osowski, 2012 
[21]. The important advantage of the proposed approach is that it does not require very exhaustive 
information about air pollutant, reaction mechanisms, and meteorological pollutant sources, and that 
they have the ability of allowing nonlinear relationships between very different predictor variables. 

Interesting results were obtained by applying both the artificial intelligence and statistical 
methods commonly used for the distribution of PM10 sources. Singh et al., 2013 [22] used principal 
component analysis (PCA) for PM10 source identification purposes and tree-based ensemble learning 
models (single decision tree, decision tree forest, decision tree boost) to predict the urban air quality 
in a city in India. The models successfully predicted the urban ambient air quality and, according to 
the authors, can be used as effective tools supporting atmosphere management systems.. In the paper 
by Feng et al., 2015 [23] a novel hybrid model was presented that combines air mass trajectory 
analysis and wavelet transformation to improve the accuracy of artificial neural network forecasting 
daily average concentrations of PM2.5 two days in advance. The respective pollutant predictors were 
used as input to a multilayer perceptron (MLP) type of backpropagation neural network. The 
significant advantage of this hybrid model was its ability to predict high peaks of PM2.5 
concentrations, which are considered very critical factors in air pollution prediction systems. 

The paper of Rutherford et al., 2021 [24] is an interesting consideration of application of hybrids 
of AI and advanced instrumental analytical techniques for the identification of sources of combustion 
generated PM from combustion. The hybrid algorithm of excitation-emission matrix (EEM) 
fluorescence spectroscopy and machine learning was developed. To train this model, the PMF source 
apportionment technique was applied. The EEM-ML approach was successful and moderately 
successful in predicting vegetative burning and mobile sources. However, the PMF usage for model 
training did not resolve source categories that would likely be valuable on a global scale such as forest 
fires, various cookstove and home heating fuels (e.g. biomass, kerosene, LPG, and coal), or diesel 
versus gasoline exhaust. Using source attribution data that resolved these sources to train an EEM-
ML model could allow EEM-ML to apportion these important sources of PM pollution. This was 
partially achieved by Song et al., 2001 [25] who proposed multivariate calibration based on single 
particle mass spectral data to apportion the gasoline and diesel generated emissions.  

The useful properties of artificial intelligence in air quality prediction and in development of 
cost-effective control strategies were also confirmed by other authors [20,26–29]. 
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Table 1. The review of computational methods applied in several chosen previous papers to solve specific problems related to atmospheric pollution. 

Specific topic of a 

reviewed paper 
Model applied 

Compilation with 

and/or comparison to 

other numerical 

model 

Data pre-processing 

method 

Activation function / 

training algorithm 
Loss function and error General conclusions 

Forecasting of PM10 

hourly 

concentration [29] 

Multiple-layered perceptrons (MLP) 
1) MLPF (full sets of inputs: PM10 
conc. + meteorological variables) 
2) GA-MLP (inputs selected by a 
genetic algorithm optimisation 
procedure) 
3) MLPN-METEO (inputs excluding 
meteorological variables) 

No approach 

Input data were 
standardized to zero 
mean and unity 
deviation 

Training algorithm: 
quasi Newton 

Sum of squared errors 
(SSE) 
1) MLPF: R2 ~ 0.7 
2) GA-MLP: R2 ~ 0.6 
3) MLPN-METEO: R2 < 0.4 

A genetic algorithm 
optimisation procedure allows 
to select variables with need to 
be taken as inputs into the NN 
model. This allows to save 
computational time. 

Forecasting of PM10 

maximum episodes 

in ambient air [20] 

1) 3-layered FFNN (as non-linear 
model) 
2) NN without any hidden layer (as 
a linear layer) 

No approach No information 
A sigmoid activation 
function 

Absolute percent errors: 
1) 3.6% 
2) 5,4% 

Neural model gave better 
results than linear model 

Forecasting of 

annual PM10 

emissions [15] 

General Regression Neural Network 
(GRNN) 
inputs were selected using a general 
algorithm based on a smoothing factor 

Compared to 
conventional models 
as multiple linear 
regression (MLR) and 
principal components 
regression (PCR) 

No information 
A supervised training; 
 

The root mean squared 
error (RMSE), the 
normalized mean 
squared error (NMSE), 
the mean absolute error 
(MAE), the correlation 
coefficient (R2), the index 
of agreement (IA), the 
fractional bias (FB) 
R2GRNN (0.91-0.94) 
R2PCR (0.55-0.94) 

A smoothing factor applied in a 
as a sensitivity analysis tool 
(the larger the factor for a given 
inputs is, the more important 
the input is to the model); 
Better forecast performance for 
artificial neural networks than 
for classic statistical methods 

Forecasting of the 

daily average 

concentration of 

PM10 [21] 

MLP, radial basis function network 
(RBF), Elman recurrent network (EN), 
support machine vector machine 
working in regression mode (SVR) 

ARX model No information No information 

The root mean squared 
error (RMSE), the mean 
absolute error (MAE), 
the correlation 
coefficient (R2), the index 
of agreement (IA) 
R2: 0.52 for ARX 

Due to the complex relation 
between PM10 concentration 
and basic atmospheric 
parameters influencing the 
mechanisms of creation and 
spreading the pollution, PM10 
prediction represents nonlinear 
problem and to obtain the 
highest accuracy of prediction 
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R2: 0.82-0.95 for NN 
models compiled with 
wavelet transformation 

the nonlinear model should be 
also applied.  
 

Identifying 

pollution sources 

and predicting 

urban air quality 

[22] 

Three machine learning models: single 
decision tree, decision tree forest, 
decision tree boost, support vector 
machines 
 

PCA Regression modelling Bagging and boosting  

The root mean squared 
error (RMSE), the mean 
absolute error (MAE), 
the correlation 
coefficient (R2) 
R2 ~ 0.9 for all learning 
ensembles 

PCA identified the vehicular 
emissions and fuel combustion 
as the major air pollution. All 
models gave satisfying results 
and can be used as tools in air 
quality prediction and 
management. 

Forecasting of 

PM2.5 [23] 
MLP 

Air mass trajectory 
analysis and wavelet 
transformation 

Regression modelling 
A sigmoid activation 
function 

MAE, RMSE, IA 

The hybrid model of ANN and 
air mass trajectory analysis and 
wavelet transformation was 
applied. The model combined 
with meteorological forecasted 
parameters and respective 
pollutant predictors is 
considered to be an effective 
tool to improve the forecasting 
accuracy of PM2.5. 

Identification of 

sources of 

combustion 

generated PM [24] 

5-fold-cross-validation for fitting PCR 
and CNN model 

No approach Regression modelling 

Machine learning with 
Excitation-emission 
matrix fluorescence 
spectroscopy was used 
for model training 
 

Mean squared error as a 
loss function. 
R2 = 0.745 for mobile 
sources 
R2 = 0.908 for vegetative 
sources 

The EEM-ML approach was 
mostly successful in predicting 
vegetative burning and mobile 
sources 
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4.2. Automotive Exhaust Toxicity 

In a previous work, artificial neural networks with back-propagation learning algorithms were 
applied to predict gasoline or diesel engine performances like torque, fuel consumption, exhaust 
toxicity, or exhaust emission, depending on the fuel mixture applied or on a specific material coating 
elements of a combustion chamber [30]. In some cases, artificial neural networks served as an 
optimisation tool to suit thermal or mechanical engine parameters for proper exhaust performance, 
i.e., [31–33]. Table 2 summarizes the AI models and data preprocessing methods applied in chosen 
several papers as well as general conclusions which Authors came up with while solving automotive-
related specific problems by application of artificial neural networks or machine learning algorithms. 

Vlad et al., 2001 [32] applied Hinging Hyperplane Trees as NN learning algorithms, which 
allowed to find an acceptable compromise between fuel consumption and emissions. The paper of 
Nagendra and Khare, 2006 [34] is helpful for young modellers, as in this work the step-by-step 
procedures of ANN backpropagation learning algorithms design were presented with an application 
of several meteorological and traffic characteristic variables for the modelling of NO2 from vehicular 
exhaust emission. Several configurations of MLP were tested. The results were satisfactory and 
demonstrated that both meteorological and traffic-related parameters should be included in the ANN 
algorithms. Canakci et al., 2006 [35] applied the backpropagation learning algorithm with three 
different variants, single layer, and logistic sigmoid transfer function for the performance and exhaust 
emission values of a diesel engine powered by biodiesel. To train the network, the average molecular 
weight, net heat of combustion, specific gravity, kinematic viscosity, C/H ratio, and cetane number 
of each fuel are used as the input layer, while the outputs were brake specific fuel-consumption 
(BSFC), exhaust temperature, and exhaust emissions. Similar methods and results were obtained by 
Parlak et al., 2006 [36], By Togun and Baysec, 2010 [37], by Cay, 2013 [38], by Mehra et al., 2018 [39], 
or by Gürgen et al., 2018 [16]. Yusaf et al., 2010 [37] used a multilayer perception network for non-
linear mapping between input and output parameters to predict a brake power, a torque, BSFC, and 
exhaust emissions of a modified diesel engine modified to operate with a combination of compressed 
natural gas (CNG) and diesel fuels. Rezaei et al., 2015 [41] tested two types of ANN, including radial 
basis function (RBF) and the feedforward to predict different engine performance metrics. Liu et al., 
2021 [42] in their work tested different learning algorithms: ANN, random forest, support vector 
regression, gradient-boosting regression trees to predict the exhaust temperature in heavy-duty 
natural gas spark ignition engine. Despite the need to fine-tune its hyperparameters, the artificial 
neural network algorithm proved to be the most suitable. The outcomes revealed that properly 
trained machine learning models can enhance engine performance, minimize emissions, and extend 
lifespan, in addition to complementing a sophisticated physical model. 

Just like scientists studying air pollution modelling, automotive researchers have also reached 
similar findings, affirming that a well-trained neural network model delivers prompt and consistent 
outcomes, rendering it a user-friendly tool for initial investigations into engineering concerns. As a 
substitute for conventional modelling methods, the utilization of the ANN approach enables precise 
predictions of internal combustion engine performance, temperature, and various other parameters. 
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Table 2. The review of computational methods applied in several chosen previous papers to solve specific problems related to automotive exhaust toxicity. 

Specific topic of a 

reviewed paper 
Model applied 

Compilation with 

and/or comparison to 

other numerical model 

Data pre-

processing method 

Activation function / 

training algorithm 

Loss function 

and error 
General conclusions 

Identification and 

optimisation of diesel 

engine emissions [32] 

Hinging Hyperplane Trees 
(HHT) 

No approach 
Regression 
modelling 

The Levenberg-
Marquardt algorithm 

Normalized 
Root Mean 
Square Error 

Incorporation of proposed 
model allowed to find a 
acceptable compromise 
between fuel consumption 
and emissions. 

Modelling of nitrogen 

dioxide dispersion from 

vehicular exhaust 

emissions [34] 

Multilayered NN with 
different configuration 
including and excluding 
meteorological data 
together with traffic-
related data 

No approach No information 

Hyperbolic tangent 
function, training using 
the supervised 
algorithm 

RMSE, 
descriptive 
statistics 

Better model performance 
when both traffic-related and 
meteorological data were 
taken into modelling 
processes 

Performance and exhausts 

emissions of a biodiesel 

engine [35] 
Multilayered NN No approach 

Input data were 
standardized to zero 
mean and unity 
deviation 

Back propagation, 
scaled conjugate 
gradient, Levenberg-
Marquardt algorithms 
were applied for model 
training 

RMS, R2 
R2 = 0.99 for all 
emission 
parameters 

The relationship between fuel 
properties and emitted 
pollutants can be successfully 
determined with an usage of 
artificial neural networks. 

Performance and exhausts 

emissions of a CNG-

diesel engine [40] 
MLP No approach No information 

Back propagation for 
model training, a 
sigmoid activation 
function 

R2 = (0.87-0.99) 

Emission performance of an 
engine was modelled against 
engine speed (rpm) and the 
compressed natural gas-to-
diesel ratio. Applied model 
allowed to concluded that a 
dual fuel CNG-diesel engine 
gives better brake thermal 
efficiency and lower emission 
than diesel engine. ANNs can 
provide accurate analysis and 
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simulation of the engine 
performance. 

Prediction of emission 

performance of HCCI 

engines with oxygenated 

fuels [41] 

FFNN, RBF No approach No information 

Different training 
functions were used for 
model training, i.e. 
scaled conjugate 
gradient, Levenberg-
Marquardt algorithms 
and others 

RMSE, R2 
R2 = 0.99 for 
FFNN 

Both FFNN and RBF were 
found to be capable of 
extracting the relationship 
between inputs and outputs 
to predict HCCI engine 
parameters. FFNN gave better 
performance, however 
computational time of RBF 
was shorter.  

Prediction of exhaust gas 

temperature of a heavy-

duty natural gas spark 

ignition engine [42] 

ANN, random forest (RF), 
support vector regression 
(SVR), gradient boosting 
regression trees (GBRT) 

1D CFD model 

Input data were 
standardized to zero 
mean and unity 
deviation 

A sigmoid activation 
function, a back 
propagation training 
algorithms 

RMSE, R2 
R2 = 0.90 for 
ANN 
R2 = 0.84 for RF 
R2 = 0.92 for 
SVR 
R2 = 0.98 for 
GBRT 

All four deep learning 
algorithms were able to 
correctly capture the 
relationship between key 
engine control variables and 
exhaust gas temperature 
(EGT). The computations 
resulted in acceptable level of 
EGT prediction. 
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4.3. Combustion Processes 

The foundation of numerous propulsion and power generation applications lies in the 
combustion process. One significant issue that impacts combustion is the occurrence and 
amplification of oscillations in both the heat release of the flame front and the pressure field within 
the combustion chamber. This phenomenon, known as thermo-acoustic instability, becomes self-
sustaining when there is a phase coupling between the two oscillations, resulting in the transfer of 
energy to the resonant modes of the combustion chamber [43]. Due to the non-linear nature of the 
phenomenon, relevant problems arise when it is necessary to define model-based control systems. 
Both in papers of Cammarata et al., 2002 [43] and of Fichera and Pagano, 2006 [44] the application of 
artificial neural networks for the prediction of combustion instabilities was presented. Satisfactory 
agreement between the simulated and experimental data was found, and the results show that the 
model successfully predicted the temporal evolution of thermo-acoustic combustion instabilities. 
Combustion stability was also the subject of the article by Zhang et al., 2021 [45] who investigated 
and modelled the combustion process of industrial gases. They applied both neural networks and the 
NARMAX model which is a popular non-linear computational model. The two models applied 
altogether gave the most satisfactory results, especially in long-term predictions. 

Romeo and Gareta, 2006 [46] and Nikpey et al., 2013 [47] successively applied a multilayer 
feedforward neural network with a backpropagation algorithm as a monitoring tool for biomass 
boiler parameters and for micro gas turbine work, respectively. Smrekar et al., 2013 [48] used linear 
and nonlinear models for the prediction of NOx emission from coal-fired boilers. The optimization 
was accomplished by adjusting the operating conditions of the boiler through excess air control, fine-
tuning the boiler, and balancing the flow of fuel and air to different burners. Model predictive control 
(MPC), an advanced control technique, utilized a model that connects operational parameters with 
NOx formation as the foundation for reducing NOx emissions. The use of nonlinear models did not 
improve the boiler performance. Thus, the authors concluded that static linear models (specifically 
ARX) are a satisfactory model to predict the NOx emission. Oko et al., 2015 [49] developed a dynamic 
model based on NARX neural networks to track the drum boiler and its parameters which are able 
to dynamically change during the work of a coal-fired power plant. Sun et al., 2016 [50] modelled the 
pyrolysis products from industrial waste biomass. An optimized three-layer ANN model with a 
logarithm sigmoid transfer function at the hidden layer and a linear function at the output layer was 
trained by means of the Levenberg-Marquardt (LM) algorithm. The major gas products of biomass 
pyrolysis are CO, CO2, H2 and CH4 as well as benzene and light-weight PAHs occurring in different 
rations depending on the temperature during the process, which was also simulated. Sunphorka et 
al., 2017 [51], in their study, utilized artificial neural networks (ANN) to establish a connection 
between biomass components and the kinetic parameters (activation energy, preexponential factor, 
reaction order) of biomass pyrolysis. They developed three distinct ANN models, each dedicated to 
one of the kinetic parameters. The relationships between the primary biomass components and the 
resultant parameters were found to be nonlinear and could be potentially predicted with high 
accuracy using the selected ANN models (R2 > 0.9). Luo et al., 2018 [52] applied ANN to predict 
product distributions in coal devolatilization and confronted obtained results with effects of 
modelling using FG-CPD (chemical percolation devolatilization coupled with the functional group). 
The study reveals that the proposed artificial neural network (ANN) model successfully predicts the 
precise product distribution of coal devolatilization, exhibiting a strong agreement with experimental 
data. Moreover, compared to the FG-CPD model, the ANN model delivers enhanced accuracy in 
predicting both the yield of individual components and their evolution. Additionally, the study 
evaluates the relative influence of input parameters on the evolution of each devolatilization product. 
The coal composition is identified as the primary factor, accounting for over 60% of the impact on the 
distribution of products. Sakiewicz et al., 2020 [53] used artificial neural networks to predict three 
biomass ash fusion temperatures: initial deformation temperature, hemispherical temperature and 
flow temperature based on chemical composition of the ash. The applicability of 400 neural network 
configurations was statistically verified. The multilayer perceptron with 12 inputs representing 
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fractions of the ash compounds, 11 hidden neurones, and three outputs proved to be the optimal 
neural model configuration for the purposes targeted in this paper. 

A very helpful resource for young modellers is the paper of Tuttle et al., 2021 [54] where both a 
concise review of the literature providing examples of topic areas where the considered modelling 
methods have been applied and step-by-step procedures for creating learning algorithms were 
presented. Ten established, data-driven dynamic algorithms were surveyed in this study and the 
GRU neural network was identified as the best method for modelling combustion emission rate. Li 
et al., 2021 [55] found an application of ANN in online dynamic prediction of potassium concentration 
in biomass fuels. They applied a basic recurrent neural network (RNN) and its variants, i.e., long 
short-term memory neural network (LSTM-NN) and deep recurrent neural network (DRNN). It was 
found that the prediction of relative error in the K concentration through the use of abovementioned 
models mentioned above was lower than 10%. Table 3 summarizes the AI models and data 
preprocessing methods applied in chosen several papers as well as general conclusions which 
Authors came up with while solving combustion-related specific problems by application of artificial 
neural networks or machine learning algorithms. 
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Table 3. The review of computational methods applied in several chosen previous papers to solve specific problems related to stationary combustion processes. 

Specific topic of a 

reviewed paper 
Model applied 

Compilation with and/or 

comparison to other 

numerical model 

Data pre-

processing 

method 

Activation function / 

training algorithm 

Loss function 

and error 
General conclusions 

Combustion 

instability [43,44,56] 
MLP NARMAX as a testing set No information 

Back propagation (a 
Levenberg-Marquardt 
algorithm) was 
applied for model 
training 

No information 

The NARMAX model implemented 
using a neural network was 
effective in long-term predictions. 
This can be applied as a suitable 
control solution ensuring the 
stability of he combustion process 
basing on the control three main 
parameters. 

Evaluation of boiler 

behaviour and 

combined heat and 

power micro gas 

turbines [46,47] 

FFNN No approach No information Back propagation 
real and 
equation-based 
monitoring data 

The NN can predict a set of 
operational variables and the 
fouling state of the boiler. It is also 
pointed out the NN is a stronger 
tool for monitoring than equation-
based monitoring. 

Prediction of NOx 

emissions for a coal-

based boiler [48] 

Random-walk 
(RW), Auto-
regressive with 
exogenous 
inputs (ARX), 
Auto-regressive 
moving-average 
with exogenous 
inputs 
(ARMAX), 
Neural networks 
(NNs), Support 
vector regression 
(SVR) 

No approach 

4-fold cross-
validation of the 
models, data with 
zero mean and 
standard deviation 

Back propagation MAE 

Results show that the adaptive 
modelling approach does not 
significantly improve the NOx 
prediction. Hence, the 
recommended model structure for 
multi-step NOx prediction is a 
static ARX model with occasional 
retrainings. 
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Prediction of drum 

pressure and level in 

coal-fired subcritical 

power plant [49] 

NARX NN No approach 

mapminmax and 
removeconstantro
ws processing 
functions 

A sigmoid transfer 
activation function, 
open loop function 

MSE 
The results of the validation and 
testing showed good agreement. 

Prediction of 

pyrolysis products 

from industrial waste 

biomass [50] 

A 3-layer ANN No approach No information 

A logarithm sigmoid 
transfer function at 
the hidden layer and 
a linear function at 
the output layer. Back 
propagation: the 
Levenberg-Marquardt 
(LM) algorithm for 
model training 

MSE 
R2 = 0.99 

Three processing parameters, space 
velocity, reaction temperature, and 
particle size, were identified as 
input variables in the model, while 
the target output variables include 
selectivity of the four gas products 
(H2, CO, CH4, CO2). There was 
fairly good agreement between the 
experimental results and simulated 
data for the biomass pyrolysis 
process. 

Prediction of kinetic 

parameters 

of biomass pyrolysis 

from its constituents 

[51] 

Mammalian 
neural networks 

No approach No information 

A hyperbolic tangent 
sigmoid function 
(tansig) was used in 
the hidden layer 
whilst a linear 
transfer function 
(purelin) was used in 
the output layer. The 
Levenberg-Marquardt 
backpropagation 
algorithm was used 
for model training. 

MSE 
R2 > 0.90 

This study applied ANN for 
constructing the correlation 
between biomass constituents and 
the kinetic parameters (activation 
energy ‘Ea’, pre-exponential factor 
‘k0’ and reaction order ‘n’) of 
biomass pyrolysis. Three ANN 
models were developed, one for 
each of the three kinetic parameters. 
The relationships between the main 
biomass components and the 
output parameters were non-linear 
and could potentially be predicted 
by the selected ANN models. The 
combination of tansig/purelin 
transfer function provided the 
lowest mean square error (MSE) in 
many cases. 
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Prediction of product 

distributions in coal 

devolatilization [52] 
FFNN FG-CPD No information 

A tangent sigmoid 
activation function 
was used.  

MSE 

The results show that the detailed 
product distributions of coal 
devolatilization predicted by the 
proposed ANN model are in good 
agreement with the experimental 
data for both the training and 
validation database, and the ANN 
model can give a more accurate 
prediction on both the yield of each 
component and its evolution 
compared with the FG-CPD model. 

Online dynamic 

prediction of 

potassium 

concentration in 

biomass fuels [55] 

long short-term 
memory neural 
network (LSTM-
NN) and deep 
recurrent neural 
network (DRNN) 

No approach No information 

The activation 
functions of the 
hidden layer and the 
fully connected layer 
are the tanh function 
and the Leaky ReLU 
function, respectively 

RMSA, MAE, 
MAPE 

It is found that the DRNN and 
LSTM-NN models have a longer 
computational time than the RNN. 
It is thought that the architecture of 
the DRNN model is more complex 
than those of the RNN and LSTM-
NN models, resulting in a longer 
computational time. 
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5. Conclusions and Challenges 

The range of applications of artificial intelligence is really wide. Most of the reviewed papers 
presented the successful results of the application of ANN and ML, also in clusters with other models. 
Many authors pointed out that the effect of overtraining neural networks is the most critical point in 
the entire neural network approach. The choice of the right topology and the number of variables in 
the learning algorithms are also key factors to obtain satisfactory results. 

The continuous development of artificial intelligence and learning algorithms is seen in the 
reviewed papers. The younger works, the newer neural network models, or more complex clusters 
of computational methods are proposed. This is due to the fact that AI is a serious tool which may 
find its application almost everywhere.  

The prediction of the performance of engines or boilers seems to be much easier than forecasting 
of pollutants in the atmosphere. An internal combustion chamber may be considered as a closed 
space, and less factors may influence the training procedure while applying artificial intelligence. In 
the atmosphere, the number of chemical and physical reactions, different transformations, and 
unpredictable weather phenomena is considerable. For these reasons, as many authors proposed in 
their work, hybrid models combining artificial intelligence with commonly used computational or 
statistical methods could give more satisfactory results in the prediction of the distribution of 
pollutants in ambient air.  

Basing on the results presented in previous works, I may conclude that: 

• AI may be successively applied as a tool supporting the environmental monitoring systems 
• Multi-layered perceptron networks with backpropagation training (the Levenberg-Marquardt 

algorithm) seem to be the most frequently used model for training and short-time predictions. 
Moreover, a sigmoid (hyperbolic or tangent) activation function is mostly used as it is faster and 
efficient in mapping the nonlinearity among the hidden layer neurones than others. 

• Designing of ANNs topology with possible highest satisfactory ratios needs many approaches 
and testing. Overtraining and underfitting of neural network are frequent problems while 
developing of AI-based models. To avoid both overfitting and underfitting, it is necessary to 
apply appropriate regularization techniques, such as L1/L2 regularization, early stopping, using 
proper cross-validation techniques, and adjusting neural network parameters to find the right 
balance between a model that is too complex and one that is too simple.  

• In order to train the network on the base of a given data set, a separate algorithm is needed. This 
can be further applied for process predictions and optimisation, however another algorithms 
(based on machine learning) should be applied.  

• Artificial neural networks and machine learning algorithms altogether may be utilized for 
optimisation of currently uncontrolled residential stoves fuelled by biomass in the aspect of 
limitation of pollutants emission, with a special concern on the emission which are nonregulated 
by any directive. This creates a possible gap to fill up and will be the subject of future work of 
the Author. 

In order to continue with further research on optimisation and automation of biomass stoves 
three significant barriers have been identified to overcome: 

• How much data is required to train the model properly and effectively? 
• How to incorporate the existing knowledge about fuel combustion in a chamber of a stove to the 

learning process of a model in order to improve the algorithm effectiveness and to protect the 
system from possible failures? 

• How to sensitize the trained AI-based model to changes of many parameters during combustion 
process, which are sometimes naturally instable, in order to avoid the situation when an 
occurring failure is treated as a true input to the network? 

The prospects for the development of artificial intelligence (AI) applications in environmental 
monitoring are highly promising. AI has the potential to revolutionize how to collect, analyse, and 
interpret environmental data, leading to more effective and efficient monitoring systems. By 
leveraging AI algorithms, data collection from various sources, enhance data integration and fusion 
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techniques, and enable advanced data analysis, pattern recognition, and anomaly detection can 
improved. AI can also facilitate predictive modelling, forecasting, and risk assessment in 
environmental monitoring, aiding in the identification and assessment of environmental risks. 
However, when it comes to modelling with artificial neural networks (ANNs), there are several key 
challenges that need to be addressed. These challenges include: 

• Data Privacy: ANN models often require access to large amounts of data, including sensitive 
information. Ensuring data privacy and protection is crucial to maintain the confidentiality 
and integrity of the data. Robust data anonymization techniques, secure data storage, and 
compliance with relevant privacy regulations are essential to address this challenge. 

• Expert Interpretation of Results: ANNs can be complex and opaque models, making it 
challenging for domain experts to interpret and understand the underlying factors driving the 
model's predictions. The lack of interpretability can hinder trust and acceptance of ANN 
models in practical applications. Efforts are underway to develop techniques for interpreting 
and explaining the decisions made by ANNs, such as feature importance analysis and model 
visualization. 

• Data Standardization: ANNs rely on high-quality and standardized data for training and 
validation. In environmental monitoring, data may come from diverse sources, with variations 
in formats, units, and quality. Ensuring data standardization and normalization is crucial to 
achieve reliable and accurate ANN models. Establishing data standards, data preprocessing 
techniques, and quality control measures are necessary to address this challenge. 

• Limited Data Availability: ANN models require large amounts of labelled data for training, 
which may not always be readily available in environmental monitoring applications. Limited 
data can lead to overfitting or underfitting issues, resulting in suboptimal model performance. 
Techniques such as data augmentation, transfer learning, and active learning can help mitigate 
this challenge by making the most of the available data and optimizing the training process. 

• Computational Resources: Training and optimizing ANNs can be computationally demanding, 
especially for large-scale environmental monitoring applications. Access to sufficient 
computational resources, such as high-performance computing clusters or cloud-based 
solutions, is essential to handle the complexity of ANN models efficiently. 

• Ethical Considerations: The ethical implications of using ANNs in environmental monitoring 
should be carefully considered. Ensuring fairness, avoiding biases, and addressing potential 
discriminatory effects of ANN models are crucial. Regular audits, transparency in model 
development, and ongoing evaluation of the social and environmental impact of ANN 
applications are necessary to mitigate ethical concerns. 

Addressing these challenges requires a multidisciplinary approach, involving experts from the 
fields of data science, environmental science, ethics, and policy-making. Collaborative efforts are 
essential to develop robust frameworks, guidelines, and best practices for modelling with ANNs in 
the context of environmental monitoring, ensuring data privacy, interpretability, standardization, 
and ethical considerations are appropriately addressed. 
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Nomenclature 

AI artificial intelligence 
ANN artificial neural network 
ARX auto-regressive model with exogenous inputs 
BSFC brake specific fuel-consumption 
CART classification and regression trees 
C/H ratio carbon-to-hydrogen mass ratio 
DRNN deep recurrent neural network 
EEM excitation-emission matrix 
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FC fully-connected 
FFNN feed forward neural network 
FG-CPD chemical percolation devolatilization coupled with the functional group 
GPUs  graphic processor units 
GRU gated recurrent unit 
HM Hopfield model 
IoT Internet of Things 
LM the Levenberg-Marquardt algorithm 
LPG liquid petroleum gas 
LSTM-NN long short-term memory neural network 
ML machine learning 
MLP multi-layer perceptron 
NARMAX nonlinear autoregressive moving average with exogenous input 
NARX nonlinear autoregressive with exogenous inputs 
NN neural network 
PAHs polycyclic aromatic hydrocarbons 
PCA principal component analysis 
PM particulate matter 
PMF positive matrix factorisation 
RBF radial basis function 
RNN recurrent neural network 
RT-AQF real-time air quality forecasting model 
SF scale-free network 
SW small world network 
TPUs  tensor processing units 
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