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Highlights

e  The modelling of real-world systems in the field of automatic control is necessary for multiple
objectives, including process simulation, control system design, and optimization of
NuMerous processes.

e  The process of Al-based models development can be divided into four stages: structure or
architecture design, training, validation and use.

e  There are many models basing on artificial neural networks and machine learning, which
were applied in different configurations to solve specific technological problems.

e  Multi-layered perceptron networks with backpropagation training (the Levenberg-Marquardt
algorithm) seem to be most frequently used model for training and short-time predictions.

e  For optimization of processes, machine learning algorithms should be rather applied.

Abstract: Environmental monitoring systems play a crucial role in assessing environmental quality,
detecting limits exceedances, and predicting potential ecological episodes. These systems rely on
the measurement of various variables at specific locations and time intervals over an extended
period. The concept of environmental monitoring encompasses the assessment of health and safety
issues for public and environmental health purposes. Pollution of the atmosphere and water, climate
change, and natural disasters are among the consequences of continuous industrial and municipal
development and human interference in natural ecosystems. To address these challenges and to
protect human lives and the environment, with a special concern on mitigating the ecological effects
of industrial development, advanced technical solutions, including the technologies associated with
artificial intelligence (artificial neural networks ANNs, machine learning ML) have been developed.
These technologies offer powerful tools for analysing the vast amount of data collected by
monitoring systems and extracting valuable insights. By applying ANNs and machine learning
algorithms, environmental monitoring systems can effectively process and interpret the measured
variables to assess environmental quality. Despite challenges and limitations, such as data quality
and interpretability of AI models, ongoing research and interdisciplinary collaboration are paving
the way for the successful implementation of Al in environmental monitoring, ultimately
supporting informed decision-making and sustainable resource management. While several review
papers have explored the theory of artificial intelligence (AI), here I aim to review the application of
ANNs and ML, in environmental aspects, specifically in automotive and industrial emissions
toxicity measurements, as well as atmospheric pollution prevention. By examining the potential of
Al in these domains, the paper contributes to understanding the role of advanced technologies in
environmental monitoring and protection.

Keywords: artificial neural networks; machine learning; environmental protection; air pollution;
atmosphere; pollutants emission prediction; forecasting; data security
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1. Introduction

The environmental protection issues have been still gathering more attention of governments,
scientists, and society. Atmosphere and water pollution, climatic changes, and natural disasters are
the effect of continuous industrial and municipal development and human interference into natural
ecosystems. The progress in science and technology is observed almost everywhere in the world, and
currently most of new advanced technical solutions are mainly targeted to protect human lives, to
protect the environment and to face the ecological effects of industrial development.

Environmental monitoring systems are set up to define procedures related to tracing of
environment quality and to alerting in circumstances of limits exceedances or potential future
ecological episodes. From a technical point of view, monitoring systems are based on measurements
of a series of variables repeated at one or more locations under prearranged conditions in space and
time over a long period [1]. The concept of environmental monitoring is based on the assessment of
health and safety problems for public and environmental health purposes. The entire system consists
of: (1) inspection and correction action, i.e. measurements and data collection; (2) planning, i.e.,
setting up of targets and objectives in the aspects of environmental protection; (3) implementation
and operation, i.e., setting up of procedures in response to emergencies and alerts; (4) management,
i.e., experts advisory board dealing with knowledge of environment and processes in ecosystems
(Figure 1).

MEASUREMENTS
AND DATA
COLLECTION

MANAGEMENT PLANNING

IMPLEMENTATION
AND OPERATION

Figure 1. The general mechanism of environmental monitoring systems (source: own preparation on
the base on [1]).

Artificial intelligence has already found its interest in almost every area of technology. At the
same time, it is continuously improved to fully replace a human in activities in the near future, such
as cooking, telemarketing, or driving a car. The first mentions of the application of neural networks,
which are the most well-known representative of Al, occurred in the scientific literature in the middle
of the XX age. However, the authors met many technical limitations when applied in the form and
manner that had been used at that time. Interest in Al was raised again in the 1980s of the XX era
when a novel concept of non-linearity between input and output signals was introduced [2]. This
model, commonly known as the Hopfield model (HM), was introduced by Hopfield in 1982 [3]. The
HM consists of some specific states, called neurones, which are fully connected by synaptic weights
[4], which in some way reflect the neurobiological theory of the processing of neural signals in the
brain. This new approach has created a wave of interest, not only among scientists related to Al, but
also in most other scientific areas, like economy or environmental protection.

Many review papers on the theory of artificial intelligence have been found in the literature, i.e.
[2,4-10]. However, here in this paper, the possibility of artificial intelligence in some environmental
aspects has been reviewed. Here I focused on artificial neural networks (ANN) and machine learning
(ML) and on the application of their different forms in systems of automotive and industrial
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emissions toxicity measurements, and atmospheric pollution prevention. The aim of this paper is to
collect and combine procedures described by other Authors and to extract the most important
elements of modelling process. Afterwards, the creation of a unique path of application of Al-
augmented models in other problem-solving mechanisms will be possible.

2. Basics of Artificial Neural Networks and Machine Learning

2.1. Artificial Neural Networks

As mentioned above, artificial neural networks had been designed in order to mimic the function
of a biological neurone whose task is to process the signals from the whole organism through the
dendrites (Figure 2) with a specific synaptic strength through the axons to the brain.
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Figure 2. The anatomy of human neural cells (source: a photo from www.freepik.com, descriptions —
own preparation).

The output signal is a function of input signals from several neurones, which create nets or layers.
These input signals are characterized by a weight, which is a real number (Figure 3). The greater the
magnitude of the weight, the greater the effect of signal encouragement. The weight values of
neurones in a network are significant because they determine the computational properties of the
network, and network training is achieved by modifying these weights appropriately [2].
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Figure 3. The simplified scheme with mathematical relations of artificial neural network (source: own
preparation).
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The Hopfield model networks are the simplest structures. They are fully connected neural
networks. It means that to obtain the local minimum energy, neural networks are made of many
neurones connected with each other and create a kind of spin-glass model. The feedforward neural
networks (FFNN) were the first layered neural networks. They consist of one input layer, one hidden
layer and one output layer. However, the signal moves just forward. Multilayered backpropagation
neural networks (Figure 4) were invented and developed as a further step. The neural networks of
this kind are able to train and learn signal processing in forward and back-propagation.

| Forward propagration >

\\\‘\\\\\\O
e00e 0 /
,r/
error
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input layer hidden layer  hidden layer output layer
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Figure 4. The scheme of multi-layered neural network with backpropagation (source: own
preparation).

Typical multilayered ANNs have a structure of different layers of neurones, where neurones in
each layer are fully connected to the neurones of the next layer. An output signal from a first layer is
an input signal for a second layer, etc. The ANNs of this type are found to be sufficient in
generalization and classification abilities and, therefore, the learning performance is more effective
as well. The quality of classification and prediction in the networks is determined by learning
algorithms. What is important, is that the complex topology of NNs does not guarantee the optimal
final performance. The more complex the architecture of NNs, the higher are the costs of
computational time and energy [4]. Thus, the fully connected (FC) structures of ANNSs are
recommended to be replaced by sparsely connected graphs such as small-world (SW), scale-free (SF),
and random networks.

Due to the fact that ANNs do not require an understanding and detailed knowledge of the
processes occurring in the atmosphere or other environmental compartments, the ANNs are a
suitable alternative to commonly used computational models, like for real-time air quality forecasting
models (RT-AQFs) [11,12]. Models of this kind are sensitive to many factors, such as the scale and
quality of the parameters involved in the model, computationally expensive, and dependent on large
databases of several input parameters, of which some may not be available [5,13]. However, Russo et
al., 2013 [14] advise to implement models with an optimal amount of datasets. The minimisation of
data in input layer improves the predictive power of ANNs. On the other site, according to
Antanasijevi¢ et al., 2013 [15] the wide availability of the input parameters used in ANNs can
overcome the lack of data and basic environmental indicators in many countries, which can prevent
or seriously hinder the forecasting of particulate matter (PM) emission.
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Prediction by a well-trained ANN is usually much faster than conventional simulation programs
or mathematical models, as no lengthy iterative calculations are required to solve differential
equations using numerical methods; however, the selection of an appropriate neural network
topology is important in terms of model accuracy and model simplicity. Giirgen et al., 2018 [16] paid
attention; one problem that should be considered in the training procedure is overfitting wherein the
obtained ANN memorises the training examples and does not learn the ability to generalise unseen
data. Early stopping is one of the practical solutions to this problem.

Cabaneros et al., 2019 [5] reviewed that in the literature there is no clear instruction on how to
build neural networks, what kind of ANN model should be applied, and what topology of learning
algorithms should be designed for specific goals like chemistry or ecological data. This makes the
application of ANNSs a bit limited despite that computational software allowing for neural network
design is continuously improved and developed. Jakeman et al., 2007 [17] introduced some general
guidelines to help with the development of environmental models. Adoption of these outlines by
modelers, through fuller execution and reporting of the steps, benefits the model-building
community and decision-making about model recommendations. Finally, Cabaneros et al. 2019 [5]
outlined the procedures for designing artificial neural architectures for the purposes of the prediction
and forecasting of pollutant concentrations. Cabaneros et al. 2019 point out that each step of the
overall model development process should be justified explicitly. Moreover, the development of
artificial neural networks is problem-specific, and it is not possible to outline one instruction.
However, the general protocols, which are summarised in Figure 5, may be useful to modelers who
work on other environmental aspects.

Figure 5. Decision-making route in designing of artificial neural networks (source: own preparation)

2.2. Machine Learning

Machine learning is a set of algorithms which are equipped with a dedicated system serving
data of different kinds processing. The computer can be trained and to learn based on data and
machine learning methods. ML has been explored in last decades and there were three main
technologies trends which fuelled this development [9]:

e  While sensing and Internet of Things (IoT) technologies have been rapidly advanced, more data
amounts were collected;

e Access to powerful and affordable computational resources is better than with the design of
machine-oriented chips like GPUs (Graphic Processor Units) or TPUs (Tensor Processing Units).

e  Advanced machine learning algorithms have been developed and validated.

According to Crisci et al., 2012 [8], the ML is a classical but widely studied statistical method for
data science. It covers the standard steps of data processing like classification, regression, clustering,
density estimation, etc. However, the tools, such as techniques and strategies, characterised by
massive algorithms and computational resources applied in big data science with a large number of
variables and complex data structures make ML unique.
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Generally speaking, the evaluated sample is split into two subsamples: one which is trained — a
learning sample, and the one that is evaluated — a test sample. The model is evaluated over the
training set, and its performance is studied using the evaluation sample. To reduce any bias due to
the random choice of the evaluation sample, the loss is averaged over several random splits of the
data (Figure 6) [8].

s — oo oo 4 random split
|
| 75 % 25 % validation
| training data set data set
e
Train the Evaluate the
model model

. |
| Average risk after several |
{ model evaluations |

Figure 6. Optimal ML model for training and evaluation (source: own preparation on the base on [8]).

There are many computational tools within the machine learning concepts which may be
applied for ecological data treatment. Crisci et al., 2012 [8] reviewed different algorithms and their
mathematical basis and tested them for their own research. The performances of ML model
approaches, such as general additives models or classification and regression trees (CART), have
been presented and the data obtained were then compared. Moreover, some possible extensions for
CART were proposed, like bagging, random forest, boosting, support vector machines, projection
pursuit, and nearest neighbours. These extensions were developed mainly due to instability of the
CART model with respect to changes in the training sample. The aggregated models, which are
created thanks to the extensions, are more stable in training and learning processes. However, the
application of these extensions refers to some specific situations dependent on what kind of
information do we need to obtain. Generally, ML is a fully developed statistical data analysis method
that allows for prediction and forecasting of specific extremes based on ecological data of any kind.
Machine learning found its application in building as well, however, the model algorithms need to
be still improved [7,9].

3. Al-Augmented Environmental Monitoring Systems vs. Data Security

The utilization of artificial intelligence for automated decision making and predictive analytics,
along with the remarkable advancements in sensor technology and robotics, will probably
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revolutionize the perspectives and responses of individuals, communities, governments, and private
entities towards climate and ecological transformations. Pandemic situation has triggered the
acceleration of digitization and automation trend in many areas in order to ensure the supply chains.
For many years, countries on the whole have world invested much money in technology associated
with artificial intelligence, robotics and sensors. China, United States and France are global pioneers
in development of Al-based technological applications, including the areas of aquaculture, forestry
and agriculture. In the period from 2007 to 2020 they pumped over 7 billion USD into the
implementation of Al-augmented technology [18]. Smart cities base on Al-associated technology
including traffic management systems, smart policing, lightning control, facial recognition, smart
waste disposal systems. Moreover, it turned out that agriculture and forestry are prominent sectors
in development and deployment of Al-based systems, for instance for management and control of
irrigation systems of farms and plants [18]. In Figure 7 it was showed how looks like the mechanisms
of environmental monitoring systems work when Al-augmented technology is incorporated in there.
The described flowchart provides a structured framework for environmental monitoring, utilizing
artificial intelligence techniques to collect, process, analyse, and interpret data. It allows for informed
decision-making, proactive actions, and preventive measures to safeguard the environment and
address potential risks or challenges identified through the monitoring process. The data processing
stage is crucial for extracting meaningful information from the collected environmental data using
artificial intelligence techniques. It involves preprocessing the data, selecting an appropriate model,
training and optimizing the model, and utilizing it for prediction and inference tasks. This stage lays
the foundation for the subsequent analysis and interpretation of the environmental data to support
decision-making and management in environmental monitoring systems.
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Figure 7. The process of environmental monitoring system with incorporated Al-augmented mechanisms of data processing (source: own preparation).
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According to The Royal Society [19], in the near future every controlling system will be fully
digitized, creating so called “digital twins” which are a real big data from Al-augmented analysis of
ecological data. This digital infrastructure will enable to establish “control loops” across sectors and
as a result real data simulation, exploration, optimisation and risk identification will be possible. The
trend of digitization and automation forces innovations in IT solutions due to the increasing amount
of data which need to be stored. Therefore, the higher computational capacity and larger virtual space
are a need. Here I and many authors before identified a huge risk related to data security. In today’s
world, personal data protection is a crucial aspect of new technology implementation. Both personal
data and ecological data must be secured in order to avoid their releasing. In the application of
artificial intelligence in environmental monitoring systems, several threats related to data security
have been identified. These threats include:

e  Proper interpretation of bias in Al algorithms: Al algorithms are designed to learn from data,
but if the data used for training is biased, the algorithms can perpetuate and amplify that bias.
This can lead to inaccurate or unfair decision-making in environmental monitoring, affecting the
integrity and effectiveness of the systems.

e  Full automation of systems and substitution of humans: While automation can enhance
efficiency, relying solely on machines to replace human involvement in environmental
monitoring may lead to the neglect of critical human insights, intuition, and judgment. Over-
reliance on machines for cost reduction purposes could potentially overlook important
contextual factors and compromise the accuracy and effectiveness of monitoring efforts.

e  Cyberattacks: As Al systems in environmental monitoring become more interconnected and
reliant on networked infrastructure, they become vulnerable to cyberattacks. Malicious actors
could exploit security vulnerabilities to manipulate or sabotage data, compromise the integrity
of monitoring systems, or gain unauthorized access to sensitive information.

e  Cascading failures: Al systems are complex and interconnected, which means that a failure or
error in one component can potentially propagate and lead to widespread consequences. In
environmental monitoring systems, a cascading failure in Al algorithms or infrastructure could
compromise the accuracy of data analysis, decision-making processes, and ultimately, the
effectiveness of monitoring efforts.

e  Ethical and legal aspects of data storage: The use of Al in environmental monitoring generates
vast amounts of data, including potentially sensitive information. The ethical and legal aspects
of storing, managing, and securing this data pose challenges. Ensuring privacy, consent, data
ownership, and compliance with relevant regulations and frameworks are critical to maintaining
trust and safeguarding the rights of individuals and organizations involved.

e Opverall, addressing these identified threats is crucial for the responsible and effective
deployment of Al in environmental monitoring systems, promoting data security, fairness,
accountability, and ethical considerations.

4. Application of Artificial Intelligence in Environmental Data Management

4.1. Atmospheric Pollution

Both neural networks and machine learning have found their application in predicting the
distribution of pollutants in the atmosphere and forecasting the levels of concentration of pollutants,
such as PM10 or ozone in ambient air. Many different algorithms were applied by different authors.
Table 1 summarizes the Al models and data preprocessing methods applied in chosen several papers
as well as general conclusions which Authors came up with while solving specific problems by
application of artificial neural networks or machine learning algorithms. Shortly, each approach
undertaken by other Authors was concluded that artificial neural networks and machine learning are
very promising methods to track the changes in atmospheric pollution and, thanks to that, to alert
the society about possible emergencies. Perez and Reyes, 2006 [20] compared the application of neural
networks reflecting the linear and nonlinear models. In their work a three-layer feed neural network
as a nonlinear model and a special neural network with no hidden layer as a linear model were
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applied. Nonlinear models gave better results than linear models in the forecast of air pollution by
PM10 from the perspective of 24 h. Antanasijevi¢ et al., 2013 [15] came up with similar conclusions.
The ANN model has shown very good performance and demonstrated that the forecast of PM10
emission up to two years can be made successfully and accurately and were three times better than
the predictions obtained from the conventional multilinear regression and principal component
regression models that were trained and tested using the same datasets and input variables. The
advantages of few predictors (the multilayer perceptron, radial basis function, ElIman network, and
support vector machine) combined in the ensemble were also presented by Siwek and Osowski, 2012
[21]. The important advantage of the proposed approach is that it does not require very exhaustive
information about air pollutant, reaction mechanisms, and meteorological pollutant sources, and that
they have the ability of allowing nonlinear relationships between very different predictor variables.

Interesting results were obtained by applying both the artificial intelligence and statistical
methods commonly used for the distribution of PM10 sources. Singh et al., 2013 [22] used principal
component analysis (PCA) for PM10 source identification purposes and tree-based ensemble learning
models (single decision tree, decision tree forest, decision tree boost) to predict the urban air quality
in a city in India. The models successfully predicted the urban ambient air quality and, according to
the authors, can be used as effective tools supporting atmosphere management systems.. In the paper
by Feng et al., 2015 [23] a novel hybrid model was presented that combines air mass trajectory
analysis and wavelet transformation to improve the accuracy of artificial neural network forecasting
daily average concentrations of PM2.5 two days in advance. The respective pollutant predictors were
used as input to a multilayer perceptron (MLP) type of backpropagation neural network. The
significant advantage of this hybrid model was its ability to predict high peaks of PM2.5
concentrations, which are considered very critical factors in air pollution prediction systems.

The paper of Rutherford et al., 2021 [24] is an interesting consideration of application of hybrids
of Al and advanced instrumental analytical techniques for the identification of sources of combustion
generated PM from combustion. The hybrid algorithm of excitation-emission matrix (EEM)
fluorescence spectroscopy and machine learning was developed. To train this model, the PMF source
apportionment technique was applied. The EEM-ML approach was successful and moderately
successful in predicting vegetative burning and mobile sources. However, the PMF usage for model
training did not resolve source categories that would likely be valuable on a global scale such as forest
fires, various cookstove and home heating fuels (e.g. biomass, kerosene, LPG, and coal), or diesel
versus gasoline exhaust. Using source attribution data that resolved these sources to train an EEM-
ML model could allow EEM-ML to apportion these important sources of PM pollution. This was
partially achieved by Song et al., 2001 [25] who proposed multivariate calibration based on single
particle mass spectral data to apportion the gasoline and diesel generated emissions.

The useful properties of artificial intelligence in air quality prediction and in development of
cost-effective control strategies were also confirmed by other authors [20,26-29].


https://doi.org/10.20944/preprints202307.1298.v1

Table 1. The review of computational methods applied in several chosen previous papers to solve specific problems related to atmospheric pollution.
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R2: 0.82-0.95 for NN the nonlinear model should be
models compiled with also applied.

wavelet transformation

The root mean squared PCA identified the vehicular

Identifying Three machine learning models: single error (RMSE), the mean emissions and fuel combustion

pollution sources  decision tree, decision tree forest, absolute error (MAE), as the major air pollution. All
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Machine learning with Mean squared error as a
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sources of 5-fold-cross-validation for fitting PCR . . matrix fluorescence  R?=0.745 for mobile ~ mostly successful in predicting
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4.2. Automotive Exhaust Toxicity

In a previous work, artificial neural networks with back-propagation learning algorithms were
applied to predict gasoline or diesel engine performances like torque, fuel consumption, exhaust
toxicity, or exhaust emission, depending on the fuel mixture applied or on a specific material coating
elements of a combustion chamber [30]. In some cases, artificial neural networks served as an
optimisation tool to suit thermal or mechanical engine parameters for proper exhaust performance,
i.e., [31-33]. Table 2 summarizes the Al models and data preprocessing methods applied in chosen
several papers as well as general conclusions which Authors came up with while solving automotive-
related specific problems by application of artificial neural networks or machine learning algorithms.

Vlad et al.,, 2001 [32] applied Hinging Hyperplane Trees as NN learning algorithms, which
allowed to find an acceptable compromise between fuel consumption and emissions. The paper of
Nagendra and Khare, 2006 [34] is helpful for young modellers, as in this work the step-by-step
procedures of ANN backpropagation learning algorithms design were presented with an application
of several meteorological and traffic characteristic variables for the modelling of NO: from vehicular
exhaust emission. Several configurations of MLP were tested. The results were satisfactory and
demonstrated that both meteorological and traffic-related parameters should be included in the ANN
algorithms. Canakci et al., 2006 [35] applied the backpropagation learning algorithm with three
different variants, single layer, and logistic sigmoid transfer function for the performance and exhaust
emission values of a diesel engine powered by biodiesel. To train the network, the average molecular
weight, net heat of combustion, specific gravity, kinematic viscosity, C/H ratio, and cetane number
of each fuel are used as the input layer, while the outputs were brake specific fuel-consumption
(BSFC), exhaust temperature, and exhaust emissions. Similar methods and results were obtained by
Parlak et al., 2006 [36], By Togun and Baysec, 2010 [37], by Cay, 2013 [38], by Mehra et al., 2018 [39],
or by Giirgen et al., 2018 [16]. Yusaf et al., 2010 [37] used a multilayer perception network for non-
linear mapping between input and output parameters to predict a brake power, a torque, BSFC, and
exhaust emissions of a modified diesel engine modified to operate with a combination of compressed
natural gas (CNG) and diesel fuels. Rezaei et al., 2015 [41] tested two types of ANN, including radial
basis function (RBF) and the feedforward to predict different engine performance metrics. Liu et al.,
2021 [42] in their work tested different learning algorithms: ANN, random forest, support vector
regression, gradient-boosting regression trees to predict the exhaust temperature in heavy-duty
natural gas spark ignition engine. Despite the need to fine-tune its hyperparameters, the artificial
neural network algorithm proved to be the most suitable. The outcomes revealed that properly
trained machine learning models can enhance engine performance, minimize emissions, and extend
lifespan, in addition to complementing a sophisticated physical model.

Just like scientists studying air pollution modelling, automotive researchers have also reached
similar findings, affirming that a well-trained neural network model delivers prompt and consistent
outcomes, rendering it a user-friendly tool for initial investigations into engineering concerns. As a
substitute for conventional modelling methods, the utilization of the ANN approach enables precise
predictions of internal combustion engine performance, temperature, and various other parameters.
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Table 2. The review of computational methods applied in several chosen previous papers to solve specific problems related to automotive exhaust toxicity.

Specific topic of a
reviewed paper

Identification and
optimisation of diesel
engine emissions [32]

Modelling of nitrogen
dioxide dispersion from
vehicular exhaust
emissions [34]

Performance and exhausts
emissions of a biodiesel
engine [35]

Performance and exhausts
emissions of a CNG-
diesel engine [40]

Compilation with
Model applied and/or comparison to
other numerical model

Hinging Hyperplane Trees

(HHT) No approach

Multilayered NN with
different configuration
including and excluding
meteorological data
together with traffic-
related data

No approach

Multilayered NN No approach

MLP No approach

Data pre-

Activation function /

processing method training algorithm

Regression
modelling

No information

Input data were

The Levenberg-
Marquardt algorithm

Hyperbolic tangent
function, training using
the supervised
algorithm

Back propagation,
scaled conjugate

standardized to zerogradient, Levenberg-

mean and unity
deviation

No information

Marquardt algorithms
were applied for model
training

Back propagation for
model training, a
sigmoid activation
function

Loss function
and error

Normalized
Root Mean
Square Error

MSE,
descriptive
statistics

RMS, R?
R2=0.99 for all
emission
parameters

R2 = (0.87-0.99)

General conclusions

Incorporation of proposed
model allowed to find a
acceptable compromise
between fuel consumption
and emissions.

Better model performance
when both traffic-related and
meteorological data were
taken into modelling
processes

The relationship between fuel
properties and emitted
pollutants can be successfully
determined with an usage of
artificial neural networks.

Emission performance of an
engine was modelled against
engine speed (rpm) and the
compressed natural gas-to-
diesel ratio. Applied model
allowed to concluded that a
dual fuel CNG-diesel engine
gives better brake thermal
efficiency and lower emission
than diesel engine. ANNs can
provide accurate analysis and
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Prediction of emission
performance of HCCI
engines with oxygenated
fuels [41]

FFNN, RBF No approach

Prediction of exhaust gas ANN, random forest (RF),
temperature of a heavy- support vector regression
duty natural gas spark  (SVR), gradient boosting
ignition engine [42] regression trees (GBRT)

1D CFD model

No information

Input data were

standardized to zerofunction, a back

mean and unity
deviation

Different training
functions were used for

model training, i.e. RMSE, R?
scaled conjugate R2=0.99 for
gradient, Levenberg- FFNN
Marquardt algorithms
and others
RMSE, R?
R2=0.90 for
A sigmoid activation =~ ANN
R?=0.84 for RF
propagation training ~ R?=0.92 for
algorithms SVR
R2=0.98 for
GBRT

simulation of the engine
performance.

Both FFNN and RBF were
found to be capable of
extracting the relationship
between inputs and outputs
to predict HCCI engine
parameters. FFNN gave better
performance, however
computational time of RBF
was shorter.

All four deep learning
algorithms were able to
correctly capture the
relationship between key
engine control variables and
exhaust gas temperature
(EGT). The computations
resulted in acceptable level of
EGT prediction.
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4.3. Combustion Processes

The foundation of numerous propulsion and power generation applications lies in the
combustion process. One significant issue that impacts combustion is the occurrence and
amplification of oscillations in both the heat release of the flame front and the pressure field within
the combustion chamber. This phenomenon, known as thermo-acoustic instability, becomes self-
sustaining when there is a phase coupling between the two oscillations, resulting in the transfer of
energy to the resonant modes of the combustion chamber [43]. Due to the non-linear nature of the
phenomenon, relevant problems arise when it is necessary to define model-based control systems.
Both in papers of Cammarata et al., 2002 [43] and of Fichera and Pagano, 2006 [44] the application of
artificial neural networks for the prediction of combustion instabilities was presented. Satisfactory
agreement between the simulated and experimental data was found, and the results show that the
model successfully predicted the temporal evolution of thermo-acoustic combustion instabilities.
Combustion stability was also the subject of the article by Zhang et al., 2021 [45] who investigated
and modelled the combustion process of industrial gases. They applied both neural networks and the
NARMAX model which is a popular non-linear computational model. The two models applied
altogether gave the most satisfactory results, especially in long-term predictions.

Romeo and Gareta, 2006 [46] and Nikpey et al., 2013 [47] successively applied a multilayer
feedforward neural network with a backpropagation algorithm as a monitoring tool for biomass
boiler parameters and for micro gas turbine work, respectively. Smrekar et al., 2013 [48] used linear
and nonlinear models for the prediction of NOx emission from coal-fired boilers. The optimization
was accomplished by adjusting the operating conditions of the boiler through excess air control, fine-
tuning the boiler, and balancing the flow of fuel and air to different burners. Model predictive control
(MPC), an advanced control technique, utilized a model that connects operational parameters with
NOx formation as the foundation for reducing NOx emissions. The use of nonlinear models did not
improve the boiler performance. Thus, the authors concluded that static linear models (specifically
ARX) are a satisfactory model to predict the NOx emission. Oko et al., 2015 [49] developed a dynamic
model based on NARX neural networks to track the drum boiler and its parameters which are able
to dynamically change during the work of a coal-fired power plant. Sun et al., 2016 [50] modelled the
pyrolysis products from industrial waste biomass. An optimized three-layer ANN model with a
logarithm sigmoid transfer function at the hidden layer and a linear function at the output layer was
trained by means of the Levenberg-Marquardt (LM) algorithm. The major gas products of biomass
pyrolysis are CO, CO, H2 and CHa as well as benzene and light-weight PAHs occurring in different
rations depending on the temperature during the process, which was also simulated. Sunphorka et
al., 2017 [51], in their study, utilized artificial neural networks (ANN) to establish a connection
between biomass components and the kinetic parameters (activation energy, preexponential factor,
reaction order) of biomass pyrolysis. They developed three distinct ANN models, each dedicated to
one of the kinetic parameters. The relationships between the primary biomass components and the
resultant parameters were found to be nonlinear and could be potentially predicted with high
accuracy using the selected ANN models (R? > 0.9). Luo et al.,, 2018 [52] applied ANN to predict
product distributions in coal devolatilization and confronted obtained results with effects of
modelling using FG-CPD (chemical percolation devolatilization coupled with the functional group).
The study reveals that the proposed artificial neural network (ANN) model successfully predicts the
precise product distribution of coal devolatilization, exhibiting a strong agreement with experimental
data. Moreover, compared to the FG-CPD model, the ANN model delivers enhanced accuracy in
predicting both the yield of individual components and their evolution. Additionally, the study
evaluates the relative influence of input parameters on the evolution of each devolatilization product.
The coal composition is identified as the primary factor, accounting for over 60% of the impact on the
distribution of products. Sakiewicz et al., 2020 [53] used artificial neural networks to predict three
biomass ash fusion temperatures: initial deformation temperature, hemispherical temperature and
flow temperature based on chemical composition of the ash. The applicability of 400 neural network
configurations was statistically verified. The multilayer perceptron with 12 inputs representing
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fractions of the ash compounds, 11 hidden neurones, and three outputs proved to be the optimal
neural model configuration for the purposes targeted in this paper.

A very helpful resource for young modellers is the paper of Tuttle et al., 2021 [54] where both a
concise review of the literature providing examples of topic areas where the considered modelling
methods have been applied and step-by-step procedures for creating learning algorithms were
presented. Ten established, data-driven dynamic algorithms were surveyed in this study and the
GRU neural network was identified as the best method for modelling combustion emission rate. Li
etal., 2021 [55] found an application of ANN in online dynamic prediction of potassium concentration
in biomass fuels. They applied a basic recurrent neural network (RNN) and its variants, i.e., long
short-term memory neural network (LSTM-NN) and deep recurrent neural network (DRNN). It was
found that the prediction of relative error in the K concentration through the use of abovementioned
models mentioned above was lower than 10%. Table 3 summarizes the AI models and data
preprocessing methods applied in chosen several papers as well as general conclusions which
Authors came up with while solving combustion-related specific problems by application of artificial
neural networks or machine learning algorithms.
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Table 3. The review of computational methods applied in several chosen previous papers to solve specific problems related to stationary combustion processes.

Specific topic of a
reviewed paper

Combustion
instability [43,44,56]

Evaluation of boiler
behaviour and
combined heat and
power micro gas
turbines [46,47]

Prediction of NOx
emissions for a coal-
based boiler [48]

Compilatio ith and/or Dat - .. . .
mpriation with andjor Liata pre Activation function / Loss function

Model appli ison to oth i
odel applied comparison to other processing training algorithm  and error
numerical model method

Back propagation (a
Levenberg-Marquardt

MLP NARMAX as a testing set No information  algorithm) was No information
applied for model
training

real and
FFNN No approach No information  Back propagation equation-based

monitoring data

Random-walk
(RW), Auto-
regressive with
exogenous
inputs (ARX),
Auto-regressive
moving-average

4-fold cross-
validation of the
No approach models, data with Back propagation MAE
zero mean and
standard deviation

with exogenous
inputs
(ARMAX),
Neural networks
(NNSs), Support
vector regression
(SVR)

General conclusions

The NARMAX model implemented
using a neural network was
effective in long-term predictions.
This can be applied as a suitable
control solution ensuring the
stability of he combustion process
basing on the control three main
parameters.

The NN can predict a set of
operational variables and the
fouling state of the boiler. It is also
pointed out the NN is a stronger
tool for monitoring than equation-
based monitoring.

Results show that the adaptive
modelling approach does not
significantly improve the NOx
prediction. Hence, the
recommended model structure for
multi-step NOx prediction is a
static ARX model with occasional
retrainings.
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Prediction of drum
pressure and level in
coal-fired subcritical
power plant [49]

NARX NN No approach

Prediction of
pyrolysis products
from industrial waste
biomass [50]

A 3-layer ANN No approach

Prediction of kinetic
parameters

of biomass pyrolysis
from its constituents
[51]

Mammalian

No approach
neural networks PP

mapminmax and
removeconstantro
WS processing
functions

No information

No information

A sigmoid transfer
activation function, MSE
open loop function

A logarithm sigmoid
transfer function at
the hidden layer and

li functi t
a linear function a MSE

the output layer. Back R2 = 0.99

propagation: the
Levenberg-Marquardt
(LM) algorithm for
model training

A hyperbolic tangent
sigmoid function

(tansig) was used in

the hidden layer

whilst a linear

transfer function MSE
(purelin) was used in R?>0.90
the output layer. The
Levenberg-Marquardt
backpropagation
algorithm was used

for model training.

The results of the validation and
testing showed good agreement.

Three processing parameters, space
velocity, reaction temperature, and
particle size, were identified as
input variables in the model, while
the target output variables include
selectivity of the four gas products
(H2, CO, CHs, CO2). There was
fairly good agreement between the
experimental results and simulated
data for the biomass pyrolysis
process.

This study applied ANN for
constructing the correlation
between biomass constituents and
the kinetic parameters (activation
energy “Ed’, pre-exponential factor
‘ko” and reaction order ‘n”) of
biomass pyrolysis. Three ANN
models were developed, one for

each of the three kinetic parameters.

The relationships between the main
biomass components and the
output parameters were non-linear
and could potentially be predicted
by the selected ANN models. The
combination of tansig/purelin
transfer function provided the
lowest mean square error (MSE) in
many cases.
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Prediction of product

distributions in coal FFNN FG-CPD
devolatilization [52]
Online dynamic long short-term

rediction of memory neural
potassium network (LSTM- No approach
foncentration in NN) and deep o

] recurrent neural
biomass fuels [55] network (DRNN)

No information

No information

A tangent sigmoid
activation function = MSE
was used.

The activation
functions of the
hidden layer and the
fully connected layer
are the tanh function
and the Leaky ReLU
function, respectively

RMSA, MAE,
MAPE

The results show that the detailed
product distributions of coal
devolatilization predicted by the
proposed ANN model are in good
agreement with the experimental
data for both the training and
validation database, and the ANN
model can give a more accurate
prediction on both the yield of each
component and its evolution
compared with the FG-CPD model.
It is found that the DRNN and
LSTM-NN models have a longer
computational time than the RNN.
It is thought that the architecture of
the DRNN model is more complex
than those of the RNN and LSTM-
NN models, resulting in a longer
computational time.
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5. Conclusions and Challenges

The range of applications of artificial intelligence is really wide. Most of the reviewed papers
presented the successful results of the application of ANN and ML, also in clusters with other models.
Many authors pointed out that the effect of overtraining neural networks is the most critical point in
the entire neural network approach. The choice of the right topology and the number of variables in
the learning algorithms are also key factors to obtain satisfactory results.

The continuous development of artificial intelligence and learning algorithms is seen in the
reviewed papers. The younger works, the newer neural network models, or more complex clusters
of computational methods are proposed. This is due to the fact that Al is a serious tool which may
find its application almost everywhere.

The prediction of the performance of engines or boilers seems to be much easier than forecasting
of pollutants in the atmosphere. An internal combustion chamber may be considered as a closed
space, and less factors may influence the training procedure while applying artificial intelligence. In
the atmosphere, the number of chemical and physical reactions, different transformations, and
unpredictable weather phenomena is considerable. For these reasons, as many authors proposed in
their work, hybrid models combining artificial intelligence with commonly used computational or
statistical methods could give more satisfactory results in the prediction of the distribution of
pollutants in ambient air.

Basing on the results presented in previous works, I may conclude that:

e  Almay be successively applied as a tool supporting the environmental monitoring systems

e  Multi-layered perceptron networks with backpropagation training (the Levenberg-Marquardt
algorithm) seem to be the most frequently used model for training and short-time predictions.
Moreover, a sigmoid (hyperbolic or tangent) activation function is mostly used as it is faster and
efficient in mapping the nonlinearity among the hidden layer neurones than others.

e Designing of ANNs topology with possible highest satisfactory ratios needs many approaches
and testing. Overtraining and underfitting of neural network are frequent problems while
developing of Al-based models. To avoid both overfitting and underfitting, it is necessary to
apply appropriate regularization techniques, such as L1/L2 regularization, early stopping, using
proper cross-validation techniques, and adjusting neural network parameters to find the right
balance between a model that is too complex and one that is too simple.

e Inorder to train the network on the base of a given data set, a separate algorithm is needed. This
can be further applied for process predictions and optimisation, however another algorithms
(based on machine learning) should be applied.

e  Artificial neural networks and machine learning algorithms altogether may be utilized for
optimisation of currently uncontrolled residential stoves fuelled by biomass in the aspect of
limitation of pollutants emission, with a special concern on the emission which are nonregulated
by any directive. This creates a possible gap to fill up and will be the subject of future work of
the Author.

In order to continue with further research on optimisation and automation of biomass stoves
three significant barriers have been identified to overcome:

e  How much data is required to train the model properly and effectively?

e  How to incorporate the existing knowledge about fuel combustion in a chamber of a stove to the
learning process of a model in order to improve the algorithm effectiveness and to protect the
system from possible failures?

¢  How to sensitize the trained Al-based model to changes of many parameters during combustion
process, which are sometimes naturally instable, in order to avoid the situation when an
occurring failure is treated as a true input to the network?

The prospects for the development of artificial intelligence (AI) applications in environmental
monitoring are highly promising. Al has the potential to revolutionize how to collect, analyse, and
interpret environmental data, leading to more effective and efficient monitoring systems. By
leveraging Al algorithms, data collection from various sources, enhance data integration and fusion
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techniques, and enable advanced data analysis, pattern recognition, and anomaly detection can
improved. Al can also facilitate predictive modelling, forecasting, and risk assessment in
environmental monitoring, aiding in the identification and assessment of environmental risks.
However, when it comes to modelling with artificial neural networks (ANNSs), there are several key
challenges that need to be addressed. These challenges include:

e  Data Privacy: ANN models often require access to large amounts of data, including sensitive
information. Ensuring data privacy and protection is crucial to maintain the confidentiality
and integrity of the data. Robust data anonymization techniques, secure data storage, and
compliance with relevant privacy regulations are essential to address this challenge.

e  Expert Interpretation of Results: ANNSs can be complex and opaque models, making it
challenging for domain experts to interpret and understand the underlying factors driving the
model's predictions. The lack of interpretability can hinder trust and acceptance of ANN
models in practical applications. Efforts are underway to develop techniques for interpreting
and explaining the decisions made by ANNSs, such as feature importance analysis and model
visualization.

e Data Standardization: ANNSs rely on high-quality and standardized data for training and
validation. In environmental monitoring, data may come from diverse sources, with variations
in formats, units, and quality. Ensuring data standardization and normalization is crucial to
achieve reliable and accurate ANN models. Establishing data standards, data preprocessing
techniques, and quality control measures are necessary to address this challenge.

e Limited Data Availability: ANN models require large amounts of labelled data for training,
which may not always be readily available in environmental monitoring applications. Limited
data can lead to overfitting or underfitting issues, resulting in suboptimal model performance.
Techniques such as data augmentation, transfer learning, and active learning can help mitigate
this challenge by making the most of the available data and optimizing the training process.

¢  Computational Resources: Training and optimizing ANNs can be computationally demanding,
especially for large-scale environmental monitoring applications. Access to sufficient
computational resources, such as high-performance computing clusters or cloud-based
solutions, is essential to handle the complexity of ANN models efficiently.

e  Ethical Considerations: The ethical implications of using ANNs in environmental monitoring
should be carefully considered. Ensuring fairness, avoiding biases, and addressing potential
discriminatory effects of ANN models are crucial. Regular audits, transparency in model
development, and ongoing evaluation of the social and environmental impact of ANN
applications are necessary to mitigate ethical concerns.

Addressing these challenges requires a multidisciplinary approach, involving experts from the
fields of data science, environmental science, ethics, and policy-making. Collaborative efforts are
essential to develop robust frameworks, guidelines, and best practices for modelling with ANNs in
the context of environmental monitoring, ensuring data privacy, interpretability, standardization,
and ethical considerations are appropriately addressed.
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Nomenclature
Al artificial intelligence
ANN artificial neural network
ARX auto-regressive model with exogenous inputs
BSEC brake specific fuel-consumption
CART classification and regression trees
C/H ratio carbon-to-hydrogen mass ratio
DRNN deep recurrent neural network

EEM excitation-emission matrix
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FC fully-connected
FFNN feed forward neural network
FG-CPD chemical percolation devolatilization coupled with the functional group
GPUs graphic processor units
GRU gated recurrent unit
HM Hopfield model
IoT Internet of Things
LM the Levenberg-Marquardt algorithm
LPG liquid petroleum gas
LSTM-NN long short-term memory neural network
ML machine learning
MLP multi-layer perceptron
NARMAX nonlinear autoregressive moving average with exogenous input
NARX nonlinear autoregressive with exogenous inputs
NN neural network
PAHs polycyclic aromatic hydrocarbons
PCA principal component analysis
PM particulate matter
PMF positive matrix factorisation
RBF radial basis function
RNN recurrent neural network
RT-AQF real-time air quality forecasting model
SF scale-free network
SW small world network
TPUs tensor processing units
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