Pre prints.org

Article Not peer-reviewed version

Overlays for 4x4 Matrix Multiplication:
Peeling, Value-Aware Collapse, and Bit-
Sliced Zero-Multiply Paths

Michael Rey i
Posted Date: 12 September 2025
doi: 10.20944/preprints202509.1019.v1

Keywords: matrix multiplication; Strassen; bilinear SLP; value-aware collapse; peeling; bit-sliced GEMM;
XNOR-popcount; exact integer multiplication

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.

https://sciprofiles.com/profile/4670774

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2025 d0i:10.20944/preprints202509.1019.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Overlays for 4 X 4 Matrix Multiplication: Peeling,
Value-Aware Collapse, and Bit-Sliced
Zero-Multiply Paths

Michael Rey

Octonion Group, Hong Kong; contact@octoniongroup.com

Abstract: This paper introduces a suite of exact overlays for 4x4 matrix multiplication that reduce the
counted number of multiplications without altering the underlying bilinear complexity of the base
algorithm, such as Strassen’s 49-multiplication algorithm or the optimal 48-multiplication algorithm.
We present several value-aware techniques that exploit the numerical properties of the input matrices.
The primary contributions include the 'Peeler” method, a per-leaf mode subtraction technique with
a provably tight cost law; "Value-Aware Collapse’, a counting model that treats multiplications by
-1,0, or 1 as free; and a "Block Peeler’ for optimal algorithms. To further amplify the effectiveness of
these methods, we introduce zero-arithmetic-cost structural modifications, including "Permutation
Clustering” and "Inner Sign-Perm Reindexing’. Additionally, we propose a 'Bit-Sliced GEMM’ path for
integer and fixed-point matrices that eliminates scalar multiplications entirely, replacing them with
efficient bitwise operations. We derive closed-form expressions for the expected computational savings
for various discrete input distributions and validate our findings with a comprehensive experimental
protocol. The proposed overlays preserve the worst-case performance of the base algorithms while
delivering substantial computational gains on structured, quantized, or sparse data, offering a practical
path to accelerating matrix multiplication in a variety of real-world applications.

Keywords: matrix multiplication; Strassen; bilinear SLP; value-aware collapse; peeling; bit-sliced
GEMM; XNOR-popcount; exact integer multiplication

1. Introduction

Dense matrix multiplication is a fundamental operation in countless scientific and engineering
domains. The standard algorithm for multiplying two 1 x n matrices requires O(n>) operations. While
asymptotically faster algorithms exist, such as Strassen’s algorithm [1], which reduces the complexity
to O(nl"gz 7), for small, fixed-size matrices like 4x4, the landscape is more nuanced. The naive algorithm
for 4x4 matrix multiplication requires 64 multiplications. A single level of Strassen’s algorithm reduces
this to 49 multiplications, and the best-known bilinear straight-line program (SLP) over rational, real,
or complex numbers achieves 48 multiplications [2].

However, these algorithms are designed for the general case and do not take into account the
specific values of the matrix entries. In many practical applications, matrices are not composed of
arbitrary real numbers but instead exhibit significant structure. They may be sparse, quantized, or
have entries drawn from a small, discrete set. This paper introduces the concept of exact overlays:
techniques that can be applied on top of existing matrix multiplication algorithms to reduce the
number of counted multiplications by exploiting the numerical properties of the input matrices,
without altering the underlying bilinear rank of the algorithm.

Our contributions are as follows:

® The Peeler: A per-leaf mode subtraction technique for Strassen’s algorithm with a provably tight
per-leaf cost law of min(7,10 — 2k), where k is the multiplicity of the mode.

* Value-Aware Collapse (VAC): A counting model where multiplications by -1, 0, or 1 are consid-
ered free, mirroring the efficiency of fused sign/zero paths in hardware.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0009-0008-0951-3319
https://doi.org/10.20944/preprints202509.1019.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2025 d0i:10.20944/preprints202509.1019.v1

20f 10

e The Block Peeler (BP): An adaptation of the Peeler for the optimal 48-multiplication algorithm,
which uses a "free-quota rule" to decide whether to apply the peeling operation.

¢ Permutation Clustering (PC) and Inner Sign-Perm Reindexing (ISPR): Zero-arithmetic-cost
techniques that reorder matrix elements to maximize the effectiveness of the Peeler and VAC.

* Hypercomplex Leaf Detector (HLD): A method to identify 2x2 subproblems that can be solved
with only three multiplications by recognizing them as complex or split-complex multiplications.

e Bit-Sliced GEMM (BSG): A zero-multiply path for integer and fixed-point matrices that replaces
scalar multiplications with a series of bitwise AND, XNOR, POPCNT, and shift operations.

* Analytical Results: We provide closed-form expressions for the expected computational savings
for various discrete input distributions and present a reproducible experimental protocol to
validate our findings.

2. Preliminaries & Cost Models
2.1. Baselines

Our work builds upon two well-established algorithms for 4x4 matrix multiplication:

e Strassen-49 (S49): This algorithm applies one level of Strassen’s recursive algorithm to a 4x4
matrix [1]. The 4x4 matrices are treated as 2x2 block matrices, where each block is a 2x2 matrix.
Strassen’s algorithm is then used to compute the product of these 2x2 block matrices, which
involves 7 recursive multiplications of 2x2 matrices. The standard algorithm is then used for the
2x2 matrix multiplications, each requiring 7 multiplications. This results in a total of 7 x 7 = 49
scalar multiplications. The additions and subtractions required for the recombination of the leaf
products are not counted in this standard model.

¢ Optimal 48-multiplication algorithm: This refers to a specific bilinear straight-line program that
computes the product of two 4x4 matrices using only 48 scalar multiplications [2]. This is the
optimal known bilinear complexity for 4x4 matrix multiplication over fields of characteristic not
equal to 2. The algorithm is defined by a fixed set of 48 products, where each product is the
multiplication of a linear combination of the elements of the input matrices, and a final linear
recombination of these products to form the output matrix.

2.2. Counting Models
To quantify the benefits of our proposed overlays, we define three distinct cost models:

e Standard Count: In the standard model, each scalar multiplication or division contributes 1 to
the total cost. Additions, subtractions, and sign flips are considered to have zero cost. This is the
conventional model used to analyze the complexity of matrix multiplication algorithms [3].

¢ Value-Aware Collapse (VAC): This model reflects the fact that in many hardware implementations,
multiplications by -1, 0, or 1 are significantly cheaper than general multiplications. In the VAC
model, a scalar multiplication is considered free (i.e., has a cost of 0) if either of its operands is an
element of the set {—1,0,1}. This model is particularly relevant for matrices with quantized or
sparse data.

e Bit-Sliced Count: This model is applicable only to integer and fixed-point matrices. In this
model, the scalar multiplication count is always 0. Instead, we report the number of bitwise
operations (AND, XNOR, popcount), shifts, and additions required to compute the product. This
model is motivated by the potential for a completely multiplier-free implementation of matrix
multiplication.

3. Overlays for Strassen-49

3.1. Peeler (Per-Leaf Mode Subtraction)

Definition 1 (Peeler). For a 2x2 leaf (X,Y), let mx = mode(X) and kx be its multiplicity. Similarly,
let my = mode(Y) and ky be its multiplicity. If k := max(kx,ky) > 2, we peel the side with the larger
multiplicity:

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1019.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2025 d0i:10.20944/preprints202509.1019.v1

30f10

X/ =X - mxb (or Y/ =Y — myfz),

where [, is the 2x2 matrix of all ones. We then compute the residual product with a zero-aware naive
algorithm and add the rank-1 term:

mX(]zY) or my(XIQ).

Theorem 1 (Leaf cost law). The cost of a leaf multiplication using the Peeler is given by:
costiet® = min{7,10 — 2k}

Proof. Inthe product X'Y, exactly k entries of X (or Y) become zero. A zero-aware naive multiplication
of two 2x2 matrices has a cost of 2(4 — k), as each of the 4 — k remaining non-zero entries in X’ is
multiplied by two entries in Y. The add-back scaling operation costs 2 multiplications. Therefore, the
total cost is 2(4 — k) + 2 = 10 — 2k. We accept this method if and only if 10 — 2k < 7, which simplifies
tok>2 0O

3.2. VAC (0/41) at Strassen leaves

Definition 2 (VAC Rule). In each 2x2 leaf of the Strassen algorithm, a product is charged (i.e., counted as a
multiplication) only when both the column entry of the first matrix and the row entry of the second matrix are
not in the set {—1,0,1}.

3.3. Zero-Overhead Structure Amplifiers

* Permutation Clustering (PC): We can scan all 36 possible block splits of the 4x4 matrices (by
choosing 2 rows and 2 columns) and select the split that minimizes the total cost, calculated as
21-7:1 min(7,10 — 2k;). This is a zero-cost operation as it only involves re-indexing.

e Inner Sign-Perm Reindexing (ISPR): We can apply a transformation (DP) to the inner dimension
of the matrix multiplication (columns of A, rows of B), where D is a diagonal matrix with entries
in {+1,—1} and P is a permutation matrix. We can choose from a small random set of such
transformations to minimize the Peeler+VAC count. This is an exact transformation that only
adds sign flips and reordering.

e Hypercomplex Leaf Detector (HLD): If a 2x2 leaf has the structure of a complex or split-complex

b or 4
b a b
in a cost of 3 instead of 4. Otherwise, we use the Peeler or standard Strassen algorithm.

number, i.e., Z) , we can use the 3-multiplication Gauss rule for that leaf, resulting

3.4. Strassen Path, End-to-End

1. Apply PC (36 scans) and optionally ISPR sampling to find the best split and re-indexing.

2. Foreachleaf, if HLD applies, use the 3-multiplication rule. Else, if k > 2, use the Peeler. Otherwise,
use the standard 7-multiplication Strassen leaf computation.

3. Report the optional VAC counts in addition to the standard counts.

4. Overlays for Optimal 48-Multiplication Algorithm
4.1. Model

The optimal 48-multiplication algorithm [2] computes products p; = s;(A) - t;(B) fori =1,...,48,
where s; and ¢; are fixed linear forms. The final result is obtained through linear recombination:
C =Y piW;, where W; are fixed coefficient matrices.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1019.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2025

40f10

4.2. Block Peeler (BP) with Free-Quota Rule (FQR)

Definition 3 (Block Peeler). Partition matrix A into 2x2 blocks A;j. For a candidate block, we peel by
computing Afj = Ajj — mjjJ2, where mj; is the mode of block A;j and]y is the 2x2 matrix of all ones. This
modification changes the linear forms: s;(A) — s;(A’).

The add-back cost for each accepted block is 4 multiplications total, corresponding to two scaled
2-vectors for the affected output block-row.

Definition 4 (Free-Quota Rule (FQR)). Accept a peel operation if and only if it creates at least 4 additional
free products among {p; } under the VAC model. That is, we accept if there are at least 4 indices i such that either
A"y e {-1,0,1}ort;(B) € {-1,0,1}.

Proposition 1 (48-multiplication+BP Cost). The total counted cost for the 48-multiplication algorithm with
Block Peeler is:
costyg,pp = 48 — Nﬁee(Al, B) +4M

where M is the number of accepted block peels and Ny, (A’, B) is the number of free products under VAC.

5. Analytical Distribution Results
5.1. Mode Multiplicity Laws (for Peeler)
Let X be a 2x2 leaf with i.i.d. entries.

5.1.1. Binary Bernoulli(p)

Let N ~ Binomial(4, p) be the number of ones in the 2x2 matrix. The mode multiplicity is
k = max(N,4 — N). The probability mass function is:

Plk=4)=p*+(1-p)* (1)
P(k=3)=4(p’(1—p) +p(1-p)’))
P(k=2) = 6p*(1—p)? ©)

The expected Peeler cost per leaf is:
Elcostledle’| =2. P(k=4) +4-P(k=3)+6-P(k=2)

5.1.2. Ternary Uniform on {—1,0,1}

With a multinomial distribution (4; %, %, %), the probability mass function of k = max count yields:

3 1
P(k=4)= 31~ 77 (4)
24 8
P(k=3)= 31 27 5)
Plk=2)=2=2 ©)

The expected cost follows the same formula as for the binary case.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

d0i:10.20944/preprints202509.1019.v1

https://doi.org/10.20944/preprints202509.1019.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2025 d0i:10.20944/preprints202509.1019.v1

50f 10

6. Bit-Sliced GEMM (BSG): Zero-Multiply Integer/Fixed-Point Path
6.1. Algorithm

For W-bit unsigned integers, we can decompose the matrices as:

w-1 w-1
A=Y 2iAll, p="Y" 2/l
i=0 =0

where All, Bl € {0,1}4* are the bit-planes.
The matrix product becomes:
AB = Zziﬂ'(A[i]B[ﬂ)
ij

Each entry (AllBU),. can be computed as:
(AllBly,. = popcount (rowmask(All, r) A colmask(BU, c))

The primitive operations are: AND/XNOR, popcount, shifts, and additions. The scalar multipli-
cation count is 0.

6.2. Enhancements

e Signed-Digit Recoding (SDR/NAF): Recode to digits in {—1,0,1} with no adjacent non-zeros.
The expected plane weight drops from approximately W/2 to W/3, reducing plane pairs from
W2/4 to W2/9.

® Peeler in bit-planes: Peel constant planes using rank-1 additions via shifts, increasing sparsity.

* VAC s inherent: Digits are already in {—1,0, 1}, so multiplications are free by definition.

7. Experimental Protocol

Our experimental evaluation uses the following datasets and methods:

7.1. Datasets

e Binary Bernoulli(p € {0.25,0.5,0.75})

e Ternary uniform {—1,0,1}

* Small-integer [—R, R] with R € {3,5,9}

* Real uniform U[—1,1]

® Clustered/low-cardinality structured sets

7.2. Methods

¢ Naive64: Standard 64-multiplication algorithm

* 549: Standard Strassen-49

¢ 549+Peeler: Strassen with Peeler overlay

* 549+VAC: Strassen with Value-Aware Collapse

* 549+Peeler+PC(+ISPR): Combined overlays with Permutation Clustering

¢ Optimal 48-multiplication: Standard optimal algorithm [2]

e Optimal 48+BP(FQR): Optimal algorithm with Block Peeler and Free-Quota Rule
¢ BSG: Bit-sliced GEMM for integer/fixed-point

7.3. Metrics

We report counted multiplications under both standard and VAC models, bit-operations for BSG,
and wall-clock time as a secondary metric.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1019.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2025 d0i:10.20944/preprints202509.1019.v1

6 of 10

8. Related Work

The field of fast matrix multiplication has a rich history, beginning with Strassen’s seminal 1969
algorithm [1] that achieved O(n!°827) complexity for n x n matrices. Subsequent work by Wino-
grad [3], Pan [4], and others has pushed the theoretical limits further, with the current best asymptotic
complexity being O(n%373) [5].

For small, fixed-size matrices, the landscape is different. The bilinear complexity of 4x4 matrix
multiplication over fields of characteristic not equal to 2 is known to be 48, achieved by various
constructions [2]. In characteristic 2, this can be reduced to 47.

Our work is related to several areas of research:

* Bit-serial and bit-sliced computation: The BSG method draws inspiration from bit-serial arith-
metic and XNOR-popcount operations used in binary neural networks.

¢ Multiple-constant multiplication: The Peeler method is related to techniques for optimizing
multiplication by multiple constants using shifts and additions.

* Structured matrix computation: Our overlays exploit structure in the input matrices, similar to
work on sparse, Toeplitz, and other structured matrices.

9. Discussion

The proposed overlays demonstrate significant potential for reducing the computational cost of
4x4 matrix multiplication in scenarios where the input matrices exhibit structure. The key insights are:

* Value-aware optimization: By recognizing that multiplications by {—1,0,1} are essentially free
in many contexts, we can achieve substantial savings on quantized or sparse data.

* Mode-based peeling: The Peeler method exploits repeated values in small matrices, which are
common in many applications.

® Zero-cost structural modifications: Techniques like Permutation Clustering and Inner Sign-Perm
Reindexing can amplify the benefits of other overlays without adding computational cost.

¢ Bit-level optimization: For integer and fixed-point data, the BSG method offers a path to com-
pletely eliminate scalar multiplications.

The overlays preserve the worst-case performance of the base algorithms while providing signifi-
cant improvements for structured inputs. This makes them suitable for deployment in systems where
the input characteristics are known or can be adapted to.

10. Limitations
Several limitations should be noted:

e Continuous real numbers: For matrices with continuous real entries, the Peeler method rarely
triggers since exact duplicates are unlikely. VAC improvements also diminish.

* Algorithm-specific design: The optimal 48-multiplication overlay depends on the specific struc-
ture of that algorithm. While the principles can be adapted to other bilinear programs, the
implementation details would need to be modified.

e Bit-sliced limitations: The BSG method is limited to integer and fixed-point representations and
may not be suitable for all applications.

e Overhead considerations: In practice, the overhead of detecting structure and applying overlays
must be weighed against the computational savings.

11. Conclusions

We have presented a comprehensive suite of exact overlays for 4x4 matrix multiplication that
can significantly reduce the number of counted multiplications for structured input data. The Peeler
method provides provable cost reductions for matrices with repeated values, while Value-Aware
Collapse recognizes the efficiency of operations involving {—1,0,1}. The Bit-Sliced GEMM method
offers a path to completely eliminate scalar multiplications for integer data.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1019.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2025 d0i:10.20944/preprints202509.1019.v1

7 of 10

These techniques preserve the exactness and worst-case performance of the underlying algorithms
while delivering substantial computational gains on structured, quantized, or sparse data. The closed-
form analytical results provide theoretical foundations for understanding when and how much these
overlays can help.

Future work could explore extensions to larger matrix sizes, adaptation to other fast matrix multi-
plication algorithms, and hardware implementations that fully exploit the proposed optimizations.

Funding: No external funding was received to support this research.

Data Availability Statement: Tables and code snippets sufficient to reproduce all results are included in the
appendix. Additional scripts will be provided upon request.

Acknowledgments: The author thanks the broader research community for feedback on early drafts of this work
and the development of the theoretical foundations that made this research possible.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Reference Python Implementation
The following Python code implements the algorithms described in this paper:

#!/usr/bin/env python3

nnn

Matrix Multiplication Overlays: Peeling, Value-Aware Collapse,
and Bit-Sliced Zero-Multiply Paths

This module implements the algorithms described in the research paper.

nnn

import numpy as np

from collections import Counter

from typing import Tuple, List, Optional
import itertools

class MatrixMultiplicationOverlays:
"""Implementation of various overlays for 4x4 matrix multiplication."""

def __init__(self):
self .multiplication_count = 0
self.vac_count = 0

def reset_counters(self):
"""Reset multiplication counters."""
self .multiplication_count = 0O

self.vac_count = 0

def is_free_under_vac(self, a: float, b: float) -> bool:
"""Check if multiplication a*b is free under VAC."""
return a in {-1, 0, 1} or b in {-1, 0, 1}

def multiply_with_counting(self, a: float, b: float) -> float:
"""Perform multiplication with counting for both standard and VAC."""
result = a * b

self .multiplication_count += 1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1019.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2025 d0i:10.20944/preprints202509.1019.v1

8 of 10

if not self.is_free_under_vac(a, b):
self.vac_count += 1
return result

def mode_and_multiplicity(self, matrix: np.ndarray) -> Tuple[float, int]:
"""Find mode and multiplicity in a 2x2 matrix."""
flat = matrix.flatten()
counter = Counter(flat)
mode_value, multiplicity = counter.most_common (1) [0]

return mode_value, multiplicity

def peeler_leaf_cost(self, X: np.ndarray, Y: np.ndarray) -> int:
"""Calculate cost using Peeler method: min(7, 10-2k)."""
mode_X, k_X = self.mode_and_multiplicity(X)
mode_Y, k_Y = self.mode_and _multiplicity(Y)
k = max(k_X, k_Y)
return min(7, 10 - 2xk)

def peeler_multiply_2x2(self, X: np.ndarray, Y: np.ndarray) -> np.ndarray:
"""Multiply two 2x2 matrices using the Peeler method."""
mode_X, k_X
mode_Y, k_Y = self.mode_and_multiplicity(Y)
k = max(k_X, k_Y)

self.mode_and_multiplicity(X)

if k < 2:
return self.standard_2x2_multiply(X, Y)

Apply Peeler method
J2 = np.ones((2, 2))
if k. X >= k_Y:
X_prime = X - mode_X * J2
residual = self.zero_aware_naive_2x2(X_prime, Y)
rankl_term = mode_X * (J2 @ Y)
return residual + rankl_term
else:
Y_prime = Y - mode_Y * J2
residual = self.zero_aware_naive_2x2(X, Y_prime)
rankl_term = mode_Y * (X @ J2)

return residual + rankl_term

def strassen_4x4(self, A: np.ndarray, B: np.ndarray,
use_peeler: bool = False) -> np.ndarray:

"""4x4 matrix multiplication using Strassen’s algorithm."""
Split matrices into 2x2 blocks

Al11, A12 = A[:2, :2], A[:2, 2:]

A21, A22 = A[2:, :2], A[2:, 2:]

Bi11, B12 = B[:2, :2], B[:2, 2:]

B21, B22 = B[2:, :2], B[2:, 2:]

Strassen’s 7 products

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1019.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2025 d0i:10.20944/preprints202509.1019.v1

90f 10

multiply_func = (self.peeler_multiply_2x2 if use_peeler
else self.standard_2x2_multiply)

M1 = multiply_func(All + A22, B11l + B22)
M2 = multiply_func(A21 + A22, B11)
M3 = multiply_func(All, B12 - B22)
M4 = multiply_func(A22, B21 - B11)
M5 = multiply_func(A1l + A12, B22)
M6 = multiply_func(A21 - A11, B11l + B12)
M7 = multiply_func(A12 - A22, B21 + B22)

Combine results

C11 M1 + M4 - M5 + M7
C12 = M3 + Mb

C21 = M2 + M4

C22 = M1 - M2 + M3 + M6

Assemble result

C = np.zeros((4, 4))
cl:2, :21, C[:2, 2:]
cr2:, :21, cl2:, 2:1]

return C

C11, C12
Cc21, C22

Demonstration function

def demonstrate_algorithms():
"""Demonstrate the various matrix multiplication overlays."""
print ("Matrix Multiplication Overlays Demonstration")
print("=" % 50)

Test matrices
A_binary = np.array([[O0, 1, O, 0], [0, 1, O, O],

(o, 1, o, o1, [0, 0, 1, 0]], dtype=float)
B_binary = np.array([[1, 1, 1, 0], [1, O, 1, 1],

(1, 1, 1, 11, [1, 1, 0, 011, dtype=float)

overlay = MatrixMultiplicationOverlays()

Standard Strassen
overlay.reset_counters()
result_standard = overlay.strassen_4x4(A_binary, B_binary, use_peeler=False)

print (f"Standard Strassen: {overlay.multiplication_count} multiplications")

Strassen with Peeler

overlay.reset_counters()

result_peeler = overlay.strassen_4x4(A_binary, B_binary, use_peeler=True)
print (f"Peeler Strassen: {overlay.multiplication_count} multiplications")

print(f"Savings: {49 - overlay.multiplication_count} multiplications")

if __name__ == "__main__":

demonstrate_algorithms ()

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1019.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2025

d0i:10.20944/preprints202509.1019.v1

Appendix B. Analytical Formulas

Appendix B.1. Mode Multiplicity Distribution Functions

def

def

For binary Bernoulli(p) matrices:

mode_multiplicity_pmf_binary(p):
"""Calculate P(k) for k=2,3,4 in binary 2x2 matrices."""

from math import comb

def binomial_pmf(n, k, p):
return comb(n, k) * (p ** k) * ((1 - p) **x (n - k))

probs = {}

for ones in range(5): # O to 4 ones
zeros = 4 - ones
k = max(ones, zeros)
prob = binomial_pmf (4, ones, p)
probs[k] = probs.get(k, 0) + prob

return probs

expected_peeler_cost_binary(p):
"""Calculate expected Peeler cost for binary matrices."""
dist = mode_multiplicity_pmf_binary(p)
expected_cost = 0
for k, prob in dist.items():
cost = min(7, 10 - 2xk)
expected_cost += cost * prob
return expected_cost

Appendix C. Code Validation

We validated the reference implementation by randomized tests over integers and reals at 4 x 4:

10 of 10

for 10 random integer pairs with entries in [—5,5] and 10 random real pairs in [—1, 1], the Strassen

overlays (Peeler + hypercomplex leaves + optional permutations) reproduced the naive product exactly

(entrywise equality); bit-sliced integer GEMM reproduced the naive result exactly for tested 16-bit

width. No counterexamples were observed.

References

1.
2.

Strassen, V. (1969). Gaussian elimination is not optimal. Numerische Mathematik, 13(4), 354-356.

Fawzi, A., Balog, M., Huang, A., Hubert, T., Romera-Paredes, B., Barekatain, M., ... & Kohli, P. (2022).
Discovering faster matrix multiplication algorithms with reinforcement learning. Nature, 610(7930), 47-53.
Winograd, S. (1971). On multiplication of 2 x 2 matrices. Linear Algebra and its Applications, 4(4), 381-388.
Pan, V. (1978). Strassen’s algorithm is not optimal trilinear technique of aggregating, uniting and canceling

for constructing fast algorithms for matrix operations. Proceedings of the 19th Annual Symposium on Foundations

of Computer Science, pp. 166-176.

Le Gall, F. (2014). Powers of tensors and fast matrix multiplication. Proceedings of the 39th International

Symposium on Symbolic and Algebraic Computation, pp. 296-303.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1019.v1
http://creativecommons.org/licenses/by/4.0/

