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Abstract: The fault diagnosis of safety critical systems such as wind turbine installations includes1

extremely challenging aspects that motivate the research issues considered in this paper. In fact,2

the prompt detection and the reliable diagnosis of faults in their earlier occurrence represent3

the key point especially for offshore installations. For these plants, operation and maintenance4

procedures in harsh environments would inevitably increase the cost of the energy production.5

Therefore, this work investigates fault diagnosis solutions that are considered in a viable way and6

used as advanced techniques for condition monitoring of dynamic processes. To this end, the7

work proposes the design of fault diagnosis strategies that exploit the estimation of the fault by8

means of data–driven approaches. This solution leads to the development of effective methods9

allowing the management of partially unknown information of the system dynamics, while coping10

with measurement errors, the model–reality mismatch and other disturbance effects. In mode11

detail, the proposed data–driven methodologies exploit fuzzy systems and neural networks in12

order to estimate the nonlinear dynamic relations between the input and output measurements of13

the considered process and the faults. To this end, the fuzzy and neural network structures are14

integrated with auto–regressive with exogenous input descriptions, thus making them able to15

approximate unknown nonlinear dynamic functions with arbitrary degree of accuracy. Once these16

models are estimated from the input and output data measurement acquired from the considered17

dynamic process, the capabilities of their fault diagnosis capabilities are validated by using a high–18

fidelity benchmark that simulates the healthy and the faulty behaviour of a wind turbine system.19

Moreover, at this stage the benchmark is also useful to analyse the robustness and the reliability20

characteristics of the developed tools in the presence of model–reality mismatch and modelling21

error effects featured by the wind turbine simulator. On the other hand, a hardware–in–the–loop22

tool is finally implemented for testing and comparing the performance of the developed fault23

diagnosis strategies in a more realistic environment and with respect to different fault diagnosis24

approaches.25

Keywords: fuzzy systems; neural networks; fault diagnosis; data–driven approaces; robustness26

and reliability; wind turbine27

1. Introduction28

Wind power is the second largest source of renewable energy after solar power29

sources globally. The global popularity of wind power has risen significantly due to the30

need to harness electrical power from renewable sources in order to limit and end the31

necessity of the fossil fuels [1]. Variable–speed wind turbines are the most important32

component of a Wind Energy Conversion System (WECS). For effective and reliable33

power conversion, suitable technical and technological solutions have to be properly34

implemented and exploited in WECSs.35
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Technological advances in wind power generation systems have encouraged the36

installation of wind farms. Owing to the large size and requirement of high wind speeds,37

these installations are located in offshore areas. Such installations of offshore WECS38

result in disadvantages such as high expense to install, and the non–availability of39

continuous supervision, Operation and Maintenance (O&M), which in turn raises a40

uncertainty aspect of the degree of reliability of offshore WECSs. The maintenance costs41

for offshore wind turbines have been found to be nearly 30–40% of the comprehensive42

life costs of WECSs [2,3], thus increasing the final production costs.43

Reducing the maintenance cost is a key element in operating and generating power44

from WECSs [4,5]. The optimal cost of operation of a WECS is achieved in two ways:45

(i) by using efficient design techniques to prevent the unbalancing of loads and main-46

taining a rated power output throughout the operation, which can be achieved through47

appropriate modelling of the wind turbine system; (ii) by developing suitable fault48

diagnosis and fault–control strategies that prevent unnecessary maintenance and have49

shorter shutdown period due to failure. Technological advancements have proposed50

and implemented several effective designs for an aerodynamic model of wind turbines51

in recent years. However, the existence of faults is inevitable in the operation of wind52

energy systems. Like any other industrial system, wind turbines are prone to failures.53

Mechanical, actuator and sensor failures are the most commonly occurring failures in a54

WECS. Field survey data indicate that actuators of wind turbines are the most vulnerable55

components of a WECS [5–7] Any faulty event in the actuators of the wind turbine56

control system results in deviation of the system from its objectives and causes damage57

to the system components. A fault will deteriorate the performance of the complete58

system, resulting in the unscheduled shutdown of the system. To remain operative and59

competitive, there is a high demand for improving the reliability and availability of wind60

turbines with reduced unscheduled down time in the electricity market, thus limiting61

O&M and reducing the final cost of energy.62

Fault Detection and Isolation (FDI) could be considered as a phase or a by–product63

of Fault Tolerant Control (FTC). In general, FDI relies on three methods, i.e. parity64

equations, parameter estimation approaches and observer/filter methods [8]. Moreover,65

when the fault is estimated from the FDI module, it can be exploited for its compensation.66

Therefore, taking into account this strategy, two FTC methods can be also considered67

[9,10]: active FTC (AFTC) and passive FTC (PFTC) approaches [11–13].68

FDI methods are used also in connection with FTC schemes because they can69

improve fault diagnosis performance. As an example, [14] proposed the design of a70

FDI/FTC scheme based on a fuzzy inference mechanism oriented to model uncertainties71

and actuator faults. A fault identification algorithm is addressed in [15] and applied72

to wind turbine pitch actuators. Other strategies designed through Lyapunov and73

Nussbaum–type functions are proposed in [16,17] to improve the operation of wind74

turbines.75

FDI schemes for wind turbine faults were addressed with different approaches76

such as sliding mode approaches [18–20], fuzzy Takagi–Sugeno models [21–23], neural77

networks [24–26], neuro–fuzzy [27], linear observers [28–30], and Kalman filter [31–34].78

These methods rely on online estimation and fault information, and any inaccurate79

information during faults may result in degradation of system performance and can80

cause instability during post–fault operation. This issue is of great significance in systems81

such as wind turbines having several sources of noise and uncertainties. The availability82

of the wind turbines must be ensured through effective FDI strategies and, thus, it is83

required to develop robust and reliable prognostic and diagnosis strategies in a WECS84

to ensure its safe operation.85

With reference to this paper, the topic of the fault diagnosis of a wind turbine86

system is analysed. In particular, the design of practical and reliable solutions to FDI are87

considered. However, differently from other works by the same authors, the FTC topic is88

not investigated here, even if it can rely on the same tools exploited in this paper. In fact,89
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as already remarked above, the fault diagnosis module provides the reconstruction of90

the fault signal affecting the process, which could be actively compensated by means of a91

controller accommodation mechanism. Moreover, the fault diagnosis design is enhanced92

by the derived fault reconstructors that are estimated via data–driven approaches, as93

they also allow to accomplish the fault isolation task.94

The first data–driven strategy proposed in this work exploits Takagi–Sugeno (TS)95

fuzzy prototypes [35,36], which are estimated via a clustering algorithm and exploit-96

ing the data–driven algorithm developed in [37]. For comparison purpose, a further97

approach is designed, which exploits Neural Networks (NNs) to derive the nonlinear98

dynamic relations between the input and output measurements acquired for the process99

under diagnosis and the faults affecting the plant. The selected structures belong to100

the feed–forward Multi–Layer Perceptron (MLP) neural network class that include also101

Auto–Regressive with eXogenous (ARX) inputs in order to model nonlinear dynamic102

links among the data. In this way, the training of these Nonlinear ARX (NARX) proto-103

types for fault estimation can exploit standard back–propagation training algorithm, as104

recalled e.g. in [38].105

The designed fault diagnosis schemes are tested via a high–fidelity simulator of a106

wind turbine process, which describes its behaviour in healthy and faulty conditions.107

This simulator, which represents a benchmark [39], includes the presence of uncertainty108

and disturbance effects, thus allowing to verify the reliability and robustness charac-109

teristics of the proposed fault diagnosis methodologies. Moreover, this work proposes110

to validate the efficacy of the designed fault diagnosis techniques by exploiting a more111

realistic scenario, which consists of a Hardware–In–the–Loop (HIL) tool.112

It is worth noting the main contributions of this paper with respect to previous113

works by the authors. For example, this study analyses the solutions addressed e.g. in114

[40] but taking into account a more realistic and real–time system illustrated in Section 4.115

On the other hand, the fault diagnosis scheme developed in this paper was designed for116

a wind turbine system also in [41], but without considering the HIL environment.117

The fuzzy methodology was also proposed by the authors in [42], which considered118

the development of recursive algorithms for the implementation of adaptive laws relying119

on Linear Parameter Varying (LPV) systems. The approach proposed in this paper120

estimates the fault diagnosis models by means of off–line procedures. Moreover, this121

paper further develops the achievements obtained e.g. in [43], but concerning the fault122

diagnosis a wind farm. The paper [44] proposed the design of a fault tolerant controller123

using the input–output data achieved from a single wind turbine, by exploiting the124

results achieved in [41,45]. On the other hand, this work considers the verification and125

the validation of the proposed fault diagnosis methodologies by exploiting an original126

HIL tool, proposed considered in a preliminary paper by the same authors [46,47].127

The work follows the structure sketched in the following. Section 2 briefly sum-128

marises the wind turbine simulator, as it represents a well-established benchmark avail-129

able in literature [48]. Section 3 describes the fault diagnosis strategies based on Fuzzy130

Systems (FSs) and Neural Network (NN) structures, detailed in Section 3.1. Section 4131

summarises the obtained results via extended simulations, whilst Section 4.1 illustrates132

the HIL tool describing the behaviour of the wind turbine process. Finally, Section 5133

concludes the work by reporting the main points of the paper and suggesting some134

interesting issues for further research and future investigations.135

2. Wind Turbine Model Description136

This section illustrates the Wind Turbine (WT) benchmark considered in this work.137

Moreover, Section 2.1 sketches the procedure exploited for the selection of the input and138

output measurements that feed the residual generators for FDI, as recalled in Section 3.139

The WT simulator exploited in this work for validation purposes was earlier pre-140

sented in [39,48] and motivated by an international competition. Despite its quite simple141

structure, it is able to describe quite accurately the actual behaviour of a three–blade142
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horizontal–axis wind turbine that is working at variable–speed and it is controlled by143

means of the pitch angle of its blades. The plant includes several interconnected sub-144

systems, namely the wind process, the wind turbine aerodynamics, the drive–train, the145

electric generator/converter, the sensor and actuator systems and the baseline controller.146

The overall system is sketched in Figure 1, which represents the fault diagnosis target147

developed in this work. Further details of the WT benchmark will not be provided here,148

as they were described in detail in [4] and the references therein.149
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speed
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speed
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controller
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controller
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Figure 1. The WT benchmark and its functional subsystems.

This wind turbine benchmark is able to generate different typical fault cases affect-150

ing the sensors, the actuators and the process components. This scenario comprising 9151

faulty situations is illustrated in Section 2.1, which describes the procedure for deter-152

mining the input and output measurements acquired from the WT process and mainly153

affected by these faults.154

2.1. Fault Sensitivity Analysis155

The paper proposes to exploit this tool, which was suggested earlier by the authors156

for different applications, see e.g. [49,50] , as it simplifies the design of the bank of fault157

estimators as well as enhances the identification of the dynamic FS and NN prototypes158

recalled in Section 3.1. Moreover, this analysis must be preliminary performed on the159

WT simulator. In particular, as already remarked, it is used to select the input and output160

measurements uj(k) and yl(k) of the process that feed the dynamic FIS or NN of the161

bank of Figure 3.162

In practice, the actuator faults considered in the WT benchmark have been injected163

into the simulator, assuming that only a single fault may occur. Then, the Relative164

Mean Square Errors (RMSE) index computed by considering the fault–free and faulty165

measured signals is computed, so that, for each fault, the most sensitive signal uj(k) and166

yl(k) is determined.167

In particular, the fault sensitivity analysis relies on a selection algorithm using the
normalised sensitivity function Nx in the form of Eq. 1:

Nx =
Sx

S∗x
(1)

with:

Sx =

∥∥∥x f (k)− xn(k)
∥∥∥

2
‖xn(k)‖2

(2)

and:

S∗x = max

∥∥∥x f (k)− xn(k)
∥∥∥

2
‖xn(k)‖2

(3)

The factor Nx represents the effect of the considered fault case on the generic measured168

signal x(k), with k = 1, 2, . . . , N its sample number. The subscripts ‘f’ and ‘n’ indicate169
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the faulty and the fault–free case, respectively. Therefore, the signals mainly affected by170

the considered fault generate a value of Nx equal to 1. On the other hand, values of Nx171

closer to zero indicate that x(k) is not affected by the fault. Those signals corresponding172

to significantly higher values of Nx are thus selected as the most sensitive measurements173

to the fault cases, and will used to feed the fault diagnosis modules of the bank reported174

in Figure 3.175

As already remarked, the WT benchmark is able to generate different typical fault176

cases affecting the sensors, the actuators and the process components. This scenario177

comprising 9 fault situations is illustrated by means of Table 1, which reports the input178

and output measurements acquired form the WT process signals and mainly affected by179

these faults. In particular, Table 1 summarises the results of this fault sensitivity analysis180

for the case of the WT simulator.181

Table 1: Fault scenario of the WT benchmark.

Fault Case Fault Type Most Affected Input–Output Measurements
1 Sensor β1,m1, β1,m2, ωg,m2
2 Sensor β1,m2, β2,m2, ωg,m2
3 Sensor β1,m2, β3,m1, ωg,m2
4 Sensor β1,m2, ωg,m2, ωr,m1
5 Sensor β1,m2, ωg,m2, ωr,m2
6 Actuator β1,m2, β2,m1, ωg,m2
7 Actuator β1,m2, β3,m2, ωg,m2
8 Actuator β1,m2, τg,m, ωg,m2
9 System β1,m2, ωg,m1, ωg,m2

In this way, Table 1 reports the most sensitive measurements uj(k) and yl(k) ac-182

quired from the WT system with respect to the fault conditions implemented in the WT183

benchmark. In practice, the fault signals of Table 1 were injected into the WT simulator,184

assuming that only a single fault may occur. Then, by checking the Relative Mean Square185

Errors (RMSEs) between all the fault–free and faulty measurements from the WT plant,186

the most sensitive signal uj(k) and yl(k) was selected and reported in Table 1.187

For FDI purpose, the complete model of the WT benchmark can be described as
a nonlinear continuous–time dynamic model represented by the function fwt of Eq. (4)
including the overall behaviour of the WT process reported in Figure 1 with state vector
xwt and fed by the driving input vector u:{

ẋwt(t) = fwt(xwt, u(t))
y(t) = xwt(t)

(4)

Eq. (4) highlights that the simulator allows to measure all the state vector signals, i.e. the
rotor speed, the generator speed and the generated power of the WT process:

xwt(t) = y(t) =
[
ωg,m1, ωg,m2, ωr,m1, ωr,m2, Pg,m

]
The driving input vector is represented by the following signals:

u(t) =
[
β1,m1, β1,m2, β2,m1, β2,m2, β3,m1, β3,m2, τg,m

]
that represent the acquired measurements of the pitch angles from the three WT blades188

and the measured generator/converter torque. These signals are acquired with sample189

time T in order to obtain N data indicated as u(k) and y(k) with index k = 1, . . . , N that190

are exploited to design the FDI strategies addressed in this work.191

Note finally that this tool represents one of the key features of the proposed strategy192

to FDI. In fact, the fault estimators exploited for FDI can be estimated by using a smaller193
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number of inputs, thus leading to a noteworthy simplification of the overall complexity,194

while decreasing the computational cost of the training algorithms.195

3. Data–Driven Strategies for Fault Diagnosis196

This section recalls the fault diagnosis strategy proposed in this paper that relies on197

FS and NN tools, as summarised in Section 3.1. These architectures are able to represent198

NARX models exploited for estimating the nonlinear dynamic relations between the199

input and output measurements of the WT process and the fault signals. In this sense,200

these NARX prototypes will be employed as fault estimators for solving the problem of201

the fault diagnosis of the WT system.202

Under these assumptions, the fault estimators derived by means of a data–driven
approach represent the residual generators r(k), which provide the on–line reconstruc-
tion f̂(k) of the fault signals summarised in Table 1, as represented by Eq. (5):

r(k) = f̂(k) (5)

where the term f̂(k) represents the general fault vector of Table 1, i.e. f̂(k) =
{

f̂1(k), . . .203

. . . , f̂9(k)
}

.204

The fault diagnosis scheme exploiting the proposed fault estimators as residual205

generator is sketched in Fig. 2. Note that, as already highlighted, this scheme is also able206

to solve the fault isolation task [8].207
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Figure 2. Bank of fault reconstructors for FDI.

Figure 2 shows that the general residual generator exploits the input and output208

measurements acquired from the process under diagnosis, u(k) and y(k), properly209

selected according to the analysis shown in Table 1. The fault detection problem can be210

easily achieved by means of a simple threshold logic applied to the residuals themselves,211

as described in [8]. This issue will not be considered in this paper.212

Once the fault detection phase is solved, the fault isolation stage is directly obtained213

via the the bank of estimators of Figure 2. In this case, the number of estimators of Figure214

2 is equal to the faults to be detected, i.e. 9, which is lower than the number of input and215

output measurements, r + m, acquired from the WT process.216

This condition provides several degrees of freedom, as the i–th reconstructor of217

the fault f̂ (k) = ri(k) is a function of the input and output signals u(k) and y(k).218

These signals are thus selected in order to be affected sensitive to the specific fault219

fi(k), as highlighted in Table 1. This procedure enhances also the design of the fault220

reconstructors, as it reduces the number of possible input and output measurements,221

uj(k) and yl(k), which have to be considered for the identification procedure reported in222

Section 3.1.223
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The sensitivity analysis already represented in Table 1 has to be performed before224

the estimation of the fault estimators. Therefore, once the input–output signals are225

selected, according to Table 1, the FSs and the NNs used as fault reconstructors can be226

developed, as summarised in Section 3.1.227

3.1. Fault Estimators via FS and NN Tools228

This section recalls the procedure for developing the fault estimators modelled229

as Takagi–Sugeno (TS) FSs. In this way, the unknown dynamic relations between the230

selected input and output measurements of the WT plant and the faults are represented231

by means of FSs, which rely on a number of rules, antecedent and consequent functions.232

These rules are used to represent the inference system for connecting the measured233

signals from the system under diagnosis to its faults, in form of IF =⇒ THEN relations,234

implemented via the so–called Fuzzy Inference System (FIS) [35].235

According to this modelling strategy, the general TS fuzzy prototype has the of Eq.
(6):

f̂ (k) =
∑nC

i=1 λi(x(k))
(
aT

i x(k) + bi
)

∑nC
i=1 λi(x(k))

(6)

Using this approach, in general, the fault signal f̂ (k) is reconstructed by using suitable236

data taken from the WT process under diagnosis. In this case, the fault function f̂ (k)237

is represented as a weighted average of affine parametric relations aT
i x(k) + bi (con-238

sequents) depending on the input and output measurements collected in x(k). These239

weights are the fuzzy membership degrees λi(x) of the system inputs.240

The parametric relations of the consequents depend on the unknown variables ai241

and bi, which are estimated by means of an identification approach. The rule number is242

assumed equal to the cluster number nC exploited to partition the data via a clustering243

algorithm with respect to regions where the parametric relations (consequents) hold244

[35].245

Note that the system under diagnosis corresponds to a WT plant, which is described
by a dynamic model. Therefore, the vector x(k) in Eq. (6) contains both the current
and the delayed samples of the system input and output measurements. Therefore, the
consequents includes discrete–time linear Auto–Regressive with eXogenous (ARX) input
structures of order o. This regressor vector is described in form of Eq. (7):

x(k) =
[
. . . , yl(k− 1), . . . , yl(k− o), . . . uj(k), . . . , uj(k− o), . . .

]T (7)

where ul(·) and yj(·) represent the l–th and j–th components of the actual WT input and246

output vectors u(k) and y(k). These components are selected according to the results247

reported in Table 1.248

The consequent affine parameters of the i–th model of the Eq. (6) are usually
represented with a vector:

ai =
[
α
(i)
1 , . . . , α

(i)
o , δ

(i)
1 , . . . , δ

(i)
o

]T
(8)

where usually the coefficients α
(i)
j are associated to the delayed output samples, whilst249

δ
(i)
j to the input ones.250

The approach proposed in this paper for the derivation of the generic i–th fault251

approximator (FIS) starts with the fuzzy clustering of the data u(k) and y(k) from the WT252

process. This paper exploits the well-established Gustafson–Kessel (GK) algorithm [35].253

Moreover, the estimation of the FIS parameters is addressed as a system identification254

problem from the noisy data of the WT process. Once the data are clustered, the255

identification strategy proposed in this work exploits the methodology developed by256

the authors in [51].257
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Another key point not addressed in this work concerns the selection of the optimal258

cluster number nC. This issue was investigated and developed by the authors, which259

leads to the estimation of the membership degrees λi(x(k)) required in Eq. (6) and260

solved as a curve fitting problem [35].261

This paper considers an alternative data–driven approach, which exploits neural262

networks used as fault approximators in the scheme of Figure 2. Therefore, in the same263

way of the fuzzy scheme, the bank of NNs is exploited to reconstruct the faults affecting264

the WT system under diagnosis using a proper selection of the input and the output265

measurements. The exploited NN structure consists of a feed–forward Multi–Layer266

Percepron (MLP) architecture with 3 layers of neurons [38].267

However, as MPL networks represent static relations, the paper suggests to im-268

plement the MLP structure with a tapped delay line. Therefore, this quasi–static NN269

represents a powerful way for estimating nonlinear dynamic regressions between the in-270

put and output measurements from the WT process and its fault functions. This solution271

allows to obtain another Nonlinear ARX (NARX) description among the data. Moreover,272

when properly trained, these NARX NNs are able to reconstruct the fault function f̂ (k)273

using a suitable selection of the past measurements of the WP system inputs and outputs274

ul(k) and yj(k), respectively. The example of the general solution is sketched in Figure 3,275

which can be implemented by means of FIS or NARX NN structures.276
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Figure 3. General scheme for fault reconstruction.

Similarly to the fuzzy scheme, with reference to the i–th fault reconstructor, a bank
of NARX NNs is exploited, where the generic NARX system models the relation of Eq.
(9):

f̂ (k) = F
(
. . . , uj(k), . . . , uj(k− du), . . . yl(k− 1), . . . , yl(k− dy), . . .

)
(9)

where f̂ (k) represents the estimate of the general i–th fault in Table 1, whilst uj(·) and277

yl(·) indicate the components of the measured inputs and outputs of the WT process.278

These signals are selected again by means of the solution of the fault sensitivity problem279

reported in Table 1. The accuracy of the fault reconstruction depends on the number280

of neurons per layer, their weights and their activation functions. The results of the281

selection of the optimal structure of the fault reconstructors for FDI and the achieved282

performances will be shown in Section 4.283

4. Simulation Results, Experimental Validation and Comparisons284

With reference to the WT benchmark of Section 2, the simulations are driven by285

different wind sequences generated in a random way. They represent real measurements286

of wind speed sequences representing typical WT operating conditions, with ranges287

varying from 5 m/s. to 20 m/s. This scenario was modified by the authors with respect288

to the earlier benchmark proposed in [39]. The simulations consist of 4400 s., with single289
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fault occurrences and a number of samples N = 440000 for a sampling frequency of290

100 Hz. Almost all fault signals are modelled as step functions lasting for 100 s. with291

different commencing times. Further details can be found in [39,48].292

The first part of this section reports the results achieved by means of the fuzzy293

prototypes used as fault reconstructors according to Section 3.1. In particular, the fuzzy294

c–means and the GK clustering algorithms were exploited. A number of clusters nC = 4295

of clusters and a number of delays o = 3 were estimated. The membership functions of296

the TS FS and the parameters of the consequents α
(i)
j and δ

(i)
j were estimated for each297

cluster by following the procedure developed by the same authors in [52]. The TS FSs of298

Eq. (6) were thus determined and 9 fault reconstructors were organised according to the299

scheme of Figure 2.300

The performances of the 9 TS FSs when used as fault estimators were evaluated301

again according to the RMSE % index, computed as the difference between the recon-302

structed f̂ (k) and the actual f (k) signals for each of the fuzzy estimators. These values303

were reported in Table 2.304

Table 2: FS fault estimator capabilities.

Fault Case 1 2 3 4 5
RMSE% 1.61% 2.22% 1.95% 1.87% 1.92%
Sdt. Dev. ±0.02% ±0.03% ±0.01% ±0.01% ±0.01%
Fault Case 6 7 8 9
RMSE% 2.15% 1.76% 2.13% 1.98%
Sdt. Dev. ±0.02% ±0.01% ±0.02% ±0.01%

Indeed, the RMSE % values reported in Table 2 represent an average of the results305

obtained from a campaign of 1000 simulations, as the benchmark exploited in this work306

changes the parameters of the WT model at each run. Moreover, the model–reality307

mismatch, the measurement errors, uncertainty and disturbance effects are described308

as Gaussian processes with suitable distributions, as remarked in Section 2. Therefore,309

Table 2 reports also the values of the standard deviation of the estimation errors achieved310

by the FS fault estimators.311

Note that these reconstructed signals f̂ (k) can be directly used as diagnostic resid-312

uals in order to detect and isolate the faults affecting the WT. Moreover, each TS FS of313

Eq. (6) is fed by 3 inputs (according to Table 1), with a number of delayed inputs and314

outputs n = 3 and nC = 4 clusters.315

As an example, Figure 4 shows the results regarding the fault cases 1, 2, 3, and 4 of316

the WT plant recalled in Section 2.317
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Figure 4. Reconstructed faults f̂ (k) for cases 1, 2, 3, and 4.
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In particular, Figure 4 reports the estimated faults f̂ (k) = ri(k) provided from the318

FSs in faulty conditions (black continuous line). They are compared with respect to319

the corresponding fault–free residuals (grey line). The fixed thresholds reported with320

dotted lines are used for fault detection. Note that the reconstructed fault functions321

f̂ (k) = ri(k) are different from zero also in fault–free conditions due to the measurement322

errors and the model-reality mismatch. This aspect serves to highlight the accuracy of323

the reconstructed signals provided by the estimated fuzzy models.324

As for the FSs, 9 NARX NNs summarised in Section 3.1 were derived to provide325

the reconstruction of the 9 faults affecting the WT plant. In particular, the NARX were326

implemented as MLP NNs with 3 layers: the input layer consisted of 3 neurons, the327

hidden one used 10 neurons, whilst one neuron for the output layer. 4 delays were used328

in the relation of Eq. (9). Moreover, sigmoidal activation functions were used in both the329

input and the hidden layers, and a linear function for the output layer. With reference330

to Table 1, the NARX NNs were fed by 9 signals, representing the delayed inputs and331

outputs from the WT process.332

As for the FSs, the prediction accuracy of the NARX NN was analysed by means of333

the RMSE % index and its average values summarised in Table 3.334

Table 3: NN fault estimator capabilities.

Fault Case 1 2 3 4 5
RMSE % 0.91% 0.92% 0.94% 1.21% 1.17%
Sdt. Dev. ±0.01% ±0.01% ±0.01% ±0.02% ±0.01%
Fault Case 6 7 8 9
RMSE % 1.61% 0.98% 0.95% 1.41%
Sdt. Dev. ±0.01% ±0.01% ±0.01% ±0.02%

As for the FS case, Table 3 reports also the values of the standard deviation of the335

estimation errors achieved by the NARX NN fault estimators.336

Also in this case, Figure 5 depicts some of the residual signals f̂ (k) = ri(k) provided337

by the NARX NNs for the fault conditions 6, 7, 8, and 9, and compared with respect to338

the fixed detection thresholds (dotted lines).339
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Figure 5. Estimated faults for cases 6, 7, 8, and 9.

Also in this case, the results obtained by the NARX NNs serve to highlight the340

efficacy of the developed solution, taking into account also disturbance and uncertainty341

affecting the WT system.342

4.1. HIL Validation343

In order to validate the developed fault diagnosis solutions in more realistic real–344

time working situations, the WT process and the designed algorithms have been im-345
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plemented and executed by means of a HIL tool. This test–bed allows to reproduce346

experimental tests that are oriented to the verification of the results achieved in simula-347

tions. This test–bed is sketched in Figure 6, which highlights its 3 main modules.348
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Figure 6. HIL tool for real–time validation.

The WT simulator that was used to describe WT system dynamics, its actuator,349

measurement sensors, and the WT controlled has been implemented in the LabVIEW350

environment. Realistic effects such as uncertainty, measurement errors, disturbance and351

the model–reality mismatch effects were also included, as recalled Section 2. The overall352

system is converted in the C++ code running on a standard PC, and allows also to test353

and monitor the signals generated by the proposed fault diagnosis strategies.354

These fault diagnosis schemes summarised in Section 3.1 have been also compiled355

as executable code and implemented in an AWC 500 industrial system that features356

typical wind turbines requirements. This industrial module receives the signals acquired357

from the PC simulating the realistic WT plant that represent the monitored signals358

reported in Table 1. Therefore, the on board electronics elaborate these signals according359

to the fault diagnosis algorithms and produce the monitoring signals transmitted back360

to the WT simulator running on the PC.361

An intermediate module represents the interface circuits providing the communica-362

tions between the PC with the WT simulator and the on board electronics running the363

fault diagnosis algorithms. In this way, it manages the signals and exchanges the data364

between the WT simulator and the AWC 500 system.365

The results achieved via this HIL tool are reported in Table 4 that summarises the366

capabilities of the fault diagnosis algorithms by means of the NSSE % performance367

index.368

Table 4: RMSE % index for the HIL tool.

Fault Case 1 2 3 4 5
TS FSs 1.69% 2.29% 2.01% 1.94% 1.99%
NARX NNs 0.99% 0.98% 0.99% 1.28% 1.21%
Fault Case 6 7 8 9
TS FSs 2.22% 1.81% 2.21% 2.03%
NARX NNs 1.69% 1.02% 1.01% 1.51%

Note that the tests summarised in Table 4 are consistent with the results reported369

in Tables 2 and 3. Although the accuracy of the simulations seems better than the370

performance achieved via the HIL tool, some remarks have to be drawn. First, the AWC371

500 system uses calculations that are more restrictive than the PC simulator. Moreover,372

A/D and D/A devices are also exploited, which can introduce further deviations. On373
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the other hand, the testing of real scenarios does not involve the data transfer from a374

PC to on board electronics, thus reducing possible errors. Therefore, it can be finally375

remarked that the achieved results are quite accurate and motivate the application of the376

developed fault diagnosis strategies to real WT installations.377

4.2. Comparative Analysis378

To prove the features of the FDI performance of the proposed solutions, comparisons379

with other strategies are presented in this section. The developed FDI schemes are380

compared with methodologies already proposed by the same authors, relying on a381

model–based nonlinear approach, i.e. the so–called Adaptive Filter NonLinear Geometric382

Approach (NLGA–AF) [53] and a Recursive identification of Fuzzy Systems (RFS) [54].383

Moreover, the Sliding Mode Observer (SMO) approach is also considered [20].384

The performance of these three strategies is compared to the FDI methodologies385

(FS and NN) developed in this paper on the basis of the estimation accuracy through the386

experimental analysis, as shown in Table 5.387

Table 5: RMSE % index for the HIL analysis and comparisons.

Fault Case 1 2 3 4 5 6 7 8 9
TS FSs 1.69% 2.29% 2.01% 1.94% 1.99% 2.22% 1.81% 2.21% 2.03%
NARX NN 0.99% 0.98% 0.99% 1.28% 1.21% 1.69% 1.02% 1.01% 1.51%
NLGA–AF 1.37% 1.45% 1.73% 1.75% 1.56% 1.99% 1.45% 1.54% 1.76%
RFS 1.99% 2.67% 2.44% 2.56% 2.67% 2.97% 2.23% 2.78% 2.82%
SMO 1.87% 1.82% 2.11% 2.01% 1.91% 2.34% 1.95% 2.08% 2.23%

According to the results summarised in Table 5, the performance of the ARX NN388

solution is higher than the ones obtained with the other schemes.389

Moreover, it is worth noting that the values reported in Table 5 serve to assess the390

overall behaviour of the developed control techniques. In more detail, the values of the391

NSSE% index highlights that when the mathematical description of the dynamic process392

under investigation may be included in the design phase, the NLGA–AF technique393

with disturbance decoupling still yields to good performances, even if an optimisation394

procedure is required. However, when modelling errors are present, the offline learning395

feature of the data–driven fuzzy estimators TS FSs allows to achieve interesting results.396

For example, this consideration is valid also for the SMO estimators derived via a397

linearisation procedure. On the other hand, the fuzzy estimators TS FSs have led to398

more interesting capabilities. With reference to the adaptive scheme, such as the RFS, it399

takes advantage of its recursive features, since it is able to track possible variations of the400

system under diagnosis, due to operation or model changes. However, it requires quite401

complicated and not straightforward design procedures relying on data–driven recursive402

algorithms. Therefore, fuzzy–based schemes use the learning accumulated from data–403

driven offline simulations, but the training stage can be computationally heavy. Finally,404

concerning the NARX NN strategy, which represented the solution with the best results,405

it is rather simple and straightforward. Obviously, the achievable performances of406

linearised or adaptive methods are quite limited when applied to nonlinear dynamic407

processes. It can thus be concluded that the proposed data–driven approaches (NARX408

NN and TS FS) seem to represent powerful techniques able to cope with uncertainty,409

disturbance and variable working conditions.410

5. Conclusion411

This paper investigated fault diagnosis solutions that can be considered as viable412

and effective strategies for condition monitoring of a wind turbine process. To this end,413

the work proposed the design of fault estimators by means of data–driven method-414

ologies relying on fuzzy models and neural networks. These solutions represented415

effective methods that allow the management of partially unknown information of the416

system dynamics, while coping with measurement errors, the model–reality mismatch417
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and other disturbance effects. Therefore, these data–driven methodologies were ex-418

ploited to estimate nonlinear dynamic relations between the input and output process419

measurements and the faults. To this aim, the fuzzy and neural network prototypes420

integrated auto–regressive with exogenous input descriptions, thus making them able421

to approximate unknown nonlinear dynamic functions with arbitrary degree of accu-422

racy. Once these models are derived for fault diagnosis purpose, their capabilities were423

verified and validated by using a high–fidelity benchmark that simulates the healthy424

and the faulty behaviour of a wind turbine system. The benchmark was also useful425

to analyse the robustness and the reliability characteristics of the developed tools in426

the presence of model–reality mismatch and measurement errors featured by the wind427

turbine simulator. Moreover, a hardware–in–the–loop tool was finally implemented428

for testing the performance of the developed fault diagnosis strategies in a more re-429

alistic environment. A comparative analysis with different fault diagnosis methods430

was also performed to demonstrate the better performance of the proposed dynamic431

neural strategy applied to the considered benchmark. The proposed design facilitated its432

derivation by using a data–driven training and learning algorithm that led to accurate433

fault identification and greater robustness. This solution saved the computing cost with434

reduced required iterations, easier design and implementation. The achieved results435

highlighted that data–driven approaches, such as fuzzy structures were able to provide436

good performances. However, they were easily outperformed by self–learning schemes,437

representing data–driven solutions that did not require optimisation stages, adaptation438

procedures or disturbance compensation methods. Further works will consider the439

application of the considered methodologies to real installations, in the presence of more440

realistic disturbance and uncertainty effects.441
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