Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 May 2021 d0i:10.20944/preprints202105.0315.v1

Jrirird applied
b sciences

Article

Fuzzy and Neural Network Approaches to Wind Turbine Fault

Diagnosis

Saverio Farsoni ', Silvio Simani 1**(® and Paolo Castaldi 2

Department of Engineering, University of Ferrara; {saverio.farsoni,silvio.simani}@unife.it
Department of Electrical, Electronic, and Information Engineering, University of Bologna;
paolo.castaldi@unife.it

*  Correspondence: silvio.simani@unife.it; Tel.: +39-0532-97-4844 (F.L.)

1t Current address: Ferrara, Via Saragat 1E. I-44122. Ferrara, FE, Italy

Abstract: The fault diagnosis of safety critical systems such as wind turbine installations includes
extremely challenging aspects that motivate the research issues considered in this paper. In fact,
the prompt detection and the reliable diagnosis of faults in their earlier occurrence represent
the key point especially for offshore installations. For these plants, operation and maintenance
procedures in harsh environments would inevitably increase the cost of the energy production.
Therefore, this work investigates fault diagnosis solutions that are considered in a viable way and
used as advanced techniques for condition monitoring of dynamic processes. To this end, the
work proposes the design of fault diagnosis strategies that exploit the estimation of the fault by
means of data—driven approaches. This solution leads to the development of effective methods
allowing the management of partially unknown information of the system dynamics, while coping
with measurement errors, the model-reality mismatch and other disturbance effects. In mode
detail, the proposed data—driven methodologies exploit fuzzy systems and neural networks in
order to estimate the nonlinear dynamic relations between the input and output measurements of
the considered process and the faults. To this end, the fuzzy and neural network structures are
integrated with auto-regressive with exogenous input descriptions, thus making them able to
approximate unknown nonlinear dynamic functions with arbitrary degree of accuracy. Once these
models are estimated from the input and output data measurement acquired from the considered
dynamic process, the capabilities of their fault diagnosis capabilities are validated by using a high—
fidelity benchmark that simulates the healthy and the faulty behaviour of a wind turbine system.
Moreover, at this stage the benchmark is also useful to analyse the robustness and the reliability
characteristics of the developed tools in the presence of model-reality mismatch and modelling
error effects featured by the wind turbine simulator. On the other hand, a hardware—in-the-loop
tool is finally implemented for testing and comparing the performance of the developed fault
diagnosis strategies in a more realistic environment and with respect to different fault diagnosis
approaches.

Keywords: fuzzy systems; neural networks; fault diagnosis; data—driven approaces; robustness
and reliability; wind turbine

1. Introduction

Wind power is the second largest source of renewable energy after solar power
sources globally. The global popularity of wind power has risen significantly due to the
need to harness electrical power from renewable sources in order to limit and end the
necessity of the fossil fuels [1]. Variable-speed wind turbines are the most important
component of a Wind Energy Conversion System (WECS). For effective and reliable
power conversion, suitable technical and technological solutions have to be properly
implemented and exploited in WECSs.

© 2021 by the author(s). Distributed under a Creative Commons CC BY license.
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Technological advances in wind power generation systems have encouraged the
installation of wind farms. Owing to the large size and requirement of high wind speeds,
these installations are located in offshore areas. Such installations of offshore WECS
result in disadvantages such as high expense to install, and the non-availability of
continuous supervision, Operation and Maintenance (O&M), which in turn raises a
uncertainty aspect of the degree of reliability of offshore WECSs. The maintenance costs
for offshore wind turbines have been found to be nearly 30-40% of the comprehensive
life costs of WECSs [2,3], thus increasing the final production costs.

Reducing the maintenance cost is a key element in operating and generating power
from WECSs [4,5]. The optimal cost of operation of a WECS is achieved in two ways:
(i) by using efficient design techniques to prevent the unbalancing of loads and main-
taining a rated power output throughout the operation, which can be achieved through
appropriate modelling of the wind turbine system; (ii) by developing suitable fault
diagnosis and fault—control strategies that prevent unnecessary maintenance and have
shorter shutdown period due to failure. Technological advancements have proposed
and implemented several effective designs for an aerodynamic model of wind turbines
in recent years. However, the existence of faults is inevitable in the operation of wind
energy systems. Like any other industrial system, wind turbines are prone to failures.
Mechanical, actuator and sensor failures are the most commonly occurring failures in a
WECS. Field survey data indicate that actuators of wind turbines are the most vulnerable
components of a WECS [5-7] Any faulty event in the actuators of the wind turbine
control system results in deviation of the system from its objectives and causes damage
to the system components. A fault will deteriorate the performance of the complete
system, resulting in the unscheduled shutdown of the system. To remain operative and
competitive, there is a high demand for improving the reliability and availability of wind
turbines with reduced unscheduled down time in the electricity market, thus limiting
O&M and reducing the final cost of energy.

Fault Detection and Isolation (FDI) could be considered as a phase or a by—product
of Fault Tolerant Control (FTC). In general, FDI relies on three methods, i.e. parity
equations, parameter estimation approaches and observer/filter methods [8]. Moreover,
when the fault is estimated from the FDI module, it can be exploited for its compensation.
Therefore, taking into account this strategy, two FTC methods can be also considered
[9,10]: active FTC (AFTC) and passive FTC (PFTC) approaches [11-13].

FDI methods are used also in connection with FTC schemes because they can
improve fault diagnosis performance. As an example, [14] proposed the design of a
FDI/FTC scheme based on a fuzzy inference mechanism oriented to model uncertainties
and actuator faults. A fault identification algorithm is addressed in [15] and applied
to wind turbine pitch actuators. Other strategies designed through Lyapunov and
Nussbaum-type functions are proposed in [16,17] to improve the operation of wind
turbines.

FDI schemes for wind turbine faults were addressed with different approaches
such as sliding mode approaches [18-20], fuzzy Takagi-Sugeno models [21-23], neural
networks [24-26], neuro—fuzzy [27], linear observers [28-30], and Kalman filter [31-34].

These methods rely on online estimation and fault information, and any inaccurate
information during faults may result in degradation of system performance and can
cause instability during post—fault operation. This issue is of great significance in systems
such as wind turbines having several sources of noise and uncertainties. The availability
of the wind turbines must be ensured through effective FDI strategies and, thus, it is
required to develop robust and reliable prognostic and diagnosis strategies in a WECS
to ensure its safe operation.

With reference to this paper, the topic of the fault diagnosis of a wind turbine
system is analysed. In particular, the design of practical and reliable solutions to FDI are
considered. However, differently from other works by the same authors, the FTC topic is
not investigated here, even if it can rely on the same tools exploited in this paper. In fact,
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as already remarked above, the fault diagnosis module provides the reconstruction of
the fault signal affecting the process, which could be actively compensated by means of a
controller accommodation mechanism. Moreover, the fault diagnosis design is enhanced
by the derived fault reconstructors that are estimated via data—driven approaches, as
they also allow to accomplish the fault isolation task.

The first data—driven strategy proposed in this work exploits Takagi-Sugeno (TS)
fuzzy prototypes [35,36], which are estimated via a clustering algorithm and exploit-
ing the data—driven algorithm developed in [37]. For comparison purpose, a further
approach is designed, which exploits Neural Networks (NNs) to derive the nonlinear
dynamic relations between the input and output measurements acquired for the process
under diagnosis and the faults affecting the plant. The selected structures belong to
the feed—forward Multi-Layer Perceptron (MLP) neural network class that include also
Auto-Regressive with eXogenous (ARX) inputs in order to model nonlinear dynamic
links among the data. In this way, the training of these Nonlinear ARX (NARX) proto-
types for fault estimation can exploit standard back—propagation training algorithm, as
recalled e.g. in [38].

The designed fault diagnosis schemes are tested via a high—fidelity simulator of a
wind turbine process, which describes its behaviour in healthy and faulty conditions.
This simulator, which represents a benchmark [39], includes the presence of uncertainty
and disturbance effects, thus allowing to verify the reliability and robustness charac-
teristics of the proposed fault diagnosis methodologies. Moreover, this work proposes
to validate the efficacy of the designed fault diagnosis techniques by exploiting a more
realistic scenario, which consists of a Hardware—In—the-Loop (HIL) tool.

It is worth noting the main contributions of this paper with respect to previous
works by the authors. For example, this study analyses the solutions addressed e.g. in
[40] but taking into account a more realistic and real-time system illustrated in Section 4.
On the other hand, the fault diagnosis scheme developed in this paper was designed for
a wind turbine system also in [41], but without considering the HIL environment.

The fuzzy methodology was also proposed by the authors in [42], which considered
the development of recursive algorithms for the implementation of adaptive laws relying
on Linear Parameter Varying (LPV) systems. The approach proposed in this paper
estimates the fault diagnosis models by means of off-line procedures. Moreover, this
paper further develops the achievements obtained e.g. in [43], but concerning the fault
diagnosis a wind farm. The paper [44] proposed the design of a fault tolerant controller
using the input-output data achieved from a single wind turbine, by exploiting the
results achieved in [41,45]. On the other hand, this work considers the verification and
the validation of the proposed fault diagnosis methodologies by exploiting an original
HIL tool, proposed considered in a preliminary paper by the same authors [46,47].

The work follows the structure sketched in the following. Section 2 briefly sum-
marises the wind turbine simulator, as it represents a well-established benchmark avail-
able in literature [48]. Section 3 describes the fault diagnosis strategies based on Fuzzy
Systems (FSs) and Neural Network (NN) structures, detailed in Section 3.1. Section 4
summarises the obtained results via extended simulations, whilst Section 4.1 illustrates
the HIL tool describing the behaviour of the wind turbine process. Finally, Section 5
concludes the work by reporting the main points of the paper and suggesting some
interesting issues for further research and future investigations.

2. Wind Turbine Model Description

This section illustrates the Wind Turbine (WT) benchmark considered in this work.
Moreover, Section 2.1 sketches the procedure exploited for the selection of the input and
output measurements that feed the residual generators for FDI, as recalled in Section 3.

The WT simulator exploited in this work for validation purposes was earlier pre-
sented in [39,48] and motivated by an international competition. Despite its quite simple
structure, it is able to describe quite accurately the actual behaviour of a three-blade
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horizontal-axis wind turbine that is working at variable-speed and it is controlled by
means of the pitch angle of its blades. The plant includes several interconnected sub-
systems, namely the wind process, the wind turbine aerodynamics, the drive-train, the
electric generator/converter, the sensor and actuator systems and the baseline controller.
The overall system is sketched in Figure 1, which represents the fault diagnosis target
developed in this work. Further details of the WT benchmark will not be provided here,
as they were described in detail in [4] and the references therein.

Rotor
. Pitch |_| Blade |—* Pitch
actuator sensor
Drive-train Power system
Low High Lyl | Generator
Gear
> speed [ box | speed Converter
shaft shaft L Speed Power
sensor | |1 sensor
Full load .
controller 7
Full load o Partial load Y
controller . controller
Switch Switch

Figure 1. The WT benchmark and its functional subsystems.

This wind turbine benchmark is able to generate different typical fault cases affect-
ing the sensors, the actuators and the process components. This scenario comprising 9
faulty situations is illustrated in Section 2.1, which describes the procedure for deter-
mining the input and output measurements acquired from the WT process and mainly
affected by these faults.

2.1. Fault Sensitivity Analysis

The paper proposes to exploit this tool, which was suggested earlier by the authors
for different applications, see e.g. [49,50] , as it simplifies the design of the bank of fault
estimators as well as enhances the identification of the dynamic FS and NN prototypes
recalled in Section 3.1. Moreover, this analysis must be preliminary performed on the
WT simulator. In particular, as already remarked, it is used to select the input and output
measurements u;(k) and y; (k) of the process that feed the dynamic FIS or NN of the
bank of Figure 3.

In practice, the actuator faults considered in the WT benchmark have been injected
into the simulator, assuming that only a single fault may occur. Then, the Relative
Mean Square Errors (RMSE) index computed by considering the fault-free and faulty
measured signals is computed, so that, for each fault, the most sensitive signal u;(k) and
y; (k) is determined.

In particular, the fault sensitivity analysis relies on a selection algorithm using the
normalised sensitivity function Ny in the form of Eq. 1:

N, = i M)
with: H H
xf(k) — xu (k)
R G ¥
and:
Sy = max fo(k) _ x"(k)Hz 3)

12 (k)]

The factor Ny represents the effect of the considered fault case on the generic measured
signal x(k), withk =1, 2, ..., N its sample number. The subscripts ‘f’ and ‘'n” indicate
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the faulty and the fault-free case, respectively. Therefore, the signals mainly affected by
the considered fault generate a value of Ny equal to 1. On the other hand, values of Ny
closer to zero indicate that x (k) is not affected by the fault. Those signals corresponding
to significantly higher values of Ny are thus selected as the most sensitive measurements
to the fault cases, and will used to feed the fault diagnosis modules of the bank reported
in Figure 3.

As already remarked, the WT benchmark is able to generate different typical fault
cases affecting the sensors, the actuators and the process components. This scenario
comprising 9 fault situations is illustrated by means of Table 1, which reports the input
and output measurements acquired form the WT process signals and mainly affected by
these faults. In particular, Table 1 summarises the results of this fault sensitivity analysis
for the case of the WT simulator.

Table 1: Fault scenario of the WT benchmark.

Fault Case | Fault Type | Most Affected Input-Output Measurements

1 Sensor B1,m1, B1m2, Wegm2
2 Sensor B1,m2, B2,m2, Wg,m2
3 Sensor B1,m2, B3m1, Wem2
4 Sensor B1,m2, We m2, Wrml
5 Sensor B1,m2, We,m2, Wr,m2
6 Actuator B1,m2, B2,m1, Wgm2
7 Actuator B1,m2, B3,m2, Wgm2
8 Actuator B1,m2, Tgm, Wem2

9 System B1,m2, Wem1, Wem2

In this way, Table 1 reports the most sensitive measurements u;(k) and y; (k) ac-
quired from the WT system with respect to the fault conditions implemented in the WT
benchmark. In practice, the fault signals of Table 1 were injected into the WT simulator,
assuming that only a single fault may occur. Then, by checking the Relative Mean Square
Errors (RMSEs) between all the fault-free and faulty measurements from the WT plant,
the most sensitive signal u;(k) and y; (k) was selected and reported in Table 1.

For FDI purpose, the complete model of the WT benchmark can be described as
a nonlinear continuous-time dynamic model represented by the function £, of Eq. (4)
including the overall behaviour of the WT process reported in Figure 1 with state vector
xywt and fed by the driving input vector u:

xot(t) = fur(xwt, u(t))
{y(;) = tht(t)t @

Eq. (4) highlights that the simulator allows to measure all the state vector signals, i.e. the
rotor speed, the generator speed and the generated power of the WT process:

th(t) = Y(t) = [wg,mlr We,m2, Wr,ml, Wr,m2, Pg,m]

The driving input vector is represented by the following signals:

u(t) = [Brm1s Bumzs Bomts Bomzs B3mis B3m2, Tgm]

that represent the acquired measurements of the pitch angles from the three WT blades
and the measured generator/converter torque. These signals are acquired with sample
time T in order to obtain N data indicated as u(k) and y(k) with indexk =1, ..., N that
are exploited to design the FDI strategies addressed in this work.

Note finally that this tool represents one of the key features of the proposed strategy
to FDL. In fact, the fault estimators exploited for FDI can be estimated by using a smaller
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number of inputs, thus leading to a noteworthy simplification of the overall complexity,
while decreasing the computational cost of the training algorithms.

3. Data—Driven Strategies for Fault Diagnosis

This section recalls the fault diagnosis strategy proposed in this paper that relies on
FS and NN tools, as summarised in Section 3.1. These architectures are able to represent
NARX models exploited for estimating the nonlinear dynamic relations between the
input and output measurements of the WT process and the fault signals. In this sense,
these NARX prototypes will be employed as fault estimators for solving the problem of
the fault diagnosis of the WT system.

Under these assumptions, the fault estimators derived by means of a data—driven
approach represent the residual generators r(k), which provide the on-line reconstruc-
tion f(k) of the fault signals summarised in Table 1, as represented by Eq. (5):

r(k) = (k) ®)

where the term f(k) represents the general fault vector of Table 1, i.e. f(k) = {f1(k), ...
., fo(k)}.

The fault diagnosis scheme exploiting the proposed fault estimators as residual
generator is sketched in Fig. 2. Note that, as already highlighted, this scheme is also able
to solve the fault isolation task [8].
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Figure 2. Bank of fault reconstructors for FDI.

Figure 2 shows that the general residual generator exploits the input and output
measurements acquired from the process under diagnosis, u(k) and y(k), properly
selected according to the analysis shown in Table 1. The fault detection problem can be
easily achieved by means of a simple threshold logic applied to the residuals themselves,
as described in [8]. This issue will not be considered in this paper.

Once the fault detection phase is solved, the fault isolation stage is directly obtained
via the the bank of estimators of Figure 2. In this case, the number of estimators of Figure
2 is equal to the faults to be detected, i.e. 9, which is lower than the number of input and
output measurements, r + m, acquired from the WT process.

This condition provides several degrees of freedom, as the i—th reconstructor of
the fault f(k) = r;(k) is a function of the input and output signals u(k) and y(k).
These signals are thus selected in order to be affected sensitive to the specific fault
fi(k), as highlighted in Table 1. This procedure enhances also the design of the fault
reconstructors, as it reduces the number of possible input and output measurements,
u;(k) and y, (k), which have to be considered for the identification procedure reported in
Section 3.1.
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The sensitivity analysis already represented in Table 1 has to be performed before
the estimation of the fault estimators. Therefore, once the input-output signals are
selected, according to Table 1, the FSs and the NNs used as fault reconstructors can be
developed, as summarised in Section 3.1.

3.1. Fault Estimators via FS and NN Tools

This section recalls the procedure for developing the fault estimators modelled
as Takagi-Sugeno (TS) FSs. In this way, the unknown dynamic relations between the
selected input and output measurements of the WT plant and the faults are represented
by means of FSs, which rely on a number of rules, antecedent and consequent functions.
These rules are used to represent the inference system for connecting the measured
signals from the system under diagnosis to its faults, in form of IF = THEN relations,
implemented via the so—called Fuzzy Inference System (FIS) [35].

According to this modelling strategy, the general TS fuzzy prototype has the of Eq.
(6):

s L A(x(k)) (af x(k) + by)
Jk) = ic
Zi=1 /\i (X(k))

Using this approach, in general, the fault signal f(k) is reconstructed by using suitable
data taken from the WT process under diagnosis. In this case, the fault function f(k)
is represented as a weighted average of affine parametric relations a! x(k) + b; (con-
sequents) depending on the input and output measurements collected in x(k). These
weights are the fuzzy membership degrees A;(x) of the system inputs.

The parametric relations of the consequents depend on the unknown variables a;
and b;, which are estimated by means of an identification approach. The rule number is
assumed equal to the cluster number 1 exploited to partition the data via a clustering
algorithm with respect to regions where the parametric relations (consequents) hold
[35].

Note that the system under diagnosis corresponds to a WT plant, which is described
by a dynamic model. Therefore, the vector x(k) in Eq. (6) contains both the current
and the delayed samples of the system input and output measurements. Therefore, the
consequents includes discrete-time linear Auto—Regressive with eXogenous (ARX) input
structures of order o. This regressor vector is described in form of Eq. (7):

(6)

x(K) = [, yik=1), ..., y(k—0), ... uj(k), ..., uj(k—o),...]" @)

where u(-) and y;(-) represent the /~th and j~th components of the actual WT input and
output vectors u(k) and y(k). These components are selected according to the results
reported in Table 1.

The consequent affine parameters of the i—th model of the Eq. (6) are usually
represented with a vector:

. . . 1T
a; = [a@, IO 55”} ®)

where usually the coefficients oc](.l) are associated to the delayed output samples, whilst
(5](1) to the input ones.

The approach proposed in this paper for the derivation of the generic i-th fault
approximator (FIS) starts with the fuzzy clustering of the data u(k) and y(k) from the WT
process. This paper exploits the well-established Gustafson-Kessel (GK) algorithm [35].
Moreover, the estimation of the FIS parameters is addressed as a system identification
problem from the noisy data of the WT process. Once the data are clustered, the
identification strategy proposed in this work exploits the methodology developed by
the authors in [51].
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Another key point not addressed in this work concerns the selection of the optimal
cluster number nc. This issue was investigated and developed by the authors, which
leads to the estimation of the membership degrees A;(x(k)) required in Eq. (6) and
solved as a curve fitting problem [35].

This paper considers an alternative data—driven approach, which exploits neural
networks used as fault approximators in the scheme of Figure 2. Therefore, in the same
way of the fuzzy scheme, the bank of NN is exploited to reconstruct the faults affecting
the WT system under diagnosis using a proper selection of the input and the output
measurements. The exploited NN structure consists of a feed—forward Multi-Layer
Percepron (MLP) architecture with 3 layers of neurons [38].

However, as MPL networks represent static relations, the paper suggests to im-
plement the MLP structure with a tapped delay line. Therefore, this quasi-static NN
represents a powerful way for estimating nonlinear dynamic regressions between the in-
put and output measurements from the WT process and its fault functions. This solution
allows to obtain another Nonlinear ARX (NARX) description among the data. Moreover,
when properly trained, these NARX NN are able to reconstruct the fault function f (k)
using a suitable selection of the past measurements of the WP system inputs and outputs
uj (k) and y;(k), respectively. The example of the general solution is sketched in Figure 3,
which can be implemented by means of FIS or NARX NN structures.

u*(k) WT y*(k)
process

Input Output
sensors Sensors

Fault estimator
uk) k) | mr——_—_—————— 1

Delayed inputs

| |
L o |
utk) || uk-1) | '|
e
I : : l !
P L o
| or H—
RCEN ykel) i i
I yk-2) 1
I . e | I
I : : I Nl
! ! '
___________ vl
| |
| ARX structure Nonlinear structure |

Figure 3. General scheme for fault reconstruction.

Similarly to the fuzzy scheme, with reference to the i—th fault reconstructor, a bank
of NARX NN is exploited, where the generic NARX system models the relation of Eq.
9):

f(k) = F(, u](k), ceey u]-(k—du), yl(kf 1), ceey yl(kfdy), ) (9)

where f (k) represents the estimate of the general i—th fault in Table 1, whilst u;(-) and
y;(+) indicate the components of the measured inputs and outputs of the WT process.
These signals are selected again by means of the solution of the fault sensitivity problem
reported in Table 1. The accuracy of the fault reconstruction depends on the number
of neurons per layer, their weights and their activation functions. The results of the
selection of the optimal structure of the fault reconstructors for FDI and the achieved
performances will be shown in Section 4.

4. Simulation Results, Experimental Validation and Comparisons

With reference to the WT benchmark of Section 2, the simulations are driven by
different wind sequences generated in a random way. They represent real measurements
of wind speed sequences representing typical WT operating conditions, with ranges
varying from 5 m/s. to 20 m/s. This scenario was modified by the authors with respect
to the earlier benchmark proposed in [39]. The simulations consist of 4400 s., with single
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fault occurrences and a number of samples N = 440000 for a sampling frequency of
100 Hz. Almost all fault signals are modelled as step functions lasting for 100 s. with
different commencing times. Further details can be found in [39,48].

The first part of this section reports the results achieved by means of the fuzzy
prototypes used as fault reconstructors according to Section 3.1. In particular, the fuzzy
c-means and the GK clustering algorithms were exploited. A number of clusters nc = 4
of clusters and a number of delays 0 = 3 were estimated. The membership functions of
the TS FS and the parameters of the consequents !’ and (5].(1) were estimated for each
cluster by following the procedure developed by the same authors in [52]. The TS FSs of
Eq. (6) were thus determined and 9 fault reconstructors were organised according to the
scheme of Figure 2.

The performances of the 9 TS FSs when used as fault estimators were evaluated
again according to the RMSE % index, computed as the difference between the recon-
structed f(k) and the actual f(k) signals for each of the fuzzy estimators. These values
were reported in Table 2.

Table 2: FS fault estimator capabilities.

Fault Case 1 2 3 4 5
RMSE% 1.61% 2.22% 1.95% 1.87% 1.92%
Sdt. Dev. +0.02% +0.03% +0.01% +0.01% +0.01%
Fault Case 6 7 8 9

RMSE% 2.15% 1.76% 2.13% 1.98%

Sdt. Dev. +0.02% +0.01% +0.02% +0.01%

Indeed, the RMSE % values reported in Table 2 represent an average of the results
obtained from a campaign of 1000 simulations, as the benchmark exploited in this work
changes the parameters of the WT model at each run. Moreover, the model-reality
mismatch, the measurement errors, uncertainty and disturbance effects are described
as Gaussian processes with suitable distributions, as remarked in Section 2. Therefore,
Table 2 reports also the values of the standard deviation of the estimation errors achieved
by the FS fault estimators.

Note that these reconstructed signals f (k) can be directly used as diagnostic resid-
uals in order to detect and isolate the faults affecting the WT. Moreover, each TS FS of
Eq. (6) is fed by 3 inputs (according to Table 1), with a number of delayed inputs and
outputs n = 3 and n¢ = 4 clusters.

As an example, Figure 4 shows the results regarding the fault cases 1, 2, 3, and 4 of
the WT plant recalled in Section 2.

Fault 1 reconstruction Fault 2 reconstruction

ic)

[ 500 1000 1500 2000 2500 3000 3500 4000 4400
Time (s.)
Fault 3 reconstruction

0 500 1000 1500 2000 2500 3000 3500 4000 4400
Time (s.)
Fault 4 reconstruction

500 1000 1500 2000 2500 3000 3500 4000 4400

Time (s.)

"0 500 1000 1500 2000 2500 3000 3500 4000 4400

Time (s.)

Figure 4. Reconstructed faults f(k) for cases 1,2, 3, and 4.
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In particular, Figure 4 reports the estimated faults f(k) = r;(k) provided from the
FSs in faulty conditions (black continuous line). They are compared with respect to
the corresponding fault—free residuals (grey line). The fixed thresholds reported with
dotted lines are used for fault detection. Note that the reconstructed fault functions
f(k) = r;(k) are different from zero also in fault-free conditions due to the measurement
errors and the model-reality mismatch. This aspect serves to highlight the accuracy of
the reconstructed signals provided by the estimated fuzzy models.

As for the FSs, 9 NARX NNs summarised in Section 3.1 were derived to provide
the reconstruction of the 9 faults affecting the WT plant. In particular, the NARX were
implemented as MLP NNs with 3 layers: the input layer consisted of 3 neurons, the
hidden one used 10 neurons, whilst one neuron for the output layer. 4 delays were used
in the relation of Eq. (9). Moreover, sigmoidal activation functions were used in both the
input and the hidden layers, and a linear function for the output layer. With reference
to Table 1, the NARX NNs were fed by 9 signals, representing the delayed inputs and
outputs from the WT process.

As for the FSs, the prediction accuracy of the NARX NN was analysed by means of
the RMSE % index and its average values summarised in Table 3.

Table 3: NN fault estimator capabilities.

Fault Case 1 2 3 4 5
RMSE % 0.91% 0.92% 0.94% 1.21% 1.17%
Sdt. Dev. +0.01% +0.01% +£0.01% =+0.02% =£0.01%

Fault Case 6 7 8 9

RMSE % 1.61% 0.98% 0.95% 1.41%
Sdt. Dev. +0.01% £0.01% +£0.01% +0.02%

As for the FS case, Table 3 reports also the values of the standard deviation of the
estimation errors achieved by the NARX NN fault estimators.

Also in this case, Figure 5 depicts some of the residual signals f(k) = ;(k) provided
by the NARX NN for the fault conditions 6, 7, 8, and 9, and compared with respect to
the fixed detection thresholds (dotted lines).
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Figure 5. Estimated faults for cases 6, 7, 8, and 9.

Also in this case, the results obtained by the NARX NNs serve to highlight the
efficacy of the developed solution, taking into account also disturbance and uncertainty
affecting the WT system.

4.1. HIL Validation

In order to validate the developed fault diagnosis solutions in more realistic real—
time working situations, the WT process and the designed algorithms have been im-
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plemented and executed by means of a HIL tool. This test-bed allows to reproduce
experimental tests that are oriented to the verification of the results achieved in simula-
tions. This test-bed is sketched in Figure 6, which highlights its 3 main modules.
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Figure 6. HIL tool for real-time validation.

The WT simulator that was used to describe WT system dynamics, its actuator,
measurement sensors, and the WT controlled has been implemented in the LabVIEW
environment. Realistic effects such as uncertainty, measurement errors, disturbance and
the model-reality mismatch effects were also included, as recalled Section 2. The overall
system is converted in the C++ code running on a standard PC, and allows also to test
and monitor the signals generated by the proposed fault diagnosis strategies.

These fault diagnosis schemes summarised in Section 3.1 have been also compiled
as executable code and implemented in an AWC 500 industrial system that features
typical wind turbines requirements. This industrial module receives the signals acquired
from the PC simulating the realistic WT plant that represent the monitored signals
reported in Table 1. Therefore, the on board electronics elaborate these signals according
to the fault diagnosis algorithms and produce the monitoring signals transmitted back
to the WT simulator running on the PC.

An intermediate module represents the interface circuits providing the communica-
tions between the PC with the WT simulator and the on board electronics running the
fault diagnosis algorithms. In this way, it manages the signals and exchanges the data
between the WT simulator and the AWC 500 system.

The results achieved via this HIL tool are reported in Table 4 that summarises the
capabilities of the fault diagnosis algorithms by means of the NSSE % performance
index.

Table 4: RMSE % index for the HIL tool.

Fault Case 1 2 3 4 5
TS FSs 1.69% 229% 2.01% 1.94% 1.99%
NARXNNs 0.99% 0.98% 0.99% 1.28% 1.21%
Fault Case 6 7 8 9

TS FSs 2.22% 1.81% 2.21% 2.03%

NARX NNs 1.69% 1.02% 1.01% 1.51%

Note that the tests summarised in Table 4 are consistent with the results reported
in Tables 2 and 3. Although the accuracy of the simulations seems better than the
performance achieved via the HIL tool, some remarks have to be drawn. First, the AWC
500 system uses calculations that are more restrictive than the PC simulator. Moreover,
A/D and D/ A devices are also exploited, which can introduce further deviations. On
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the other hand, the testing of real scenarios does not involve the data transfer from a
PC to on board electronics, thus reducing possible errors. Therefore, it can be finally
remarked that the achieved results are quite accurate and motivate the application of the
developed fault diagnosis strategies to real WT installations.

4.2. Comparative Analysis

To prove the features of the FDI performance of the proposed solutions, comparisons
with other strategies are presented in this section. The developed FDI schemes are
compared with methodologies already proposed by the same authors, relying on a
model-based nonlinear approach, i.e. the so-called Adaptive Filter NonLinear Geometric
Approach (NLGA-AF) [53] and a Recursive identification of Fuzzy Systems (RFS) [54].
Moreover, the Sliding Mode Observer (SMO) approach is also considered [20].

The performance of these three strategies is compared to the FDI methodologies
(FS and NN) developed in this paper on the basis of the estimation accuracy through the
experimental analysis, as shown in Table 5.

Table 5: RMSE % index for the HIL analysis and comparisons.

Fault Case 1 2 3 4 5 6 7 8 9

TS FSs 1.69% 229% 2.01% 1.94% 1.99% 2.22% 1.81% 2.21% 2.03%
NARXNN 099% 098% 099% 1.28% 1.21% 1.69% 1.02% 1.01% 1.51%
NLGA-AF 137% 145% 1.73% 1.75% 156% 1.99% 1.45% 154% 1.76%
RFS 1.99% 2.67% 2.44% 256% 2.67% 297% 223% 2.78% 2.82%
SMO 1.87% 1.82% 211% 2.01% 191% 234% 195% 2.08% 2.23%

According to the results summarised in Table 5, the performance of the ARX NN
solution is higher than the ones obtained with the other schemes.

Moreover, it is worth noting that the values reported in Table 5 serve to assess the
overall behaviour of the developed control techniques. In more detail, the values of the
NSSE% index highlights that when the mathematical description of the dynamic process
under investigation may be included in the design phase, the NLGA-AF technique
with disturbance decoupling still yields to good performances, even if an optimisation
procedure is required. However, when modelling errors are present, the offline learning
feature of the data—driven fuzzy estimators TS FSs allows to achieve interesting results.
For example, this consideration is valid also for the SMO estimators derived via a
linearisation procedure. On the other hand, the fuzzy estimators TS FSs have led to
more interesting capabilities. With reference to the adaptive scheme, such as the RFS, it
takes advantage of its recursive features, since it is able to track possible variations of the
system under diagnosis, due to operation or model changes. However, it requires quite
complicated and not straightforward design procedures relying on data—driven recursive
algorithms. Therefore, fuzzy-based schemes use the learning accumulated from data—
driven offline simulations, but the training stage can be computationally heavy. Finally,
concerning the NARX NN strategy, which represented the solution with the best results,
it is rather simple and straightforward. Obviously, the achievable performances of
linearised or adaptive methods are quite limited when applied to nonlinear dynamic
processes. It can thus be concluded that the proposed data—driven approaches (NARX
NN and TS FS) seem to represent powerful techniques able to cope with uncertainty,
disturbance and variable working conditions.

5. Conclusion

This paper investigated fault diagnosis solutions that can be considered as viable
and effective strategies for condition monitoring of a wind turbine process. To this end,
the work proposed the design of fault estimators by means of data—driven method-
ologies relying on fuzzy models and neural networks. These solutions represented
effective methods that allow the management of partially unknown information of the
system dynamics, while coping with measurement errors, the model-reality mismatch
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and other disturbance effects. Therefore, these data—driven methodologies were ex-
ploited to estimate nonlinear dynamic relations between the input and output process
measurements and the faults. To this aim, the fuzzy and neural network prototypes
integrated auto-regressive with exogenous input descriptions, thus making them able
to approximate unknown nonlinear dynamic functions with arbitrary degree of accu-
racy. Once these models are derived for fault diagnosis purpose, their capabilities were
verified and validated by using a high—fidelity benchmark that simulates the healthy
and the faulty behaviour of a wind turbine system. The benchmark was also useful
to analyse the robustness and the reliability characteristics of the developed tools in
the presence of model-reality mismatch and measurement errors featured by the wind
turbine simulator. Moreover, a hardware—in-the-loop tool was finally implemented
for testing the performance of the developed fault diagnosis strategies in a more re-
alistic environment. A comparative analysis with different fault diagnosis methods
was also performed to demonstrate the better performance of the proposed dynamic
neural strategy applied to the considered benchmark. The proposed design facilitated its
derivation by using a data—driven training and learning algorithm that led to accurate
fault identification and greater robustness. This solution saved the computing cost with
reduced required iterations, easier design and implementation. The achieved results
highlighted that data-driven approaches, such as fuzzy structures were able to provide
good performances. However, they were easily outperformed by self-learning schemes,
representing data—driven solutions that did not require optimisation stages, adaptation
procedures or disturbance compensation methods. Further works will consider the
application of the considered methodologies to real installations, in the presence of more
realistic disturbance and uncertainty effects.
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