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Abstract: Forest fires pose a major threat to ecosystems and human life; Therefore, early detection is
essential for effective prevention. Traditional detection methods often fall short of the need due to
their large coverage and limitations in providing timely alerts. Although advances in drone
technology and deep learning have opened up new possibilities for efficient and accurate forest fire
detection, implementation rates remain low due to the complexity of deep learning algorithms. This
study explores the application of small UAVs equipped with lightweight deep learning models for
early forest fire detection. A high-quality dataset was constructed through aerial image analysis,
which provided strong support for model training. Based on YOLOv5s, a YOLO-UFS (YOLO-UAVs
for Fire and Smoke Detection) network is proposed, which combines enhancements such as new C3-
MNV4 module, BiFPN, new AF-lou loss function, anchorless detector and NAM attention
mechanism. These modifications resulted in the model achieving 91.3% mAP under the same
experimental conditions and using a self-built early forest fire dataset. Compared to the original
model, the YOLO-UFS model improved accuracy, recall, and average accuracy by 3.8%, 4.1%, and
3.2%, respectively, while reducing floating-point arithmetic and parameter counting by 74.7% and
78.3%. Compared with other mainstream YOLO series algorithms, its performance on the UAV
platform is superior, effectively balancing accuracy and real-time. In the later stages of the forest fire,
using a public dataset, mAP0.5 increased from 85.2% to 86.3%, and mAP0.5:0.95 increased from 56.7%
to 57.9%, resulting in an overall mAP increase of 3.3 percentage points. The optimized model
demonstrates significant detection advantages in the complex environment captured by small UAVs.
This study uses airborne visible images to provide effective data and methodological support for the
early extinguishing of forest fires, which is helpful to achieve the "three early" goals of forest fire
prevention (early detection, early mobilization, and early extinguishment). Future work will focus on
exploring multi-sensor data capabilities to further improve the accuracy and reliability of detection.

Keywords: early detection of forest fires; Lightweight drone detection; YOLOv5s Introduction; deep
learning

1. Introduction

Forest fires are a type of natural disaster characterized by their sudden onset, significant
destructiveness, and considerable challenges in emergency response. They pose a threat not only to
the stability of ecosystems but also to human life and the integrity of infrastructure [1]. According to
statistics, in 2022, China experienced 709 forest fires, with an affected forest area of approximately 0.5
million hectares [2]. In 2023, the number of forest fires decreased to 328, and the affected area was
about 0.4 million hectares [2]. Research indicates that early forest fire detection technology can
identify fire sources at the initial stage of a fire, thereby helping to keep fire losses within an
acceptable range [3].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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China has vast territories with extensive forest areas and complex terrain, resulting in numerous
monitoring blind spots. Moreover, the early signs of forest fires are often not obviously and can be
easily obscured by vegetation, which presents significant challenges for fire detection. Traditional
fire detection methods typically rely on varloUs sensors to detect early signs of fires, such as optical
sensors [5], acoustic sensors [6], and gas concentration sensors [7]. However, given the extensive
forest coverage in China, deploying a large number of sensors in forest areas is not only costly but
also cannot guarantee the accuracy and real-time nature of detection. With the continuous
development of digital forestry and intelligent technologies, image-based early forest fire detection
technology based on deep learning has gradually gained widespread application. This technology
can autonomously learn fire characteristics from a vast amount of image data, overcoming the
limitations of traditional manual feature extraction [8]. In addition, systems combining drones with
optical sensors can achieve rapid and accurate early fire detection [9]. Visible light sensors, which
capture images with distinct features and rich texture details, can intuitively display the situation on-
site and are thus widely used in image-based fire detection technology [10].

A forest fire detection system based on aerial visible light images typically consists of three key
components: image acquisition, fire recognition, and fire warning [11]. The image acquisition
component captures real-time image data of forest areas using drones equipped with visible light
cameras. The fire recognition component analyzes the images using target detection algorithms from
deep learning to identify the presence of fires. The fire warning component then promptly alerts
firefighting personnel upon fire detection. The fire recognition component is the core of the fire
detection system, with research mainly focusing on constructing appropriate datasets and optimizing
target detection algorithms to improve the accuracy and real-time nature of fire detection.

Deep learning-based target detection algorithms are mainly divided into two categories: two-
stage algorithms represented by the R-CNN (Region-CNN) series and one-stage algorithms
represented by the YOLO (You Only Look Once) series [12]. Due to the advantage of one-stage
detection algorithms in detection speed, they are widely used in fire detection tasks with high real-
time requirements. Xue et al. [13] and Zhao et al. [14] both focused on the flame characteristics of
forest fires in their research. Xue et al. improved the YOLOVS5 algorithm by adding a small object
detection layer and attention mechanism, modifying the SPPF and PANet structures, and validated
it using a self-built forest fire dataset. Zhao et al. replaced the backbone feature extraction network of
YOLOV3 with EfficientNet to enhance the detection performance of small objects, but their dataset
was not from a forest scene. Zu Xin ping et al. [15] targeted the smoke characteristics of forest fires,
modified the backbone network and prediction network of YOLOv3 SPP to improve the accuracy
and real-time nature of fire detection. Su Xiaodong et al. [16] and Pi Jun et al. [17] replaced the
backbone network of YOLOvV5 with lightweight network models and introduced attention
mechanisms at appropriate positions to optimize the detection performance of aerial forest fire
datasets. With the accelerated iteration of algorithms, researchers have explored more cutting-edge
technological paths. Zhang et al. proposed the YOLOvVS-FFD model, which introduces deformable
convolution modules and cross-scale feature fusion mechanisms. On the FireNet public dataset for
forest fire detection, it achieved a 91.2%mAP,a 6.3 percentage point improvement over the baseline
model [18].Wang et al. developed a YOLO-Fusion framework based on visible light-infrared dual-
modal fusion. The proposed dynamic weight allocation module effectively solved the feature
alignment problem of heterogeneous images, achieving a recall rate of 89.7%in nighttime forest fire
detection [19].

For UAYV inspection scenarios, Liu et al. constructed a 3D-YOLOv5 model containing elevation
features. Through a height-aware feature pyramid network(HA-FPN),it optimized the scale
sensitivity of aerial images, reducing the false alarm rate in complex terrain forest fire detection to
2.1% [20].The Chen teamattempted to combine the Transformer architecture with YOLOV9,proposing
a Swin-YOLO model with a dynamic sparse attention mechanism. It achieved a detection accuracy
of 87.4%for small-target flames while maintaining real-time performance at 38FPS [21]. Notably,
Zhou et al. introduced the FireDet-3D system, which innovatively uses Neural Radiance
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Fields(NeRF)technology to build a 3D fire simulation environment and integrates an improved
YOLOV10 architecture. This system first realized 3D spatial positioning of forest fires, controlling
spatial errors within 1.5 meters [22]. Meanwhile, the Gupta team(2025)developed EdgeFireNet, which
uses Neural Architecture Search(NAS)technology to automatically optimize network structure. It
achieved a real-time detection performance of 24FPS on embedded devices with power consumption
reduced to 3.2W [23].

Overall, most researchers exploring deep learning-based image-based early forest fire detection
techniques are more focused on algorithm optimization to improve detection accuracy and real-time
performance. However, these studies tend to ignore the unique characteristics of early forest fires,
tend to simplify the detection of targets, and do not fully consider the applicability in UAV low
computing power scenarios. In terms of dataset selection, scholars rarely conduct a comprehensive
assessment of its suitability for forest environments.

To address these issues, this study proposes key factors to consider when collecting data on early
forest fires, combining the characteristics of early forest fires with an aerial perspective. Based on
these factors, a customized early forest fire dataset was constructed. Because of the low latency and
low computing power consumption of YOLOvVS5s, the actual deployment difficulty is greatly reduced,
so a new early forest fire detection algorithm YOLO-UFS is proposed with YOLOv5s as the baseline
model. In order to further improve the detection performance, the combination of detection
technology and unmanned aerial vehicle system was considered in this study. By modifying the
network structure and loss function of YOLOV5s, and introducing the ObjectBox detector and NAM
attention mechanism, a lightweight detection model is realized without sacrificing accuracy, so as to
improve the real-time processing ability of the system's detection information.

The main contributions of this paper are as follows:

a. A New Early Forest Fire Detection Model: YOLO-UFS Model: We propose a novel detection
model, YOLO-UFS, designed to enhance drone-based early forest fire and smoke detection by
addressing low computational cost, low latency, complex background interference, and the
coexistence of smoke and fire.

b. Self-built Dataset: A custom dataset was created, comprising three types of data: small flames
only, smoke only, and combined small flames and smoke. Experiments were conducted to
compare its performance with classical algorithms.

c¢. Model improvements: We improved by replacing the C3 module with C3-MNV4 to reduce
parameters and improve feature extraction. The AF-IoU loss function optimizes detection
accuracy, especially for small targets. NAM concentrates the kernel in the target region, while
ObjectBox and BiFPN improve detail retention and generalization. These upgrades make YOLO-
UFS more accurate and efficient in early forest fire detection.

The structure of the paper is as follows: 2.1. The data collection process, improvement methods,
evaluation indicators, and experimental environment parameters are described in detail. 2.2. The
improved method based on YOLOvVS5s is described in detail to propose YOLO-UEFS. In Section 3, the
effectiveness of the proposed method is confirmed by ablation experiments and comparison with
classical models, and the effectiveness of the self-built dataset in the training of early forest fire
models is confirmed by in-depth analysis and discussion of the detection results of public datasets
and self-built datasets. Section 4 summarizes and outlines future research directions. All of the results
obtained are discussed in Section 5.

2. Materials and Methods

2.1. Early Forest Fire Selection Image Acquisition

In the context of early forest fire detection from an aerial perspective, the primary focus is on
data collection in forest environments and the detection of fire-related targets. When constructing a
dataset for early forest fires, it is essential to consider the characteristics of forest fires and the features
of aerial images. The following are key considerations:
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c. Flame target location
Figure 1. Sample composition analysis of self-built early forest fire dataset.

a. Target Identification

During the early stages of a forest fire, the flames are typically small and not easily
distinguishable. In aerial images captured by drones, small flames can be easily obscured by
surrounding vegetation, making them difficult to detect. Relying solely on flames as the detection
target can lead to missed detections. However, early fires often produce significant amounts of
smoke, which can spread across the forest canopy and is more easily detected. Therefore,
incorporating both smoke and flames as detection targets can enhance detection accuracy and
reliability [24]. Consequently, the dataset should include three typical types of early forest fire
images: scenes with only small flames, scenes with only smoke, and scenes with both flames and
smoke, as shown in Figure 1.a.

b. Interference with Detection Targets

In forest environments, numerous objects can interfere with the detection of flames and smoke,
leading to false positives. Flames may be confused with objects of similar color and shape, such as
sunlight reflections or reddish-yellow leaves [25]. Smoke characteristics, including color and shape,
can vary depending on environmental conditions. For instance, when the forest contains flammable
materials with high oil content or is at a higher temperature, smoke may appear grayish-black or
black, and tree shadows in sunlight can be mistaken for smoke. Conversely, when there are fewer
flammable materials or the temperature is lower, smoke may appear blue-white or white, and objects
like mist, snow, or clouds can be misidentified as smoke [26]. Including these potential interferences
in the dataset can increase the diversity of scenarios and enhance the accuracy of early forest fire
detection. Examples of fire images with interferences are shown in Figure 1.b.

c¢. Position of Detection Targets

During forest fire patrols, drones typically follow predefined flight paths [27], and the areas
scanned by their cameras are limited. To improve patrol efficiency, areas already scanned are not
rechecked, meaning that fire locations may not always be within the camera's field of view.
Additionally, early forest fires are often obscured by surrounding vegetation, further complicating
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detection. Therefore, when collecting data, it is crucial to account for the possibility that flames and
smoke may appear in varloUs positions within the image and may be partially or fully obscured by
vegetation,as illustrated in Figure 1.c.

2.1.1. Data Augmentation Processing

Initially, the image data underwent resizing to standardize all images to a resolution of 640x640
pixels. Subsequently, the Labellmg tool was employed to annotate the images [28]. The labels were
categorized as "fire," and the dataset was divided into training, validation, and testing sets in a 7:2:1
ratio. Through in-depth analysis of the dataset and detection targets, the diversity of the samples was
enhanced. To further enrich the data, this study applied data augmentation techniques, including
HSV color space transformations, horizontal and vertical flipping of images, and contrast
adjustments.

For images with inconspicuous or small-sized targets, the Mosaic data augmentation method
was utilized [29]. This technique involves randomly cropping, scaling, and stitching together four
images, making small targets more recognizable to the model. This approach effectively increases the
number of samples [30] and significantly reduces the risk of missed detections. An example of an
image after data augmentation is shown in Figure 2.

Figure 2. Enhance data and enhance images.

2.1.2. Dataset Construction

In this study, we defined samples containing early forest fire characteristics as positive samples
and included the following three types of data: samples containing only small flames, samples
containing smoke only, and samples containing both small flames and smoke. Conversely, samples
that do not contain early fire features are defined as negative samples, and these samples usually
contain only interferences, or images of the forest that resemble the fire scene but do not have the

actual fire.
Table 1. The number of samples in the dataset.
Dataset Sample type Number of samples Total
Training set ~ Positive sample only flames 2720 10476
only smoke 1776
Flames, smoke coexist 5980
Validation set Positive sample only flames 2181 7685

only smoke 1141
Flames, smoke coexist 4098

Negative samples 639 639
Total 18800
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Based on the above image acquisition analysis, we constructed an early forest fire dataset. Firstly,
the experimental simulation drone patrols the forest area to obtain multi-view early forest fire videos.
The videos were shot at Northeast Forestry University and were filmed using a DJI drone with a
visible light camera to simulate an early forest fire scene. Secondly, in order to increase the diversity
of the dataset, we also collected early forest fire images and videos from the perspective of drones
from the network and public datasets. A total of 10476 early forest fire images (positive samples) were
obtained by sampling the video frames using Pycharm software, and one image was captured every
60 frames. According to the 4:1 ratio, these images were divided into a training set and a validation
set, where the training set contained 7685 early forest fire images and the validation set contained 620
early forest fire images. In addition, an additional 639 forest images (negative samples) were collected
and added to the validation set. Table 1 shows the distribution of different types of samples in the
training and validation sets.

In order to label the early forest fire samples, we used the commonly used image annotation tool
labellmg. In the labeling process, flame and smoke are labeled as two independent detection targets,
in which the flame characteristics of the fire are marked with the "fire" label and the smoke
characteristics of the fire are marked with the "smoke" label.

2.2. The YOLO-UFS Model

The YOLO-UFS model based on the enhanced YOLOv5s algorithm proposed in this study has
been optimized to better adapt to the needs of forest fire detection in UAVs scenarios. In addition,
the model has been improved in terms of detection accuracy and ability to recognize fine details,
improving its overall robustness. Figure 3 illustrates the optimized network structure for an
improved algorithmic model.
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Figure 3. YOLO-UFS network structure diagram.


https://doi.org/10.20944/preprints202503.0982.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 March 2025 d0i:10.20944/preprints202503.0982.v1

7 of 21

2.2.1. Replace the C3 Module

In embedded devices, computing resources are limited, so the detection model needs to be
lightweighted. The Universal Inverted Bottleneck (UIB) module proposed in MobileNetV4 [31]
provides an effective solution to this problem. This module can be applied to the C3 module in the
YOLOV5s backbone network to reduce the number of parameters of the model.

The UIB module integrates the Inverted Bottleneck (IB), ConvNext, Feed-Forward Network
(FFN) in MobileNetV2 [32], and the new Extra Depth (ExtraDW) variant in MobileNetV4. Among
them, IB processes the extended feature activation through spatial blending. ConvNext performs
spatial blending operations before feature expansion; ExtraDW can improve the depth and receptive
field of the network without significantly increasing the computational cost. FFN consists of two 1x1
point-by-point convolutions stacked with an activation layer and a normalization layer in between.
The UIB module enables adaptive mixing of spaces and channels, flexible adjustment of the receptive
field, and maximization of computational utilization.

The UIB module replaces the bottleneck structure in the C3 module to build a new C3-
MNV4(C3-MobileNetV4) module. This module effectively reduces the parameter count of the C3
module while enhancing its feature extraction ability, thereby reducing the computational burden
and ensuring the accuracy of early forest fire detection. The structure of the fused C3-MNV4 is shown

-

in Figure 4.

C3-MNV4 :’\> ‘cas UIB Concat

v
(9]
w
(7]

|

Figure 4. Structure of C3-MNV4.

2.2.2. Introduction of the Attention Mechanism NAM

In the training process of neural networks, the attention mechanism plays a key role in
suppressing less prominent features in both the channel and spatial dimensions. PrevioUs research
has mainly used attention operators for feature extraction, which can reveal feature information
across different dimensions. The contribution factor of weights helps to suppress insignificant
features, making the prominent features more noticeable. However, earlier methods did not consider
this factor sufficiently. Thus, targeting the contribution factor of weights is an effective way to
enhance the attention mechanism. This can be achieved by utilizing the scaling factor in Batch
Normalization to represent the importance of the weights [33]. This approach avoids the need to add
extra fully connected or convolutional layers, as seen in methods like SE, BAM, and CBAM [34].

Therefore, this study proposes a novel attention mechanism: Normalization-based Attention
Mechanism (NAM) [35]NAM is a lightweight attention mechanism that integrates the space and
channel attention modules of CBAM, adjusting them to allow NAM to be embedded at the end of
each network block. For residual networks, NAM can be incorporated at the end of the residual
structure. In the channel attention submodule, the scaling factor from Batch Normalization is used,
as shown in formula (1).

Boue = BN () =y 1 e )
where B,,; and B;, represent the input and output of the module, respectively, and up and oy are
the mean and standard deviation of the mini-batch B.y and f are trainable affine transformation
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parameters (scale and shift). The scaling factor shows the degree of change in each channel’s
information and reflects the importance of each channel [36].

Specifically, a larger variance indicates more significant changes in the channel, meaning it
contains more useful information and therefore has more importance. On the other hand, channels
with small variance change less and contain less information, thus they are less important. The
channel attention mechanism is shown in Figure 5.b. and expressed in formula (2).

M, = o(Wy[BN(Fp)]) @
where M, is the output feature and W, is the weight. For the spatial dimension, a Batch
Normalization scaling factor is applied to measure pixel importance, which is referred to as pixel
normalization. The spatial attention mechanism is shown in Figure 5.c. and expressed in formula (3).

M = o(W,[BN;(F2)1) ®)

where M; is the output feature, 4 is the scaling factor, and W, is the weight.

Loss = YI(f(x,W),y) + pZg(¥) + pXg(D) (4)

Formula (4) introduces a regularization term into the loss function to suppress insignificant
weights, where x is the input, y is the output, W is the network weights, I(...) is the loss function,
and g(...) is the [;-norm penalty function. The parameter p balances the penalties of g(y) and

gA).
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Figure 5. Attention Mechanism.

2.2.3. Bidirectional Characteristic Pyramid Network (BiFPN)

BiFPN (Bidirectional Feature Pyramid Network) [37] is an efficient multi-scale feature fusion
architecture, which is further optimized on the basis of the PANet structure that fuses FPN (Feature
Pyramid Network) [38] and PAN (Path Aggregation Network). The structural design of BiFPN and
PANet is shown in Figure 6.

i ' e e Ty

P7
P6
P5
P4
P3
|_FPN_ 1| PAN_!
a. PANet b. BiFPN

Figure 6. Structure of PANet and BiFPN.

In the PANet architecture, the FPN structure transmits the strong semantic information from the
top layer to the bottom layer through the top-down upsampling operation, while the PAN structure
transmits the position information from the bottom layer to the top layer through the bottom-up
downsampling operation. This combination method enables the parameter aggregation of features
of different detection layers, so that the feature maps of different sizes contain both semantic
information and position information of the image. BiFPN is optimized and improved on the basis of
PANet. It not only retains the advantages of bidirectional connection and allows information fusion
between features of different scales, but also introduces a weighted feature fusion mechanism. This
mechanism enables the network to pay more attention to features with a larger amount of
information, so as to improve the efficiency and effect of feature fusion. In addition, BiFPN removes
nodes with only one input, adds connections between input and output nodes at the same level, and
treats each bidirectional path as a network feature layer to optimize cross-scale connections. These
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improvements make BiFPN more structurally lean and significantly improve the network's ability to
handle targets of different sizes and complexity.

In this study, small flames and smoke were used as detection targets. Due to the great difference
in features between the two, the BiFPN structure can be used to replace the original PANet structure
in the neck of YOLOvV5s, which can better realize multi-scale feature fusion and improve the
processing ability of different detection targets. This not only improves the accuracy of detection, but
also reduces the weight of the network model.

2.2.4. ObjectBox Detector

In the YOLOv5s model, the object detection head consists of three detectors, which use the grid-
based anchor mechanism to achieve object detection through multi-scale feature maps. In the
experiment, when the input image size is 640x640, the network will output three feature maps of
different scales, 80x80, 40x40 and 20x20. Among them, the feature map of 80x80 is a shallow feature,
which contains more low-level target information and is suitable for detecting small targets, so a
small-scale anchor is configured. The feature map of 20x20 represents deep features and contains
more high-level information, such as contours and structures, which is suitable for detecting large
targets, so large-scale anchors are configured. The characteristic map of 40x40 is used to detect
medium-sized targets.

However, this study proposes an innovative single-stage anchor-free and highly versatile object
detection method, ObjectBox [39]. Unlike traditional anchor-free detectors, existing methods are
usually biased towards targets of a specific scale in label assignment. Whereas, ObjectBox relies only
on the central position of the target as a positive sample and treats all targets equally at all feature
levels, regardless of size or shape. The traditional anchor-free method first looks for candidate
positive samples in a certain area through spatial and scale constraints, and then selects positive
samples according to the scale, but this method has certain limitations because it ignores the situation
that different size and shape targets may lead to different target boxes.

In contrast, the ObjectBox method proposed in this study proposes a fairer treatment by
regressing only from the center of the target. To achieve this, we define the regression target as the
distance from the two corners containing the target center grid element to the bounding box
boundary. Figure 7. illustrates how the original Anchor-free detector works with the ObjectBox
detector in this study: the latter extends the range of positive samples by regressing only from the
central position.

Figure 7. Anchor-free detector.

2.2.5. Optimize the Loss Function

The loss function is an important tool to measure the difference or error between the predicted
output of the model and the actual target. Although the existing GloU (Generalized Intersection over
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Union) loss function can calculate IoU (Intersection over Union) at a broader level, it cannot
accurately reflect the actual situation when dealing with the inclusion relationship between the two
prediction frames, resulting in the degradation of GIoU into an ordinary IoU indicator [40]. In
addition, GIoU needs to calculate the minimum bounding box for each prediction box and the real
box, which not only increases the computational complexity, but also limits the convergence speed
of the loss function.

In order to solve these problems, the improved network adopts the Adaptive Focus Intersection
over Union (AF-IoU) loss function. AF-IoU significantly improves the generalization ability of the
model by reducing the weight of position information when the anchor frame coincides with the
target frame, reducing the interference in the pre-training process. As a bounding box regression loss,
AF-IoU introduces a dynamic non-monotonic mechanism, and designs a reasonable gradient gain
allocation strategy, which effectively avoids the large gradient or harmful gradient that may occur in
extreme samples. The AF-IoU of bounding box regression is shown in Figure 6 and is calculated as

follows:
AF — IoU = Lwouvz = "Lwiouvt ®)
B
"= 5 ©
Lwiouvi = RwiouLiou @)

(x—xg)" + (y - ygt)2> @

Ryioy = 9XP< (Wgz " Bgz)*

where 1 is the gradient gain, 3 is the non-monotonic focusing coefficient, and the a and o are
hyperparameters. (x,y) is the coordinate of the center point of the prediction box, (xg,yst) is the
coordinate of the center point of the target box, Bg is the width of the union of the prediction box and
the target box, and Hg is the height of the union of the prediction box and the target box.

RIoU is used to amplify the weight of the ordinary mass anchor frame, so that the model pays
more attention to the anchor frame with low overlap between the prediction frame and the target
box. LIoU is used to reduce the weight of high-quality anchor frames and reduce the attention to the
distance between the center points when the overlap between the prediction box and the target box
is high. In addition, by separating Bg and Hg from the computational plot, it is possible to prevent
RIoU from creating gradients that hinder convergence. As shown in Figure 8.

B,

g

A
Y

L
-
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Figure 8. Schematic diagram of bounding box regression.

Since LIoU is dynamic, the quality classification criteria of the anchor frame also changes
dynamically, which enables AF-IoUv3 to flexibly adjust the gradient gain allocation strategy
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according to the current training situation, so as to effectively improve the overall performance of
object detection.

3. Experiments and Analysis of Results

3.1. Test Conditions and Indicators

In this experiment, the AutoDL server was used for the training of the early forest fire detection
model, and the mirror environment chosen was PyTorch 1.11.0, Cuda 11.3, the programming
language was Python 3.8 (ubuntu20.04), and the hardware configuration consisted of an RTX4060
GPU (8 GB) and 8 GB of RAM. The input image size for model training is 640 x 640, the number of
training rounds is 300, the initial learning rate is 0.01, and the optimizer uses Adam. In the study of
early forest fire detection based on aerial visible images, in addition to ensuring detection accuracy,
this paper considers embedding the detection model into the UAV platform and optimizing the
model by lightweighting it to increase the computational speed, so as to ensure that real-time
processing of detection information.

In cases of imbalanced samples, using accuracy alone as a metric for model evaluation does not
fully reflect the model's performance. Moreover, since both flame and smoke features are considered
as detection targets in this study, we evaluate the model’s accuracy in early wildfire detection using
three metrics: Precision (P), Recall (R), and Mean Average Precision (mAP).

To assess whether the detection model achieves lightweight optimization, the frames per second
(FPS) may vary depending on the computer’s performance. Therefore, this study uses the number of
model parameters (Params) and floating-point operations (FLOPs) to evaluate the model's
lightweight nature and real-time performance. The formulas for Precision (P), Recall (R), and Mean
Average Precision (mAP) are as follows:

TP
-7 9
P =TrTrp ©)

TP
_ 10
R=Tr¥FN (10)
mAP = %z?:lf P(r) dR 11)

Where TP is the number of true positive samples correctly predicted by the model, FP is the
number of false positives (negative samples predicted as positive), and FN is the number of false
negatives (positive samples predicted as negative).

3.2. Comparative Experiments

In order to verify the advantages of the optimized YOLOv5s model in early forest fire detection,
this paper uses the same experimental conditions on a self-constructed early forest fire dataset and
compares it with YOLOv3 Tiny [41], YOLOvVS, and YOLOXs [42] proposed in similar studies. The
experimental results are shown in Table 2.

Table 2. Comparison of YOLO series algorithms.

Method mAP/% Flops/G  Parameters/piece
YOLOV3-Tiny 79.7 13.2 8849182
YOLOv5s 87.7 15.8 7015519
YOLOvV8 89.2 28.4 11126358
YOLOXs 86.9 9.6 2975226
YOLO-UFS 91.3 4 1525465

From Table 2, it can be found that the YOLOv3-Tiny model is better than YO-LO-UES in terms
of lightweight, but its accuracy in early forest fire detection is reduced. Compared with YOLOv5s,
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YOLOVS increased the mAP value of early forest fire detection by 3.5%, but its number of parameters
and floating-point operations were much higher than those of YOLO-UFS. However, the YOLOXs
model proposed in other similar studies can only detect flame targets, and its number of parameters
and floating-point operations are higher than those of the detection model proposed in this study. In
contrast, the YOLO-UFS model in this study outperforms other YOLO algorithms in terms of
accuracy and lightweight. This suggests that the YOLO-UFS model in this study has an advantage
when working with visible images from a bird's eye view. If it is applied to the UAV platform, the
detection information can be processed more efficiently and the real-time detection can be ensured.
In order to further verify the robustness of the detection network structure, forest fire experiments in
other periods will be carried out in the future to evaluate its application in real scenarios.

3.3. Ablation Experiments

In order to verify whether the YOLO-UFS network structure can be improved by introducing
ObjectBox, BiFPN, NAM, AF-Loss and C3-MNV4, making the model lighter and improving the
accuracy and real-time accuracy of early detection of forest fires, we carried out ablation experiments
on the self-built forest fire early dataset. The results of the experiment are shown in Table 3. Among
them, the first set of experiments was tested based on the original model of YOLOvV5s; For each
optimization method, experiments from groups 2 to 6 were tested separately. Groups 7 to 12 were
tested by combining some optimization methods. Group 13 experiments were tested by applying all
optimization methods simultaneously.

Table 5. Performance comparison of different modules after change.

NumberObjectBoxBiFPN NAM AF C3- Weight PrecisionRecall mAP FLoPs/GParameters

MNV4/MB /% 1% 1% piece
1 14.2 85.3 804 884 158 7015519
2 \ 14.0 85.7 80.7 886 35 1630157
3 \ 14.1 85.6 80.6 887 46 1685145
4 \ 14.1 85.4 80.5 886 43 1944973
5 \ 14.0 86.2 81.3 888 53 5015519
6 \ 14.0 87.8 812 892 44 1014517
7 v v 14.2 85.4 80.7 884 38 1447897
8 NN 14.0 87.1 80.6 886 45 1944973
9 NN 14.1 88.3 823 904 43 3499378
10 \ \ S 14.1 88.4 81.6 906 3.9 1447897
11 \ \ \ 14.1 87.8 81.4 90.3 4 1525465
12 \ \ v 14.2 88.2 82.6 914 4 1477634
13 \ \ NN N 14.0 88.6 837 913 4 1525465

According to the data analysis in Table 5, ObjectBox and BiFPN can improve the accuracy of
early forest fire detection, significantly reduce the number of parameters and floating-point
arithmetic of the model, and successfully achieve the lightness of the network model. While AF Loss
has no direct effect on the lightness of the model, they effectively improve the accuracy of detection.
Specifically, compared with the original model, the accuracy of ObjectBox and BiFPN has decreased,
but the recall rate and average accuracy have been significantly improved, and the C3-MNV4 module
reduces the number of parameters while enhancing its feature extraction ability to ensure the
accuracy of early forest fire detection. NAM Attention enhances the detection of network models in
noisy environments. In the field of early detection of forest fires, it is important to follow the principle
of "false positive and false detection is better than false detection". Therefore, maximizing recall while
ensuring accuracy is key. mAP is used as an evaluation metric that takes into account accuracy and
recall, which means that the overall accuracy rate is improved.

d0i:10.20944/preprints202503.0982.v1
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By comparing the 7th and 12th group trials, it can be found that there are significant differences
in the accuracy, recall, and mAP improvement ability of different optimization methods. The results
of the fusion of the four optimization methods provide a good balance between precision, recall, and
mAP. Compared to the original model, the accuracy (P) is improved by 3.8%, the recall (R) is
increased by 4.1%, the average accuracy (mAP) is increased by 3.2 %, the floating point arithmetic
(FLoPs) is reduced by 74.7%, and the number of parameters is reduced by 78.3%. The results show
that the optimization method proposed in this paper can not only ensure the accuracy, but also realize
the lightweight of the early detection model of forest fires, and improve the recall rate as much as
possible under the premise of ensuring accuracy.

3.4. Generalization Experiment

3.4.1. Generalization Comparison Experiments

In order to further verify the generalization of the improved algorithm, the network models
YOLOv3, YOLOv4, YOLOv5, YOLOv7 and YOLOX under other fire stage configurations in the
public dataset environment are compared with the proposed algorithm. In the experiment, all five
networks use the same loss function, LCIoU, to ensure the accuracy of the experimental results. In
addition, the evaluation indicators of the comparative test still follow the above index system.

Table 3. Performance comparison of different algorithm models.

Method Weight Entera Precision Recall Mean of average F: Recognition
/MB size /% /% accuracy /% rate/(frame*s)

YOLOv3 120.5 640 70.9 59.9 63.1 64.9 39.7
YOLOv4 18.1 640 73.2 59.3 64.4 65.5 71.0
YOLOv5s 14.2 640 754 57.3 62.3 65.1 85.6
YOLOv7 135.0 640 76.2 52.9 79.4 62.4 35.3
YOLOX 15.5 640 74.2 53.5 774 62.2 169.5
YOLO-UFS 14.0 640 74.9 58.7 82.3 65.8 1724

As shown in Table 3, the YOLO-UFS network model shows obvloUs advantages over other
network models in forest fire detection tasks. Compared with the YOLOv5s model, the mAP value is
increased by 3 percentage points, which is of great significance in practical applications. Compared
to YOLOv7, YOLO-UEFES has an mAP value that is about 3.6 percentage points higher, while its
advantage over YOLOX is even more obvloUs, with an mAP value that is about 6.3 percentage points

higher.

Table 4. The experimental results of different sizes based on the Microsoft COCO standard.
Model Pas Pawm PaL Rass Ra-m Ral
YOLOv5s 18.3 27.0 22.1 30.7 43.8 27.6
YOLO-UFS 23.8 29.8 27.6 34.2 47.2 37.2

The results of these comparative experiments strongly show that YOLO-UEFES has better results
in identifying forest fires, complex environments, low latency, and small targets. These characteristics
also correspond to those of early forest fires (see Table 4 for detailed data).

d0i:10.20944/preprints202503.0982.v1
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Figure 9. Comparison of forest fire recognition accuracy enhanced by the improved model.

The detection effect of the YOLO-UFS model on forest fire data samples is shown in Figure 9.
From the figure, it can be clearly seen that the model is able to accurately perform the recognition
operation when facing targets of different scales and shapes. This indicates that the YOLO-UFS model
not only outperforms other similar models in terms of performance indexes, but also can better cope
with a variety of complex detection scenarios in the actual forest fire detection task, which provides
a stronger technical support for the early warning and rapid response of forest fire.

3.4.2. Generalized Ablation Experiments

When generalized ablation experiments were performed using publicly available datasets, the
accuracy and recall results of YOLO-UFS and different modules as a function of the number of

iterations were shown in Figure 10.
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Figure 10. Comparison of the accuracy and completeness of the models.

The inspection accuracy reflects the proportion of targets that the model actually correctly
predicts to be positive, and higher values indicate that the model is more accurate in judging positive
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samples during the identification process, and can filter out relevant targets more effectively, thereby
improving the relevance of the results. The full detection rate (i.e., recall) focuses on the proportion
of all true positive targets correctly predicted by the model, which intuitively reflects the degree to
which the model covers the positive samples, and the higher the value, the true target in the im-age
is successfully identified.

As can be seen in Figure 10a, the YOLO-UFS model outperforms YOLOV5s; As can be seen from
Figure 10b, several models rise very rapidly before 3 epochs, first falling rapidly between 3~7 epochs,
and then showing an upward trend. Specifically, the combination of C3-MNV4 and AF-lou loss
function is mainly responsible for reducing the amount of data and improving precision, but the
improvement on the recall is also better than that of the baseline algorithm, while the improvement
of NAM attention and ObjectBox on the recall is more obvIoUs, and the conclusion of the complete
YOLO-UEFS model training under the public dataset is basically the same as that of the self-built
dataset. The improved generalization ability and the multi-environment applicability of the
algorithm are demonstrated.
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Figure 11. Comparison of mAP0.5 values and mAP0.5:0.95 values for each model.

The mAP trend obtained by each algorithm in the public experimental dataset is shown in Figure
11, where 0.50 and 0.95 are threshold settings, and the mAP value represents the average accuracy
value of the average calculation of all classified targets, and the mAP value of the model shows an
upward trend in general, and the mAP value of the model is also increasing with the optimization of
the model, mAP0.5 has increased from 85.2% of the original model to 86.3%, and the value of
mAPO0.5:0.95 has also increased from the initial 56.7% That's 57.9 percent. The YOLOv5s model is
being optimized step by step; The mean average accuracy has improved significantly. Then, on the
premise of ensuring that the loss function is the initial function of YOLOV5s, the data augmentation
mode of the network is changed, and it is found that the baseline model uses the Mixup data
augmentation method less effectively, but after changing the An-chor-free mode of the original
network and using a more accurate ObjectBox detector and NAM attention mechanism, the
experimental evaluation index is more obviously. The experimental results showed that the total
mAP value increased by 3.3%.

In summary, the replacement of the C3 module, the data augmentation method, the fixed change
loss function, and the unanchored frame detector adopted in this experiment have good results in
forest fire detection, and the improvement of the experiment has a strong pertinence, and the
detection effect is significant when the drone shoots the environment, showing the excellent
performance of the model in dealing with different target environments.
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4. Visual Analysis and Discussion

4.1. Visual Analysis and Shortcomings
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Figure 12. Comparison of Recognition Effect of 3 Detection Models.

In this experiment, we conducted an in-depth comparative analysis of three different detection
models. The three models are an open flame detection model based on the open flame dataset and
YOLOV5s, an early forest fire detection model based on the self-built early forest fire dataset and
YOLOV5s, and an early forest fire detection model based on the self-built early forest fire dataset and
YOLO-UFS. A closer look at the visualization results in Figure 12 shows that although all three
models exhibit high accuracy in the detection task of flame and smoke targets, the optimized early
forest fire detection model in this study performs particularly well on several key performance
indicators. In particular, in terms of confidence, the model shows a significant advantage in
identifying relevant targets for early forest fires with a higher level of confidence. At the same time,
it effectively reduces the phenomenon of duplicate detection, which fundamentally improves the
accuracy and reliability of detection. In addition, compared with the self-built dataset and the model
trained on the public dataset, the optimized model has stronger performance in target directionality,
and shows a higher sensitivity to the typical feature of early forest fires, "big smoke and small fire",
and can more keenly capture this key feature, so as to send out early warning signals in time in the
early stage of fires.

4.2. Discussion of Future Work

Despite the significant breakthroughs in accuracy and recall of the model, we must also be aware
that there are still some shortcomings when using public datasets for testing. This indicates that the
current model may still have some limitations when dealing with diverse and complex practical
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scenarios. Therefore, future research work should further optimize the model architecture and
actively expand the scale and diversity of datasets. By introducing more real-world scene data, the
model will be able to better learn the fire characteristics in different environments, thereby further
improving its detection performance and adaptability in the real world.

Looking to the future, research on forest fire detection will focus on four main directions to meet
the high standards of comprehensive coverage and zero false negatives. First, by integrating infrared
sensors (for precise detection of flames and high-temperature areas) with multispectral sensors (for
analyzing smoke spectral characteristics) , a multidimensional perception system will be constructed
to overcome the limitations of single visible light data. Second, lightweight model architectures will
be adopted, incorporating attention mechanisms and adaptive data augmentation techniques to
improve the detection accuracy of small targets while reducing inference time by 30%. Model
compression algorithms will be optimized in parallel to ensure that the model can achieve real-time
analysis capabilities of 25 frames per second on drone edge devices. Finally, a large-scale, cross-
regional, and multi-meteorological condition annotated dataset with millions of entries will be
developed. Through fine-grained labeling, the model's generalization performance in complex forest
areas will be enhanced, ultimately building an integrated early warning system for" precise
perception—rapid response —round-the-clock monitoring."

5. Conclusion

This study explores the early detection of forest fires using drones and deep learning techniques.
A high-quality dataset for early forest fire detection was created through aerial image analysis, which
provided strong data support for model training. YOLO-UEFS is proposed by improving the YOLOv5s
network model, which optimizes several of its functions, including BiFPN, novel loss function,
anchor-free detector, and NAM attention mechanism. These improvements improved the model's
mARP value for early forest fire detection to 91.3%, striking a balance between accuracy and real-time
performance. Compared with the original model, the accuracy, recall and average accuracy of the
improved YOLOv5s model are increased by 3.8%, 4.1% and 3.2%, respectively, and the amount of
floating-point operations and parameters are reduced by 74.7% and 78.3%, respectively, and the
performance is also better than that of other mainstream algorithms of the YOLO series. And it is
more lightweight, and the low latency means that it is more likely to be deployed on drone platforms.
For other phases of forest fires, mAP0.5 increased from 85.2% to 86.3%, mAP0.5:0.95 increased from
56.7% to 57.9%, and the overall mAP value increased by 3.3 percentage points. Experimental results
show that YOLO-UFS is superior to other object detection methods, providing higher accuracy with
fewer parameters. This makes YOLO-UFS a more practical and effective solution for real-time forest
fire detection on airborne platforms. This study provides effective data and methodological support
for early forest fire detection using aerial horizon.

Future work can explore a number of avenues to further improve detection reliability. First,
improving datasets remains a challenge. Adversarial networks (GANSs) can be generated, which can
be used to generate synthetic, but photorealistic images of fires to expand the dataset. In addition, we
will explore innovative integration techniques to seamlessly integrate additional sensor data into the
inspection system, combined with a human verification process to improve accuracy and minimize
resource consumption.

Supplementary Materials: Public datasets: https://github.com/gengyanlei/fire-smoke-detect-
yolov4/blob/master/readmes/README_ZN.md Self-managed datasets:
https://www.heywhale.com/mw/dataset/67ce7b2fe64dcf03bf8e08al?shareby=67ce78a6310730ba698693d4#.
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