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Abstract: Forest fires pose a major threat to ecosystems and human life; Therefore, early detection is 

essential for effective prevention. Traditional detection methods often fall short of the need due to 

their  large  coverage  and  limitations  in  providing  timely  alerts.  Although  advances  in  drone 

technology and deep learning have opened up new possibilities for efficient and accurate forest fire 

detection, implementation rates remain low due to the complexity of deep learning algorithms. This 

study explores the application of small UAVs equipped with lightweight deep learning models for 

early  forest  fire detection. A high‐quality dataset was  constructed  through aerial  image analysis, 

which provided strong support for model training. Based on YOLOv5s, a YOLO‐UFS (YOLO‐UAVs 

for Fire and Smoke Detection) network is proposed, which combines enhancements such as new C3‐

MNV4  module,  BiFPN,  new  AF‐lou  loss  function,  anchorless  detector  and  NAM  attention 

mechanism.  These modifications  resulted  in  the model  achieving  91.3% mAP  under  the  same 

experimental  conditions and using a  self‐built  early  forest  fire dataset. Compared  to  the original 

model, the YOLO‐UFS model improved accuracy, recall, and average accuracy by 3.8%, 4.1%, and 

3.2%, respectively, while reducing floating‐point arithmetic and parameter counting by 74.7% and 

78.3%. Compared with  other mainstream YOLO  series  algorithms,  its  performance  on  the UAV 

platform is superior, effectively balancing accuracy and real‐time. In the later stages of the forest fire, 

using a public dataset, mAP0.5 increased from 85.2% to 86.3%, and mAP0.5:0.95 increased from 56.7% 

to  57.9%,  resulting  in  an  overall mAP  increase  of  3.3  percentage  points.  The  optimized model 

demonstrates significant detection advantages in the complex environment captured by small UAVs. 

This study uses airborne visible images to provide effective data and methodological support for the 

early extinguishing of  forest  fires, which  is helpful  to achieve  the  ʺthree earlyʺ goals of  forest  fire 

prevention (early detection, early mobilization, and early extinguishment). Future work will focus on 

exploring multi‐sensor data capabilities to further improve the accuracy and reliability of detection. 

Keywords: early detection of forest fires; Lightweight drone detection; YOLOv5s Introduction; deep 

learning 

 

1. Introduction 

Forest  fires  are  a  type  of  natural  disaster  characterized  by  their  sudden  onset,  significant 

destructiveness, and considerable challenges in emergency response. They pose a threat not only to 

the stability of ecosystems but also to human life and the integrity of infrastructure [1]. According to 

statistics, in 2022, China experienced 709 forest fires, with an affected forest area of approximately 0.5 

million hectares [2]. In 2023, the number of forest fires decreased to 328, and the affected area was 

about  0.4 million  hectares  [2]. Research  indicates  that  early  forest  fire  detection  technology  can 

identify  fire  sources  at  the  initial  stage  of  a  fire,  thereby  helping  to  keep  fire  losses within  an 

acceptable range [3]. 
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China has vast territories with extensive forest areas and complex terrain, resulting in numerous 

monitoring blind spots. Moreover, the early signs of forest fires are often not obviously and can be 

easily obscured by vegetation, which presents significant challenges  for  fire detection. Traditional 

fire detection methods typically rely on varIoUs sensors to detect early signs of fires, such as optical 

sensors  [5], acoustic sensors  [6], and gas concentration  sensors  [7]. However, given  the extensive 

forest coverage in China, deploying a large number of sensors in forest areas is not only costly but 

also  cannot  guarantee  the  accuracy  and  real‐time  nature  of  detection.  With  the  continuous 

development of digital forestry and intelligent technologies, image‐based early forest fire detection 

technology based on deep learning has gradually gained widespread application. This technology 

can  autonomously  learn  fire  characteristics  from  a  vast  amount  of  image  data,  overcoming  the 

limitations of traditional manual feature extraction [8]. In addition, systems combining drones with 

optical sensors can achieve rapid and accurate early fire detection [9]. Visible  light sensors, which 

capture images with distinct features and rich texture details, can intuitively display the situation on‐

site and are thus widely used in image‐based fire detection technology [10]. 

A forest fire detection system based on aerial visible light images typically consists of three key 

components:  image  acquisition,  fire  recognition,  and  fire  warning  [11].  The  image  acquisition 

component captures real‐time  image data of forest areas using drones equipped with visible  light 

cameras. The fire recognition component analyzes the images using target detection algorithms from 

deep  learning  to  identify  the presence of  fires. The  fire warning component  then promptly alerts 

firefighting personnel upon  fire detection. The  fire  recognition  component  is  the  core of  the  fire 

detection system, with research mainly focusing on constructing appropriate datasets and optimizing 

target detection algorithms to improve the accuracy and real‐time nature of fire detection. 

Deep learning‐based target detection algorithms are mainly divided into two categories: two‐

stage  algorithms  represented  by  the  R‐CNN  (Region‐CNN)  series  and  one‐stage  algorithms 

represented by  the YOLO  (You Only Look Once)  series  [12]. Due  to  the  advantage of one‐stage 

detection algorithms in detection speed, they are widely used in fire detection tasks with high real‐

time requirements. Xue et al. [13] and Zhao et al. [14] both focused on the flame characteristics of 

forest fires  in their research. Xue et al.  improved the YOLOv5 algorithm by adding a small object 

detection layer and attention mechanism, modifying the SPPF and PANet structures, and validated 

it using a self‐built forest fire dataset. Zhao et al. replaced the backbone feature extraction network of 

YOLOv3 with EfficientNet to enhance the detection performance of small objects, but their dataset 

was not from a forest scene. Zu Xin ping et al. [15] targeted the smoke characteristics of forest fires, 

modified the backbone network and prediction network of YOLOv3 SPP to improve the accuracy 

and  real‐time nature of  fire detection. Su Xiaodong  et al.  [16] and Pi  Jun  et  al.  [17]  replaced  the 

backbone  network  of  YOLOv5  with  lightweight  network  models  and  introduced  attention 

mechanisms  at  appropriate  positions  to  optimize  the  detection  performance  of  aerial  forest  fire 

datasets. With the accelerated iteration of algorithms, researchers have explored more cutting‐edge 

technological paths. Zhang et al. proposed the YOLOv8‐FFD model, which introduces deformable 

convolution modules and cross‐scale feature fusion mechanisms. On the FireNet public dataset for 

forest fire detection, it achieved a 91.2%mAP,a 6.3 percentage point improvement over the baseline 

model [18].Wang et al. developed a YOLO‐Fusion framework based on visible light‐infrared dual‐

modal  fusion.  The  proposed  dynamic  weight  allocation  module  effectively  solved  the  feature 

alignment problem of heterogeneous images, achieving a recall rate of 89.7%in nighttime forest fire 

detection [19]. 

For UAV inspection scenarios, Liu et al. constructed a 3D‐YOLOv5 model containing elevation 

features.  Through  a  height‐aware  feature  pyramid  network(HA‐FPN),it  optimized  the  scale 

sensitivity of aerial images, reducing the false alarm rate in complex terrain forest fire detection to 

2.1% [20].The Chen teamattempted to combine the Transformer architecture with YOLOv9,proposing 

a Swin‐YOLO model with a dynamic sparse attention mechanism. It achieved a detection accuracy 

of  87.4%for  small‐target  flames while maintaining  real‐time performance  at  38FPS  [21]. Notably, 

Zhou  et  al.  introduced  the  FireDet‐3D  system,  which  innovatively  uses  Neural  Radiance 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 March 2025 doi:10.20944/preprints202503.0982.v1

https://doi.org/10.20944/preprints202503.0982.v1


  3  of  21 

 

Fields(NeRF)technology  to  build  a  3D  fire  simulation  environment  and  integrates  an  improved 

YOLOv10 architecture. This system  first realized 3D spatial positioning of  forest  fires, controlling 

spatial errors within 1.5 meters [22]. Meanwhile, the Gupta team(2025)developed EdgeFireNet, which 

uses Neural Architecture Search(NAS)technology  to automatically optimize network  structure.  It 

achieved a real‐time detection performance of 24FPS on embedded devices with power consumption 

reduced to 3.2W [23]. 

Overall, most researchers exploring deep learning‐based image‐based early forest fire detection 

techniques are more focused on algorithm optimization to improve detection accuracy and real‐time 

performance. However, these studies tend to ignore the unique characteristics of early forest fires, 

tend  to  simplify  the detection of  targets, and do not  fully  consider  the applicability  in UAV  low 

computing power scenarios. In terms of dataset selection, scholars rarely conduct a comprehensive 

assessment of its suitability for forest environments. 

To address these issues, this study proposes key factors to consider when collecting data on early 

forest  fires, combining  the characteristics of early  forest  fires with an aerial perspective. Based on 

these factors, a customized early forest fire dataset was constructed. Because of the low latency and 

low computing power consumption of YOLOv5s, the actual deployment difficulty is greatly reduced, 

so a new early forest fire detection algorithm YOLO‐UFS is proposed with YOLOv5s as the baseline 

model.  In  order  to  further  improve  the  detection  performance,  the  combination  of  detection 

technology and unmanned aerial vehicle  system was  considered  in  this  study. By modifying  the 

network structure and loss function of YOLOv5s, and introducing the ObjectBox detector and NAM 

attention mechanism, a lightweight detection model is realized without sacrificing accuracy, so as to 

improve the real‐time processing ability of the systemʹs detection information. 

The main contributions of this paper are as follows: 

a. A New Early Forest Fire Detection Model: YOLO‐UFS Model: We propose a novel detection 

model, YOLO‐UFS, designed to enhance drone‐based early forest fire and smoke detection by 

addressing  low  computational  cost,  low  latency,  complex  background  interference,  and  the 

coexistence of smoke and fire. 

b. Self‐built Dataset: A custom dataset was created, comprising three types of data: small flames 

only,  smoke  only,  and  combined  small  flames  and  smoke.  Experiments were  conducted  to 

compare its performance with classical algorithms. 

c. Model  improvements: We  improved by  replacing  the C3 module with C3‐MNV4  to  reduce 

parameters  and  improve  feature  extraction.  The  AF‐IoU  loss  function  optimizes  detection 

accuracy, especially for small targets. NAM concentrates the kernel in the target region, while 

ObjectBox and BiFPN improve detail retention and generalization. These upgrades make YOLO‐

UFS more accurate and efficient in early forest fire detection. 

The structure of the paper is as follows: 2.1. The data collection process, improvement methods, 

evaluation  indicators, and experimental environment parameters are described  in detail. 2.2. The 

improved method based on YOLOv5s is described in detail to propose YOLO‐UFS. In Section 3, the 

effectiveness of  the proposed method  is confirmed by ablation experiments and comparison with 

classical models,  and  the  effectiveness of  the  self‐built dataset  in  the  training of  early  forest  fire 

models is confirmed by in‐depth analysis and discussion of the detection results of public datasets 

and self‐built datasets. Section 4 summarizes and outlines future research directions. All of the results 

obtained are discussed in Section 5. 

2. Materials and Methods 

2.1. Early Forest Fire Selection Image Acquisition 

In the context of early forest fire detection from an aerial perspective, the primary focus is on 

data collection in forest environments and the detection of fire‐related targets. When constructing a 

dataset for early forest fires, it is essential to consider the characteristics of forest fires and the features 

of aerial images. The following are key considerations: 
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Figure 1. Sample composition analysis of self‐built early forest fire dataset. 

a. Target Identification 

During  the  early  stages  of  a  forest  fire,  the  flames  are  typically  small  and  not  easily 

distinguishable.  In  aerial  images  captured  by  drones,  small  flames  can  be  easily  obscured  by 

surrounding vegetation, making them difficult to detect. Relying solely on flames as the detection 

target  can  lead  to missed  detections. However,  early  fires  often  produce  significant  amounts  of 

smoke,  which  can  spread  across  the  forest  canopy  and  is  more  easily  detected.  Therefore, 

incorporating  both  smoke  and  flames  as  detection  targets  can  enhance  detection  accuracy  and 

reliability  [24]. Consequently,  the  dataset  should  include  three  typical  types  of  early  forest  fire 

images: scenes with only small  flames, scenes with only smoke, and scenes with both  flames and 

smoke, as shown in Figure 1.a. 

b. Interference with Detection Targets 

In forest environments, numerous objects can interfere with the detection of flames and smoke, 

leading to false positives. Flames may be confused with objects of similar color and shape, such as 

sunlight reflections or reddish‐yellow leaves [25]. Smoke characteristics, including color and shape, 

can vary depending on environmental conditions. For instance, when the forest contains flammable 

materials with high oil content or  is at a higher temperature, smoke may appear grayish‐black or 

black, and tree shadows in sunlight can be mistaken for smoke. Conversely, when there are fewer 

flammable materials or the temperature is lower, smoke may appear blue‐white or white, and objects 

like mist, snow, or clouds can be misidentified as smoke [26]. Including these potential interferences 

in  the dataset can  increase  the diversity of scenarios and enhance the accuracy of early forest  fire 

detection. Examples of fire images with interferences are shown in Figure 1.b. 

c. Position of Detection Targets 

During  forest  fire patrols, drones  typically  follow predefined  flight paths  [27], and  the areas 

scanned by their cameras are  limited. To  improve patrol efficiency, areas already scanned are not 

rechecked,  meaning  that  fire  locations  may  not  always  be  within  the  cameraʹs  field  of  view. 

Additionally, early forest fires are often obscured by surrounding vegetation, further complicating 
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detection. Therefore, when collecting data, it is crucial to account for the possibility that flames and 

smoke may appear in varIoUs positions within the image and may be partially or fully obscured by 

vegetation,as illustrated in Figure 1.c. 

2.1.1. Data Augmentation Processing 

Initially, the image data underwent resizing to standardize all images to a resolution of 640×640 

pixels. Subsequently, the LabelImg tool was employed to annotate the images [28]. The labels were 

categorized as ʺfire,ʺ and the dataset was divided into training, validation, and testing sets in a 7:2:1 

ratio. Through in‐depth analysis of the dataset and detection targets, the diversity of the samples was 

enhanced. To  further enrich  the data,  this study applied data augmentation techniques,  including 

HSV  color  space  transformations,  horizontal  and  vertical  flipping  of  images,  and  contrast 

adjustments. 

For  images with inconspicuous or small‐sized targets, the Mosaic data augmentation method 

was utilized [29]. This technique  involves randomly cropping, scaling, and stitching together four 

images, making small targets more recognizable to the model. This approach effectively increases the 

number of samples [30] and significantly reduces the risk of missed detections. An example of an 

image after data augmentation is shown in Figure 2. 

 

Figure 2. Enhance data and enhance images. 

2.1.2. Dataset Construction 

In this study, we defined samples containing early forest fire characteristics as positive samples 

and  included  the  following  three  types  of  data:  samples  containing  only  small  flames,  samples 

containing smoke only, and samples containing both small flames and smoke. Conversely, samples 

that do not contain early fire features are defined as negative samples, and these samples usually 

contain only interferences, or images of the forest that resemble the fire scene but do not have the 

actual fire. 

Table 1. The number of samples in the dataset. 

Dataset  Sample type  Number of samples Total 

Training set  Positive sample  only flames 

only smoke 

Flames, smoke coexist 

2720 

1776 

5980 

10476 

Validation set  Positive sample  only flames 

only smoke 

Flames, smoke coexist 

2181 

1141 

4098 

7685 

  Negative samples  639  639 

    Total    18800 
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Based on the above image acquisition analysis, we constructed an early forest fire dataset. Firstly, 

the experimental simulation drone patrols the forest area to obtain multi‐view early forest fire videos. 

The videos were shot at Northeast Forestry University and were filmed using a DJI drone with a 

visible light camera to simulate an early forest fire scene. Secondly, in order to increase the diversity 

of the dataset, we also collected early forest fire images and videos from the perspective of drones 

from the network and public datasets. A total of 10476 early forest fire images (positive samples) were 

obtained by sampling the video frames using Pycharm software, and one image was captured every 

60 frames. According to the 4:1 ratio, these images were divided into a training set and a validation 

set, where the training set contained 7685 early forest fire images and the validation set contained 620 

early forest fire images. In addition, an additional 639 forest images (negative samples) were collected 

and added to the validation set. Table 1 shows the distribution of different types of samples in the 

training and validation sets. 

In order to label the early forest fire samples, we used the commonly used image annotation tool 

labelImg. In the labeling process, flame and smoke are labeled as two independent detection targets, 

in  which  the  flame  characteristics  of  the  fire  are marked  with  the  ʺfireʺ  label  and  the  smoke 

characteristics of the fire are marked with the ʺsmokeʺ label. 

2.2. The YOLO‐UFS Model 

The YOLO‐UFS model based on the enhanced YOLOv5s algorithm proposed in this study has 

been optimized to better adapt to the needs of forest fire detection in UAVs scenarios. In addition, 

the model has been  improved  in  terms of detection accuracy and ability  to recognize  fine details, 

improving  its  overall  robustness.  Figure  3  illustrates  the  optimized  network  structure  for  an 

improved algorithmic model. 

 

Figure 3. YOLO‐UFS network structure diagram. 
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2.2.1. Replace the C3 Module 

In  embedded devices,  computing  resources  are  limited,  so  the detection model needs  to be 

lightweighted.  The  Universal  Inverted  Bottleneck  (UIB) module  proposed  in MobileNetV4  [31] 

provides an effective solution to this problem. This module can be applied to the C3 module in the 

YOLOv5s backbone network to reduce the number of parameters of the model. 

The UIB module  integrates  the  Inverted Bottleneck  (IB), ConvNext,  Feed‐Forward Network 

(FFN)  in MobileNetV2 [32], and the new Extra Depth (ExtraDW) variant  in MobileNetV4. Among 

them,  IB processes  the extended  feature activation  through  spatial blending. ConvNext performs 

spatial blending operations before feature expansion; ExtraDW can improve the depth and receptive 

field of the network without significantly increasing the computational cost. FFN consists of two 1×1 

point‐by‐point convolutions stacked with an activation layer and a normalization layer in between. 

The UIB module enables adaptive mixing of spaces and channels, flexible adjustment of the receptive 

field, and maximization of computational utilization. 

The  UIB  module  replaces  the  bottleneck  structure  in  the  C3  module  to  build  a  new  C3‐

MNV4(C3‐MobileNetV4) module. This module effectively  reduces  the parameter count of  the C3 

module while enhancing  its feature extraction ability, thereby reducing the computational burden 

and ensuring the accuracy of early forest fire detection. The structure of the fused C3‐MNV4 is shown 

in Figure 4. 

 

Figure 4. Structure of C3‐MNV4. 

2.2.2. Introduction of the Attention Mechanism NAM 

In  the  training  process  of  neural  networks,  the  attention  mechanism  plays  a  key  role  in 

suppressing less prominent features in both the channel and spatial dimensions. PrevIoUs research 

has mainly used  attention operators  for  feature  extraction, which  can  reveal  feature  information 

across  different  dimensions.  The  contribution  factor  of  weights  helps  to  suppress  insignificant 

features, making the prominent features more noticeable. However, earlier methods did not consider 

this  factor  sufficiently.  Thus,  targeting  the  contribution  factor  of weights  is  an  effective way  to 

enhance  the  attention mechanism.  This  can  be  achieved  by  utilizing  the  scaling  factor  in  Batch 

Normalization to represent the importance of the weights [33]. This approach avoids the need to add 

extra fully connected or convolutional layers, as seen in methods like SE, BAM, and CBAM [34]. 

Therefore,  this  study proposes a novel attention mechanism: Normalization‐based Attention 

Mechanism  (NAM)  [35]NAM  is a  lightweight attention mechanism  that  integrates  the  space and 

channel attention modules of CBAM, adjusting them to allow NAM to be embedded at the end of 

each network block. For  residual networks, NAM  can be  incorporated at  the end of  the  residual 

structure. In the channel attention submodule, the scaling factor from Batch Normalization is used, 

as shown in formula (1). 

𝐵௢௨௧ ൌ 𝐵𝑁ሺ𝐵௜௡ሻ ൌ 𝛾
𝐵௜௡ െ 𝜇஻

𝜎஻
ଶ ൅ 𝜖 ൅ 𝛽  (1)

where 𝐵௢௨௧  and 𝐵௜௡  represent the input and output of the module, respectively, and  𝜇஻  and  𝜎஻  are 
the mean and standard deviation of the mini‐batch 𝐵. 𝛾  and  𝛽  are trainable affine transformation 
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parameters  (scale  and  shift).  The  scaling  factor  shows  the  degree  of  change  in  each  channel’s 

information and reflects the importance of each channel [36]. 

Specifically,  a  larger variance  indicates more  significant  changes  in  the  channel, meaning  it 

contains more useful information and therefore has more importance. On the other hand, channels 

with  small  variance  change  less  and  contain  less  information,  thus  they  are  less  important. The 

channel attention mechanism is shown in Figure 5.b. and expressed in formula (2). 

𝑀௖ ൌ 𝜎൫𝑊ఊሾ𝐵𝑁ሺ𝐹ଵሻሿ൯  (2)

where  𝑀௖   is  the  output  feature  and  𝑊ఊ   is  the  weight.  For  the  spatial  dimension,  a  Batch 

Normalization scaling factor  is applied to measure pixel  importance, which  is referred to as pixel 

normalization. The spatial attention mechanism is shown in Figure 5.c. and expressed in formula (3). 

𝑀௦ ൌ 𝜎ሺ𝑊ఒሾ𝐵𝑁௦ሺ𝐹ଶሻሿሻ  (3)

where 𝑀௦  is the output feature,  𝜆  is the scaling factor, and 𝑊ఒ  is the weight. 

𝐿𝑜𝑠𝑠 ൌ ∑𝑙ሺ𝑓ሺ𝑥,𝑊ሻ,𝑦ሻ ൅ 𝑝∑𝑔ሺ𝛾ሻ ൅ 𝑝∑𝑔ሺ𝜆ሻ  (4)

Formula  (4)  introduces  a  regularization  term  into  the  loss  function  to  suppress  insignificant 

weights, where  𝑥  is the input,  𝑦  is the output, 𝑊  is the network weights,  𝑙ሺ… ሻ  is the loss function, 
and  𝑔ሺ… ሻ  is  the  𝑙ଵ‐norm penalty  function. The parameter  𝑝  balances  the penalties of  𝑔ሺ𝛾ሻ  and 

𝑔ሺ𝜆ሻ. 

 
a. The attention mechanism of NAM 

 
b. Channel Attention Mechanism 
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c. Spatial Attention Mechanism 

Figure 5. Attention Mechanism. 

2.2.3. Bidirectional Characteristic Pyramid Network (BiFPN) 

BiFPN  (Bidirectional Feature Pyramid Network)  [37]  is an efficient multi‐scale  feature  fusion 

architecture, which is further optimized on the basis of the PANet structure that fuses FPN (Feature 

Pyramid Network) [38] and PAN (Path Aggregation Network). The structural design of BiFPN and 

PANet is shown in Figure 6. 

 

Figure 6. Structure of PANet and BiFPN. 

In the PANet architecture, the FPN structure transmits the strong semantic information from the 

top layer to the bottom layer through the top‐down upsampling operation, while the PAN structure 

transmits  the position  information  from  the bottom  layer  to  the  top  layer  through  the bottom‐up 

downsampling operation. This combination method enables the parameter aggregation of features 

of  different  detection  layers,  so  that  the  feature maps  of  different  sizes  contain  both  semantic 

information and position information of the image. BiFPN is optimized and improved on the basis of 

PANet. It not only retains the advantages of bidirectional connection and allows information fusion 

between features of different scales, but also introduces a weighted feature fusion mechanism. This 

mechanism  enables  the  network  to  pay  more  attention  to  features  with  a  larger  amount  of 

information, so as to improve the efficiency and effect of feature fusion. In addition, BiFPN removes 

nodes with only one input, adds connections between input and output nodes at the same level, and 

treats each bidirectional path as a network feature layer to optimize cross‐scale connections. These 
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improvements make BiFPN more structurally lean and significantly improve the networkʹs ability to 

handle targets of different sizes and complexity. 

In this study, small flames and smoke were used as detection targets. Due to the great difference 

in features between the two, the BiFPN structure can be used to replace the original PANet structure 

in  the  neck  of  YOLOv5s,  which  can  better  realize multi‐scale  feature  fusion  and  improve  the 

processing ability of different detection targets. This not only improves the accuracy of detection, but 

also reduces the weight of the network model. 

2.2.4. ObjectBox Detector 

In the YOLOv5s model, the object detection head consists of three detectors, which use the grid‐

based  anchor mechanism  to  achieve  object  detection  through multi‐scale  feature maps.  In  the 

experiment, when  the  input  image size  is 640×640,  the network will output three  feature maps of 

different scales, 80×80, 40×40 and 20×20. Among them, the feature map of 80×80 is a shallow feature, 

which contains more  low‐level  target  information and  is suitable  for detecting small  targets, so a 

small‐scale anchor  is configured. The  feature map of 20×20 represents deep  features and contains 

more high‐level information, such as contours and structures, which is suitable for detecting large 

targets,  so  large‐scale  anchors  are  configured.  The  characteristic map  of  40×40  is  used  to  detect 

medium‐sized targets. 

However, this study proposes an innovative single‐stage anchor‐free and highly versatile object 

detection method, ObjectBox  [39]. Unlike  traditional  anchor‐free  detectors,  existing methods  are 

usually biased towards targets of a specific scale in label assignment. Whereas, ObjectBox relies only 

on the central position of the target as a positive sample and treats all targets equally at all feature 

levels,  regardless  of  size  or  shape.  The  traditional  anchor‐free method  first  looks  for  candidate 

positive samples  in a certain area  through spatial and  scale constraints, and  then  selects positive 

samples according to the scale, but this method has certain limitations because it ignores the situation 

that different size and shape targets may lead to different target boxes. 

In  contrast,  the  ObjectBox method  proposed  in  this  study  proposes  a  fairer  treatment  by 

regressing only from the center of the target. To achieve this, we define the regression target as the 

distance  from  the  two  corners  containing  the  target  center  grid  element  to  the  bounding  box 

boundary.  Figure  7.  illustrates  how  the  original Anchor‐free  detector works with  the ObjectBox 

detector in this study: the latter extends the range of positive samples by regressing only from the 

central position. 

 

Figure 7. Anchor‐free detector. 

2.2.5. Optimize the Loss Function 

The loss function is an important tool to measure the difference or error between the predicted 

output of the model and the actual target. Although the existing GIoU (Generalized Intersection over 
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Union)  loss  function  can  calculate  IoU  (Intersection  over  Union)  at  a  broader  level,  it  cannot 

accurately reflect the actual situation when dealing with the inclusion relationship between the two 

prediction  frames,  resulting  in  the  degradation  of GIoU  into  an  ordinary  IoU  indicator  [40].  In 

addition, GIoU needs to calculate the minimum bounding box for each prediction box and the real 

box, which not only increases the computational complexity, but also limits the convergence speed 

of the loss function. 

In order to solve these problems, the improved network adopts the Adaptive Focus Intersection 

over Union (AF‐IoU) loss function. AF‐IoU significantly improves the generalization ability of the 

model by reducing  the weight of position  information when  the anchor  frame coincides with  the 

target frame, reducing the interference in the pre‐training process. As a bounding box regression loss, 

AF‐IoU  introduces a dynamic non‐monotonic mechanism, and designs a reasonable gradient gain 

allocation strategy, which effectively avoids the large gradient or harmful gradient that may occur in 

extreme samples. The AF‐IoU of bounding box regression is shown in Figure 6 and is calculated as 

follows: 

𝐴𝐹 െ 𝐼𝑜𝑈 ൌ 𝐿୛୍୭୙୴ଷ ൌ 𝑟𝐿୛୍୭୙୴ଵ  (5)

 𝑟 ൌ
𝛽

𝛿𝛼ఉିఋ
  (6)

𝐿୛୍୭୙୴ଵ ൌ 𝑅୛୍୭୙𝐿୍୭୙  (7)

𝑅୛୍୭୙ ൌ exp൭
൫𝑥 െ 𝑥୥୲൯

ଶ
൅ ൫𝑦 െ 𝑦୥୲൯

ଶ

൫𝑊୥
ଶ ൅ 𝐵୥ଶ൯

∗ ൱  (8)

where  r  is  the  gradient  gain,  β  is  the  non‐monotonic  focusing  coefficient,  and  the  α  and  δ  are 

hyperparameters.  (x,y)  is  the  coordinate  of  the  center point  of  the prediction  box,  (xgt,ygt)  is  the 

coordinate of the center point of the target box, Bg is the width of the union of the prediction box and 

the target box, and Hg is the height of the union of the prediction box and the target box. 

RIoU is used to amplify the weight of the ordinary mass anchor frame, so that the model pays 

more attention to the anchor frame with low overlap between the prediction frame and the target 

box. LIoU is used to reduce the weight of high‐quality anchor frames and reduce the attention to the 

distance between the center points when the overlap between the prediction box and the target box 

is high. In addition, by separating Bg and Hg from the computational plot, it is possible to prevent 

RIoU from creating gradients that hinder convergence. As shown in Figure 8. 

 

Figure 8. Schematic diagram of bounding box regression. 

Since  LIoU  is  dynamic,  the  quality  classification  criteria  of  the  anchor  frame  also  changes 

dynamically,  which  enables  AF‐IoUv3  to  flexibly  adjust  the  gradient  gain  allocation  strategy 
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according to the current training situation, so as to effectively improve the overall performance of 

object detection. 

3. Experiments and Analysis of Results 

3.1. Test Conditions and Indicators 

In this experiment, the AutoDL server was used for the training of the early forest fire detection 

model,  and  the  mirror  environment  chosen  was  PyTorch  1.11.0,  Cuda  11.3,  the  programming 

language was Python 3.8 (ubuntu20.04), and the hardware configuration consisted of an RTX4060 

GPU (8 GB) and 8 GB of RAM. The input image size for model training is 640 × 640, the number of 

training rounds is 300, the initial learning rate is 0.01, and the optimizer uses Adam. In the study of 

early forest fire detection based on aerial visible images, in addition to ensuring detection accuracy, 

this paper  considers  embedding  the detection model  into  the UAV platform  and optimizing  the 

model  by  lightweighting  it  to  increase  the  computational  speed,  so  as  to  ensure  that  real‐time 

processing of detection information. 

In cases of imbalanced samples, using accuracy alone as a metric for model evaluation does not 

fully reflect the modelʹs performance. Moreover, since both flame and smoke features are considered 

as detection targets in this study, we evaluate the model’s accuracy in early wildfire detection using 

three metrics: Precision (P), Recall (R), and Mean Average Precision (mAP). 

To assess whether the detection model achieves lightweight optimization, the frames per second 

(FPS) may vary depending on the computer’s performance. Therefore, this study uses the number of 

model  parameters  (Params)  and  floating‐point  operations  (FLOPs)  to  evaluate  the  modelʹs 

lightweight nature and real‐time performance. The formulas for Precision (P), Recall (R), and Mean 

Average Precision (mAP) are as follows: 

𝑃 ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑃
  (9)

𝑅 ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑁
  (10)

𝑚𝐴𝑃 ൌ
ଵ

ே
∑ ே׬
௜ୀଵ 𝑃ሺ𝑟ሻ 𝑑𝑅    (11)

Where  𝑇𝑃  is the number of true positive samples correctly predicted by the model,  𝐹𝑃  is the 
number of false positives (negative samples predicted as positive), and  𝐹𝑁  is the number of false 

negatives (positive samples predicted as negative). 

3.2. Comparative Experiments 

In order to verify the advantages of the optimized YOLOv5s model in early forest fire detection, 

this paper uses the same experimental conditions on a self‐constructed early forest fire dataset and 

compares  it with YOLOv3 Tiny [41], YOLOv8, and YOLOXs [42] proposed in similar studies. The 

experimental results are shown in Table 2. 

Table 2. Comparison of YOLO series algorithms. 

Method  mAP/%  Flops/G  Parameters/piece 

YOLOV3‐Tiny  79.7  13.2  8849182 

YOLOv5s  87.7  15.8  7015519 

YOLOv8  89.2  28.4  11126358 

YOLOXs  86.9  9.6  2975226 

YOLO‐UFS  91.3  4  1525465 

From Table 2, it can be found that the YOLOv3‐Tiny model is better than YO‐LO‐UFS in terms 

of lightweight, but its accuracy in early forest fire detection is reduced. Compared with YOLOv5s, 
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YOLOv8 increased the mAP value of early forest fire detection by 3.5%, but its number of parameters 

and floating‐point operations were much higher than those of YOLO‐UFS. However, the YOLOXs 

model proposed in other similar studies can only detect flame targets, and its number of parameters 

and floating‐point operations are higher than those of the detection model proposed in this study. In 

contrast,  the  YOLO‐UFS model  in  this  study  outperforms  other  YOLO  algorithms  in  terms  of 

accuracy and lightweight. This suggests that the YOLO‐UFS model in this study has an advantage 

when working with visible images from a birdʹs eye view. If it is applied to the UAV platform, the 

detection information can be processed more efficiently and the real‐time detection can be ensured. 

In order to further verify the robustness of the detection network structure, forest fire experiments in 

other periods will be carried out in the future to evaluate its application in real scenarios. 

3.3. Ablation Experiments 

In order to verify whether the YOLO‐UFS network structure can be improved by introducing 

ObjectBox, BiFPN, NAM, AF‐Loss  and C3‐MNV4, making  the model  lighter  and  improving  the 

accuracy and real‐time accuracy of early detection of forest fires, we carried out ablation experiments 

on the self‐built forest fire early dataset. The results of the experiment are shown in Table 3. Among 

them,  the  first  set of  experiments was  tested based on  the original model of YOLOv5s; For  each 

optimization method, experiments from groups 2 to 6 were tested separately. Groups 7 to 12 were 

tested by combining some optimization methods. Group 13 experiments were tested by applying all 

optimization methods simultaneously. 

Table 5. Performance comparison of different modules after change. 

NumberObjectBox BiFPN NAM   AF  C3‐ 

MNV4 

Weight 

/MB 

Precision 

/% 

Recall 

/% 

mAP 

/% 

FLoPs/G Parameters 

piece 

1            14.2  85.3  80.4  88.4  15.8  7015519 

2  √          14.0  85.7  80.7  88.6  3.5  1630157 

3    √        14.1  85.6  80.6  88.7  4.6  1685145 

4      √      14.1  85.4  80.5  88.6  4.3  1944973   

5        √    14.0  86.2  81.3  88.8  5.3  5015519 

6          √  14.0  87.8  81.2  89.2  4.4  1014517 

7  √  √        14.2  85.4  80.7  88.4  3.8  1447897 

8      √  √    14.0  87.1  80.6  88.6  4.5  1944973 

9        √  √  14.1  88.3  82.3  90.4  4.3  3499378 

10  √  √    √    14.1  88.4  81.6  90.6  3.9  1447897 

11  √  √  √      14.1  87.8  81.4  90.3  4  1525465 

12    √  √    √  14.2  88.2  82.6  91.4  4  1477634 

13  √  √  √  √  √  14.0  88.6  83.7  91.3  4  1525465 

According to the data analysis in Table 5, ObjectBox and BiFPN can  improve the accuracy of 

early  forest  fire  detection,  significantly  reduce  the  number  of  parameters  and  floating‐point 

arithmetic of the model, and successfully achieve the lightness of the network model. While AF Loss 

has no direct effect on the lightness of the model, they effectively improve the accuracy of detection. 

Specifically, compared with the original model, the accuracy of ObjectBox and BiFPN has decreased, 

but the recall rate and average accuracy have been significantly improved, and the C3‐MNV4 module 

reduces  the  number  of  parameters while  enhancing  its  feature  extraction  ability  to  ensure  the 

accuracy of early forest fire detection. NAM Attention enhances the detection of network models in 

noisy environments. In the field of early detection of forest fires, it is important to follow the principle 

of ̋ false positive and false detection is better than false detectionʺ. Therefore, maximizing recall while 

ensuring accuracy is key. mAP is used as an evaluation metric that takes into account accuracy and 

recall, which means that the overall accuracy rate is improved. 
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By comparing the 7th and 12th group trials, it can be found that there are significant differences 

in the accuracy, recall, and mAP improvement ability of different optimization methods. The results 

of the fusion of the four optimization methods provide a good balance between precision, recall, and 

mAP. Compared  to  the  original model,  the  accuracy  (P)  is  improved  by  3.8%,  the  recall  (R)  is 

increased by 4.1%, the average accuracy (mAP) is increased by 3.2 %, the floating point arithmetic 

(FLoPs) is reduced by 74.7%, and the number of parameters is reduced by 78.3%. The results show 

that the optimization method proposed in this paper can not only ensure the accuracy, but also realize 

the lightweight of the early detection model of forest fires, and improve the recall rate as much as 

possible under the premise of ensuring accuracy. 

3.4. Generalization Experiment 

3.4.1. Generalization Comparison Experiments 

In order  to  further verify  the generalization of  the  improved algorithm,  the network models 

YOLOv3, YOLOv4, YOLOv5, YOLOv7  and YOLOX under  other  fire  stage  configurations  in  the 

public dataset environment are compared with the proposed algorithm. In the experiment, all five 

networks use the same loss function, LCIoU, to ensure the accuracy of the experimental results. In 

addition, the evaluation indicators of the comparative test still follow the above index system. 

Table 3. Performance comparison of different algorithm models. 

Method  Weight 

/MB 

Enter a 

size 

Precision 

/% 

Recall 

/% 

Mean of average 

accuracy /% 

F1  Recognition 

rate/(frame*s‐1) 

YOLOv3  120.5  640  70.9  59.9  63.1  64.9  39.7 

YOLOv4  18.1  640  73.2  59.3  64.4  65.5  71.0 

YOLOv5s  14.2  640  75.4  57.3  62.3  65.1  85.6 

YOLOv7  135.0  640  76.2  52.9  79.4  62.4  35.3 

YOLOX  15.5  640  74.2  53.5  77.4  62.2  169.5 

YOLO‐UFS  14.0  640  74.9  58.7  82.3  65.8  172.4 

As  shown  in Table 3,  the YOLO‐UFS network model  shows obvIoUs advantages over other 

network models in forest fire detection tasks. Compared with the YOLOv5s model, the mAP value is 

increased by 3 percentage points, which is of great significance in practical applications. Compared 

to YOLOv7, YOLO‐UFS  has  an mAP  value  that  is  about  3.6 percentage points  higher, while  its 

advantage over YOLOX is even more obvIoUs, with an mAP value that is about 6.3 percentage points 

higher. 

Table 4. The experimental results of different sizes based on the Microsoft COCO standard. 

Model  PA‐S  PA‐M  PA‐L  RA‐S  RA‐M  RA‐L 

YOLOv5s  18.3  27.0  22.1  30.7  43.8  27.6 

YOLO‐UFS  23.8  29.8  27.6  34.2  47.2  37.2 

The results of these comparative experiments strongly show that YOLO‐UFS has better results 

in identifying forest fires, complex environments, low latency, and small targets. These characteristics 

also correspond to those of early forest fires (see Table 4 for detailed data). 
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Figure 9. Comparison of forest fire recognition accuracy enhanced by the improved model. 

The detection effect of the YOLO‐UFS model on forest fire data samples is shown in Figure 9. 

From the figure, it can be clearly seen that the model is able to accurately perform the recognition 

operation when facing targets of different scales and shapes. This indicates that the YOLO‐UFS model 

not only outperforms other similar models in terms of performance indexes, but also can better cope 

with a variety of complex detection scenarios in the actual forest fire detection task, which provides 

a stronger technical support for the early warning and rapid response of forest fire. 

3.4.2. Generalized Ablation Experiments 

When generalized ablation experiments were performed using publicly available datasets, the 

accuracy  and  recall  results  of YOLO‐UFS  and different modules  as  a  function  of  the number  of 

iterations were shown in Figure 10. 

 
a. Precision Comparative Experiments  b. Recall comparative experiments 

Figure 10. Comparison of the accuracy and completeness of the models. 

The  inspection  accuracy  reflects  the  proportion  of  targets  that  the model  actually  correctly 

predicts to be positive, and higher values indicate that the model is more accurate in judging positive 
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samples during the identification process, and can filter out relevant targets more effectively, thereby 

improving the relevance of the results. The full detection rate (i.e., recall) focuses on the proportion 

of all true positive targets correctly predicted by the model, which intuitively reflects the degree to 

which the model covers the positive samples, and the higher the value, the true target in the im‐age 

is successfully identified. 

As can be seen in Figure 10a, the YOLO⁃UFS model outperforms YOLOv5s; As can be seen from 

Figure 10b, several models rise very rapidly before 3 epochs, first falling rapidly between 3~7 epochs, 

and  then  showing  an upward  trend. Specifically,  the  combination of C3‐MNV4  and AF‐lou  loss 

function  is mainly responsible  for reducing  the amount of data and  improving precision, but  the 

improvement on the recall is also better than that of the baseline algorithm, while the improvement 

of NAM attention and ObjectBox on the recall is more obvIoUs, and the conclusion of the complete 

YOLO⁃UFS model  training under  the public dataset  is basically  the same as  that of  the self‐built 

dataset.  The  improved  generalization  ability  and  the  multi‐environment  applicability  of  the 

algorithm are demonstrated. 

 
a. mAP0.5 

 

 
b. mAP0.5：0.95 

Figure 11. Comparison of mAP0.5 values and mAP0.5:0.95 values for each model. 

The mAP trend obtained by each algorithm in the public experimental dataset is shown in Figure 

11, where 0.50 and 0.95 are threshold settings, and the mAP value represents the average accuracy 

value of the average calculation of all classified targets, and the mAP value of the model shows an 

upward trend in general, and the mAP value of the model is also increasing with the optimization of 

the model, mAP0.5  has  increased  from  85.2%  of  the  original model  to  86.3%,  and  the  value  of 

mAP0.5:0.95 has also  increased  from  the  initial 56.7% Thatʹs 57.9 percent. The YOLOv5s model  is 

being optimized step by step; The mean average accuracy has improved significantly. Then, on the 

premise of ensuring that the loss function is the initial function of YOLOv5s, the data augmentation 

mode  of  the  network  is  changed,  and  it  is  found  that  the  baseline model  uses  the Mixup  data 

augmentation method  less  effectively, but  after  changing  the An⁃chor⁃free mode of  the original 

network  and  using  a  more  accurate  ObjectBox  detector  and  NAM  attention  mechanism,  the 

experimental evaluation  index  is more obviously. The experimental  results  showed  that  the  total 

mAP value increased by 3.3%. 

In summary, the replacement of the C3 module, the data augmentation method, the fixed change 

loss function, and the unanchored frame detector adopted in this experiment have good results in 

forest  fire  detection,  and  the  improvement  of  the  experiment  has  a  strong  pertinence,  and  the 

detection  effect  is  significant  when  the  drone  shoots  the  environment,  showing  the  excellent 

performance of the model in dealing with different target environments. 
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4. Visual Analysis and Discussion 

4.1. Visual Analysis and Shortcomings 

 

Figure 12. Comparison of Recognition Effect of 3 Detection Models. 

In this experiment, we conducted an in‐depth comparative analysis of three different detection 

models. The three models are an open flame detection model based on the open flame dataset and 

YOLOv5s, an early  forest  fire detection model based on  the self‐built early  forest  fire dataset and 

YOLOv5s, and an early forest fire detection model based on the self‐built early forest fire dataset and 

YOLO‐UFS. A  closer  look  at  the visualization  results  in Figure  12  shows  that  although  all  three 

models exhibit high accuracy in the detection task of flame and smoke targets, the optimized early 

forest  fire  detection model  in  this  study  performs  particularly well  on  several  key  performance 

indicators.  In  particular,  in  terms  of  confidence,  the  model  shows  a  significant  advantage  in 

identifying relevant targets for early forest fires with a higher level of confidence. At the same time, 

it effectively  reduces  the phenomenon of duplicate detection, which  fundamentally  improves  the 

accuracy and reliability of detection. In addition, compared with the self‐built dataset and the model 

trained on the public dataset, the optimized model has stronger performance in target directionality, 

and shows a higher sensitivity to the typical feature of early forest fires, ʺbig smoke and small fireʺ, 

and can more keenly capture this key feature, so as to send out early warning signals in time in the 

early stage of fires. 

4.2. Discussion of Future Work 

Despite the significant breakthroughs in accuracy and recall of the model, we must also be aware 

that there are still some shortcomings when using public datasets for testing. This indicates that the 

current model may  still have  some  limitations when dealing with diverse and  complex practical 
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scenarios.  Therefore,  future  research work  should  further  optimize  the model  architecture  and 

actively expand the scale and diversity of datasets. By introducing more real‐world scene data, the 

model will be able to better learn the fire characteristics in different environments, thereby further 

improving its detection performance and adaptability in the real world. 

Looking to the future, research on forest fire detection will focus on four main directions to meet 

the high standards of comprehensive coverage and zero false negatives. First, by integrating infrared 

sensors (for precise detection of flames and high‐temperature areas) with multispectral sensors (for 

analyzing smoke spectral characteristics) , a multidimensional perception system will be constructed 

to overcome the limitations of single visible light data. Second, lightweight model architectures will 

be  adopted,  incorporating  attention mechanisms  and  adaptive  data  augmentation  techniques  to 

improve  the  detection  accuracy  of  small  targets while  reducing  inference  time  by  30%. Model 

compression algorithms will be optimized in parallel to ensure that the model can achieve real‐time 

analysis  capabilities of 25  frames per  second on drone  edge devices. Finally, a  large‐scale,  cross‐

regional,  and multi‐meteorological  condition  annotated  dataset with millions  of  entries will  be 

developed. Through fine‐grained labeling, the modelʹs generalization performance in complex forest 

areas  will  be  enhanced,  ultimately  building  an  integrated  early  warning  system  forʺ  precise 

perception—rapid response—round‐the‐clock monitoring.ʺ 

5. Conclusion 

This study explores the early detection of forest fires using drones and deep learning techniques. 

A high‐quality dataset for early forest fire detection was created through aerial image analysis, which 

provided strong data support for model training. YOLO‐UFS is proposed by improving the YOLOv5s 

network model, which  optimizes  several  of  its  functions,  including  BiFPN,  novel  loss  function, 

anchor‐free detector, and NAM attention mechanism. These  improvements  improved  the modelʹs 

mAP value for early forest fire detection to 91.3%, striking a balance between accuracy and real‐time 

performance. Compared with the original model, the accuracy, recall and average accuracy of the 

improved YOLOv5s model are increased by 3.8%, 4.1% and 3.2%, respectively, and the amount of 

floating‐point operations  and parameters  are  reduced by  74.7%  and  78.3%,  respectively,  and  the 

performance is also better than that of other mainstream algorithms of the YOLO series. And  it  is 

more lightweight, and the low latency means that it is more likely to be deployed on drone platforms. 

For other phases of forest fires, mAP0.5 increased from 85.2% to 86.3%, mAP0.5:0.95 increased from 

56.7% to 57.9%, and the overall mAP value increased by 3.3 percentage points. Experimental results 

show that YOLO‐UFS is superior to other object detection methods, providing higher accuracy with 

fewer parameters. This makes YOLO‐UFS a more practical and effective solution for real‐time forest 

fire detection on airborne platforms. This study provides effective data and methodological support 

for early forest fire detection using aerial horizon. 

  Future  work  can  explore  a  number  of  avenues  to  further  improve  detection  reliability.  First, 

improving datasets remains a challenge. Adversarial networks (GANs) can be generated, which can 

be used to generate synthetic, but photorealistic images of fires to expand the dataset. In addition, we 

will explore innovative integration techniques to seamlessly integrate additional sensor data into the 

inspection system, combined with a human verification process to improve accuracy and minimize 

resource consumption. 

Supplementary  Materials:  Public  datasets:  https://github.com/gengyanlei/fire‐smoke‐detect‐

yolov4/blob/master/readmes/README_ZN.md  Self‐managed  datasets: 

https://www.heywhale.com/mw/dataset/67ce7b2fe64dcf03bf8e08a1?shareby=67ce78a6310730ba698693d4#. 
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