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Abstract: The activities of birds present increasing challenges in agriculture, aviation, and environmen-
tal conservation. This has led to economic losses, safety risks, and ecological imbalances. Attempts
have been made to address the problem, with traditional deterrent methods proving to be labour-
intensive, environmentally unfriendly, and ineffective over time. Advances in Artificial Intelligence
(AI) and the Internet of Things (IoT) present opportunities for enabling automated real-time bird detec-
tion and repellence. This study reviews recent developments (2020-2025) in Al-driven bird detection
and repellence systems, emphasising the integration of image, audio, and multi-sensor data in IoT and
edge-based environments. The Preferred Reporting Items for Systematic reviews and Meta-Analyses
framework was used, with 267 studies initially identified and screened from key scientific databases.
A total of 154 studies met the inclusion criteria and were analysed. The findings show the increasing
use of convolutional neural networks (CNNs), YOLO variants, and MobileNet in visual detection,
and the growing use of lightweight audio-based models such as BirdNET, MFCC-based CNNs, and
TinyML frameworks for microcontroller deployment. Multi-sensor fusion is proposed to improve
detection accuracy in diverse environments. Repellence strategies include sound-based deterrents,
visual deterrents, predator-mimicking visuals, and adaptive Al-integrated systems. Deployment
success depends on edge compatibility, power efficiency, and dataset quality. The limitations of
current studies, include species-specific detection challenges, data scarcity, environmental changes,
and energy constraints. Future research should focus on tiny and lightweight Al models, standardised
multi-modal datasets, and intelligent, behaviour-aware deterrence mechanisms suitable for precision
agriculture and ecological monitoring.

Keywords: bird detection; bird repellence; edge computing; Internet of Things (IoT); machine learning

1. Introduction

Birds cause damage to crops during the period before harvesting at a global level, leading to
huge losses exceeding billions of dollars yearly [1]. The birds feed on seeds, fruits, leaves, and
grains, reducing crop yields and threatening food security for many communities [2] . This not
only impacts farmers’ livelihoods but also raises concerns about the availability of food for families
relying on those crops [3]. In the East African region, small-scale farmers face a battle each season as
bird infestations take a significant toll on their cereal crops, with losses exceeding 20 percent of the
produce [4,5]. Farmers apply traditional bird control methods [6], which include the use of propane
cannons, reflective tapes, and physical controls using nets and scarecrows [7]. Although these measures
can lead to improved yields, their effectiveness is dependent on the stage of crop growth and duration
of application [8]. The traditional methods are time-consuming, require intensive labour, and are
mostly inefficient if not applied consistently throughout the day. In addition, methods that involve
the use of chemicals result in environmental risks. The birds are also able to gradually adopt to static
methods like the use of scarecrows, making them lose effectiveness over time. The practicability of
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using manual surveillance of large farms is also a problem. Given the challenges, the traditional bird
control methods are inadequate for repelling birds in large-scale farms.

Recent advances in Artificial Intelligence (Al) [9], specifically in computer vision and machine
learning, supported by the growing adoption of the Internet of Things (IoT) technologies [10,11] present
opportunities for automating bird detection and repellence [12,13]. These technologies can be used to
detect, classify, and respond to bird activity in real time using edge computing devices, such as drones,
camera traps, and smart sensors [14-16]. In addition, Al-powered repellence techniques, which may
include adaptive sound emitters, automated lasers to predator-mimicking drones, are gaining popular-
ity as more effective alternatives to the traditional deterrent methods [17,18]. Despite growing interest
and the need for a real-time solution, the research landscape on Al and IoT-based bird detection and
repellence remains fragmented [19]. Previous studies focus on isolated components such as classifica-
tion models, wireless sensor deployment, or acoustic deterrants without synthesising the full pipeline,
from data collection and model selection to edge deployment and deterrence actuation [20-22]. The
growing volume of literature presents a challenge for practitioners and researchers trying to navigate
the field.

As an initial step to addressing the gaps in this area of study, this paper presents a systematic
review of recent studies (2020-2024) in Al-enabled bird detection and deterrence. Using the PRISMA
framework, 154 peer-reviewed studies that leverage machine learning, computer vision, and IoT
infrastructure for avian monitoring were identified and analysed from the initial 267. Unlike prior
reviews [7,23,24], this study evaluates the full pipeline—from data collection and model architecture to
deployment platforms and smart deterrence technologies. This review not only classifies the models
and architectures used but also evaluates their real-world deployment readiness, data requirements,
edge processing strategies, and integration with repellence technologies.

The key contributions of the study are as follows:

*  Machine learning techniques applied in bird detection are categorised and mapped, highlighting
trends in lightweight models and edge compatibility.

¢ Dataset types, collection methods, and preprocessing techniques used in training detection models
are reviewed.

¢ IoT architectures and communication protocols are evaluated, identifying strengths and limita-
tions in cloud-based systems.

*  An analysis of bird repellence methods and their integration with intelligent detection systems
is provided.

¢ Key challenges are identified, and future research directions for building scalable, adaptive bird
management systems are proposed

By addressing these gaps, this review aims to support researchers, developers, and policymakers
in designing effective, Al-powered solutions for sustainable bird monitoring and control.

2. Materials and Methods

The study followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) framework to review the literature on IoT and machine learning for bird detection and
repellence. This ensured a replicable and unbiased selection of relevant studies. The process consisted
of four main steps: Identification, Screening, Eligibility, and Inclusion.

2.1. Identification

The first step was identifying relevant studies. A comprehensive search was conducted in IEEE
Xplore, ScienceDirect, Springer, and Google Scholar, covering studies published after 2020. The search
included terms such as:

. "Machine Learning + Bird Detection"
. "Machine Learning + Bird Repellence"
e "Computer Vision + Bird Detection"
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e “Acoustic Bird Detection”
e  "[oT + Bird Repellence"
e "Artificial Intelligence + Bird Detection + Repellence"

These search terms helped capture a wide range of studies, from advanced edge comput-
ing applications to real-world agricultural use cases. This initial search retrieved 267 articles for
potential inclusion.

2.2. Screening

With the initial pool of studies collected, the next phase was the screening phase. First, automated
tools were used to eliminate duplicate entries, reducing the dataset to 253 papers. Then, a manual
screen of the titles and abstracts was done to ensure that only studies directly related to our research
topic were considered. Studies were excluded if they lacked machine learning applications, did not
involve IoT technologies, or focused on general wildlife monitoring without specific reference to birds.
After screening, 248 papers were identified for potential review, out of which 10 were not retrieved.

2.3. Eligibility
The full texts of the remaining 238 papers were manually reviewed to check if they met our
predefined inclusion and exclusion criteria as presented in Table 1.

Table 1. Inclusion and Exclusion Criteria

Inclusion Criteria Exclusion Criteria
Published after 2020 Published before 2020
Describes machine learn-| Focuses on traditional
ing models for bird detec-| (non-ML) bird control
tion/repellence methods

Involves IoT-based solu-|Lacks technical details on
tions (e.g., edge comput-| ML model architecture
ing, smart sensors)
Uses image/audio/video-| Used other detection tech-
based detection tech-|niques

niques
Provides open or well-|Uses proprietary or inac-
documented datasets cessible datasets

2.4. Inclusion

After applying the eligibility criteria, 154 papers were selected for data extraction and anal-
ysis. These studies provided insights into various aspects of loT-based bird detection and repel-
lence, including dataset characteristics, machine learning techniques, hardware implementations,
model performance, and real-world applications. The extracted data focused on key themes such
as Datasets,machine learning algorithms, IoT architectures, Connectivity, edge-based deployments,
bird repellence techniques, and implementation challenges. The findings were synthesized to identify
trends, gaps, and opportunities for further research.
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Figure 1. Study selection steps.

3. Computer Vision-Based Detection

3.1. Datasets
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The reliability and accuracy of Al models for bird detection and monitoring largely depend on the

quality and diversity of the datasets used [25]. Bird datasets are highly dynamic, as birds move across

varying environments with changes in lighting, weather, and habitat conditions. Therefore, researchers

need large, well-annotated datasets that represent different species, behaviours, and environmental

factors to build effective detection systems [26,27]. The datasets used are often visual or sensor-based,

with some models employing a combination of two or three different datasets to enhance model

performance [28]. Collecting the necessary data requires careful selection of collection methods, data

sources, and preprocessing techniques to ensure the datasets are not only comprehensive but also

useful. Table 2 gives a summary of the analysed datasets.
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Table 2. Data Collection and Processing

Data Collection Method | Dataset Type Preprocessing Techniques
Image capture [3,29,30] Custom Annotation, resizing, OpenCV
processing, frame subtraction,
contour extraction

Video surveillance [31-38] | Custom Frame extraction, annotation,
background subtraction, noise re-
moval, image scaling, data aug-
mentation, classification

Video surveillance [39] CcOCO Frame extraction, data augmen-
tation

Image collection [40,41] Custom Grayscale conversion, feature ex-
traction, motion blur, contrast ad-
justment

Image collection [28,42] Public datasets Contrast enhancement, annota-
tion

Image collection [43,44] Multiple datasets Frame difference, morphology,
resizing, standardization

Image collection [45,46] Kaggle dataset Duplicate removal, cropping, re-
sizing

Image collection [47] CUB-200-2011 Grayscale conversion, histogram
analysis

Camera traps [48,49] Custom Annotation, conversion to
TFRecords

Drone-mounted camera | Custom Patch division, data augmenta-

[50] tion

Unmanned Aerial Vehicle | Custom Annotation, orthomosaic cre-

imagery [51] ation, orthomosaic division

Radar and camera [52] Custom Annotation, data fusion, feature
extraction

Webcam feeds [6] Custom No mention found

Image and sensor data | No mention found | Feature extraction, data fusion

[53]

Different data collection methods have been applied in various bird detection studies depending
on the research goals and the available technology. The most common methods from the reviewed
studies include: video surveillance [31], Image-based methods [29], motion detection [37] and Multi-
Sensor approaches [54]. The data used is collected mainly by use of cameras, which are considered to be
affordable and easy to deploy, PIR Sensors for automated detection systems, drones, radar, ultrasonic
sensors, and microphones. Publicly available datasets and GPS data are also used for training models
and to allow researchers to cross-validate findings with existing data.

The size of a dataset can impact the model’s performance. In the reviewed studies, dataset sizes
ranged from fewer than 1,000 images to over 300,000 samples. Some studies reported dataset sizes
in alternative formats, such as hours of video footage rather than individual image counts. Most
studies relied on custom datasets [50], demonstrating the need for specialised data collection. Only a
few studies use widely available datasets such as the Kaggle datasets and the COCO dataset. Other
specialised datasets were also used, for example, NIPS4Bplus, Xeno Canto, and warblrb10k. The
heavy reliance on custom datasets suggests that existing datasets may not always meet the specific
requirements of bird detection models, especially when dealing with regional species or unique
environmental conditions. While large datasets improve model robustness, many studies still rely
on relatively small collections, making data augmentation essential. The lack of publicly available
datasets suggests a strong need for more open-source contributions to the field.

Raw data alone is rarely sufficient for training machine learning models. Researchers apply
preprocessing techniques to improve data quality and enhance model accuracy. The most commonly
reported preprocessing methods were: Annotation [34], data augmentation [38], image resizing and
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scaling [45], frame extraction [39], and feature extraction [53] The variety of data collection methods,
dataset sizes, and preprocessing techniques indicates that bird detection research is still evolving.

3.2. Machine Learning Models

Machine learning models come in different architectures, each designed for specific strengths in
detecting, classifying, and tracking objects. The studies reviewed used a variety of models, with some
being applied in most studies. Table 3 provides a summary of the ML models used in different studies.

Table 3. Machine Learning Model Summary

Model Architecture Performance Met- Key Findings
rics

Mask R-CNN [29] Accuracy: 96.3%, High accuracy for various object
Prediction  time: classes, including birds (95.6%)
1.61s

Mask R-CNN  with Precision: 0.86 with High precision

ResNet-101-FPN [17] low recall

Faster R-CNN with Detection precision: Effective for BSL detection, per-

ResNet50 [22,31]

VGG-19 with various clas-

sifiers [40]

YOLOv4 variants [16,32]

Faster = R-CNN
ResNet101 [48]
YOLOVS5 [30]

YOLO variants [33]

with

0.87

ANN  Accuracy:
70.99%, Precision:
0.718, Recall: 0.71,
F1 score: 0.708
mAP: up to 94%,
Recall: 96%, F1
score: 94%
Accuracy: 96.71%,
Sensitivity: 88.79%
Processing speed:
0.78-0.8 FPS
Precision: up to
0.99, Recall: up to
0.99

formance varies by vessel and
conditions

ANN outperformed other classi-
fiers, high training time noted

Ensemble model showed best
performance, challenges with
small birds

High accuracy and sensitivity,
challenges with smaller objects
Limited processing speed, detec-
tion range varies by environment
YOLOvV3-tiny with comparative
modules performed best

CenterNet [50] mAP: 66.72-72.13 Performance varied with data
augmentation, 6 FPS on GPU

SSD with MobileNet [39] mAP: 78%, FPS: 89  Improved performance with
data augmentation

Custom CNN [55] Detection  Accu- Effective for raven detection, low

YOLOV5-medium-960

[34]

ResNet-18 based CNN

[56]

YOLOv3-320 [57]

racy: 77%, Average
Precision: 87%
Precision: 0.91, Re-
call: 0.79, Fl-score:
0.85

Precision: 90% at
90% recall (Royal
Terns)

100% accuracy in
tests

inference latency

High performance, real-time in-
ference possible
Varied performance across
species, challenges with similar
species

Perfect detection in controlled
tests, real-world performance
not specified

Continued on next page
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Table 3 — continued from previous page

Model Architecture

Performance Met-
rics

Key Findings

MultiFeatureNet variants

[28]
MobileNetV2 [58]

SMB-YOLOVS5 [59]

CNN (unspecified) [60]

CNN (unspecified) [61]

YOLOV5, YOLOv7, RNN

[52]

Faster R-CNN, SSD vari-

ants [6]
YOLOv4-tiny [55]
EfficientNet-B3

YOLOVS [53]

YOLO, ResNet100 [62]

YOLOV4 [42]

Faster R-CNN [63]

Fourier
YOLO [3]

descriptors,

DCNN (unspecified) [47]

Various (Cascade RCNN,

YOLO, etc.) [41]

ConvLSTM-PAN,
USN [37]

FBOD-Net [38]

LW-

Precision up to
99.8% for birds
Test
95%,
Accuracy: 80%
Precision:  82.6%,
Recall: 71.1%,
mAP@50: 77.1%
Accuracy:
98%
Precision:
83.4-100% (varies
by class)

Accuracy:
Real-time

Over

Accuracy: 98%
(drones), 94%
(birds)

mAP: 92.3% (Faster
R-CNN with
ResNet152)

mAP: 92.04%, FPS:
40

Accuracy: 94.5%,
Fl-score: 0.91
Precision:  94.8%,
Recall: 89.5%
YOLOv3 mAP:
57.9% (COCO
test-dev)

Overall accuracy:

83%, mAP: 84%
mAP: 69.84% (over-
all)

FD: 83% accuracy,
YOLO: 97% accu-
racy
Overall
80-90%
mAP: 0.704 (Cas-
cade RCNN with
Swin-T)

AP50: 0.7089 for
FBOD-BMI

accuracy:

AP: 76.2%,
FPS

59.87

High performance, especially
MFNet-L for overall detection
High accuracy, outperformed
other tested architectures

Real-time detection at 24 FPS

High accuracy, ResNet outper-
formed AlexNet and VGG

High precision for bird and flock
detection

High accuracy, challenges with
false positives for birds

Faster R-CNN outperformed
SSD models

Good balance of accuracy and
speed

Robust
mance, computationally efficient

classification perfor-

Improved real-time detection
and accuracy

Specific bird detection perfor-
mance not reported

Good performance, challenges
with crowded backgrounds
Effective for pigeon detection,
some false negatives

YOLO more accurate but slower
on Raspberry Pi

Competitive performance com-
pared to other approaches
Cascade RCNN performed best,
challenges with small birds

Outperformed YOLOVSI, chal-
lenges with higher IOU thresh-
olds

Outperformed several other
models, good speed-accuracy

balance

Continued on next page
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Table 3 — continued from previous page

Model Architecture Performance Met- Key Findings
rics

RetinaNet with ResNet-50 Recall: >65%, Preci- Improved performance with fine-

[64] sion: >50% (general tuning on local data
model)

YOLOV4 [65] Accuracy: 99.13%, Outperformed Faster R-CNN
12 FPS and CNN in accuracy and speed

CNNs were the most frequently used model type. CNNs work by detecting patterns such as edges,
textures, and shapes layer by layer, making them highly effective for image recognition tasks [66—68].
Variants like ResNet (Residual Networks) enhance CNNs by allowing deep networks to train more
effectively without losing important details [69]. YOLO (You Only Look Once) models appeared in
many studies [70,71], too. Unlike CNNs, which process an image in sections, YOLO treats the entire
image as a single input, enabling real-time object detection [72] . Several versions of YOLO were used in
the reviewed studies [73], with improvements in detection speed and accuracy. Faster R-CNN is widely
recognised for its high accuracy in object detection tasks. Unlike YOLO, which prioritises speed, Faster
R-CNN processes images in multiple steps, refining its predictions to improve precision [74]. This
makes it a better choice for tasks where detection accuracy is more important than speed. MobileNet
is used in low-power, edge-based applications. Unlike traditional CNNs, which require significant
computational power, MobileNet is optimised to run on mobile devices, IoT sensors, and embedded
systems [75]. VGG, Inception, and EfficientNet have deep learning capabilities but tend to require
high computational resources and are not frequently used in bird detection. Traditional models like
K-Nearest Neighbors (KNN), Hidden Markov Models (HMM), and Support Vector Machines (SVM)
have also been explored; these methods are often used as benchmarks but are generally less effective
for large-scale image analysis [76]. Some studies experimented with combinations of architectures,
demonstrating that integrating multiple models can improve performance [77].

Accuracy was the most commonly reported metric, with the performance breakdown showing
that most models achieved strong results, with most studies reporting accuracies ranging from 80-95
percent, confirming the effectiveness of deep learning models for detection and classification. In
addition, precision was used to measure how many of the detected objects were correct, with studies
reporting precision above 0.080-0.90. Recall was also used for measuring how well models detected
all relevant objects in an image, with values ranging from 0.65 to above 0.95, with higher values
indicating fewer missed detections. Mean Average Precision (mAP) was used, offering a balanced
view of precision and recall. The reported mAP ranged between 70-9 percent, meaning highly effective
detection. Frames Per Second (FPS) was reported in 6 studies. The reported speeds are between 1-60
FPS, which is still usable but may not be ideal for fast-moving objects. Figure 2 gives a comparison of
the precisions from different models,
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Figure 2. ML performance comparison.

As Al moves towards real-world applications, the ability to run models on edge devices (such as

Raspberry Pi, smartphones, or IoT sensors) is becoming increasingly important. Some studies reported
edge-compatible models, showing that lightweight architectures like MobileNet and optimized CNNs
are becoming more viable for real-world use.

4. Acoustic-Based Detection

Table 4. Acoustic-Based Detection

Study Focus Hardware Approach Detection Per-
Used formance

Evaluation of Bird- AudioMoth  BirdNET  (CNN- Precision: 92.6%

NET for detecting based) (Coal Tit), 87.8%

two bird species (Short-toed

[78] Treecreeper)

Bird sound Classifi- No mention Multilayer Percep- Accuracy: 74%

cation [48]
Vineyard protec-
tion from birds
[79]
BirdCLEF
challenge [80]
Birdsong detection
on IoT devices [81]

2021

Acoustic bird repel-

lent system [82]

Avian pest deter-
rence [83]

found
Raspberry
Pi 3B, micro-
phone

No mention
found
STM32 Nu-
cleo H743Z12
MCU
Arduino

33
BLE, micro-

Nano

phone
Arduino
Nano 33 BLE
Sense, XIAO
ESP32S3

tron (MLP)
Two-phase:
and CNN

SVM

CNN-based ensem-
ble

ToucaNet and Barb-
Net (CNN-based)

DenseNet201

(CNN)

Conv1D neural net-
work

Accuracy: 96%

F1 score: 0.6780

AUC: 0.925
(ToucaNet),
0.853 (BarbNet)
Accuracy:
92.54%

Accuracy:
92.99%

Continued on next page
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Study Focus Hardware Approach Detection Per-
Used formance
Bird song recogni- ARM Cortex- Various CNN and Accuracy: >90%

tion on IoT devices

M microcon-

Transformer mod-

for best models

[84] trollers els

Avian  diversity Autonomous BirdNET (ResNet- mAP: 0.791 for

monitoring [85] Record- based) single-species
ing  Units recordings
(ARUs)

Monitoring AudioMoth ~ BirdNET and Kalei- Accuracy: 93.7%

Eurasian  bittern doscope Pro (BirdNET),

[78] 98.4% (Kaleido-

scope Pro)

Passive  acoustic SM4 Wildlife CNN (ResNet50) mAP: 0.97

monitoring of bird Acoustics

communities [86] ARUs

Detecting novel No mention Variational Autoen- FPI: 1.6%, FNI:
bird species and found coder (VAE) 0.9% (species de-
individuals [87] tection)

Birdcall identifica- Jetson Nano CNN-based multi- Accuracy:

tion on embedded model network 84.9%

devices [77]

Endangered birds ARM Cortex Dynamic Time No  mention
monitoring [88] M3  micro- Warping (DTW) found
controller
Bird species mon- 5GIloT-based Various CNNs  Accuracy: >70%
itoring and song system, (EfficientNet, for best models
classification [49] ESP32-53 MobileNet)
MCUs
Evaluation of AudioMoth, BirdNET (not speci- Accuracy: 96%
acoustic recorders Swift fied)
and BirdNET [89] Recorder,
SM3BAT, SM
Mini
Bird audio detec- No mention Lightweight CNN  Accuracy:
tion [90] found 86.42%
Acoustic monitor- AviEar No clear mention Precision:
ing of avian species  (IoT-based found 99.6%, Recall:
[91] wireless 95%

sensor node)

10 of 20

As presented in table 4, the most common hardware used for audio data collection is the Au-
dioMoth and ARUS, and other sound sensors. The Audio moth has a detection range of 801-900m,
while other devices have a range of below 200m, making an Audio moth appropriate for large-scale
projects. The microcontrollers and processors used include: STM32, Arduino, ESP32, and ARM, with
Raspberry Pi and Jetson Nano also being used in a few studies.

The CNN-based models including variants like ResNet were commonly used with other ap-
proached including; MLP, SVM, Transformer, VAE, and DTW
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5. Connectivity

Once data is captured, it must be transmitted efficiently. Studies reviewed indicate a mix of wired
and wireless communication protocols, with a strong preference for wireless due to flexibility and
scalability. The common wireless communication technologies used include;

e Wi-Fi - This enables high-speed data transfer and has been applied in several studies. However, it
has a limited range and high power consumption, making it unsuitable for large-scale, battery-
powered networks.

e LoRa (Long Range, Low Power) — This has also been used and is ideal for IoT applications in
agriculture and environmental monitoring due to its long range and low power needs. However,
the low data rate make it less suitable for applications requiring high-resolution image or video
transmission.

*  Cellular Networks (4G/LTE, 5G) — This has been used to provides seamless connectivity, especially
for mobile IoT devices. However, high cost and energy consumption make it impractical for many
large-scale IoT applications.

e  Zigbee - Very low power consumption, low cost, well-suited for mesh networks in local IoT
setups. Shorter range compared to LoRa and Cellular, not suitable for high-data applications like
images or videos

No single communication technology meets all IoT requirements. Studies highlight trade-offs
between long-range connectivity, power efficiency, and data transfer speed. Hybrid communication
approaches for example combining LoRa for low-power sensing and Wi-Fi for bulk data uploads can
optimize performance. Table 5 presents a comparison of the connectivity options

Table 5. Comparison of Communication Technologies.

Technology Data Power Range Cost Suitability  Stability
Transfer Consump- for Me- in Remote
Speed tion dia (Im- Areas

age/Video)

Wi-Fi High High Limited Medium High Medium

LoRa Low Very Low  Very Long Low Poor High

Cellular Very High  High Very Long  High Excellent High

(4G/5G)

Zigbee Moderate ~ Very Low  Short to Low Poor Medium

Medium

6. IoT Implementation Architectures

The way sensor data is processed and stored significantly impacts system efficiency. The reviewed
studies revealed two dominant architectures:

6.1. Cloud-Based Architectures

Sensors send raw data to cloud servers for storage, processing, analysis for long-term decision-
making [92]. This architecture is scalable and supports advanced machine learning models but requires
high bandwidth requirements and has high latencies in case of poor connection.

6.2. Edge Computing

Sensors transmit data to a nearby edge device (e.g., Raspberry Pi, NVIDIA Jetson) for local
processing before sending key insights to the cloud. The use of this architecture reduces latency
and bandwidth usage and is ideal for real-time applications [93]. The edge devices have limited
processing power and storage capacity. Bird detection systems have increasingly leveraged edge
computing to enable real-time, efficient, and autonomous monitoring [94-96]. By processing data
closer to the source—on the edge—these systems can reduce latency, minimize bandwidth usage, and
operate effectively even in remote environments. Various edge devices have been explored in bird
detection studies;
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e Microcontrollers (ESP32, ATmega328, etc.) — These low-power devices are ideal for lightweight
processing tasks but struggle with deep-learning models due to limited computational capacity [97].

*  Single-board computers (Raspberry Pi, Jetson boards) — More powerful than microcontrollers
and are commonly used in edge-based implementations, these devices can handle more complex
computations but consume more power and are more costly [30].

*  FPGA-based solutions — While highly efficient for real-time processing, FPGA implementations
are less common due to their complexity and cost. Deploying machine learning models at the
edge requires balancing of performance, power efficiency, and resource constraints. The reviewed
studies explored several optimisation strategies:

¢ Lightweight models — MobileNet and optimized YOLO variants are frequently used due to their
efficiency in object detection tasks.

¢  Transfer learning — Adapting pre-trained models allows for reduced computational overhead
while maintaining high accuracy [98].

*  Model compression — Techniques such as pruning and quantization help shrink models to fit
within resource-limited devices [99].

TinyML—machine learning optimized for microcontrollers—has emerged as a promising approach for
bird detection in energy-constrained environments. Studies have explored several techniques to make
TinyML viable; Employing partial convolution and quantization to optimize TinyML models [84],
and a lightweight CNN with fewer than 100,000 parameters, reducing memory consumption [90]. To
maximize efficiency, TinyML-based bird detection relies on:

e Pruning and quantization — Reducing model complexity without significantly impacting accuracy.
*  Power-saving techniques — Using sleep modes and efficient RAM allocation in microcontrollers.

Local data processing — Minimizing the need for network communication to save power.

7. Bird Repellence Methods

Bird deterrence is an essential aspect of bird detection, especially in agricultural, conservation,
and aviation settings [100]. Various techniques exist to prevent birds from interfering with crops,
equipment, or infrastructure. These methods range from simple sound-based solutions to advanced
Al-driven adaptive deterrence as presented in Table 6;

Table 6. Automated Bird Deterrent Mechanisms.

Integration Meth- Repellence Implementation Environmental Im-
ods Method Effec- Complexity pact
tiveness Rating
Sound-based Moderate Low Low to Moderate
[30,101]
Sound-based [55] High (77% detec- Moderate Low
tion accuracy)
Unmanned Aerial High (>98% accu- High Low to Moderate
Vehicle with ultra- racy)
sonic [60]
Al-triggered servo High (100% detec- Moderate Low
[57] tion in tests)
Drone-based visual High (significant High Low
[63] reduction in stay
time)
Sound-based [62] No mention found Moderate Low
Lasers [17] Moderate Moderate Low to Moderate

Sound-Based deterrents use loud noises, ultrasonic frequencies, or bioacoustic calls (e.g., distress
signals of birds) to scare birds away. These works well initially, but birds may habituate over time,
reducing the long-term impact . Visual deterrent methods include flashing lights, predator-mimicking
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drones, bird-scaring lines, and laser systems. These can be highly effective, especially when mimicking
natural predators, but practical limitations exist for large areas. Integrated Approaches by combining
sound, visual, and Al-driven adaptive systems enhance long-term effectiveness. These are promising,
but studies suggest more long-term trials are needed.

8. Discussion

8.1. Challenges in Bird Detection and Repellence Systems
8.1.1. Detecting small and distant birds with high accuracy:

Birds, especially smaller species, are difficult to detect at long distances, making early intervention
challenging. Factors like bird size, movement speed, and background complexity (e.g., sky, trees,
or buildings) make accurate identification difficult. In critical environments such as airports and
farms, where early detection is crucial, this limitation can lead to increased risks of bird strikes or
crop damage.

8.1.2. Environmental Variability and Real-time Adaptation:

Bird detection models must work reliably under changing environmental conditions—rain, fog,
night-time, and varying lighting conditions affect sensor performance. Al models often struggle
with fluctuating backgrounds, leading to misclassification or lower accuracy in non-ideal conditions.
Ensuring real-time adaptability while maintaining robustness in diverse weather conditions remains a
major hurdle.

8.1.3. Energy Efficiency and Computational Constraints on Edge Devices:

Many bird detection systems rely on IoT devices in remote areas with limited power. Running
deep learning models on low-power hardware like microcontrollers and single-board computers
requires balancing model complexity, computational efficiency, and battery life. Power constraints also
limit high-resolution image processing and continuous monitoring, making optimization essential.

8.1.4. Managing Data Collection, Storage, and Transmission:

Bird detection models require high-quality training datasets, but collecting and labeling diverse
bird species across different regions is resource-intensive. Furthermore, high-resolution images and
continuous video streams generate large amounts of data, creating challenges in real-time storage,
bandwidth use, and cloud-based processing in remote areas. Efficient data compression and transfer
strategies are needed to reduce costs while maintaining accuracy.

8.1.5. Reducing False Positives and Enhancing Species-Specific Identification:

Distinguishing birds from other airborne objects, such as drones, insects, or even moving tree
branches, is challenging. High false positive rates can trigger unnecessary responses, while false nega-
tives can lead to system failures. Additionally, different bird species may exhibit unique behaviors that
influence detection accuracy. Models must be adaptable and capable of species-specific identification
to ensure effective repellence measures.

8.2. Opportunities with Al in Bird Detection
8.2.1. Deploying Low-Power, Al-Driven Edge Computing Solutions:

Advances in TinyML allow models to run efficiently on low-power microcontrollers, enabling
bird detection in remote areas with limited energy access. These edge-based systems reduce depen-
dency on cloud computing, improving real-time detection and decision-making while minimizing
energy consumption.

8.2.2. Multi-Sensor Fusion for Enhanced Detection Accuracy:

Combining visual data from cameras with complementary sensors—such as acoustic analysis for
bird calls, motion sensors, and infrared imaging—improves identification accuracy. This multi-modal
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approach helps overcome limitations presented by varying lighting conditions and environmental
noise, leading to more reliable detections.

8.2.3. Adaptive Al Models for Self-Learning and Context Awareness:

On-device learning and fine-tuning models for local conditions allow systems to continu-
ously adapt to different bird species and environmental changes. Al-driven adaptive repellence
methods could adjust strategies based on bird behavior, preventing habituation and improving
long-term effectiveness.

8.2.4. Energy-Efficient Model Optimization for Scalability:

Techniques like model quantization, pruning, and knowledge distillation enable running complex
AI models on resource-constrained devices. This optimization not only enhances real-time processing
but also makes large-scale deployment in agricultural and urban settings more cost-effective.

8.3. Future Research Directions

To further advance Al-driven bird detection and repellence systems, future research should
focus on:

¢ Developing ultra-lightweight, high-accuracy Al models — Improving TinyML capabilities to
maintain performance while reducing computational demands.

e  Enhancing automated data collection and labelling — Creating standardized, open-source datasets
for training and benchmarking bird detection models.

*  Designing self-learning Al models — Implementing on-device adaptation to reduce reliance on
cloud retraining and improve real-time responsiveness.

e  Exploring Al-driven, species-specific repellence techniques — Using behavior-based deterrence
strategies that dynamically adapt to different bird species.

e Integrating bird detection into broader smart agriculture and urban management systems
— Ensuring Al-driven bird monitoring complements existing environmental and precision
farming technologies.

9. Conclusions

This review highlightes the growing potential of integrating machine learning and IoT technolo-
gies for smart bird detection and repellence. The studies reviewed illustrate progress in applying
advanced computer vision and acoustic models for accurate bird identification across diverse en-
vironments. The adoption of edge computing and TinyML frameworks further demonstrates the
feasibility of deploying real-time, energy-efficient solutions in remote and resource-constrained areas.
Multi-modal sensor fusion and adaptive Al-driven repellence strategies offer promising directions
for increasing system robustness and effectiveness. Despite these advancements, key challenges
remain. These include limited availability of standardized datasets, species-specific detection issues,
environmental variability, power constraints, and the need for scalable, low-latency deployment archi-
tectures. Addressing these issues will require interdisciplinary collaboration, innovation in low-power
Al model design, and the development of open-access datasets tailored to ecological and agricultural
contexts. Future research must focus on building intelligent, self-adaptive systems that can evolve with
changing environmental conditions and bird behaviors. Integrating these solutions within broader
smart agriculture and urban management ecosystems will be critical for sustainable environmental
stewardship, improved crop protection, and minimized human-wildlife conflict.

Author Contributions: All authors have contributed equally to this paper.

Funding: This work was supported in part by The African Engineering and Technology Network (Afretec), a
pan-African collaboration consisting of technology-centric universities across Africa

Data Availability Statement: No new data were created

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.1281.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2025 d0i:10.20944/preprints202507.1281.v1

15 of 20

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

Al Artificial Intelligence

IoT Internet of Things

CNN Convolutional Neural Network
YOLO You Only Look Once

ML Machine Learning

PRISMA  Preferred Reporting Items for Systematic Reviews and Meta-Analyses
FPS Frames Per Second

mAP Mean Average Precision

ARU Autonomous Recording Unit
SVM Support Vector Machine

VAE Variational Autoencoder

DTW Dynamic Time Warping

MCU Microcontroller Unit
FPGA Field-Programmable Gate Array
TinyML  Tiny Machine Learning

Wi-Fi Wireless Fidelity
LoRa Long Range
BLE Bluetooth Low Energy

ANN Artificial Neural Network
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