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Abstract

Traditional marketing attribution models evaluate past campaign performance but offer limited
input for future actions. This thesis bridges that gap by developing predictive models that use actual
user path data to forecast revenue and guide future campaign decisions. We address three key
questions: (1) predicting revenue from completed marketing paths, (2) identifying the most effective
campaign to convert a mid-journey user, and (3) recommending the next-best campaign step for
revenue maximization. Using e-commerce user path data from the Google Merchandise Store, we
apply Random Forest, XGBoost, and ensemble techniques across various user journey segments. Our
analysis demonstrates high predictive accuracy in revenue forecasting and mid-journey campaign
identification. While the third model provides directional insights, its use of proxy labels presents
methodological limitations that are thoroughly discussed. This research concludes with
recommendations for future work in real-time personalization, counterfactual modeling, and the
operational deployment of predictive marketing systems.

Keywords: predictive modeling; user journey; e-commerce; marketing campaigns; revenue
forecasting; conversion prediction; machine learning

Introduction

With digital marketing budgets growing annually (Cramer-Flood, 2024), businesses are under
increasing pressure to optimize marketing campaign performance through smarter, data enabled
decision-making. Commonly used attribution models, such as first-touch, last-touch, or linear,
generally aim to assign credit for conversions to specific touchpoints in a customer’s journey that
occur before conversion. This is done so that marketers can evaluate campaign performance and
make decisions regarding budget allocation, audience targeting, and so on. However, these models
are mostly retrospective in nature. They help understand past performance but are limited in their
ability to guide future decisions on campaign targeting (Shao & Li, 2011; Li & Kannan, 2014). This is
still done based on intuition and reactive analyses. As user journeys become increasingly nonlinear
and spread across multiple platforms (online & offline), marketers require more robust methods that
can handle sequential dependencies, campaign sequences, and predictive forecasting (Berman, 2018;
Kumar & Reinartz, 2018).

Problem Statement

As we have seen, traditional marketing attribution models such as last-click, first-click, or time
decay offer only a retrospective view of campaign effectiveness, assigning credit for conversions
based on predefined heuristics (Shao & Li, 2011). These models often fail to account for the complex
and nonlinear nature of modern user journeys across channels and timeframes (Lemon & Verhoef,
2016). As a result, they are unable to answer forward-looking questions such as which campaign
should be employed next or how much revenue a particular user path will yield. Without this
predictive insight, marketing teams cannot optimally personalize experiences or allocate budget
dynamically. This leads to inefficiencies in planning and targeting during customer acquisition, over-
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reliance on heuristics, and missed opportunities for revenue maximization (Berman, 2018; Bucklin &
Sismeiro, 2009).

Research Significance

This research is important in both academic advancement and practical real-world applications.
From an academic perspective, it extends the domain of marketing analytics by shifting the focus
from historic attribution to forecasting and prescriptive modeling, an area still underexplored in user
journey analysis (Abhishek et al., 2012; Anderl et al., 2016). From an industry standpoint, it presents
a data-driven framework that enables marketers to anticipate user behavior and recommend
proactive campaign steps, rather than reactively analyzing past performance. The ability to simulate
outcomes for mid-journey users and suggest optimal paths offers a competitive advantage in
environments where customer attention is fleeting and personalization is paramount (Kumar &
Reinartz, 2018).

Research Questions and Hypotheses

e  RQ1: Can we predict the revenue that will result from a specific user journey path after making
a purchase?

e  HI: Marketing paths with greater diversity and more touchpoints will result in higher predicted
revenue (Montgomery et al., 2004; Verbeke et al., 2012). This hypothesis is based on the idea that
users who are shown diverse campaigns have better brand recall and purchase intent.

e RQ2:If a user has completed a partial journey without converting, which campaign is most likely
to lead to a purchase in the end?

H2: Campaigns that frequently appear just before conversion in historical data are more likely
to convert users mid-journey (Xu et al, 2014; Ren et al.,, 2018). This assumes that certain
campaigns have a higher last-touch impact due to their persuasive positioning.

e RQ3: If a user has completed a partial journey without converting, what is the best next
campaign step to maximize revenue?

e  HB3: Machine learning models can simulate next-step recommendations that improve expected
revenue compared to random selection ((Tao et al., 2023). This presumes that structured journey
data encodes learnable patterns about campaign sequencing and conversion outcomes.

Objectives

e To develop regression models capable of forecasting revenue and campaigns based on
completed user journeys using marketing campaign user path data.

e  To design classification models that can identify the most likely converting campaign for users
who are already partway through a campaign journey.

e To simulate next-step campaign decisions using path truncation and evaluate their revenue-
maximizing potential via predictive modeling.

e To compare model performance using metrics like RMSE, R?, and classification accuracy, and
translate these findings into actionable marketing strategy insights within e-commerce.

e To validate the utility of machine learning as a prescriptive tool for customer journey
optimization in real-world campaign planning contexts (Fildes et al., 2008).

Limitations

This study relies on data from the Google Merchandise Store, an e-commerce platform that may
not reflect the complexity of multi-product or subscription-based businesses. Thus, the external
validity of the results may be limited when applied to other industry verticals. Additionally, the
dataset lacks contextual and demographic variables such as user location, device type, referral source,
or segmentation attributes, which are often critical in campaign personalization and targeting
(Dalessandro et al., 2012). Another key limitation also lies in RQ3’s modeling design: the assumption
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that simulated next campaigns would yield the same revenue as the original journey introduces label
leakage, potentially inflating model accuracy and limiting causal inference.

Delimitations

The research scope intentionally focuses on path-level analysis within the digital marketing
domain. It does not address real-time ad-serving technologies, session-level interactions, or cross-
device behavior. While the models are designed for explainability and interpretability using tree-
based methods, advanced deep learning techniques, such as transformers or reinforcement learning,
are excluded to preserve clarity and focus (Kumar & Reinartz, 2018). The study also does not attempt
to integrate cost-per-click or campaign spend metrics, as the focus is on revenue forecasting and
recommendation effectiveness, not ROI analysis.

Literature Review

Research on marketing performance evaluation has majorly relied on understanding how users
respond to different ad exposures, be it a banner ad, email campaign, or search engine result. With
the explosion of digital platforms, user behavior data has become abundant, offering marketers and
researchers alike new opportunities to investigate the impact of sequences, channels, and timing on
outcomes such as conversion and revenue (Bucklin & Sismeiro, 2009; Kumar & Reinartz, 2018). As
digital journeys become increasingly complex and nonlinear, the demand for predictive tools that
can interpret this data in real time has grown significantly (Anderl et al., 2016).

Theoretical and empirical work in marketing has responded to this change with innovations in
attribution modeling, clickstream analytics, and customer journey frameworks. However, few
studies have successfully integrated predictive modeling with dynamic campaign decision-making.
This literature review outlines the foundational research in five thematic areas: (1) Attribution
Modeling and Its Shortcomings, (2) Predictive Modeling in Marketing and E-Commerce, (3)
Customer Journey and Sequential Modeling, (4) Conversion Prediction and Mid-Journey Targeting,
and (5) Research Gaps and Opportunities for Predictive Revenue Modeling.

Attribution Modeling and Its Shortcomings

Marketing attribution seeks to assign credit for the revenue to one or more touchpoints in a
user's journey that led to the conversion. Rule-based attribution models such as first-touch, last-touch,
and linear attribution have been widely used in both practice and research for over a decade (Li &
Kannan, 2014). These heuristic models are simple to implement but make strong assumptions, often
ignoring the order and interactivity of touchpoints (Shao & Li, 2011).

To overcome these limitations, probabilistic and algorithmic attribution models have emerged.
Shao and Li (2011) proposed a data-driven model using logistic regression to evaluate the incremental
contribution of each channel. Similarly, Anderl et al. (2016) employed path-level analysis with
Markov chains to estimate the removal effect of each campaign. However, these models are still
largely backward-looking. They tell us which campaigns “deserve” credit but not which campaigns
are likely to convert the user in the future (Berman, 2018).

As digital advertising grows more expensive and competitive, the inability of attribution models
to provide real-time recommendations limits their utility. Attribution models are not equipped to
optimize media spend proactively or guide marketers on what actions to take next, a shortcoming
this study addresses through predictive modeling.

Predictive Modeling in Digital Marketing and E-Commerce

Predictive modeling refers to the use of statistical and machine learning methodologies to
estimate future results based on historical data. In marketing, these models have often been applied
to predict churn (Neslin et al., 2006), customer lifetime value (Venkatesan & Kumar, 2004), and sales
forecasting (Fildes et al., 2008).
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Recent developments in ensemble learning, such as Random Forests and Gradient Boosting
Machines, have significantly improved accuracy in marketing-related predictions by capturing
nonlinear relationships between user features and outcomes (Verbeke et al., 2012). In e-commerce
contexts, Montgomery et al. (2004) used clickstream data to analyze online shopping behavior and
found that the order and frequency of visits had strong predictive value.

Studies have also shown that path-based variables, such as number of touchpoints, diversity of
campaigns, and timing of interactions, enhance predictive performance when used as features in
regression or classification models (Viloria et al., 2019); Bucklin & Sismeiro, 2009). However, most of
this work falls short of predicting path-specific revenue or campaign recommendations, creating a
theoretical and practical gap that this research aims to fill.

Customer Journey and Sequential Modeling

The customer journey framework conceptualizes how users interact with a brand or its
campaigns over time. Rather than viewing each campaign as an isolated event, this perspective treats
interactions as part of a long-term structure, where earlier exposures can influence future behavior
(Anderl et al., 2016).

Several studies have attempted to model these sequences formally. Dalessandro et al. (2012)
introduced causal pipelines that simulate how marketing exposure builds up to a conversion. Xu et
al. (2014) introduced mutually exciting point processes as a way to model how customer interactions
can trigger additional interactions. This approach provides a more realistic picture of customer
behavior by recognizing that engagement often builds momentum over time. However, while these
models excel at capturing the dynamic nature of customer interactions, they tend to emphasize
predicting whether a customer will convert rather than estimating the actual financial value of that
conversion.

The most promising developments come from sequence learning in the field of deep learning.
Tao et al. (2023) introduced a graphical point process framework for multi-touch attribution that
captures temporal dependencies and simulates the removal effect of touchpoints. This allows for
counterfactual reasoning and supports more informed next-step campaign recommendations.
Attention-based models, including Transformers, have also gained traction in recommendation
systems due to their ability to model long-range dependencies (Vaswani et al., 2017). These
techniques provide the conceptual and technical foundation for addressing RQ3, predicting the next-
best campaign in a user’s journey.

Conversion Prediction and Mid-Journey Targeting

Conversion likelihood modeling has long been a topic of interest for performance marketers.
Early models used logistic regression to predict lead conversion based on customer demographics
and engagement patterns (Neslin et al., 2006). While these models were straightforward to implement
and interpret, they struggled with complex, non-linear relationships in the data. This limitation led
researchers to adopt more advanced machine learning techniques like Random Forests and XGBoost,
which better handle high-dimensional data and can capture intricate patterns while still providing
insights into which factors drive conversions (Viloria et al., 2020).

Building on this progress, Ren et al. (2018) proposed a dual-attention recurrent neural network
architecture for multi-touch attribution modeling in online advertising. Their model captures both
temporal order and the importance of each touchpoint in the user journey by attending to campaign
exposure, sequence position, and interaction frequency simultaneously. The results showed that this
integrated, sequence-aware approach significantly improved conversion prediction accuracy
compared to models that treated these inputs independently or ignored order effects. Additionally,
Abhishek et al. (2012) modeled multistage exposure to estimate how successive campaign views
influenced purchase decisions. These findings support the feasibility of addressing RQ2, predicting
which campaign is likely to convert a user mid-journey.
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Although these models perform well in batch settings, they are not always deployed in real time.
Moreover, they often treat conversion as binary and ignore revenue differences between user
segments or campaign types. This thesis expands on this work by incorporating revenue as a target
variable and by simulating truncated paths to reflect real-world targeting scenarios.

Research Gap and Contribution

While academic literature has advanced in both attribution and predictive modeling, few studies
bridge the gap between path-based analytics and forward-looking decision support (Berman, 2018).
Most attribution models remain descriptive, and while sequence models have been applied to
clickstream and recommendation tasks, they are rarely used to optimize marketing campaign
decisions.

This thesis fills that gap by proposing a three-part framework that predicts revenue from user
paths (RQ1), identifies high-conversion campaigns for mid-journey users (RQ2), and recommends
next-best actions based on journey history (RQ3). The research contributes methodologically by
applying ensemble learning and sequence models in novel combinations, and practically by
proposing tools that can guide real-time marketing interventions.

Methodology

Data Source and Description

This study uses publicly available user data from the Google Merchandise Store, accessible
through the Google Analytics demo account (Google, 2024) from Google Analytics. The dataset
includes anonymized user paths based on their interactions with the store website, including data on
campaign touchpoints, timing, and eventual purchase revenue. Each user journey is identified by a
unique Path.ID and contains sequential information regarding the marketing campaigns a user
interacted with before the conversion event, a purchase. The dataset spans across the last 2 years and
provides a realistic foundation for evaluating marketing campaign effectiveness.

The key variables extracted for analysis included: -

° Campaign: The marketing channel or tactic (e.g., Organic, Email, Display)
e  Path.Step: The order of campaign impressions in the journey

e  Total.Revenue: Final purchase amount from that user path

e Days.tilLkey.event: Time elapsed until conversion

e  X.TP: Count of touchpoints

Data was preprocessed using R and Python libraries, including pandas, dplyr, and xgboost.
Missing or malformed revenue entries were dropped, and time fields were converted into numerical
formats.

Feature Engineering

To support predictive modeling across all three research questions, several features were
engineered from the raw user journey data to capture both structural and sequential aspects of the
marketing paths:

e  Touchpoints: Represents the total number of campaign interactions in a full user journey. This
feature captures journey depth and was used as a key predictor in revenue estimation (RQ1),
based on the assumption that longer engagement correlates with higher customer value.

¢  Unique.Campaigns: Measures the count of distinct campaign types encountered in each path. It
serves as a proxy for campaign diversity and reflects the range of exposures that may influence
conversion and revenue outcomes. Prior studies suggest that campaign variety can impact user
behavior (Montgomery et al., 2004).
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e  Campaign.Length: Mirrors the Touchpoints feature but was retained for clarity in
interpretability analyses. It provides an intuitive label when comparing user journey lengths
across different segments or visualizations.

e  Truncated.Steps: Denotes the number of steps present in a partially observed path, used in both
RQ2 and RQ3 to simulate users who have not yet made a purchase. It enables the modeling of
mid-journey decision-making contexts.

e  Touchpoints.So.Far: A subset count indicating how many interactions have occurred prior to the
current prediction point in truncated paths. It adds sequential context to the model, helping
distinguish between early-stage and late-stage journey states.

e Next.Campaign: A categorical feature used exclusively in RQ3 to represent each candidate
campaign simulated as the potential next step in a truncated path. For every truncated journey,
this feature was iteratively populated with all possible campaign options to evaluate their
projected revenue impact.

To prepare the features for modeling:

Categorical variables, such as Next.Campaign, were encoded using either one-hot encoding (for
tree-based models like XGBoost) or factor encoding (for linear models) to maintain compatibility with
different algorithms.

Modeling Approaches

Each of the three research questions (RQs) required a different supervised learning approach
tailored to the analysis structure and the outcome expected. Regression techniques were used for
RQ1 and RQ3, where the objective was to predict a continuous variable (revenue), while classification
was used for RQ2 to identify the most likely converting campaign among several categorical options.
To ensure that the results can be reproduced and generalized, all models were trained and evaluated
across 10 randomized data splits generated from random seed values. These seeds were created by
hashing a string-based identifier, ensuring consistency while allowing variability in model training
outcomes.

RQ1: Revenue Prediction from Completed Paths

e  Model Type: Supervised regression

e  Models Used: Linear Regression (baseline), Random Forest Regressor, XGBoost Regressor
e Input Features: Touchpoints, Days.till. key.event, Campaign.Length, Unique.Campaigns

e  Target Variable: Total.Revenue

To address RQ]1, the dataset was first grouped by Path.ID to represent complete marketing
journeys. Each path was updated with aggregate features capturing the number of campaign
interactions, diversity of campaign types, and timing until conversion. To prevent data leakage across
user journeys, GroupShuffleSplit was used to divide the data into training (60%), validation (20%),
and test (20%) sets by unique Path.ID, ensuring that no user path appeared in more than one split
(Pedregosa et al., 2011).

Each of the three models was trained independently across 10 different random seeds. These
seeds were derived from a hashed string ("Marketing revenue prediction”) and ensured consistent
partitioning while enabling an ensemble-like robustness check. For each seed, model performance
was evaluated on the test set using two metrics: Root Mean Squared Error (RMSE) for absolute
accuracy of the predictions and R-squared (R?) for model variance explanation.

Linear regression served as the baseline, offering interpretability but limited flexibility. Random
Forest and XGBoost, both tree-based models, were selected for their ability to capture nonlinear
interactions between features (Chen & Guestrin, 2016; Breiman, 2001). Feature importance was also
extracted to validate the hypothesis that longer and more diverse paths yield higher revenue.

RQ2: Predicting Conversion Campaign Mid-Journey
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e  Model Type: Multi-class classification

e  Model Used: XGBoost Classifier

e Input Features: Truncated.Steps, Touchpoints.So.Far, Days.So.Far

e  Target Variable: Last.Campaign (the campaign shown just before purchase in the real path)

RQ2 simulated a real-world scenario in which a user is in the middle of their journey and has
not yet converted. To build this setup, paths with at least two steps were selected. Each path was
randomly truncated at one point before the final step. The features were derived from the truncated
portion, and the target was the actual final converting campaign from the original path.

For model training, the resulting dataset was encoded with categorical targets (campaigns),
which were converted into numeric labels using a consistent label_map. The dataset was split into
training (60%), validation (20%), and test (20%) sets using randomized shuffling controlled by 10
unique seeds derived from the hashed string “campaignrevenueprediction.” This ensured each
experimental run trained and tested the model on different user journeys.

An XGBoost classifier was trained with a softmax objective to predict the most probable
converting campaign. Evaluation was done using Top-1 Accuracy (i.e., whether the top predicted
campaign matched the true label) and Top-3 Accuracy (whether the correct label was among the top
3 predictions). Accuracy scores were averaged across the 10 seeds, and standard deviation was
reported to assess the model’s consistency.

RQ3: Identifying the Next-Best Campaign for Revenue Maximization

e  Design Type: Quasi-experimental simulation

e Model: XGBoost Regressor

e  Target Variable: Total.Revenue (from full path)

e  Key Predictors: Truncated path features and one-hot encoded candidate next campaign

To identify which campaign is most likely to maximize revenue if shown next in a user journey,
we implemented a quasi-experimental design using simulated proxy treatments. Each full user path
was truncated at a randomly selected step prior to purchase, simulating a mid-journey user. For every
truncated path, we created multiple copies, each appending a different campaign as the next step
(i.e., a simulated treatment).

The model reuses the original total revenue from the full path as the outcome label across all
simulated variants. This represents a non-randomized counterfactual simulation where the treatment
assignment (next campaign) is artificial, and the outcome (revenue) is not causally linked to the
simulated next step. Thus, this design is mostly exploratory and quasi-experimental, not causal
(Shadish, Cook, & Campbell, 2002; Tao et al., 2023).

The predictors included truncated path statistics (e.g., Touchpoints.So.Far, Days.So.Far) and the
Next.Campaign, which was one-hot encoded. We trained an XGBoost regressor using 60% of the
data, validated on 20%, and tested on the remaining 20%. This procedure was repeated across 10
random seeds generated from the text 'bestcampaignforrevenue'.

Model performance was evaluated using RMSE and R? to assess fit. For each truncated test path,
we simulated predictions for all possible campaigns and ranked them. The top five campaigns (with
the highest predicted revenue) were extracted to generate directional insights into which campaigns
may yield the highest impact if shown next.

Analysis Results

RQ1: Predicting Revenue from Completed Paths

Regression models were evaluated to forecast the total revenue associated with completed user
journeys. As outlined in the methodology, models were trained and tested on 10 randomized
GroupShuffleSplit partitions, ensuring no overlap between training and test journeys. Performance
was assessed using RMSE and R2.
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XGBoost outperformed both linear regression and random forrest models across all splits,
achieving a mean RMSE of 18.76 and mean R? of 0.889. In contrast, the Random Forest model recorded
an average RMSE of 51.49 and R? of 0.453, while Linear Regression showed limited explanatory
power, with RMSE of 67.96 and R? of just 0.048.

In terms of feature influence, XGBoost’s internal importance metrics consistently ranked
Unique.Campaigns and Touchpoints as the most impactful predictors, followed by
Campaign.Length and Days.till. key.event.

Model R? Comparison

075
0.50
~N
o
0.25
|
Linear Regression Random Forest XGBoost
Model

Figure 1. Comparison of the R? across the models performed.

Model RMSE Comparison Across 10 Seeds

60

Model

— Linear Regression
— Random Forest

— XGBoost

RMSE
3

20
e

Linear Regression Random Forest XGBoost

Model

Figure 2. Comparison of RMSE between Models looped across 10 seeds.

Overall, the results indicate that path structure variables carry strong predictive signals for
revenue estimation. XGBoost not only achieved the best performance on average but also exhibited
the lowest variance across splits, suggesting it is a robust choice for this task.

RQ2: Predicting Converting Campaign Mid-Journey
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To evaluate RQ2, a multi-class classification task was implemented using the XGBoost algorithm
to predict the campaign most likely to lead to conversion, based on truncated user journeys. Paths
were randomly truncated before their final step, and the last observed campaign before conversion
was used as the target label. The dataset was split 60:20:20 into training, validation, and testing sets
using randomized seeds. A total of 10 seeds were used to ensure performance stability across
different partitions.

The XGBoost classifier demonstrated strong predictive accuracy, with the following results
aggregated across the 10 seeds:

e  Top-1 Accuracy: 71.64%
e  Top-3 Accuracy: 85.17%
e  Standard Deviation (Top-1 Accuracy): +0.53%

These metrics reflect the model’s ability to consistently rank the true converting campaign
among the top predicted options.

Top-1 Accuracy Across 10 Random Seeds (RQ2)

7.9 *

~ ~ ~
— — —
o ~ L)

Accuracy (%)

-
-
(4]

-
—
=

Top-1 Accuracy

Figure 3. Top-1 Accuracy across 10 random seeds.

Table 1. R2 accuracy across 10 random Seeds.

Seed Accuracy
27535007 0.7144524
75932782 0.7202852
62644871 0.7147116
32535588 0.7230071

624145 0.7157485
11151506 0.7154893
35632642 0.7241737
13293583 0.7052495
11151232 0.7145820
18742825 0.7161374
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Top-1 vs. Top-3 Accuracy (RQ2)

100
85.2

Accuracy (%)
3 o

N
[3)]

Top-1 Accuracy Top-3 Accuracy

Figure 4. Top-1 vs Top-3 Accuracy.

In addition to overall accuracy, a confusion matrix was generated to analyze prediction patterns.
It showed that many campaigns were predicted with high precision, while a few were frequently
confused, often due to structural or naming similarity in campaign labeling.

These results validate the use of truncated path features (specifically, the number of steps seen
so far, time elapsed, and recent campaign exposure) as effective inputs for predicting conversion
behavior. The model’s consistent performance across seeds indicates its generalizability and
reliability in mid-journey classification tasks.

Table 2. Top 10 Campaigns based on Occurrences.

Campaign Occurrence Percentage of Total
Me.rch Store US and CA | Search [Do not 392 5.08%
Edit]

(organic) 383 4.96%
Jan2024_ChromeDino_V1 299 3.87%
May2024_ MDW_V1 283 3.66%
[Group 3 - Hats] Hats Search Campaign 258 3.34%
June2024_Summer_V1 257 3.33%
July2024_GreenSummer_V2 256 3.31%
Oct2024_Quilt_V2 255 3.30%
Oct2024_Quilt_V1 250 3.24%

[Experiment Bug: 411232449] Merch Store

24 15%
US and CA | Search [Do not Edit] 3 3.15%

RQ3: Recommending Next-Best Campaign

Research Question 3 (RQ3) investigated which campaign, if shown as the next step in a partially
observed user journey, would generate the highest total revenue. To address this, a quasi-
experimental design was implemented: each user path with at least two steps was randomly
truncated, and every possible campaign was simulated as the next step. This generated a large
synthetic dataset of campaign-path combinations.

An XGBoost regression model was trained to predict total revenue using features including the
last campaign seen before truncation, the candidate next campaign, cumulative touchpoints, and
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days to conversion. The model was trained and evaluated across 10 different random seeds to ensure
robustness. For each seed, the model was trained on 60% of the synthetic dataset, and performance
was measured using Root Mean Squared Error (RMSE) and R2.

Distribution of R? Across 10 Random Seeds (RQ3 Model)

0.9850 N
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®
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i
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L
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Figure 5. Distribution of R2 Across 10 Random Seeds.

The results demonstrated strong predictive performance across runs. The average RMSE was
14.73, with a range from 11.36 to 14.00, while the average R? was 0.9399, with values ranging from
0.9509 to 0.9725. These metrics suggest that the model reliably captured the relationship between user
journey context and final revenue outcomes, validating the quasi-experimental approach and
highlighting the potential of campaign simulation as a strategy for optimizing revenue.

RMSE Across 10 Random Seeds (RQ3 Model)
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Figure 6. RMSE Across 10 Random Seeds.

Discussion
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Insights from RQ1: Revenue Prediction

The ability of path-level features to serve as strong predictors of revenue highlights the
importance of journey structure in understanding user value. This supports the idea that marketing
impact is not isolated to single campaign interactions but rather accumulates across sequences of
exposures. Features such as the diversity of campaigns encountered (Unique.Campaigns) and total
number of touchpoints provide insight into how varied and sustained engagements contribute to
user decision-making. These results lend support to the incrementality perspective in digital
marketing, where each touchpoint incrementally builds toward conversion, particularly when
campaigns are distinct in type or placement (Montgomery et al., 2004; Berman, 2018).

What is particularly notable is how well structural characteristics of a journey, rather than user
demographics, product data, or session-level behavior, were able to inform revenue potential. This
suggests that the configuration of exposure itself serves as a proxy for intent and engagement. Prior
work has often emphasized click-level behavior or personalization signals (Bucklin & Sismeiro, 2009;
Viloria et al., 2020), but this study shows that even in the absence of individual-level targeting data,
predictive modeling can identify which kinds of journeys yield higher returns.

For marketers, these insights advocate for a shift away from siloed channel metrics and single-
touch attribution models, and toward sequence-aware, path-based forecasting. Media planners and
CRM teams may benefit from frameworks that measure not only conversion likelihood but expected
value per path archetype, guiding investment into sequences of campaigns rather than standalone
placements. For example, if combinations of email — search — display consistently preceding high-
value purchases, budget allocation could prioritize replicating that path structure.

In addition, the finding that campaign diversity outperformed raw campaign count as a
predictor suggests that varied messaging and cross-channel storytelling may be more valuable than
repetitive targeting through a single campaign type. This aligns with literature on advertising wear
out and message fatigue (Pechmann & Stewart, 1990), indicating that diversity can preserve
effectiveness and engagement over time.

Lastly, the model’s strong and stable performance across multiple seeds demonstrates its
potential for operational deployment. When embedded in marketing systems, such forecasting
models could help estimate expected revenue as users progress through different stages of the funnel,
thereby enabling proactive optimization of journey design and remarketing strategies (Dalessandro
et al., 2012).

Insights from RQ2: Conversion Prediction Mid-Journey

The ability to predict the most likely converting campaign for a mid-journey user reveals key
patterns in how marketing exposures influence customer decision-making. The model's strong
performance across multiple randomized splits indicates that even partial path information contains
sufficient signal to anticipate which campaign, if shown next, would have been most likely to trigger
conversion. This supports the original hypothesis (H2) and aligns with empirical research showing
that the final few exposures before conversion often carry disproportionately high predictive and
causal weight (Xu et al., 2014; Ren et al., 2018).

The results also reinforce principles from position-based attribution models, which weight
impressions differently based on their position in the conversion path, with higher emphasis on both
first and last interactions (Shao & Li, 2011). In particular, campaigns immediately preceding
conversion have been shown to capture latent user intent and decision readiness (Li & Kannan, 2014).
The findings here extend that theory by demonstrating that machine learning can automatically learn
these temporal dependencies, without relying on rigid attribution rules (Berman, 2018).

From an applied perspective, the ability to predict high-conversion campaigns based on
truncated journeys offers a promising tool for mid-funnel intervention. Rather than continuing a user
along a pre-scheduled sequence or retargeting them with broad creatives, predictive models could
serve campaign variants most likely to convert the individual given their recent interaction history.
This approach aligns with current trends in journey orchestration and dynamic content delivery,
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which emphasize timing and contextual relevance (Kumar & Reinartz, 2018; Bucklin & Sismeiro,
2009).

Importantly, the model demonstrated robust performance across campaign classes, suggesting
it did not overfit to high-frequency labels or dominant campaigns. This is significant in environments
where marketing budgets span both high-volume awareness campaigns and lower-frequency but
high-impact conversion efforts (Abhishek et al., 2012). The ability to learn conversion likelihood
across the campaign spectrum enables marketers to optimize both common and long-tail user paths,
which is essential in omnichannel strategy execution (Anderl et al., 2016).

Additionally, the model’s reliance on non-personally identifiable features, such as number of
touchpoints, timing, and campaign position, makes it suitable for privacy-conscious deployment in
markets with data protection regulations such as GDPR and CCPA. As the marketing industry
continues shifting away from third-party cookies and toward first-party behavioral modeling,
techniques like these, which leverage interaction structure over identity, will become increasingly
critical (Viloria et al., 2020; Dalessandro et al., 2012).

Insights from RQ3: Next-Best Campaign Recommendation

The analysis in RQ3 offers a novel approach to identifying the most promising campaign to
display next for a user partway through their journey. By appending each possible campaign as a
hypothetical next step to truncated user paths, the model estimates how these alternatives might
relate to final revenue. This formulation enables a form of next-best-action modeling that is
computationally efficient and scalable across all campaign types.

Consistent patterns emerged across simulations: campaigns associated with higher predicted
revenue often had either appeared frequently in full high-value paths or were shown later in more
successful journeys. This suggests that both positioning within the path and prior co-occurrence with
conversion contribute to their effectiveness as next steps. For example, remarketing-focused
campaigns or those targeting users closer to purchase readiness tended to be ranked higher in
simulated results, aligning with research on funnel-stage-based targeting (Lemon & Verhoef, 2016).

Despite the directional promise, it is essential to interpret these results through the lens of the
quasi-experimental design used. Because the same revenue label was applied to all simulated
versions of a truncated path, the model cannot learn whether the inserted campaign caused a
difference in revenue, only whether its presence is historically associated with higher or lower values.
This introduces label leakage, a methodological limitation in which the true variance attributable to
campaign changes is masked. As a result, model accuracy metrics (e.g.,, RMSE, R?) may overstate
predictive validity.

However, this design still has practical utility. In real-world marketing scenarios where running
A/B tests for every campaign sequence is costly or infeasible, simulation-based approaches like this
can serve as a first-stage filter. Marketers could shortlist campaigns that consistently rank high across
multiple user paths, then validate them in controlled experiments or apply uplift modeling to refine
targeting strategies. Moreover, the path-centric architecture used here, relying on behavioral patterns
rather than user identity, makes it compatible with privacy-first data environments and avoids
overfitting to individual users.

RQ3 thus contributes a strategy-level insight: campaign effectiveness may not be fixed but
context-dependent, varying by the sequence of prior touchpoints and user journey progression.
Modeling this dynamic as a simulated treatment problem expands the decision space beyond static
campaign performance metrics and opens a pathway toward adaptive, journey-aware campaign
optimization.

Future enhancements to this framework could include incorporating intermediate engagement
outcomes (e.g., add-to-cart or time-on-site) or estimating conditional treatment effects using causal
inference tools such as causal forests or reinforcement learning policies that optimize for long-term
value. These would help bridge the gap between predictive accuracy and decision utility in next-step
marketing interventions.
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Cross-Cutting Themes

Across all RQs, one clear finding is the strength of XGBoost as a modeling framework for
structured journey data. Its ability to handle interactions between features and non-linearities made
it a better model across both regression and classification tasks.

Another consistent insight is the importance of engineered path features, particularly those that
summarize timing, length, and campaign diversity. This confirms the importance of feature
engineering and supports prior work suggesting that model success often depends more on data
representation than algorithm complexity (Viloria et al., 2020). Ultimately, the thesis demonstrates a
practical transition from attribution modeling to predictive modeling, addressing a key limitation in
current marketing practices: the lack of forward-looking intelligence in campaign evaluation.

Limitations and Future Work

Methodological Limitations

While the results are promising, several methodological limitations must be acknowledged:

e  Quasi-Experimental Limitation in RQ3: The main limitation lies in the quasi-experimental
design of RQ3, where simulated “next campaign” steps are appended to truncated user
journeys, and the revenue from the original full path is retained as the outcome label. Because
these next campaigns were not really served to users, the predicted revenue represents a proxy
outcome under hypothetical scenarios rather than a true causal effect. While this design enables
directional comparisons between campaigns and reflects realistic mid-journey decision contexts,
it does not establish causal attribution and should be interpreted as exploratory rather than
definitive evidence of campaign impact.

e Simplified Assumptions About Campaign Impact: All campaign steps were treated equally
without incorporating variables such as campaign cost, creative content, or user fatigue. This
oversimplification may limit the model’s realism and operational accuracy.

e  Exclusion of User Demographics and Contextual Data: Important variables such as device type,
geolocation, referral source, or user segment were unavailable in the dataset. This limits the
model’s personalization capabilities and generalizability.

e  Static Modeling: The models assume a static user journey and do not account for evolving
behaviors or feedback loops (Lemon & Verhoef, 2016). Real-time systems might require dynamic
retraining and deployment mechanisms (Kumar & Reinartz, 2018).

Data Limitations

The study uses data from the Google Merchandise Store, which, while realistic, is limited to a
single vertical and business model. This restricts the external validity of the findings and their
applicability to other domains like subscription services, B2B users, or omnichannel retail, and other
verticals such as food, beauty as well.

Additionally, the dataset lacks product-level and session-level information, which could provide
additional context on what users viewed, added to cart, or abandoned. Incorporating these granular
layers of data would likely improve the precision of revenue prediction and next-best
recommendations.

Future Research Opportunities

Future work can build upon this study in several ways:

e Causal Modeling and Uplift Modeling: To strengthen the next-best campaign framework,
researchers should apply counterfactual modeling methods or uplift modeling to directly
estimate the incremental impact of showing a specific campaign (Radcliffe, 2007; Gutierrez &
Gérardy, 2016).
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e Incorporation of Reinforcement Learning: Next-best-action systems can be enhanced through
reinforcement learning frameworks that adapt over time, taking into account evolving user
responses and business objectives (Sutton & Barto, 2018).

e Deep Learning for Sequence Modeling: While this study favored explainable models like
XGBoost, future research may explore LSTM, GRU, or transformer architectures to capture long-
range temporal dependencies in user journeys (Hochreiter & Schmidhuber, 1997; Vaswani et al.,
2017).

e Integration into Operational Systems: A practical next step is to evaluate how these models
perform when deployed in live campaign environments. A/B testing and ongoing monitoring
would be necessary to assess business impact.

e  Cross-Industry Validation: Replicating the models across different verticals such as travel,
insurance, or education would help confirm the generalizability of the framework.

By addressing these limitations and extending the current analysis, future research can enable a
more nuanced and robust approach to revenue forecasting and marketing campaign optimization.

Conclusion

This thesis aimed to explore how predictive modeling can be applied to e-commerce marketing
journey data to forecast revenue outcomes and optimize campaign decisions. Through a structured
analysis of campaign user paths, the study addressed three main research questions involving
revenue prediction, conversion targeting, and next-best-action simulation.

The results show that machine learning models, particularly XGBoost, can predict revenue from
complete user journeys with high accuracy (R? = 0.89), and that conversion-driving campaigns can be
reliably identified mid-journey using path-level features. These findings support the argument that
marketing efforts should incorporate sequence-level insights into their optimization strategies.
Additionally, while the next-best campaign recommendation framework demonstrated strong
directional potential, it also highlighted the importance of modeling design in avoiding label leakage
and preserving causal validity.

From a practical standpoint, the study underscores the value of predictive analytics in evolving
marketing strategies beyond attribution and toward prescriptive interventions. Path-based modeling
can inform creative sequencing, audience segmentation, and real-time campaign selection. With
additional work on causal inference and operational deployment, these models can be embedded
into intelligent marketing systems that optimize performance while preserving user relevance.

In conclusion, this thesis presents a methodological and conceptual framework for utilizing
machine learning to enhance digital marketing effectiveness. It paves the way for future
advancements in personalization, journey orchestration, and data-driven campaign planning and
provides a foundation for marketers seeking to make predictive decisions at every stage of the user
journey.
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