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Predicting Modeling in E-Commerce Marketing 
Based on User Journeys 
Laxmi Sravani Vakacherla 

Master's in Analytics, Harrisburg University of Science & Technology; lvakacherla@my.harrisburgu.edu 

Abstract 

Traditional marketing attribution models evaluate past campaign performance but offer limited 
input for future actions. This thesis bridges that gap by developing predictive models that use actual 
user path data to forecast revenue and guide future campaign decisions. We address three key 
questions: (1) predicting revenue from completed marketing paths, (2) identifying the most effective 
campaign to convert a mid-journey user, and (3) recommending the next-best campaign step for 
revenue maximization. Using e-commerce user path data from the Google Merchandise Store, we 
apply Random Forest, XGBoost, and ensemble techniques across various user journey segments. Our 
analysis demonstrates high predictive accuracy in revenue forecasting and mid-journey campaign 
identification. While the third model provides directional insights, its use of proxy labels presents 
methodological limitations that are thoroughly discussed. This research concludes with 
recommendations for future work in real-time personalization, counterfactual modeling, and the 
operational deployment of predictive marketing systems. 

Keywords: predictive modeling; user journey; e-commerce; marketing campaigns; revenue 
forecasting; conversion prediction; machine learning 
 

Introduction 

With digital marketing budgets growing annually (Cramer-Flood, 2024), businesses are under 
increasing pressure to optimize marketing campaign performance through smarter, data enabled 
decision-making. Commonly used attribution models, such as first-touch, last-touch, or linear, 
generally aim to assign credit for conversions to specific touchpoints in a customer’s journey that 
occur before conversion. This is done so that marketers can evaluate campaign performance and 
make decisions regarding budget allocation, audience targeting, and so on. However, these models 
are mostly retrospective in nature. They help understand past performance but are limited in their 
ability to guide future decisions on campaign targeting (Shao & Li, 2011; Li & Kannan, 2014). This is 
still done based on intuition and reactive analyses. As user journeys become increasingly nonlinear 
and spread across multiple platforms (online & offline), marketers require more robust methods that 
can handle sequential dependencies, campaign sequences, and predictive forecasting (Berman, 2018; 
Kumar & Reinartz, 2018). 

Problem Statement 

As we have seen, traditional marketing attribution models such as last-click, first-click, or time 
decay offer only a retrospective view of campaign effectiveness, assigning credit for conversions 
based on predefined heuristics (Shao & Li, 2011). These models often fail to account for the complex 
and nonlinear nature of modern user journeys across channels and timeframes (Lemon & Verhoef, 
2016). As a result, they are unable to answer forward-looking questions such as which campaign 
should be employed next or how much revenue a particular user path will yield. Without this 
predictive insight, marketing teams cannot optimally personalize experiences or allocate budget 
dynamically. This leads to inefficiencies in planning and targeting during customer acquisition, over-
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reliance on heuristics, and missed opportunities for revenue maximization (Berman, 2018; Bucklin & 
Sismeiro, 2009). 

Research Significance 

This research is important in both academic advancement and practical real-world applications. 
From an academic perspective, it extends the domain of marketing analytics by shifting the focus 
from historic attribution to forecasting and prescriptive modeling, an area still underexplored in user 
journey analysis (Abhishek et al., 2012; Anderl et al., 2016). From an industry standpoint, it presents 
a data-driven framework that enables marketers to anticipate user behavior and recommend 
proactive campaign steps, rather than reactively analyzing past performance. The ability to simulate 
outcomes for mid-journey users and suggest optimal paths offers a competitive advantage in 
environments where customer attention is fleeting and personalization is paramount (Kumar & 
Reinartz, 2018). 

Research Questions and Hypotheses 

• RQ1: Can we predict the revenue that will result from a specific user journey path after making 
a purchase? 

• H1: Marketing paths with greater diversity and more touchpoints will result in higher predicted 
revenue (Montgomery et al., 2004; Verbeke et al., 2012). This hypothesis is based on the idea that 
users who are shown diverse campaigns have better brand recall and purchase intent. 

• RQ2: If a user has completed a partial journey without converting, which campaign is most likely 
to lead to a purchase in the end? 
H2: Campaigns that frequently appear just before conversion in historical data are more likely 
to convert users mid-journey (Xu et al., 2014; Ren et al., 2018). This assumes that certain 
campaigns have a higher last-touch impact due to their persuasive positioning. 

• RQ3: If a user has completed a partial journey without converting, what is the best next 
campaign step to maximize revenue? 

• H3: Machine learning models can simulate next-step recommendations that improve expected 
revenue compared to random selection ((Tao et al., 2023). This presumes that structured journey 
data encodes learnable patterns about campaign sequencing and conversion outcomes. 

Objectives 

• To develop regression models capable of forecasting revenue and campaigns based on 
completed user journeys using marketing campaign user path data. 

• To design classification models that can identify the most likely converting campaign for users 
who are already partway through a campaign journey. 

• To simulate next-step campaign decisions using path truncation and evaluate their revenue-
maximizing potential via predictive modeling. 

• To compare model performance using metrics like RMSE, R², and classification accuracy, and 
translate these findings into actionable marketing strategy insights within e-commerce. 

• To validate the utility of machine learning as a prescriptive tool for customer journey 
optimization in real-world campaign planning contexts (Fildes et al., 2008). 

Limitations 

This study relies on data from the Google Merchandise Store, an e-commerce platform that may 
not reflect the complexity of multi-product or subscription-based businesses. Thus, the external 
validity of the results may be limited when applied to other industry verticals. Additionally, the 
dataset lacks contextual and demographic variables such as user location, device type, referral source, 
or segmentation attributes, which are often critical in campaign personalization and targeting 
(Dalessandro et al., 2012). Another key limitation also lies in RQ3’s modeling design: the assumption 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 September 2025 doi:10.20944/preprints202509.0683.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.0683.v1
http://creativecommons.org/licenses/by/4.0/


 3 of 17 

 

that simulated next campaigns would yield the same revenue as the original journey introduces label 
leakage, potentially inflating model accuracy and limiting causal inference. 

Delimitations 

The research scope intentionally focuses on path-level analysis within the digital marketing 
domain. It does not address real-time ad-serving technologies, session-level interactions, or cross-
device behavior. While the models are designed for explainability and interpretability using tree-
based methods, advanced deep learning techniques, such as transformers or reinforcement learning, 
are excluded to preserve clarity and focus (Kumar & Reinartz, 2018). The study also does not attempt 
to integrate cost-per-click or campaign spend metrics, as the focus is on revenue forecasting and 
recommendation effectiveness, not ROI analysis. 

Literature Review 

Research on marketing performance evaluation has majorly relied on understanding how users 
respond to different ad exposures, be it a banner ad, email campaign, or search engine result. With 
the explosion of digital platforms, user behavior data has become abundant, offering marketers and 
researchers alike new opportunities to investigate the impact of sequences, channels, and timing on 
outcomes such as conversion and revenue (Bucklin & Sismeiro, 2009; Kumar & Reinartz, 2018). As 
digital journeys become increasingly complex and nonlinear, the demand for predictive tools that 
can interpret this data in real time has grown significantly (Anderl et al., 2016). 

Theoretical and empirical work in marketing has responded to this change with innovations in 
attribution modeling, clickstream analytics, and customer journey frameworks. However, few 
studies have successfully integrated predictive modeling with dynamic campaign decision-making. 
This literature review outlines the foundational research in five thematic areas: (1) Attribution 
Modeling and Its Shortcomings, (2) Predictive Modeling in Marketing and E-Commerce, (3) 
Customer Journey and Sequential Modeling, (4) Conversion Prediction and Mid-Journey Targeting, 
and (5) Research Gaps and Opportunities for Predictive Revenue Modeling. 

Attribution Modeling and Its Shortcomings 

Marketing attribution seeks to assign credit for the revenue to one or more touchpoints in a 
user's journey that led to the conversion. Rule-based attribution models such as first-touch, last-touch, 
and linear attribution have been widely used in both practice and research for over a decade (Li & 
Kannan, 2014). These heuristic models are simple to implement but make strong assumptions, often 
ignoring the order and interactivity of touchpoints (Shao & Li, 2011). 

To overcome these limitations, probabilistic and algorithmic attribution models have emerged. 
Shao and Li (2011) proposed a data-driven model using logistic regression to evaluate the incremental 
contribution of each channel. Similarly, Anderl et al. (2016) employed path-level analysis with 
Markov chains to estimate the removal effect of each campaign. However, these models are still 
largely backward-looking. They tell us which campaigns “deserve” credit but not which campaigns 
are likely to convert the user in the future (Berman, 2018). 

As digital advertising grows more expensive and competitive, the inability of attribution models 
to provide real-time recommendations limits their utility. Attribution models are not equipped to 
optimize media spend proactively or guide marketers on what actions to take next, a shortcoming 
this study addresses through predictive modeling. 

Predictive Modeling in Digital Marketing and E-Commerce 

Predictive modeling refers to the use of statistical and machine learning methodologies to 
estimate future results based on historical data. In marketing, these models have often been applied 
to predict churn (Neslin et al., 2006), customer lifetime value (Venkatesan & Kumar, 2004), and sales 
forecasting (Fildes et al., 2008). 
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Recent developments in ensemble learning, such as Random Forests and Gradient Boosting 
Machines, have significantly improved accuracy in marketing-related predictions by capturing 
nonlinear relationships between user features and outcomes (Verbeke et al., 2012). In e-commerce 
contexts, Montgomery et al. (2004) used clickstream data to analyze online shopping behavior and 
found that the order and frequency of visits had strong predictive value. 

Studies have also shown that path-based variables, such as number of touchpoints, diversity of 
campaigns, and timing of interactions, enhance predictive performance when used as features in 
regression or classification models (Viloria et al., 2019); Bucklin & Sismeiro, 2009). However, most of 
this work falls short of predicting path-specific revenue or campaign recommendations, creating a 
theoretical and practical gap that this research aims to fill. 

Customer Journey and Sequential Modeling 

The customer journey framework conceptualizes how users interact with a brand or its 
campaigns over time. Rather than viewing each campaign as an isolated event, this perspective treats 
interactions as part of a long-term structure, where earlier exposures can influence future behavior 
(Anderl et al., 2016). 

Several studies have attempted to model these sequences formally. Dalessandro et al. (2012) 
introduced causal pipelines that simulate how marketing exposure builds up to a conversion. Xu et 
al. (2014) introduced mutually exciting point processes as a way to model how customer interactions 
can trigger additional interactions. This approach provides a more realistic picture of customer 
behavior by recognizing that engagement often builds momentum over time. However, while these 
models excel at capturing the dynamic nature of customer interactions, they tend to emphasize 
predicting whether a customer will convert rather than estimating the actual financial value of that 
conversion. 

The most promising developments come from sequence learning in the field of deep learning. 
Tao et al. (2023) introduced a graphical point process framework for multi-touch attribution that 
captures temporal dependencies and simulates the removal effect of touchpoints. This allows for 
counterfactual reasoning and supports more informed next-step campaign recommendations. 
Attention-based models, including Transformers, have also gained traction in recommendation 
systems due to their ability to model long-range dependencies (Vaswani et al., 2017). These 
techniques provide the conceptual and technical foundation for addressing RQ3, predicting the next-
best campaign in a user’s journey. 

Conversion Prediction and Mid-Journey Targeting 

Conversion likelihood modeling has long been a topic of interest for performance marketers. 
Early models used logistic regression to predict lead conversion based on customer demographics 
and engagement patterns (Neslin et al., 2006). While these models were straightforward to implement 
and interpret, they struggled with complex, non-linear relationships in the data. This limitation led 
researchers to adopt more advanced machine learning techniques like Random Forests and XGBoost, 
which better handle high-dimensional data and can capture intricate patterns while still providing 
insights into which factors drive conversions (Viloria et al., 2020). 

Building on this progress, Ren et al. (2018) proposed a dual-attention recurrent neural network 
architecture for multi-touch attribution modeling in online advertising. Their model captures both 
temporal order and the importance of each touchpoint in the user journey by attending to campaign 
exposure, sequence position, and interaction frequency simultaneously. The results showed that this 
integrated, sequence-aware approach significantly improved conversion prediction accuracy 
compared to models that treated these inputs independently or ignored order effects. Additionally, 
Abhishek et al. (2012) modeled multistage exposure to estimate how successive campaign views 
influenced purchase decisions. These findings support the feasibility of addressing RQ2, predicting 
which campaign is likely to convert a user mid-journey. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 September 2025 doi:10.20944/preprints202509.0683.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.0683.v1
http://creativecommons.org/licenses/by/4.0/


 5 of 17 

 

Although these models perform well in batch settings, they are not always deployed in real time. 
Moreover, they often treat conversion as binary and ignore revenue differences between user 
segments or campaign types. This thesis expands on this work by incorporating revenue as a target 
variable and by simulating truncated paths to reflect real-world targeting scenarios. 

Research Gap and Contribution 

While academic literature has advanced in both attribution and predictive modeling, few studies 
bridge the gap between path-based analytics and forward-looking decision support (Berman, 2018). 
Most attribution models remain descriptive, and while sequence models have been applied to 
clickstream and recommendation tasks, they are rarely used to optimize marketing campaign 
decisions. 

This thesis fills that gap by proposing a three-part framework that predicts revenue from user 
paths (RQ1), identifies high-conversion campaigns for mid-journey users (RQ2), and recommends 
next-best actions based on journey history (RQ3). The research contributes methodologically by 
applying ensemble learning and sequence models in novel combinations, and practically by 
proposing tools that can guide real-time marketing interventions. 

Methodology 

Data Source and Description 

This study uses publicly available user data from the Google Merchandise Store, accessible 
through the Google Analytics demo account (Google, 2024) from Google Analytics. The dataset 
includes anonymized user paths based on their interactions with the store website, including data on 
campaign touchpoints, timing, and eventual purchase revenue. Each user journey is identified by a 
unique Path.ID and contains sequential information regarding the marketing campaigns a user 
interacted with before the conversion event, a purchase. The dataset spans across the last 2 years and 
provides a realistic foundation for evaluating marketing campaign effectiveness. 

The key variables extracted for analysis included: - 

• Campaign: The marketing channel or tactic (e.g., Organic, Email, Display) 
• Path.Step: The order of campaign impressions in the journey 
• Total.Revenue: Final purchase amount from that user path 
• Days.till.key.event: Time elapsed until conversion 
• X.TP: Count of touchpoints 

Data was preprocessed using R and Python libraries, including pandas, dplyr, and xgboost. 
Missing or malformed revenue entries were dropped, and time fields were converted into numerical 
formats. 

Feature Engineering 

To support predictive modeling across all three research questions, several features were 
engineered from the raw user journey data to capture both structural and sequential aspects of the 
marketing paths: 

• Touchpoints: Represents the total number of campaign interactions in a full user journey. This 
feature captures journey depth and was used as a key predictor in revenue estimation (RQ1), 
based on the assumption that longer engagement correlates with higher customer value. 

• Unique.Campaigns: Measures the count of distinct campaign types encountered in each path. It 
serves as a proxy for campaign diversity and reflects the range of exposures that may influence 
conversion and revenue outcomes. Prior studies suggest that campaign variety can impact user 
behavior (Montgomery et al., 2004). 
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• Campaign.Length: Mirrors the Touchpoints feature but was retained for clarity in 
interpretability analyses. It provides an intuitive label when comparing user journey lengths 
across different segments or visualizations. 

• Truncated.Steps: Denotes the number of steps present in a partially observed path, used in both 
RQ2 and RQ3 to simulate users who have not yet made a purchase. It enables the modeling of 
mid-journey decision-making contexts. 

• Touchpoints.So.Far: A subset count indicating how many interactions have occurred prior to the 
current prediction point in truncated paths. It adds sequential context to the model, helping 
distinguish between early-stage and late-stage journey states. 

• Next.Campaign: A categorical feature used exclusively in RQ3 to represent each candidate 
campaign simulated as the potential next step in a truncated path. For every truncated journey, 
this feature was iteratively populated with all possible campaign options to evaluate their 
projected revenue impact. 

To prepare the features for modeling: 
Categorical variables, such as Next.Campaign, were encoded using either one-hot encoding (for 

tree-based models like XGBoost) or factor encoding (for linear models) to maintain compatibility with 
different algorithms. 

Modeling Approaches 

Each of the three research questions (RQs) required a different supervised learning approach 
tailored to the analysis structure and the outcome expected. Regression techniques were used for 
RQ1 and RQ3, where the objective was to predict a continuous variable (revenue), while classification 
was used for RQ2 to identify the most likely converting campaign among several categorical options. 
To ensure that the results can be reproduced and generalized, all models were trained and evaluated 
across 10 randomized data splits generated from random seed values. These seeds were created by 
hashing a string-based identifier, ensuring consistency while allowing variability in model training 
outcomes. 

RQ1: Revenue Prediction from Completed Paths 

• Model Type: Supervised regression 
• Models Used: Linear Regression (baseline), Random Forest Regressor, XGBoost Regressor 
• Input Features: Touchpoints, Days.till.key.event, Campaign.Length, Unique.Campaigns 
• Target Variable: Total.Revenue 

To address RQ1, the dataset was first grouped by Path.ID to represent complete marketing 
journeys. Each path was updated with aggregate features capturing the number of campaign 
interactions, diversity of campaign types, and timing until conversion. To prevent data leakage across 
user journeys, GroupShuffleSplit was used to divide the data into training (60%), validation (20%), 
and test (20%) sets by unique Path.ID, ensuring that no user path appeared in more than one split 
(Pedregosa et al., 2011). 

Each of the three models was trained independently across 10 different random seeds. These 
seeds were derived from a hashed string ("Marketing revenue prediction") and ensured consistent 
partitioning while enabling an ensemble-like robustness check. For each seed, model performance 
was evaluated on the test set using two metrics: Root Mean Squared Error (RMSE) for absolute 
accuracy of the predictions and R-squared (R²) for model variance explanation. 

Linear regression served as the baseline, offering interpretability but limited flexibility. Random 
Forest and XGBoost, both tree-based models, were selected for their ability to capture nonlinear 
interactions between features (Chen & Guestrin, 2016; Breiman, 2001). Feature importance was also 
extracted to validate the hypothesis that longer and more diverse paths yield higher revenue. 

RQ2: Predicting Conversion Campaign Mid-Journey 
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• Model Type: Multi-class classification 
• Model Used: XGBoost Classifier 
• Input Features: Truncated.Steps, Touchpoints.So.Far, Days.So.Far 
• Target Variable: Last.Campaign (the campaign shown just before purchase in the real path) 

RQ2 simulated a real-world scenario in which a user is in the middle of their journey and has 
not yet converted. To build this setup, paths with at least two steps were selected. Each path was 
randomly truncated at one point before the final step. The features were derived from the truncated 
portion, and the target was the actual final converting campaign from the original path. 

For model training, the resulting dataset was encoded with categorical targets (campaigns), 
which were converted into numeric labels using a consistent label_map. The dataset was split into 
training (60%), validation (20%), and test (20%) sets using randomized shuffling controlled by 10 
unique seeds derived from the hashed string “campaignrevenueprediction.” This ensured each 
experimental run trained and tested the model on different user journeys. 

An XGBoost classifier was trained with a softmax objective to predict the most probable 
converting campaign. Evaluation was done using Top-1 Accuracy (i.e., whether the top predicted 
campaign matched the true label) and Top-3 Accuracy (whether the correct label was among the top 
3 predictions). Accuracy scores were averaged across the 10 seeds, and standard deviation was 
reported to assess the model’s consistency. 

RQ3: Identifying the Next-Best Campaign for Revenue Maximization 

• Design Type: Quasi-experimental simulation 
• Model: XGBoost Regressor 
• Target Variable: Total.Revenue (from full path) 
• Key Predictors: Truncated path features and one-hot encoded candidate next campaign 

To identify which campaign is most likely to maximize revenue if shown next in a user journey, 
we implemented a quasi-experimental design using simulated proxy treatments. Each full user path 
was truncated at a randomly selected step prior to purchase, simulating a mid-journey user. For every 
truncated path, we created multiple copies, each appending a different campaign as the next step 
(i.e., a simulated treatment). 

The model reuses the original total revenue from the full path as the outcome label across all 
simulated variants. This represents a non-randomized counterfactual simulation where the treatment 
assignment (next campaign) is artificial, and the outcome (revenue) is not causally linked to the 
simulated next step. Thus, this design is mostly exploratory and quasi-experimental, not causal 
(Shadish, Cook, & Campbell, 2002; Tao et al., 2023). 

The predictors included truncated path statistics (e.g., Touchpoints.So.Far, Days.So.Far) and the 
Next.Campaign, which was one-hot encoded. We trained an XGBoost regressor using 60% of the 
data, validated on 20%, and tested on the remaining 20%. This procedure was repeated across 10 
random seeds generated from the text 'bestcampaignforrevenue'. 

Model performance was evaluated using RMSE and R² to assess fit. For each truncated test path, 
we simulated predictions for all possible campaigns and ranked them. The top five campaigns (with 
the highest predicted revenue) were extracted to generate directional insights into which campaigns 
may yield the highest impact if shown next. 

Analysis Results 

RQ1: Predicting Revenue from Completed Paths 

Regression models were evaluated to forecast the total revenue associated with completed user 
journeys. As outlined in the methodology, models were trained and tested on 10 randomized 
GroupShuffleSplit partitions, ensuring no overlap between training and test journeys. Performance 
was assessed using RMSE and R². 
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XGBoost outperformed both linear regression and random forrest models across all splits, 
achieving a mean RMSE of 18.76 and mean R² of 0.889. In contrast, the Random Forest model recorded 
an average RMSE of 51.49 and R² of 0.453, while Linear Regression showed limited explanatory 
power, with RMSE of 67.96 and R² of just 0.048. 

In terms of feature influence, XGBoost’s internal importance metrics consistently ranked 
Unique.Campaigns and Touchpoints as the most impactful predictors, followed by 
Campaign.Length and Days.till.key.event. 

 
Figure 1. Comparison of the R2 across the models performed. 

 

Figure 2. Comparison of RMSE between Models looped across 10 seeds. 

Overall, the results indicate that path structure variables carry strong predictive signals for 
revenue estimation. XGBoost not only achieved the best performance on average but also exhibited 
the lowest variance across splits, suggesting it is a robust choice for this task. 

RQ2: Predicting Converting Campaign Mid-Journey 
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To evaluate RQ2, a multi-class classification task was implemented using the XGBoost algorithm 
to predict the campaign most likely to lead to conversion, based on truncated user journeys. Paths 
were randomly truncated before their final step, and the last observed campaign before conversion 
was used as the target label. The dataset was split 60:20:20 into training, validation, and testing sets 
using randomized seeds. A total of 10 seeds were used to ensure performance stability across 
different partitions. 

The XGBoost classifier demonstrated strong predictive accuracy, with the following results 
aggregated across the 10 seeds: 

• Top-1 Accuracy: 71.64% 
• Top-3 Accuracy: 85.17% 
• Standard Deviation (Top-1 Accuracy): ±0.53% 

These metrics reflect the model’s ability to consistently rank the true converting campaign 
among the top predicted options. 

 
Figure 3. Top-1 Accuracy across 10 random seeds. 

Table 1. R2 accuracy across 10 random Seeds. 

Seed Accuracy 
27535007 0.7144524 
75932782 0.7202852 
62644871 0.7147116 
32535588 0.7230071 
624145 0.7157485 

11151506 0.7154893 
35632642 0.7241737 
13293583 0.7052495 
11151232 0.7145820 
18742825 0.7161374 
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Figure 4. Top-1 vs Top-3 Accuracy. 

In addition to overall accuracy, a confusion matrix was generated to analyze prediction patterns. 
It showed that many campaigns were predicted with high precision, while a few were frequently 
confused, often due to structural or naming similarity in campaign labeling. 

These results validate the use of truncated path features (specifically, the number of steps seen 
so far, time elapsed, and recent campaign exposure) as effective inputs for predicting conversion 
behavior. The model’s consistent performance across seeds indicates its generalizability and 
reliability in mid-journey classification tasks. 

Table 2. Top 10 Campaigns based on Occurrences. 

Campaign Occurrence Percentage of Total 
Merch Store US and CA | Search [Do not 
Edit] 

392 5.08% 

(organic) 383 4.96% 
Jan2024_ChromeDino_V1 299 3.87% 
May2024_MDW_V1 283 3.66% 
[Group 3 - Hats] Hats Search Campaign 258 3.34% 
June2024_Summer_V1 257 3.33% 
July2024_GreenSummer_V2 256 3.31% 
Oct2024_Quilt_V2 255 3.30% 
Oct2024_Quilt_V1 250 3.24% 
[Experiment Bug: 411232449] Merch Store 
US and CA | Search [Do not Edit] 

243 3.15% 

RQ3: Recommending Next-Best Campaign 

Research Question 3 (RQ3) investigated which campaign, if shown as the next step in a partially 
observed user journey, would generate the highest total revenue. To address this, a quasi-
experimental design was implemented: each user path with at least two steps was randomly 
truncated, and every possible campaign was simulated as the next step. This generated a large 
synthetic dataset of campaign-path combinations. 

An XGBoost regression model was trained to predict total revenue using features including the 
last campaign seen before truncation, the candidate next campaign, cumulative touchpoints, and 
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days to conversion. The model was trained and evaluated across 10 different random seeds to ensure 
robustness. For each seed, the model was trained on 60% of the synthetic dataset, and performance 
was measured using Root Mean Squared Error (RMSE) and R². 

 

Figure 5. Distribution of R2 Across 10 Random Seeds. 

The results demonstrated strong predictive performance across runs. The average RMSE was 
14.73, with a range from 11.36 to 14.00, while the average R² was 0.9399, with values ranging from 
0.9509 to 0.9725. These metrics suggest that the model reliably captured the relationship between user 
journey context and final revenue outcomes, validating the quasi-experimental approach and 
highlighting the potential of campaign simulation as a strategy for optimizing revenue. 

 
Figure 6. RMSE Across 10 Random Seeds. 

Discussion 
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Insights from RQ1: Revenue Prediction 

The ability of path-level features to serve as strong predictors of revenue highlights the 
importance of journey structure in understanding user value. This supports the idea that marketing 
impact is not isolated to single campaign interactions but rather accumulates across sequences of 
exposures. Features such as the diversity of campaigns encountered (Unique.Campaigns) and total 
number of touchpoints provide insight into how varied and sustained engagements contribute to 
user decision-making. These results lend support to the incrementality perspective in digital 
marketing, where each touchpoint incrementally builds toward conversion, particularly when 
campaigns are distinct in type or placement (Montgomery et al., 2004; Berman, 2018). 

What is particularly notable is how well structural characteristics of a journey, rather than user 
demographics, product data, or session-level behavior, were able to inform revenue potential. This 
suggests that the configuration of exposure itself serves as a proxy for intent and engagement. Prior 
work has often emphasized click-level behavior or personalization signals (Bucklin & Sismeiro, 2009; 
Viloria et al., 2020), but this study shows that even in the absence of individual-level targeting data, 
predictive modeling can identify which kinds of journeys yield higher returns. 

For marketers, these insights advocate for a shift away from siloed channel metrics and single-
touch attribution models, and toward sequence-aware, path-based forecasting. Media planners and 
CRM teams may benefit from frameworks that measure not only conversion likelihood but expected 
value per path archetype, guiding investment into sequences of campaigns rather than standalone 
placements. For example, if combinations of email → search → display consistently preceding high-
value purchases, budget allocation could prioritize replicating that path structure. 

In addition, the finding that campaign diversity outperformed raw campaign count as a 
predictor suggests that varied messaging and cross-channel storytelling may be more valuable than 
repetitive targeting through a single campaign type. This aligns with literature on advertising wear 
out and message fatigue (Pechmann & Stewart, 1990), indicating that diversity can preserve 
effectiveness and engagement over time. 

Lastly, the model’s strong and stable performance across multiple seeds demonstrates its 
potential for operational deployment. When embedded in marketing systems, such forecasting 
models could help estimate expected revenue as users progress through different stages of the funnel, 
thereby enabling proactive optimization of journey design and remarketing strategies (Dalessandro 
et al., 2012). 

Insights from RQ2: Conversion Prediction Mid-Journey 

The ability to predict the most likely converting campaign for a mid-journey user reveals key 
patterns in how marketing exposures influence customer decision-making. The model's strong 
performance across multiple randomized splits indicates that even partial path information contains 
sufficient signal to anticipate which campaign, if shown next, would have been most likely to trigger 
conversion. This supports the original hypothesis (H2) and aligns with empirical research showing 
that the final few exposures before conversion often carry disproportionately high predictive and 
causal weight (Xu et al., 2014; Ren et al., 2018). 

The results also reinforce principles from position-based attribution models, which weight 
impressions differently based on their position in the conversion path, with higher emphasis on both 
first and last interactions (Shao & Li, 2011). In particular, campaigns immediately preceding 
conversion have been shown to capture latent user intent and decision readiness (Li & Kannan, 2014). 
The findings here extend that theory by demonstrating that machine learning can automatically learn 
these temporal dependencies, without relying on rigid attribution rules (Berman, 2018). 

From an applied perspective, the ability to predict high-conversion campaigns based on 
truncated journeys offers a promising tool for mid-funnel intervention. Rather than continuing a user 
along a pre-scheduled sequence or retargeting them with broad creatives, predictive models could 
serve campaign variants most likely to convert the individual given their recent interaction history. 
This approach aligns with current trends in journey orchestration and dynamic content delivery, 
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which emphasize timing and contextual relevance (Kumar & Reinartz, 2018; Bucklin & Sismeiro, 
2009). 

Importantly, the model demonstrated robust performance across campaign classes, suggesting 
it did not overfit to high-frequency labels or dominant campaigns. This is significant in environments 
where marketing budgets span both high-volume awareness campaigns and lower-frequency but 
high-impact conversion efforts (Abhishek et al., 2012). The ability to learn conversion likelihood 
across the campaign spectrum enables marketers to optimize both common and long-tail user paths, 
which is essential in omnichannel strategy execution (Anderl et al., 2016). 

Additionally, the model’s reliance on non-personally identifiable features, such as number of 
touchpoints, timing, and campaign position, makes it suitable for privacy-conscious deployment in 
markets with data protection regulations such as GDPR and CCPA. As the marketing industry 
continues shifting away from third-party cookies and toward first-party behavioral modeling, 
techniques like these, which leverage interaction structure over identity, will become increasingly 
critical (Viloria et al., 2020; Dalessandro et al., 2012). 

Insights from RQ3: Next-Best Campaign Recommendation 

The analysis in RQ3 offers a novel approach to identifying the most promising campaign to 
display next for a user partway through their journey. By appending each possible campaign as a 
hypothetical next step to truncated user paths, the model estimates how these alternatives might 
relate to final revenue. This formulation enables a form of next-best-action modeling that is 
computationally efficient and scalable across all campaign types. 

Consistent patterns emerged across simulations: campaigns associated with higher predicted 
revenue often had either appeared frequently in full high-value paths or were shown later in more 
successful journeys. This suggests that both positioning within the path and prior co-occurrence with 
conversion contribute to their effectiveness as next steps. For example, remarketing-focused 
campaigns or those targeting users closer to purchase readiness tended to be ranked higher in 
simulated results, aligning with research on funnel-stage-based targeting (Lemon & Verhoef, 2016). 

Despite the directional promise, it is essential to interpret these results through the lens of the 
quasi-experimental design used. Because the same revenue label was applied to all simulated 
versions of a truncated path, the model cannot learn whether the inserted campaign caused a 
difference in revenue, only whether its presence is historically associated with higher or lower values. 
This introduces label leakage, a methodological limitation in which the true variance attributable to 
campaign changes is masked. As a result, model accuracy metrics (e.g., RMSE, R²) may overstate 
predictive validity. 

However, this design still has practical utility. In real-world marketing scenarios where running 
A/B tests for every campaign sequence is costly or infeasible, simulation-based approaches like this 
can serve as a first-stage filter. Marketers could shortlist campaigns that consistently rank high across 
multiple user paths, then validate them in controlled experiments or apply uplift modeling to refine 
targeting strategies. Moreover, the path-centric architecture used here, relying on behavioral patterns 
rather than user identity, makes it compatible with privacy-first data environments and avoids 
overfitting to individual users. 

RQ3 thus contributes a strategy-level insight: campaign effectiveness may not be fixed but 
context-dependent, varying by the sequence of prior touchpoints and user journey progression. 
Modeling this dynamic as a simulated treatment problem expands the decision space beyond static 
campaign performance metrics and opens a pathway toward adaptive, journey-aware campaign 
optimization. 

Future enhancements to this framework could include incorporating intermediate engagement 
outcomes (e.g., add-to-cart or time-on-site) or estimating conditional treatment effects using causal 
inference tools such as causal forests or reinforcement learning policies that optimize for long-term 
value. These would help bridge the gap between predictive accuracy and decision utility in next-step 
marketing interventions. 
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Cross-Cutting Themes 

Across all RQs, one clear finding is the strength of XGBoost as a modeling framework for 
structured journey data. Its ability to handle interactions between features and non-linearities made 
it a better model across both regression and classification tasks. 

Another consistent insight is the importance of engineered path features, particularly those that 
summarize timing, length, and campaign diversity. This confirms the importance of feature 
engineering and supports prior work suggesting that model success often depends more on data 
representation than algorithm complexity (Viloria et al., 2020). Ultimately, the thesis demonstrates a 
practical transition from attribution modeling to predictive modeling, addressing a key limitation in 
current marketing practices: the lack of forward-looking intelligence in campaign evaluation. 

Limitations and Future Work 

Methodological Limitations 

While the results are promising, several methodological limitations must be acknowledged: 

• Quasi-Experimental Limitation in RQ3: The main limitation lies in the quasi-experimental 
design of RQ3, where simulated “next campaign” steps are appended to truncated user 
journeys, and the revenue from the original full path is retained as the outcome label. Because 
these next campaigns were not really served to users, the predicted revenue represents a proxy 
outcome under hypothetical scenarios rather than a true causal effect. While this design enables 
directional comparisons between campaigns and reflects realistic mid-journey decision contexts, 
it does not establish causal attribution and should be interpreted as exploratory rather than 
definitive evidence of campaign impact. 

• Simplified Assumptions About Campaign Impact: All campaign steps were treated equally 
without incorporating variables such as campaign cost, creative content, or user fatigue. This 
oversimplification may limit the model’s realism and operational accuracy. 

• Exclusion of User Demographics and Contextual Data: Important variables such as device type, 
geolocation, referral source, or user segment were unavailable in the dataset. This limits the 
model’s personalization capabilities and generalizability. 

• Static Modeling: The models assume a static user journey and do not account for evolving 
behaviors or feedback loops (Lemon & Verhoef, 2016). Real-time systems might require dynamic 
retraining and deployment mechanisms (Kumar & Reinartz, 2018). 

Data Limitations 

The study uses data from the Google Merchandise Store, which, while realistic, is limited to a 
single vertical and business model. This restricts the external validity of the findings and their 
applicability to other domains like subscription services, B2B users, or omnichannel retail, and other 
verticals such as food, beauty as well. 

Additionally, the dataset lacks product-level and session-level information, which could provide 
additional context on what users viewed, added to cart, or abandoned. Incorporating these granular 
layers of data would likely improve the precision of revenue prediction and next-best 
recommendations. 

Future Research Opportunities 

Future work can build upon this study in several ways: 

• Causal Modeling and Uplift Modeling: To strengthen the next-best campaign framework, 
researchers should apply counterfactual modeling methods or uplift modeling to directly 
estimate the incremental impact of showing a specific campaign (Radcliffe, 2007; Gutierrez & 
Gérardy, 2016). 
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• Incorporation of Reinforcement Learning: Next-best-action systems can be enhanced through 
reinforcement learning frameworks that adapt over time, taking into account evolving user 
responses and business objectives (Sutton & Barto, 2018). 

• Deep Learning for Sequence Modeling: While this study favored explainable models like 
XGBoost, future research may explore LSTM, GRU, or transformer architectures to capture long-
range temporal dependencies in user journeys (Hochreiter & Schmidhuber, 1997; Vaswani et al., 
2017). 

• Integration into Operational Systems: A practical next step is to evaluate how these models 
perform when deployed in live campaign environments. A/B testing and ongoing monitoring 
would be necessary to assess business impact. 

• Cross-Industry Validation: Replicating the models across different verticals such as travel, 
insurance, or education would help confirm the generalizability of the framework. 

By addressing these limitations and extending the current analysis, future research can enable a 
more nuanced and robust approach to revenue forecasting and marketing campaign optimization. 

Conclusion 

This thesis aimed to explore how predictive modeling can be applied to e-commerce marketing 
journey data to forecast revenue outcomes and optimize campaign decisions. Through a structured 
analysis of campaign user paths, the study addressed three main research questions involving 
revenue prediction, conversion targeting, and next-best-action simulation. 

The results show that machine learning models, particularly XGBoost, can predict revenue from 
complete user journeys with high accuracy (R² ≈ 0.89), and that conversion-driving campaigns can be 
reliably identified mid-journey using path-level features. These findings support the argument that 
marketing efforts should incorporate sequence-level insights into their optimization strategies. 
Additionally, while the next-best campaign recommendation framework demonstrated strong 
directional potential, it also highlighted the importance of modeling design in avoiding label leakage 
and preserving causal validity. 

From a practical standpoint, the study underscores the value of predictive analytics in evolving 
marketing strategies beyond attribution and toward prescriptive interventions. Path-based modeling 
can inform creative sequencing, audience segmentation, and real-time campaign selection. With 
additional work on causal inference and operational deployment, these models can be embedded 
into intelligent marketing systems that optimize performance while preserving user relevance. 

In conclusion, this thesis presents a methodological and conceptual framework for utilizing 
machine learning to enhance digital marketing effectiveness. It paves the way for future 
advancements in personalization, journey orchestration, and data-driven campaign planning and 
provides a foundation for marketers seeking to make predictive decisions at every stage of the user 
journey. 
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