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Abstract

Background: The timely identification of mild cognitive impairment (MCI) in Parkinson’s disease
(PD) is essential for early intervention and clinical management, yet it remains a challenge in practice.
Methods: We conducted an analysis of 3,154 clinical visits from 896 participants in the Parkinson’s
Progression Markers Initiative (PPMI) cohort. Participants were divided into two groups: cogni-
tively normal (PD-NC, MoCA ≥ 26) and MCI (PD-MCI, 21 ≤ MoCA ≤ 25). To ensure no visit-level
information leakage, subject-level stratified sampling was employed to split the data into training
(70%) and hold-out test (30%) sets. From an initial set of twelve routinely assessed clinical features,
seven were selected using LASSO logistic regression: Age, Sex, Education Years, Disease Duration,
UPDRS-I, UPDRS-III, and Geriatric Depression Scale (GDS). Four machine learning models—logistic
regression (LR), support vector machine (SVM), random forest (RF), and XGBoost—were trained using
subject-level stratified 10-fold cross-validation with Bayesian optimization. Probabilistic outputs were
dichotomized using three thresholding strategies: (i) default 0.5, (ii) F1-score maximization, and (iii)
Youden index maximization. Results: On the independent test set, SVM achieved the highest overall
performance with AUC-ROC of 0.7252 and AUC-PR of 0.5008. LR also performed competitively
despite its simplicity. RF achieved the top performance in recall, reaching 0.8150. Feature importance
analysis consistently highlighted Age, Education Years, and Disease Duration as the most informa-
tive predictors for distinguishing PD-MCI. Conclusion: This study developed and validated robust
machine learning models for PD-MCI classification using only standard clinical assessments. The
use of subject-level stratified design and Bayesian optimization enabled rigorous model evaluation
and reduced overfitting risk. The results support the potential for data-driven, interpretable tools to
enhance early cognitive impairment screening in PD care.

Keywords: mild cognitive impairment; Parkinson’s disease; machine learning; stratified sampling;
Bayesian optimization; feature importance

1. Introduction
Parkinson’s disease (PD) is a common degenerative disease of the central nervous system, patho-

logically characterized by progressive loss of dopaminergic neurons in the substantia nigra and
formation of Lewy bodies. With the intensification of global population aging trends, the prevalence
of PD has been rising annually. According to statistics, the number of PD patients worldwide has
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exceeded 6 million and is projected to surpass 12 million by 2040, imposing substantial medical and
economic burdens on patients, families, and society [1,2]. The clinical manifestations of PD are not
limited to motor symptoms such as resting tremor, bradykinesia, muscle rigidity, and postural gait
disorders, but also include a series of non-motor symptoms, including sleep disorders, olfactory
dysfunction, autonomic dysfunction, psychiatric symptoms, and cognitive impairment [3,4].

Among the numerous non-motor symptoms, cognitive impairment has a particularly significant
impact on the quality of life and disease prognosis of PD patients, representing one of the main causes
of disability and dependence in PD patients [5,6]. The cognitive impairment spectrum associated with
PD is broad, encompassing the entire continuum from subjective cognitive decline (SCD) and mild
cognitive impairment (PD-MCI) to Parkinson’s disease dementia (PDD) [7]. PD-MCI, as the prodromal
stage of PDD, has a prevalence of 20%-60% in the PD population [8–11], and almost all PD-MCI patients
eventually progress to PDD [12]. The occurrence of PDD not only severely reduces patients’ quality of
life and increases caregiver burden, but is also associated with higher mortality rates. Therefore, early
and accurate identification of PD-MCI is of crucial clinical significance for developing individualized
intervention strategies, potentially delaying disease progression, and improving patient outcomes.

Despite extensive research efforts to identify risk factors for cognitive impairment in Parkinson’s
Disease (PD) across various domains such as clinical, biomarker, neuroimaging, and genetics [13–15],
the development of practical diagnostic models still faces significant challenges [10,11,16,17]. One
major limitation is the small cohort sizes used in many studies, which can undermine the statistical
power and limit the generalizability of the findings. Additionally, many studies employ visit-level
data splits, which can cause longitudinal information leakage. This occurs when multiple samples
from the same subject are included in both training and testing datasets, leading to overly optimistic
performance estimates that may not hold in real-world clinical settings [18,19]. Furthermore, there is
often limited algorithmic diversity and sub-optimal hyper-parameter tuning in these studies, which
restricts the exploration of potentially more effective machine learning models and configurations.

To address these limitations, this study presents a robust framework for the classification of PD-
MCI using a large-scale, multi-visit clinical dataset. The primary contributions and innovations of this
work are as follows: (1) Large-Scale Data Analysis: We leverage the comprehensive, publicly available
Parkinson’s Progression Markers Initiative (PPMI) database, ensuring sufficient statistical power and
enhancing the reliability of our findings. (2) Methodological Rigor: To prevent information leakage
from multiple visits per patient, we implement a strict subject-level stratified sampling protocol for
splitting data into training and testing sets, ensuring that all records from a single individual belong
exclusively to one set. (3) Systematic Feature Selection: We employ LASSO logistic regression to
systematically identify the most predictive clinical features from a wide array of candidates, promoting
model parsimony and interpretability. (4) Comprehensive Model Comparison and Optimization:
We construct, compare, and rigorously evaluate four distinct machine learning algorithms: Logistic
Regression (LR), Support Vector Machine (SVM), Random Forest (RF), and XGBoost. We utilize a
subject-level stratified cross-validation framework where Bayesian optimization is used for exhaustive
hyperparameter tuning, ensuring that each model performs at its peak potential. (5) Advanced
Evaluation and Interpretability: Model performance is assessed using a suite of metrics, including
threshold optimization strategies tailored for imbalanced data. We conduct in-depth feature importance
analysis for each model using multiple techniques (e.g., coefficients, SHapley Additive exPlanations
(SHAP), permutation importance) to provide transparent and clinically relevant insights into the
decision-making process of the models.

Through this structured approach, we aim to develop and validate a practical and accurate
classification model that can serve as a reliable tool for clinicians in the early identification of PD-MCI.

The remainder of this paper is organized as follows. Section 2 presents our comprehensive
methodology, including dataset description, data preprocessing strategies, feature selection using
LASSO logistic regression, model construction, hyperparameter optimization, and evaluation met-
rics. Section 3 reports the experimental results, encompassing data characteristics, feature selection
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outcomes, model performance comparisons, and feature importance analysis. Section 4 discusses the
clinical implications of our findings, compares our results with existing literature, addresses study
limitations, and outlines future research directions. Finally, Section 5 summarizes the key contributions
and conclusions of this study.

2. Materials and Methods
The overall experimental workflow is illustrated in Figure 1. The methodology was designed to

ensure robust model development and validation, with a strong emphasis on preventing data leakage.
Our approach encompasses the following key stages: (1) dataset preparation and quality control, (2)
subject-level stratified data splitting and Z-score normalization, (3) LASSO-based feature selection, (4)
model construction and hyperparameter optimization using Bayesian optimization, (5) comprehensive
model evaluation with multiple threshold optimization strategies, and (6) feature importance analysis
for model interpretability.

2.1. Dataset Description

The research data were sourced from the publicly available Parkinson’s Progression Markers
Initiative (PPMI) database (www.ppmi-info.org). The PPMI study was approved by the institutional
review board at each participating site, and all participants provided written informed consent. Our
study included only data from PD patients, resulting in a dataset containing records from multiple
visits.

From this dataset, we extracted twelve potential predictor variables covering patients’ demo-
graphic information, disease characteristics, and clinical assessment scores. These features, with
their full names and abbreviations used hereafter, are: Age at visit (Age), Sex, Years of Education
(EDUCYRS), Disease Duration, Hoehn and Yahr Stage (H&Y), Unified Parkinson’s Disease Rating Scale
Part I (UPDRS-I), Part II (UPDRS-II), Part III (UPDRS-III), Part IV (UPDRS-IV), Epworth Sleepiness
Scale (ESS), Rapid Eye Movement Sleep Behavior Disorder Screening Questionnaire (RBDSQ), and
Geriatric Depression Scale (GDS). Disease Duration was calculated by subtracting the age of onset
from the age at each visit. The patient identifier (PATNO) was used exclusively for subject-level data
splitting.

The target variable for classification was determined based on the Montreal Cognitive Assessment
(MoCA) score. Each visit (sample) was assigned to one of two classes. Class 0 (PD-NC) included
patients with normal cognition, defined by a MoCA score ≥ 26. Class 1 (PD-MCI) comprised patients
with mild cognitive impairment, defined by a MoCA score between 21 and 25 (inclusive). Samples
with MoCA scores ≤ 20 were excluded to maintain a clear distinction between the PD-MCI and more
severe cognitive impairment or dementia stages.

2.2. Data Splitting

The entire dataset, containing multiple samples per patient, was divided into a training set (70%)
and a test set (30%). This split was performed using subject-level stratified sampling, implementing by
a strict three-stage procedure. First, each patient was assigned a single label based on their visits. A
patient was labeled as ’1’ if they had at least one PD-MCI visit, and ’0’ otherwise. The list of unique
patients was then split, stratifying by this assigned label. Finally, all samples corresponding to the
training patients were allocated to the training set, and all samples corresponding to the testing patients
were allocated to the test set. This procedure guarantees that no patient’s data appears in both the
training and test sets, preventing information leakage and ensuring the test set is a true hold-out set
for final model evaluation. After data splitting, all subsequent computational procedures exclusively
utilized information from the training set. The test set was reserved solely for final model evaluation.

2.3. Z-Score Normalization

Z-score normalization was performed using the mean and standard deviation calculated exclu-
sively from the training data, and this transformation was subsequently applied to both the training
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Data Collection Data Source: PPMI Website, Study Data, Curated Data Cuts (2025/03/21) 
Sample Size: 15316, Feature Number : 181

Data Screening Screening Criteria: PD Patients (Cohort=1)
Sample Size: 7021, Feature Number: 181

Define Target Variable
Normal Cognition (PD-NC, MoCA ≥ 26), Sample Size: 2325 
Mild Cognitive Impairment (PD-MCI, 21 ≤ MoCA ≤ 25), Sample Size: 829
Total Sample Size: 3154, Feature Number : 12

Bayesian Optimization
and Model Construction 

Bayesian Optimization for Tuning Parameters
Four Machine Learning Algorithms: LR, SVM, RF, XGBoost

Model Performance 
Evaluation

Threshold Optimization: Default (0.5), F1-Score Maximization, Youden Index Maximization
Evaluation Metrics: Confusion Matrix, Accuracy, Balanced Accuracy, Cohen's Kappa 

Precision, Recall, Specificity, F1-Score, AUC-ROC, AUC-PR

Model Interpretability 
Analysis

LR: Feature Coefficients, SHAP (Linear Explainer), Permutation Importance  
SVM: Feature Coefficients (Linear SVM), SHAP (Kernel Explainer), Permutation Importance 
RF: Impurity Importance, SHAP (Tree Explainer), Permutation Importance 
XGBoost: Importance (Weight, Gain, Cover), SHAP (Tree Explainer), Permutation Importance 

Remove Samples with 
Missing Value

Sample Size: 3362, Feature Number : 12

Extract Clinical Variables

12 Predictor Variables: Age, Sex, Education Years, Disease Duration, H&Y, UPDRS-I, 
UPDRS-II, UPDRS-III, UPDRS-IV, ESS, RBDSQ, GDS

Target Variable: MoCA
Sample Size: 7021, Feature Number : 12

LASSO Feature Selection
7 Features: Age, Sex, Education Years, Disease Duration, UPDRS-I, UPDRS-III, GDS
Total Sample Size: 3154, Feature Number : 7

Training Set (70%), Sample Size: 2254, Feature Number : 12
Test Set (30%), Sample Size: 900, Feature Number : 12
Z-Score Normalization

Data Splitting and
Normalization

Figure 1. Experimental Workflow. This flowchart outlines the key stages of the study, from data collection and
preprocessing to model construction, hyperparameter optimization, performance evaluation, and interpretability
analysis.

and test sets. This approach ensures that no information from the test set influences the training
process, thereby maintaining the integrity of the hold-out evaluation. Note that this normalization step
was conducted only once after data splitting. Subsequent cross-validation procedures were conducted
on the standardized training set, and it was not necessary to perform normalization repeatedly during
the cross-validation process.

2.4. Feature Selection using LASSO Logistic Regression

To identify the most critical predictors of PD-MCI from the initial twelve clinical variables, we
employed LASSO (Least Absolute Shrinkage and Selection Operator) logistic regression [20]. Unlike
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standard logistic regression, LASSO incorporates an L1 regularization term into the cost function,
which penalizes the absolute magnitude of the model’s coefficients. The optimization objective is:

arg min
β

{
− 1

n

n

∑
i=1

[yi log(pi) + (1 − yi) log(1 − pi)] + λ∥β∥1

}
(1)

where pi is the predicted probability for sample i, yi is the true label, β is the vector of coefficients,
and λ is the regularization parameter. A key advantage of this method is its ability to shrink the
coefficients of less important features to exactly zero, effectively performing automatic feature selection.
This is particularly suitable for a binary classification task, as it results in a more parsimonious and
interpretable model by retaining only the features with the strongest predictive power.

The optimal regularization parameter λ was determined through subject-level stratified 10-fold
cross-validation conducted exclusively on the training set. Following the identification of the optimal
λ value, the LASSO logistic regression model was retrained on the complete training dataset using
this optimized regularization parameter. Features exhibiting non-zero coefficients in the final LASSO
model were identified as the selected feature subset for subsequent analysis. This carefully curated
feature subset was then employed across all downstream analytical procedures, including model
construction, hyperparameter optimization, and performance evaluation.

2.5. Model Construction

Using the selected feature subset from LASSO feature selection, four machine learning models
were constructed for PD-MCI classification. Four widely-used machine learning algorithms were
selected for this study to provide a comprehensive comparative analysis: Logistic Regression (LR),
Support Vector Machine (SVM), Random Forest (RF), and XGBoost.

Logistic regression served as the baseline linear model for binary classification, providing inter-
pretable coefficients and establishing a foundational performance benchmark. The model employs
the logistic function to map linear combinations of input features to probability estimates for PD-MCI
classification [21]. Support Vector Machine was implemented with multiple kernel options to capture
both linear and non-linear decision boundaries, offering flexibility in modeling complex feature rela-
tionships. The algorithm constructs optimal separating hyperplanes to distinguish between PD-MCI
and PD-NC classes while maximizing the margin between classes [22].

Random Forest, as an ensemble method utilizing multiple decision trees, was employed to reduce
overfitting and improve generalization through bootstrap aggregation. This algorithm constructs
numerous decision trees using random subsets of features and training samples, with final predictions
determined by majority voting across all trees [23]. XGBoost, a gradient boosting framework, was
selected for its demonstrated effectiveness in handling imbalanced datasets and its optimization
capabilities for classification tasks. The algorithm sequentially builds weak learners, with each
subsequent tree focusing on correcting the errors made by previous iterations [24].

To address the inherent class imbalance in the dataset, where PD-NC samples substantially
outnumber PD-MCI samples, tailored strategies were implemented for each algorithm to ensure
optimal classification performance. For Logistic Regression, Support Vector Machine, and Random
Forest, the class weight parameter was configured to "balanced", which automatically adjusts class
weights inversely proportional to their respective frequencies in the training data, thereby providing
equal importance to both minority and majority classes during model training. For XGBoost, the scale
positive weight parameter, which represents the ratio of negative to positive samples, was treated
as a hyperparameter to be optimized during the hyperparameter tuning process to achieve the most
effective class balance handling strategy for this specific dataset and classification task.

2.6. Hyperparameter Optimization

Hyperparameter tuning for each model was conducted using Bayesian optimization [25] within a
subject-level stratified 10-fold cross-validation scheme on the training set. This validation framework
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ensures that parameter tuning is robust and does not lead to overfitting on the training data, while
maintaining the integrity of subject-level data separation established during the initial data splitting
procedure.

Bayesian optimization was performed with 100 iterations for each model, guided by the AUC-PR
score as the optimization objective. The selection of AUC-PR as the optimization metric is particularly
appropriate for the imbalanced PD-MCI classification task, as it emphasizes performance on the
minority class and provides a more informative assessment than traditional accuracy-based metrics.
The hyperparameter search spaces for all machine learning algorithms employed in this study are
presented in Table 1.

Table 1. Hyperparameter Search Spaces for Bayesian Optimization

Model Hyperparameter Search Space Type

LR

penalty [l1, l2, elasticnet, none] Categorical
solver [liblinear, lbfgs, newton-cg, sag, saga] Categorical
C [10−4, 1] Log-uniform
l1_ratio [0, 1] Uniform

SVM

kernel [linear, rbf, poly, sigmoid] Categorical
C [10−4, 1] Log-uniform
gamma [10−4, 1] Log-uniform
degree [2, 5] Integer
coef0 [0, 10] Uniform

RF

n_estimators [50, 500] Integer
max_depth [3, 20] or none Integer
min_samples_split [2, 20] Integer
min_samples_leaf [1, 30] Integer
max_features [0.1, 1] Uniform

XGBoost

n_estimators [50, 500] Integer
learning_rate [0.01, 0.3] Log-uniform
max_depth [2, 6] Integer
subsample [0.6, 1] Uniform
colsample_bytree [0.6, 1] Uniform
reg_alpha [10−4, 1] Log-uniform
reg_lambda [1, 10] Log-uniform
gamma [0, 0.5] Uniform
min_child_weight [1, 20] Integer
scale_pos_weight [1, 5] Uniform

Note: Hyperparameter descriptions: LR: penalty (regularization type), solver (optimization algorithm), C (inverse regularization
strength), l1_ratio (elasticnet mixing parameter). SVM: kernel (kernel function), C (regularization parameter), gamma (kernel
coefficient), degree (polynomial degree), coef0 (independent term in kernel). RF: n_estimators (number of trees), max_depth
(maximum tree depth), min_samples_split (minimum samples to split node), min_samples_leaf (minimum samples in leaf),
max_features (fraction of features per split). XGBoost: n_estimators (number of boosting rounds), learning_rate (step size
shrinkage), max_depth (maximum tree depth), subsample (fraction of samples per tree), colsample_bytree (fraction of features
per tree), reg_alpha (L1 regularization), reg_lambda (L2 regularization), gamma (minimum loss reduction), min_child_weight
(minimum sum of instance weight in child), scale_pos_weight (balancing of positive/negative weights). Valid parameter
combinations: LR: l1 penalty requires solver ∈ {liblinear, saga}; l2 penalty allows solver ∈ {liblinear, lbfgs, newton-cg, sag, saga};
elasticnet penalty requires solver = saga; none penalty allows solver ∈ {lbfgs, newton-cg, sag, saga}; l1_ratio is only used when
penalty = elasticnet. SVM: gamma and degree are only applicable for non-linear kernels (rbf, poly, sigmoid); coef0 is only used
for poly and sigmoid kernels; degree is only used for poly kernel. RF: max_depth can be integer value [3, 20] or none (unlimited
depth); all other parameters are always applicable. XGBoost: all parameters are compatible with each other; scale_pos_weight
is particularly useful for imbalanced datasets.

After identifying the optimal hyperparameter configurations through the Bayesian optimization
process, each algorithm was retrained on the complete training dataset to produce the final diagnostic
classification models. This final training phase utilized the entire training set with the selected
features from LASSO logistic regression and the best hyperparameter combinations determined
during the optimization procedure. The resulting models represent the culmination of the systematic
feature selection and hyperparameter tuning procedures, providing the most robust and optimized
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configurations for each algorithm. These final models were subsequently employed for comprehensive
evaluation on the independent test set to assess their real-world diagnostic performance and clinical
utility for PD-MCI classification.

2.7. Model Performance Evaluation

To determine the final clinical utility of each algorithm, the models equipped with their optimized
hyperparameter sets were deployed for a definitive evaluation on the independent test set. The
primary goal was to assess their efficacy in discriminating between PD-MCI and PD-NC individuals.
Performance was quantified using a comprehensive suite of metrics, each providing unique insights
into different aspects of classification performance in the clinical context of PD-MCI diagnosis. The
evaluation metrics employed in this study are detailed in Table 2, which presents the mathematical
formulation and clinical interpretation of each measure.

Table 2. Evaluation Metrics for PD-MCI Classification Performance

Metric Formula Clinical Significance in PD-MCI Diagnosis

Accuracy TP+TN
TP+TN+FP+FN

Overall proportion of correctly classified patients, providing
general diagnostic performance assessment

Balanced Accuracy 1
2 (

TP
TP+FN + TN

TN+FP )
Accounts for class imbalance by averaging Recall and
specificity, ensuring fair evaluation despite unequal PD-MCI
and PD-NC sample sizes

Precision TP
TP+FP

Proportion of patients classified as PD-MCI who truly have
cognitive impairment, indicating diagnostic reliability and
reducing false alarms

Recall TP
TP+FN

Proportion of actual PD-MCI patients correctly identified,
crucial for early detection and timely intervention

Specificity TN
TN+FP

Proportion of cognitively normal patients correctly classified,
important for avoiding unnecessary anxiety and
overtreatment

F1-Score 2×Precision×Recall
Precision+Recall

Harmonic mean balancing precision and recall, particularly
valuable for imbalanced datasets in clinical screening

Cohen’s Kappa Po−Pe
1−Pe

Agreement beyond chance, accounting for random
classification probability, providing robust performance
assessment

AUC-ROC Area under ROC curve
Overall discriminative ability across all threshold values,
indicating model’s capacity to distinguish PD-MCI from
PD-NC

AUC-PR Area under PR curve
Performance measure emphasizing positive class prediction,
particularly informative for imbalanced PD-MCI
classification tasks

Note: TP = True Positive, TN = True Negative, FP = False Positive, FN = False Negative; Po = observed agreement, Pe = expected
agreement by chance. Recall is also known as Sensitivity in clinical contexts.

Among these metrics, AUC-PR is particularly informative given the class imbalance inherent in
the PD-MCI classification task, while Recall and Specificity are especially critical in the clinical context
as they measure the model’s ability to correctly identify patients with cognitive impairment and those
who are cognitively normal, respectively.

2.8. Threshold Optimization

In clinical machine learning applications, the selection of an appropriate decision threshold is
crucial for translating continuous probability outputs into binary diagnostic classifications [26]. To
comprehensively evaluate model performance across different clinical scenarios, we implemented
three distinct thresholding strategies.

The first strategy employs the conventional default threshold of 0.5, serving as the standard
baseline for binary classification. The second approach implements a threshold optimized to maximize
the F1-score, which represents the harmonic mean of precision and recall. This strategy is particularly
well-suited for imbalanced datasets and research settings where overall diagnostic accuracy across
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both classes is prioritized. The third strategy employs a threshold that maximizes Youden’s Index
(Recall + Specificity - 1), representing standard practice in medical diagnostics where minimizing both
false positives and false negatives is crucial for optimal patient care.

For each model and thresholding strategy, threshold values were determined within the subject-
level stratified 10-fold cross-validation procedure on the training set to prevent overfitting. The median
of the optimal thresholds obtained across all cross-validation folds was calculated and used as the
final threshold for each strategy. These final thresholds were subsequently applied to the independent
test set for performance evaluation. This systematic multi-threshold comparative approach enables
comprehensive understanding of each model’s behavior across different clinical scenarios, allowing
clinicians to select the most appropriate threshold configuration based on their specific diagnostic
priorities and the relative importance of minimizing false positives versus false negatives in their
clinical setting.

2.9. Feature Importance Analysis

To enhance model interpretability and identify the clinical variables that contribute most signif-
icantly to PD-MCI prediction, we conducted comprehensive feature importance analyses for each
algorithm using multiple complementary methodological approaches. The optimal models obtained
from the hyperparameter optimization process were utilized directly for feature importance evalua-
tion, ensuring methodological consistency with the model configurations employed for performance
assessment. Three distinct importance measures were systematically applied: coefficient weights,
SHAP (SHapley Additive exPlanations) values [27], and permutation importance [28].

For Logistic Regression and linear Support Vector Machine, three importance measures were
employed. Coefficient weights were calculated as the absolute values of the learned coefficients,
representing the direct linear contribution of each feature to classification decisions. SHAP explainers
(Linear Explainer for Logistic Regression and Kernel Explainer for SVM) were utilized to provide
unified feature attribution values that satisfy efficiency and symmetry axioms. Permutation importance
was computed by measuring the decrease in model performance when each feature’s values are
randomly shuffled.

For Random Forest and XGBoost, both intrinsic and external importance measures were calculated.
Random Forest employed impurity-based importance by measuring the total decrease in node impurity
weighted by the probability of reaching each node across all trees. XGBoost utilized three built-in
metrics: weight (frequency of feature usage in trees), gain (average gain across all splits using the
feature), and cover (average coverage of the feature across all splits). Both tree-based models were
analyzed using SHAP Tree Explainer to provide exact feature attribution values specifically designed
for ensemble methods. Permutation importance was evaluated for both algorithms by assessing the
impact of feature perturbation on model performance.

This multi-faceted approach enables comprehensive understanding of feature contributions across
different algorithmic paradigms and provides robust insights into the clinical variables most predictive
of cognitive impairment in Parkinson’s disease.

2.10. Software Implementation

All analyses were implemented in Python 3.12 using scikit-learn [29] for machine learning
algorithms, XGBoost for gradient boosting [24], SHAP for interpretability analysis [27], and Optuna
for Bayesian optimization [30]. The hyperparameter optimization employed Gaussian Process-based
Bayesian optimization with expected improvement acquisition function to efficiently explore the
hyperparameter space. Cross-validation procedures utilized stratified sampling to maintain class
distribution across folds, ensuring robust model evaluation. All experiments were conducted on a
computational platform with reproducible random seeds to ensure result consistency and facilitate
replication.
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3. Experimental Results
3.1. Demographic and Clinical Characteristics

After preprocessing and filtering based on MoCA scores, the final dataset comprised 3,154 valid
records from 896 unique patients. Of these, 2,325 records were classified as PD-NC and 829 as PD-MCI.
The demographic and clinical characteristics of the study population are presented in Table 3.

Table 3. Demographic and Clinical Characteristics of the Study Population.

Variable Range Overall PD-NC PD-MCI p Value

Sample Size 3154 2325 829
Age [29.74, 89.93] 65.06±9.56 63.82±9.44 68.53±9.01 <0.001

Sex (Male %) {0, 1} 1 (0.64) 1 (0.62) 1 (0.69) 0.001
EDUCYRS [0, 20] 15.77±3.10 16.07±2.92 14.94±3.42 <0.001
Duration [0.15, 26.30] 6.96±3.69 7.10±3.76 6.57±3.48 0.001

H&Y {0-5} 2 (0.77) 2 (0.78) 2 (0.75) 0.014
UPDRS-I [0, 35] 8.84±5.61 8.50±5.46 9.78±5.92 <0.001
UPDRS-II [0, 48] 9.56±6.28 9.29±6.13 10.31±6.63 <0.001
UPDRS-III [2, 96] 30.03±13.75 29.54±13.51 31.41±14.33 0.001
UPDRS-IV [0, 19] 2.38±3.16 2.48±3.21 2.12±3.01 0.004

ESS [0, 24] 7.15±4.44 7.08±4.46 7.36±4.37 0.051
RBDSQ [0, 13] 4.84±3.24 4.76±3.24 5.06±3.22 0.014

GDS [0, 15] 2.79±2.87 2.57±2.75 3.40±3.12 <0.001
Note: Continuous variables are presented as mean ± standard deviation; categorical variables as mode (proportion). The p

values were calculated using Mann-Whitney U tests for continuous variables and Chi-square tests for categorical variables, with
FDR correction applied.

After applying False Discovery Rate (FDR) correction, significant between-group differences were
observed for most variables. The PD-MCI group was significantly older, had a higher proportion of
males, fewer years of education, and showed a shorter disease duration compared to the PD-NC group
(all p < 0.05). Clinically, the PD-MCI group exhibited more severe non-motor symptoms of daily living
(UPDRS-I), motor symptoms of daily living (UPDRS-II), motor signs (UPDRS-III), and depressive
symptoms (GDS), as well as higher rates of REM sleep behavior disorder symptoms (RBDSQ) (all
p < 0.05). These findings highlight a distinct clinical and demographic profile for patients with
PD-MCI, providing a strong basis for machine learning-based classification.

After applying False Discovery Rate (FDR) correction, significant between-group differences were
observed for all variables except ESS (p = 0.051). The PD-MCI group was significantly older, had a
higher proportion of males, fewer years of education, and showed a shorter disease duration compared
to the PD-NC group (all p < 0.05). Clinically, the PD-MCI group exhibited significantly higher Hoehn
and Yahr stage (H&Y), more severe non-motor symptoms of daily living (UPDRS-I), motor symptoms
of daily living (UPDRS-II), motor signs (UPDRS-III), motor complications (UPDRS-IV), and depressive
symptoms (GDS), as well as higher rates of REM sleep behavior disorder symptoms (RBDSQ) (all
p < 0.05). In contrast, daytime sleepiness scores (ESS) showed no significant difference between
groups. These findings highlight a distinct clinical and demographic profile for patients with PD-MCI,
providing a strong basis for machine learning-based classification.

3.2. Feature Correlation and Multicollinearity Assessment

To assess potential multicollinearity among predictor variables and understand the relationships
between clinical features, we examined pairwise correlations using Pearson correlation coefficients
for the complete dataset. The correlation matrix is presented in Figure 2, revealing the strength and
direction of associations between all predictor variables used in the classification models.

The correlation analysis demonstrated generally low to moderate correlations among most clinical
features, with the highest positive correlation being r = 0.59 between UPDRS-I and UPDRS-II scores,
and the lowest negative correlation of r = −0.09 between sex and UPDRS-IV. Importantly, no feature
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Figure 2. Correlation Matrix of Clinical Features. The heatmap displays Pearson correlation coefficients between
all predictor variables in the complete dataset. The color scale ranges from blue (negative correlations) to red
(positive correlations). Only the lower triangular matrix is shown to avoid redundancy.

pairs exceeded the high correlation threshold of |r| > 0.7, indicating minimal multicollinearity concerns
for our machine learning models.

The strongest correlations were observed among UPDRS subscales, particularly between UPDRS-I
(non-motor experiences of daily living) and UPDRS-II (motor experiences of daily living) (r = 0.59),
and between UPDRS-II and UPDRS-III (motor examination) (r = 0.49). These moderate correlations
reflect the expected clinical relationships within the unified rating scale framework while maintaining
sufficient independence for predictive modeling. Disease duration showed meaningful positive
correlations with motor severity measures, including H&Y stage (r = 0.26), UPDRS-II (r = 0.30),
UPDRS-III (r = 0.31), and notably UPDRS-IV (motor complications) (r = 0.41), consistent with
the progressive nature of Parkinson’s disease. Among non-motor features, UPDRS-I demonstrated
moderate associations with sleep-related measures (ESS: r = 0.38; RBDSQ: r = 0.34) and mood
assessment (GDS: r = 0.54), reflecting the interconnected nature of non-motor symptoms in PD-MCI
development.

The overall pattern of correlations supports the inclusion of all selected variables in subsequent
machine learning analyses without substantial redundancy, while providing clinically interpretable
relationships that align with our understanding of Parkinson’s disease pathophysiology.

3.3. Feature Selection Results

The LASSO logistic regression process, optimized via subject-level stratified 10-fold cross-
validation on the training set to maximize the area under the precision-recall curve (AUC-PR), was
used to identify the most salient predictors from the initial 12 features. Figure 3 illustrates both the
performance curve derived from cross-validation and the coefficient paths obtained by retraining the
model on the complete training set across a range of regularization parameters.

The cross-validation procedure identified an optimal regularization parameter of λ = 15.8489,
which maximized the mean AUC-PR across all folds. At this optimal regularization strength, the
LASSO algorithm selected a parsimonious subset of seven key features while shrinking the coefficients
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Figure 3. LASSO Logistic Regression Feature Selection. (a) Mean AUC-PR (± standard deviation) from subject-
level stratified 10-fold cross-validation across a range of λ values, with the optimal λ = 15.8489 indicated. (b)
Coefficient paths for each feature as a function of λ obtained by retraining on the complete training set. As λ

increases, coefficients of less important features are progressively shrunk to zero. Only eleven features are shown
as the coefficients of RBDSQ remained zero throughout the regularization path.

of the remaining five features (H&Y, UPDRS-II, UPDRS-IV, ESS, and RBDSQ) to zero, effectively
excluding them from the final model.

When the final LASSO model was trained on the complete training set using λ = 15.8489, the
selected features demonstrated varying contributions to PD-MCI classification. The selected features,
ranked by the absolute magnitude of their coefficients, are visualized in Figure 4.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Weight

UPDRS-III

Sex

UPDRS-I

GDS

Duration

EDUCYRS

Age

0.0087

0.0924

0.0983

0.1571

-0.2498

-0.4093

0.5395

Positive
Negative

Figure 4. LASSO Feature Weights for PD-MCI Classification. The horizontal bar chart displays the absolute
weights of the 7 selected features from the LASSO model trained on the complete training set with the optimal λ

value. Blue bars represent positive coefficients (features associated with increased PD-MCI likelihood, i.e., risk
features), while red bars represent negative coefficients (protective features). Features are ordered by their absolute
weight magnitude, with Age (0.5395) being the most influential predictor, followed by EDUCYRS (-0.4093) and
Duration (-0.2498).

Age emerged as the most influential predictor with a positive coefficient of 0.5395, indicating that
older patients have substantially higher odds of developing PD-MCI. Education years (EDUCYRS)
showed the second-largest magnitude but with a negative coefficient of -0.4093, confirming its pro-
tective role against cognitive decline. Disease duration exhibited a negative coefficient of -0.2498,
suggesting that longer disease duration may be associated with better cognitive preservation in this
cohort. Among the clinical severity measures, depressive symptoms (GDS) demonstrated a positive
coefficient of 0.1571, while non-motor experiences of daily living (UPDRS-I) and sex showed smaller
positive contributions of 0.0983 and 0.0924, respectively. Motor examination scores (UPDRS-III) had the
smallest coefficient of 0.0087, indicating minimal direct contribution to the classification decision. These
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seven features were used for the construction and comparison of all subsequent machine learning
models.

3.4. Hyperparameter Optimization

To ensure optimal model performance prior to final testing, all machine learning algorithms
underwent systematic hyperparameter optimization on the training set using subject-level stratified
10-fold cross-validation. Hyperparameters for each algorithm were optimized using Bayesian opti-
mization with Optuna, where AUC-PR was used as the objective function to identify the optimal
parameter configurations that maximize predictive performance while maintaining generalizability.
The resulting optimal hyperparameters for each model are summarized in Table 4.

Table 4. Optimal Hyperparameters Obtained via Bayesian Optimization

Algorithm Hyperparameter Value

LR
penalty l2
solver newton-cg
C 3.815 × 10−3

SVM kernel linear
C 1.199 × 10−3

RF

n_estimators 374
max_depth 6
min_samples_split 18
min_samples_leaf 28
max_features 6.009 × 10−1

XGBoost

n_estimators 280
learning_rate 6.278 × 10−2

max_depth 2
subsample 9.904 × 10−1

colsample_bytree 6.151 × 10−1

reg_alpha 4.610 × 10−2

reg_lambda 8.896
gamma 4.254 × 10−2

min_child_weight 18
scale_pos_weight 1.852

The hyperparameter optimization revealed distinct algorithmic preferences that reflect the under-
lying data characteristics and modeling challenges. For logistic regression, the selection of L2 penalty
indicates that Ridge regularization was more effective than L1 (LASSO) regularization for this specific
classification task, likely due to the relatively small feature set (7 features) selected by prior LASSO
feature selection, where multicollinearity was already minimized. The very low regularization strength
(C = 3.815 × 10−3) suggests that substantial regularization was necessary to prevent overfitting, which
is consistent with the limited sample size relative to the complexity of the PD-MCI classification
problem.

The SVM model’s preference for a linear kernel over non-linear alternatives (RBF, polynomial,
or sigmoid) indicates that the optimal decision boundary in the 7-dimensional feature space is ap-
proximately linear. This finding suggests that the relationship between clinical features and PD-MCI
status can be effectively captured through linear combinations of the selected predictors, without
requiring complex non-linear transformations. The extremely low C value (1.199× 10−3) demonstrates
a strong preference for a large margin classifier, prioritizing generalization over perfect training set
classification.

For Random Forest, the optimization resulted in a moderate maximum depth of 6 and conservative
splitting criteria with high minimum samples per split (18) and minimum samples per leaf (28) values.
These conservative parameters reflect the algorithm’s adaptation to the limited sample size and suggest
that simple decision rules are sufficient for effective PD-MCI classification. The max_features value
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(6.009 × 10−1) indicates that approximately 60% of the available features were optimal for each split,
maintaining adequate feature diversity while preserving discriminative power.

The XGBoost optimization yielded particularly revealing insights with its selection of max_depth
= 2, indicating that simple two-level decision trees were optimal for this dataset. This shallow tree depth
suggests that the PD-MCI classification can be effectively achieved through relatively simple decision
rules with minimal hierarchical feature interactions. This finding aligns with the linear separability
suggested by the SVM results and implies that the selected clinical features provide straightforward,
interpretable decision pathways for PD-MCI identification. The moderate learning rate (6.278 ×
10−2) and high subsample ratio (9.904 × 10−1) further support a conservative boosting approach
that emphasizes stability over aggressive fitting, while the substantial regularization parameters
(reg_lambda = 8.896) indicate strong preference for generalization over training set performance.

3.5. Cross-Validated Performance on Training Data

Following hyperparameter optimization, each model was evaluated on the training set using
subject-level stratified 10-fold cross-validation with the obtained optimal parameters to assess their
intrinsic discriminative capacity. The evaluation initially computed threshold-independent metrics
(AUC-ROC and AUC-PR) that assess the model’s fundamental ability to distinguish between PD-MCI
and non-MCI cases across all possible decision thresholds. Subsequently, three different threshold
optimization strategies were systematically applied to determine optimal decision boundaries: the
default threshold (0.5), F1-score maximization, and Youden index maximization. These threshold
optimization strategies specifically influence threshold-dependent metrics such as accuracy, precision,
recall, and F1-score. The comprehensive cross-validation performance results using the optimized
hyperparameters across all threshold strategies are presented in Table 5.

Table 5. Cross-Validation Performance Comparison on Training Data Across Different Threshold Strategies.

Threshold Metric LR SVM RF XGBoost

AUC-ROC 0.6948±0.0441 0.6946±0.0453 0.6952±0.0427 0.7076±0.0442
AUC-PR 0.4443±0.0843 0.4462±0.0850 0.4408±0.0833 0.4529±0.0807

Default (0.5)

Accuracy 0.6406±0.0427 0.7507±0.0355 0.6252±0.0390 0.7098±0.0415
Balanced Accuracy 0.6487±0.0435 0.5548±0.0411 0.6219±0.0382 0.6142±0.0500
Precision 0.3833±0.0740 0.5073±0.2208 0.3616±0.0619 0.4300±0.1048
Recall 0.6633±0.0835 0.1534±0.0840 0.6145±0.0858 0.4174±0.0858
Specificity 0.6340±0.0547 0.9562±0.0212 0.6293±0.0580 0.8110±0.0433
F1-score 0.4820±0.0702 0.2300±0.1174 0.4520±0.0589 0.4192±0.0839
Cohen’s Kappa 0.2393±0.0806 0.1393±0.1042 0.1969±0.0687 0.2280±0.1050

F1-Score

Optimal Threshold 0.4636±0.0474 0.2217±0.0467 0.4372±0.1239 0.3570±0.1099
Accuracy 0.6015±0.0701 0.6008±0.0644 0.6203±0.1138 0.6474±0.1051
Balanced Accuracy 0.6723±0.0366 0.6711±0.0366 0.6673±0.0294 0.6836±0.0475
Precision 0.3781±0.0757 0.3762±0.0723 0.4028±0.0920 0.4201±0.1038
Recall 0.8145±0.0812 0.8113±0.0850 0.7705±0.1860 0.7615±0.1187
Specificity 0.5301±0.1184 0.5309±0.1089 0.5640±0.2152 0.6058±0.1880
F1-score 0.5100±0.0615 0.5078±0.0592 0.5092±0.0520 0.5278±0.0630
Cohen’s Kappa 0.2511±0.0819 0.2483±0.0764 0.2620±0.0879 0.2937±0.1140

Youden Index

Optimal Threshold 0.4784±0.0253 0.2441±0.0496 0.4495±0.1044 0.3643±0.0770
Accuracy 0.6187±0.0620 0.6304±0.0614 0.6262±0.0887 0.6528±0.0830
Balanced Accuracy 0.6732±0.0357 0.6721±0.0354 0.6692±0.0282 0.6859±0.0452
Precision 0.3865±0.0785 0.3920±0.0707 0.4001±0.0952 0.4166±0.0966
Recall 0.7765±0.0881 0.7512±0.1314 0.7540±0.1439 0.7539±0.0738
Specificity 0.5700±0.0979 0.5930±0.1097 0.5844±0.1670 0.6179±0.1368
F1-score 0.5080±0.0612 0.5052±0.0594 0.5067±0.0536 0.5276±0.0629
Cohen’s Kappa 0.2595±0.0783 0.2625±0.0673 0.2628±0.0825 0.2950±0.1051

The comprehensive cross-validation analysis revealed distinct performance patterns across the
four machine learning algorithms under three threshold optimization strategies. Regarding threshold-
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independent metrics, XGBoost demonstrated superior discriminative capability, achieving the highest
AUC-ROC of 0.7076±0.0442 and AUC-PR of 0.4529±0.0807. Nevertheless, the performance differences
among all algorithms were relatively modest, with AUC-ROC values ranging from 0.6946 to 0.7076 and
AUC-PR values spanning 0.4408 to 0.4529, suggesting comparable inherent discriminative capacity
across models for PD-MCI classification tasks.

The default threshold (0.5) strategy revealed substantial performance variations across algorithms.
SVM achieved the highest accuracy (0.7507±0.0355) and specificity (0.9562±0.0212), but demonstrated
markedly poor recall (0.1534±0.0840), resulting in the lowest F1-score (0.2300±0.1174) and Cohen’s
kappa (0.1393±0.1042). This pattern indicates that the default threshold is excessively conservative for
SVM in PD-MCI detection, leading to substantial underdiagnosis. In contrast, logistic regression with
the default threshold achieved more balanced performance with the highest recall (0.6633±0.0835),
F1-score (0.4820±0.0702), and Cohen’s kappa (0.2393±0.0806).

Both optimized threshold strategies demonstrated superior balance between sensitivity and
specificity compared to the default threshold. The F1-score optimization strategy consistently improved
recall across all models while maintaining reasonable precision. XGBoost achieved the best overall
performance under F1-score optimization with the highest accuracy (0.6474±0.1051), balanced accuracy
(0.6836±0.0475), precision (0.4201±0.1038), specificity (0.6058±0.1880), F1-score (0.5278±0.0630), and
Cohen’s kappa (0.2937±0.1140). Logistic regression exhibited the highest recall (0.8145±0.0812) under
this strategy.

The Youden index optimization provided a similar balanced performance profile to F1-score
optimization. XGBoost again demonstrated the strongest performance across most metrics, achieving
the highest accuracy (0.6528±0.0830), balanced accuracy (0.6859±0.0452), precision (0.4166±0.0966),
specificity (0.6179±0.1368), F1-score (0.5276±0.0629), and Cohen’s kappa (0.2950±0.1051). Notably,
logistic regression maintained the highest recall (0.7765±0.0881) under Youden index optimization.

The optimal thresholds derived from cross-validation varied substantially across algorithms
and optimization criteria. SVM consistently required the lowest thresholds (F1-score: 0.2217±0.0467;
Youden: 0.2441±0.0496), reflecting its tendency to produce conservative probability estimates. XGBoost
required intermediate thresholds (F1-score: 0.3570±0.1099; Youden: 0.3643±0.0770), while logistic
regression and Random Forest showed higher and more variable threshold requirements.

Based on these comprehensive cross-validation results, XGBoost emerged as the most promising
algorithm across both optimized threshold strategies, consistently achieving the highest F1-scores and
Cohen’s kappa values. The optimized threshold strategies (F1-score and Youden index) demonstrated
clear superiority over the default threshold for PD-MCI classification, providing more clinically relevant
sensitivity-specificity trade-offs. For subsequent test set evaluation, the median optimized thresholds
from cross-validation were adopted to ensure robust and generalizable performance estimates.

3.6. Model Evaluation

The performance of the four machine learning models was evaluated on the independent test
set using the median optimized thresholds derived from cross-validation. Figure 5 illustrates the
corresponding ROC and PR curves for all models, providing visual representation of their discrimi-
native performance. Table 6 presents a detailed comparison of model performance across different
threshold strategies, providing both threshold-independent metrics (AUC-ROC and AUC-PR) and
threshold-dependent metrics under various optimization criteria. The comprehensive evaluation of
the four models revealed important insights into their discriminative abilities and the critical role of
threshold optimization in imbalanced classification scenarios.
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Figure 5. ROC and PR curves for the different machine learning models on the test set. (a) ROC curves illustrate
the trade-off between sensitivity and 1-specificity, reflecting each model’s discriminative ability to distinguish
between positive and negative classes across all classification thresholds. (b) PR curves show the trade-off between
precision and recall, which is particularly informative for imbalanced datasets as they focus on the performance of
the positive class and are less influenced by the large number of true negatives.

Table 6. Comparison of Model Performance Metrics Across Different Decision Threshold Strategies.

Threshold Metric LR SVM RF XGBoost

AUC-ROC 0.7241 0.7252 0.6882 0.6967
AUC-PR 0.4923 0.5008 0.4417 0.4375

Default (0.5)

Accuracy 0.6689 0.7356 0.6344 0.6889
Balanced Accuracy 0.6774 0.5614 0.6522 0.6256
Precision 0.4447 0.6212 0.4122 0.4519
Recall 0.6969 0.1614 0.6929 0.4803
Specificity 0.6579 0.9613 0.6115 0.7709
F1-score 0.5429 0.2563 0.5169 0.4656
Cohen’s Kappa 0.3027 0.1583 0.2522 0.2465

F1-Score

Optimal Threshold 0.4769 0.2452 0.4465 0.3942
Accuracy 0.6244 0.6300 0.5578 0.6222
Balanced Accuracy 0.6667 0.6634 0.6358 0.6449
Precision 0.4110 0.4132 0.3710 0.4023
Recall 0.7638 0.7402 0.8150 0.6969
Specificity 0.5697 0.5867 0.4567 0.5929
F1-score 0.5344 0.5303 0.5099 0.5101
Cohen’s Kappa 0.2645 0.2636 0.1993 0.2371

Youden Index

Optimal Threshold 0.4840 0.2495 0.4629 0.3767
Accuracy 0.6433 0.6356 0.5722 0.6111
Balanced Accuracy 0.6751 0.6649 0.6351 0.6431
Precision 0.4251 0.4170 0.3757 0.3957
Recall 0.7480 0.7323 0.7795 0.7165
Specificity 0.6022 0.5975 0.4907 0.5696
F1-score 0.5421 0.5314 0.5070 0.5098
Cohen’s Kappa 0.2846 0.2683 0.2038 0.2297

In terms of overall discriminative ability, the Support Vector Machine (SVM) demonstrated the
superior performance, achieving the highest AUC-ROC of 0.7252 and AUC-PR of 0.5008. Logistic
Regression (LR) followed closely with an AUC-ROC of 0.7241 and AUC-PR of 0.4923, indicating
comparable and robust classification potential. These results suggest that linear models possess
excellent discriminative power for PD-MCI classification in this dataset, likely due to their ability to
capture the linear relationships between the selected clinical features and cognitive impairment status.
The Random Forest (RF) and XGBoost models, while showing respectable performance, achieved
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lower AUC values (RF: AUC-ROC = 0.6882, AUC-PR = 0.4417; XGBoost: AUC-ROC = 0.6967, AUC-PR
= 0.4375 respectively), suggesting that the additional complexity of ensemble methods may not provide
substantial benefits for this particular feature set and dataset.

The default threshold of 0.5 again proved suboptimal, as exemplified by the SVM’s performance:
while achieving high specificity (0.9613) and precision (0.6212), its recall was only 0.1614, resulting
in an extremely low F1-score of 0.2563. Such performance characteristics would be unacceptable
in clinical scenarios where high sensitivity is crucial for detecting cognitive impairment, as missing
PD-MCI cases could delay appropriate interventions and patient care planning. This underscores the
fundamental necessity of threshold optimization when dealing with imbalanced datasets to achieve an
effective trade-off between sensitivity and specificity that aligns with clinical priorities.

The two threshold optimization strategies, i.e., maximizing the F1-score and maximizing the
Youden Index, yielded substantially more balanced performance across all models. Under F1-score
optimization, the LR model demonstrated superior performance across the majority of evaluation
metrics, achieving the highest balanced accuracy (0.6667), F1-score (0.5344), and Cohen’s Kappa
(0.2645). Similarly, under Youden Index optimization, the LR model again secured the best performance
in most metrics, including the highest accuracy (0.6433), balanced accuracy (0.6751), precision (0.4251),
specificity (0.6022), F1-score (0.5421), and Cohen’s Kappa (0.2846). The SVM model consistently
achieved competitive performance under both optimization strategies, particularly showing strong
results in F1-score optimization with an accuracy of 0.6300 and the highest precision of 0.4132. This
consistent performance highlights the strength of both linear models, particularly the LR model, in
achieving well-rounded and balanced overall performance for PD-MCI classification. The LR model’s
interpretability, combined with its robust performance, makes it particularly suitable for clinical
applications where understanding the contribution of individual features is important for clinical
decision-making.

However, two notable exceptions emerged from the threshold optimization results that merit
careful consideration. When the threshold was optimized to maximize the F1-score, the Random
Forest model achieved the highest recall (0.8150), while under Youden Index optimization, the RF
model secured the top performance in recall again, reaching 0.7795. These findings indicate that if
the primary clinical objective is to identify the maximum number of PD-MCI cases (i.e., maximizing
recall to minimize missed diagnoses), appropriately optimized Random Forest models might be more
suitable choices than linear models. The RF model’s ability to achieve high recall values suggests
that for clinical applications where the cost of false negatives is particularly high—such as screening
scenarios where missing cognitive impairment could lead to delayed treatment—ensemble models
with optimized thresholds could be preferred despite their lower overall discriminative ability.

These findings highlight the fundamental importance of aligning model selection and threshold
optimization with specific clinical objectives. For applications prioritizing the minimization of false
positives (high specificity) or seeking the best overall diagnostic accuracy, LR and SVM demonstrate
superior performance. Conversely, for scenarios where maximizing the detection of PD-MCI patients
is paramount, Random Forest models with appropriately optimized thresholds may provide better
clinical utility despite potentially higher false positive rates.

3.7. Feature Importance Analysis

To gain deeper insights into the decision-making processes of our models and identify the most
influential clinical factors for PD-MCI classification, we conducted a comprehensive feature importance
analysis after training each of the four models (LR, SVM, RF, XGBoost) on the complete training
dataset using the seven selected features and optimized hyperparameters. We employed multiple
complementary analytical approaches to ensure robust and comprehensive assessment: model-specific
importance measures (coefficients for linear models, impurity-based scores for RF, and Gain for
XGBoost), SHAP values for understanding individual feature contributions, and the model-agnostic
permutation importance method to corroborate our findings from multiple perspectives.
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As illustrated in Figure 6, a remarkably uniform pattern emerges across all models and analytical
methodologies. Three clinical variables consistently rank as the most salient predictors of cognitive
status: Age, Education Years, and Disease Duration, which respectively reflect the natural progression
of cognitive decline, cognitive reserve capacity, and cumulative pathological burden. Additionally, GDS
frequently appears among the top four important features, underscoring the significant relationship
between depressive symptoms and cognitive impairment in Parkinson’s disease.

The SHAP summary plots, presented in Figure 7, provide granular insights into both the mag-
nitude and directionality of each feature’s contribution to model predictions. These visualizations
reveal that higher values for Age and GDS (represented by red points) are consistently associated with
positive SHAP values, indicating an increased probability of PD-MCI classification [31]. Conversely,
higher EDUCYRS values are associated with negative SHAP values, demonstrating the protective
effect of education against cognitive decline. This pattern aligns with established neurological literature
suggesting that educational attainment may contribute to cognitive reserve, potentially delaying the
onset or manifestation of cognitive impairment in neurodegenerative diseases [32,33].
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Figure 6. Comparison of feature importance across four models (rows: LR, SVM, RF, XGBoost) using three
different evaluation metrics (columns). The metrics are: model-specific importance (Coefficients for LR/SVM,
Gini Impurity for RF, and Gain for XGBoost), mean absolute SHAP values, and permutation importance.
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(a) (b)

(c) (d)

Figure 7. SHAP summary plots for (a) Logistic Regression, (b) Support Vector Machine, (c) Random Forest, and
(d) XGBoost models. Each point represents a single observation. The horizontal position indicates the feature’s
impact on the model output (SHAP value), while the color denotes the feature’s magnitude (red for high, blue for
low). Features are ranked vertically by their global importance, providing a detailed view of both the direction
and consistency of their effects.

4. Discussion
4.1. Principal Findings

In this study, we systematically developed and validated machine learning models for the classifi-
cation of mild cognitive impairment in Parkinson’s disease using a large-scale clinical dataset from
the PPMI. Our principal findings demonstrate that a parsimonious set of seven clinical features can
effectively distinguish between PD patients with and without MCI. The linear models, Support Vector
Machine (SVM) and Logistic Regression (LR), demonstrated superior overall discriminative ability
with AUC-ROC scores of 0.7252 and 0.7241, respectively, accompanied by AUC-PR values of 0.5008
and 0.4923, respectively. The feature importance analysis revealed consistent patterns across all models
and analytical methodologies, with age, education years, and disease duration emerging as the most
salient predictors of cognitive status.

4.2. Comparison with Prior Work

Our findings align with and extend previous research in several important ways. The critical
role of age, education years, and disease duration as key predictors confirms established risk factors
identified in prior studies [10,11,32,34]. Specifically, age has been consistently identified as a primary
risk factor for cognitive decline in PD, with older patients demonstrating significantly higher rates of
cognitive impairment progression [12]. Similarly, educational attainment has been recognized as a
protective factor, with higher education levels associated with delayed onset of cognitive symptoms,
likely through enhanced cognitive reserve mechanisms [35]. Disease duration, while presenting
complex relationships in longitudinal cohorts, has been established as a fundamental predictor of
cognitive deterioration in multiple prospective studies [10,11].

However, our work distinguishes itself through two key advantages: the utilization of a large-scale
dataset and rigorous methodological approaches. First, our study leverages the comprehensive PPMI
database, which provides a substantially larger sample size compared to most previous investigations
in this field, thereby enhancing the statistical power and generalizability of our findings. Second, we
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employed methodologically rigorous approaches, particularly the use of subject-level data splitting to
ensure realistic performance estimates and avoid the inflated results that can arise from data leakage
in longitudinal datasets [18,19]. Additionally, our comprehensive feature selection methodology,
extensive hyperparameter optimization, and multifaceted model evaluation framework contribute to
the methodological rigor of this investigation.

While previous studies incorporating multimodal data (e.g., neuroimaging or fluid biomarkers)
have reported higher AUC values [13,14], our purely clinical models offer a highly practical and
accessible alternative that can be readily implemented in diverse clinical settings. Recent systematic
reviews have highlighted the growing importance of machine learning approaches in PD-MCI detection
[16,17], and our study contributes to this body of evidence by demonstrating that readily available
clinical data, when analyzed with appropriate methodological rigor and sufficient sample size, can
achieve meaningful discriminative performance for screening purposes.

4.3. Clinical Implications

The clinical implications of our findings are multifaceted and have direct relevance for routine
clinical practice. The performance achieved using only readily available clinical data provides a
strong argument for the utility of these models as accessible, low-cost, and non-invasive first-line
screening tools in clinical settings where advanced neuroimaging or biomarker testing may not be
readily available.

The threshold optimization results reveal crucial clinical insights regarding the inherent trade-offs
between different performance metrics in PD-MCI classification. When optimized to maximize the
F1-score, the RF model achieved the highest recall of 0.8150, successfully identifying over 80% of all
cognitive impairment cases. Similarly, under Youden Index optimization, the RF model maintained
exceptional sensitivity with a recall of 0.7795, demonstrating consistent capability in capturing a
substantial proportion of PD-MCI patients across different optimization strategies. These consistently
high recall values carry profound clinical significance, particularly in the context of PD-MCI screening
and early detection programs, where the primary clinical objective is typically to minimize missed
diagnoses rather than to strictly control false positive rates. From a clinical perspective, such high
sensitivity translates directly to enhanced screening effectiveness and improved patient care outcomes,
ensuring that the vast majority of patients with cognitive impairment are successfully identified and
can receive timely follow-up neuropsychological assessment and appropriate therapeutic intervention.

However, the clinical utility of high recall must be balanced against the increased false positive rate,
which could lead to unnecessary anxiety for patients and additional healthcare resource utilization for
confirmatory testing. The optimal choice between linear models (offering better overall discriminative
ability) and ensemble models (providing higher recall) should therefore be guided by the specific
clinical context, available resources, and the relative costs of false negatives versus false positives in
the particular healthcare setting.

To facilitate clinical decision-making, Table 7 provides a practical framework for model selection
based on specific clinical scenarios. For screening and early detection programs where the primary goal
is to identify as many PD-MCI cases as possible (i.e., "better safe than sorry" approach), the Random
Forest model with optimized thresholds is recommended due to its superior recall performance
(0.8150 under F1-score optimization). This approach is particularly valuable in primary care settings,
specialty movement disorder clinics conducting routine cognitive assessments, and research cohorts
requiring comprehensive cognitive phenotyping. Conversely, for precision diagnostic assistance
where balanced accuracy and overall discriminative ability are prioritized, the Logistic Regression or
Support Vector Machine models are more suitable, offering superior AUC-ROC performance (0.7241
and 0.7252, respectively) and better balance across multiple evaluation metrics. This approach is
more appropriate for confirmatory diagnostic processes, specialist referral decisions, and clinical
contexts where false positives carry significant consequences for patient care or resource allocation.
Additionally, for resource-limited settings where cost-effectiveness and model interpretability are
paramount considerations, the Logistic Regression model represents the optimal choice, providing
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both transparent decision-making processes that clinicians can easily understand and implement,
while maintaining sufficient predictive accuracy for practical screening applications without requiring
sophisticated computational infrastructure.

Table 7. Clinical Decision Framework for Model Selection in PD-MCI Classification

Clinical Scenario Primary Objective Model

Screening & Early Detection Maximize case identification RF
Research & Cohort Studies Comprehensive cognitive phenotyping RF
Precision Diagnostic Assistance Balanced accuracy & overall discrimination LR or SVM
Resource-Limited Settings Cost-effective, interpretable screening LR

The SHAP analysis further enhances model transparency by illustrating the specific impact of
individual factors on predictions, which can increase clinical trust and aid in patient communication by
clearly visualizing how higher age increases MCI risk while more years of education decreases it. This
interpretability is particularly valuable for shared decision-making processes and for educating patients
about modifiable and non-modifiable risk factors that influence their cognitive health trajectory.

4.4. Strengths and Limitations

This study possesses several notable strengths that enhance the reliability and clinical relevance of
our findings. First, we employed a large-scale, high-quality dataset from the PPMI with standardized
assessment protocols and rigorous quality control measures. Second, our methodological approach
incorporated subject-level data splitting to prevent data leakage, comprehensive feature selection using
multiple techniques, and extensive hyperparameter optimization to ensure robust model performance.
Third, we conducted thorough feature importance analysis using multiple complementary approaches
(model-specific measures, SHAP values, and permutation importance) to provide comprehensive
insights into model decision-making processes. Fourth, our focus on readily available clinical features
makes the models highly practical for real-world implementation in diverse clinical settings.

However, several limitations should be acknowledged. First, our analysis relied exclusively on
clinical data, which, while readily accessible and cost-effective, may not capture the full complexity
of cognitive impairment in Parkinson’s disease. Second, an unexpected finding emerged regarding
disease duration, which appeared as a protective factor in our models—a result that contradicts the
well-established clinical understanding that longer disease duration typically increases cognitive
impairment risk. This counterintuitive finding likely reflects sample selection bias or survivorship
bias inherent in the PPMI longitudinal cohort design, where patients with rapid cognitive decline may
be more likely to develop MCI early and subsequently drop out of long-term studies, while patients
maintaining cognitive function despite longer disease duration represent a selected population of
"cognitive survivors." Third, our methodological approach employed a two-stage procedure where
LASSO feature selection was performed first, followed by Bayesian optimization on the selected feature
set, both based on subject-level stratified 10-fold cross-validation. While a more stringent approach
would involve nesting LASSO within the Bayesian optimization process to further enhance expected
generalization performance, such complexity would significantly reduce model interpretability and
practical implementation feasibility. Our current pipeline already substantially mitigates information
leakage and ensures model reliability through rigorous cross-validation procedures. Fourth, although
the PPMI dataset represents a high-quality cohort, external validation on independent datasets from
diverse populations is essential to confirm the generalizability of our models across different ethnic
groups, healthcare systems, and geographic regions.

4.5. Future Work

Several important directions for future research emerge from this study. First, future inves-
tigations should focus on integrating multimodal data sources, including fluid biomarkers (such
as cerebrospinal fluid α-synuclein, tau, and neurofilament light chain), genetic markers (including
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APOE genotype and GBA mutations), and advanced neuroimaging features (such as structural MRI
volumetrics, diffusion tensor imaging metrics, and functional connectivity patterns) to potentially
improve predictive accuracy [13,14,36]. Second, future research should examine the underlying patho-
physiological mechanisms linking clinical variables to cognitive decline in PD, potentially through
neuroinflammatory markers, synaptic dysfunction indicators, or network connectivity analyses [15].
Third, to address the methodological limitations highlighted by our disease duration findings, future
studies should employ analytical approaches specifically designed to handle time-dependent data and
participant attrition, such as survival analysis methods or mixed-effects models for longitudinal data
analysis [16,35]. Finally, the development of dynamic prediction models that can incorporate longitu-
dinal changes in clinical features over time represents a particularly promising direction, potentially
providing more accurate risk assessment as patients progress through different disease stages and
enabling the prediction of cognitive decline trajectories rather than static classification [17].

5. Conclusion
This study successfully developed and validated machine learning models for the classification

of mild cognitive impairment in Parkinson’s disease using a comprehensive clinical dataset from
the PPMI. Our investigation demonstrates that a parsimonious set of seven readily available clinical
features can achieve meaningful discriminative performance for PD-MCI classification, with linear
models (SVM and LR) demonstrating superior overall performance with AUC-ROC of 0.7252 and
AUC-PR of 0.5008. The consistent identification of age, education years, and disease duration as the
most salient predictors across all models and analytical methodologies confirms established risk factors
while providing robust evidence for their clinical utility in screening applications. Notably, the role
of certain clinical indicators (such as disease duration) in our models reveals potential data selection
biases inherent in longitudinal cohort studies, warranting further investigation.

The methodological rigor of our approach, including subject-level data splitting to prevent data
leakage, comprehensive feature selection, and extensive hyperparameter optimization, ensures the
reliability and generalizability of our findings. The high recall values achieved through threshold
optimization (up to 0.8150 for Random Forest under F1-score optimization) demonstrate the potential
clinical utility of these models as effective screening tools for early identification of cognitive impair-
ment in PD patients. The integration of SHAP analysis enhances model interpretability and clinical
trust by providing transparent insights into individual feature contributions to predictions.

While our purely clinical approach offers practical advantages in terms of accessibility and cost-
effectiveness compared to multimodal approaches incorporating neuroimaging or biomarker data,
future research should focus on integrating these complementary data sources to further enhance
predictive accuracy. The development of dynamic prediction models incorporating longitudinal
changes and the validation of these models in diverse clinical populations represent important next
steps toward implementing these tools in routine clinical practice. Ultimately, this work provides
a solid foundation for the development of clinical decision support systems that can facilitate early
detection and intervention for cognitive impairment in Parkinson’s disease, potentially improving
patient outcomes through timely therapeutic interventions and care planning.
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