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Simple Summary: Our current transcriptomics analyses aimed to improve understanding of how 
genes influence muscle and fat growth in beef cows. As the demand for good quality beef continues 
to increase, finding ways to improve and understand mechanism influencing beef quality is 
important. By employing transcriptomics analysis and WGCNA based gene co-expression analyses, 
we examined the relationship between candidate genes and various beef quality traits like body 
weight (BW), ultrasound back fat (BF), ultrasound muscle depth (MD) and body condition score 
(BCS) in beef cows. Our results highlighted interesting candidate genes and metabolic pathways 
associated with these traits, providing valuable insights into the molecular mechanisms that control 
muscle and fat growth. By understanding these mechanisms, farmers and producers can develop 
more effective strategies to improve beef production, ultimately benefiting both the industry and 
consumers. This research contributes to the ongoing efforts to enhance the sustainability and 
efficiency of beef production. Our study reveals novel insights into the biological processes that 
influence muscle and fat growth, paving the way for future research and efficient beef production. 

Abstract: Beef production is an important component of the world’s food supply with production 
being near 59 million tons in 2023 (USDA, 2023). Enhancing our understanding of the factors 
influencing metabolism will lead to improvements in production efficiency. Using RNA-seq and 
WGCNA of longissimus muscle samples, gene expression and metabolic pathway analyses were 
performed to examine relationships with ultrasound and body mass variables. In this study, body 
weight (BW), ultrasound back fat (BF), ultrasound muscle depth (MD) and body condition score 
(BCS) were traits recorded for 18 cull beef cows. As expected, all production related traits monitored 
(WT, BF, MD and BCS) in this study exhibited a positive correlation with each other. Large-scale 
transcriptome analyses were performed using RNA extracted from longissimus dorsi muscle. 
Weighted correlation network analysis (WGCNA) was employed to associate changes in traits with 
gene expression. In WGCNA, the dark-green module demonstrated a positive correlation with all 
traits with the highest observed for back fat (cor=0.45, P=0.07) and muscle depth (cor=0.45, P=0.07). 
Functional analysis of the dark-green module highlighted olfactory transduction (P=0.03) and RNA 
processing as significantly correlated (P=0.08) with production traits. Additionally, the hematopoietic 
cell lineage pathway was reported as the most significant negative correlation with muscle depth 
(cor= -0.71, P=0.001). We identified four hub genes (i.e., SEPTIN9, NONO, CCDC88C and 
CACNA2D3) showing relationship to the traits measured. These findings provide further 
understanding of the molecular mechanisms influencing muscle and fat accretion in cull beef cows. 
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1. Introduction 

Beef is an excellent source of protein, and its demand is increasing globally [1]. Beef production 
efficiency is directly linked to profitability and sustainability of the beef cattle industry [2]. Beef 
production is a complex system and influenced by different factors such as age, breed, diet, genetic 
factors (genes), weather, genotype-by-environment interaction and other factors [3,4]. Most of the 
genetic or molecular factors involved in beef production are not completely understood. Few genes 
related to beef production in cows have been reported. For example, ACACA (Acetyl-CoA 
carboxylase alpha) gene is reported as a major player in intramuscular deposition in ruminants. In 
beef cows, a positive correlation between ACACA expression level and total lipids and trans-fatty 
acids were reported [5]. Pleomorphic adenoma gene 1 (PLAG1) and Pleomorphic adenoma gene 2 
(PLAG2) were reported to be associated with growth, stature, skeletal muscle growth, fat thickness, 
and fatty acid composition in cattle [6]. A haplotype analysis found evidence that the mutation in 
PLAG1 mutation affects body size and weight in modern cattle [7]. 

Next-generation sequencing allows detailed analysis of complex traits at the level of their 
genomes (genomics), transcriptomes (transcriptomics), or epigenome (epigenomics) [8]. Among 
these, transcriptomics is widely utilized to identify regulators of complex traits at gene/transcript 
level. Ribonucleic acid (RNA) sequencing (RNA-Seq) is a popular approach for transcriptome 
profiling that uses next-generation sequencing analysis. RNA-Seq gives detailed quantification of 
transcripts, and their isoforms compared to other techniques [9]. RNA-Seq has been utilized for 
studying gene expression profiles of different animals, e.g., cow, horse, sheep, buffalo and others [10–
13]. Most of these studies have identified differentially expressed genes and their associated 
pathways. However, additional identification of genes and their relationship to important traits can 
shed more light on how genes regulate complex traits. Weighted Gene Co-Expression Network 
Analysis (WGCNA) is a widely used technique for co-expression network analysis to screen gene 
expression data and relationships with phenotypic traits [14]. WGCNA has been widely used to study 
complex traits and their correlation with gene expression data [15]. In cows, WGCNA has been used 
to investigate feed efficiency. One study identified ATP7B (ATPase Copper Transporting Beta) as a 
hub gene (central regulator) significantly associated with residual feed intake [16] In Nellore cattle, 
relationships of between gene expression and carcass traits were revealed using WGCNA [17]. 
Authors reported that energy and lipid metabolism pathways, highlighting fatty acid metabolism, 
were the central pathways associated with rib-eye area. 

In an effort to further understand the complex relationships of production traits and gene 
expression in beef cows, we employed RNA-Seq based transcriptome data and WGCNA. In our 
study, body weight, body condition score, back fat and muscle depth were traits (variables) 
associated with beef production which were monitored. Total RNA was extracted from the 
longissimus dorsi with RNA-Seq analyses conducted. Weighted gene co-expression network analysis 
was applied to associate changes in beef production related traits with gene expression. Relationships 
between measured traits, metabolic pathways, and hub genes were then identified. 

2. Materials and Methods 
2.1. Experimental Site 

All the procedures were conducted according to a protocol approved by the Institutional Animal 
Care and Use Committee at the University of Kentucky (protocol #2022-4039). The facility was 
inspected and approved by the Institutional Animal Care and Use Committee. Animals were 
individually penned (2.4 m x 14.6 m pens) in a partially covered concrete floored pen. The covered 
area was bedded with sawdust. Each pen contained an automatic waterer shared between two pens. 
Feed was delivered in concrete bunks each morning. 
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2.2. Beef Production Related Trait Analysis 

Twenty-two mature cows were sourced from local livestock markets between May 23 and June 
6, 2022. Purchased cows were of unknown age and genetic make-up. The majority of cows had black 
haircoats likely being of Angus influence while some were noted to have Charolais and Hereford 
influence determined by their coat color and pattern. Arrival body condition scores by three trained 
individuals and body weights were collected on June 10, 2022. After a few days, three of the 
purchased cows were removed due to lameness or other pre-existing conditions which were not 
improving. A replacement open cow, predominately Angus breeding, from the university herd was 
enrolled in the study to allow for 20 cows to be sampled at the start of the study. Cows were provided 
hay ad libitum for the first few days after arrival. Cows were then transitioned to a diet consisting 
primarily of corn silage and a protein supplement. The diet was limit-fed based on arrival weights to 
1.5x maintenance energy requirement levels. 

2.3. Longissimus Dorsi Muscle Biopsy 

Muscle biopsies of the Longissimus dorsi were performed between 12th and 13th ribs on July 29, 
2022. Ultrasonography was used to assess subcutaneous fat thickness over the Longissimus dorsi and 
muscle depth. The ultrasound was used to target the mid-point of the muscle to provide a consistent 
sample region between animals. Muscle samples were obtained from the right side of the animal. The 
target region was clipped to remove hair, scrubbed with a betadine solution and then alcohol. A local 
anesthesia injection of 5-ml of a lidocaine solution (2%) was given before biopsy incision. The incision 
through the skin was made using a 2.54 cm long 14-gauge needle. Muscle samples were collected 
using semi-automatic biopsy needles (Argon medical device, catalogue number: 701114090) to collect 
approximately 200 mg of muscle tissue. Excessive fat was removed from the biopsies. Samples 
collected for RNA extraction were suspended in RNAlater (RNAlater™ stabilization solution, 
Invitrogen, AM7020) to prevent RNA degradation during sampling. All the samples were flash 
frozen in liquid nitrogen and stored at -80oC until RNA extraction. 

2.4. RNA Extraction, Library Preparation and Sequencing 

Muscle samples were subjected to total RNA extraction using the Zymo Research quick RNA 
micro prep kit (R01050). The RNA’s purity was assessed through gel electrophoresis and the Agilent 
2100 Bioanalyzer. Isolation of pure messenger RNA (mRNA) was achieved using oligo (dT) beads. 
Following this, cDNA libraries were generated utilizing the Kapa Stranded mRNA Library 
Preparation Kit (Roche, KR0960) in accordance with the manufacturer’s guidelines. The cDNA library 
underwent size selection (150 bp) and was subsequently enriched through PCR. The quality 
assessment of the libraries was performed using a bioanalyzer (Agilent 2100 Bioanalyzer system). 
The sequencing of cDNA libraries was carried out on the Illumina NovaSeq S4 platform, producing 
paired-end (2 × 150 bp) data in FASTQ format. The sequencing library preparation and sequencing 
procedures were conducted by Quick Biology Inc. 

2.5. RNA Sequencing Data Analysis 

Raw sequencing reads (FASTQ files) were subjected to quality control by FastQC 
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). In brief, FastQC detected 
contaminants including overrepresented sequences, sequencing adapters, poor quality reads and 
PCR duplicates. All these contaminants were filtered using Cutadapt 1.4 (Command line : cutadapt -
a ADAPTER_FWD -A ADAPTER_REV -o out.1.fastq -p out.2.fastq reads.1.fastq reads.2.fastq) [18,19]. 
The cow reference transcriptome files (Bos taurus ARS_UCD 1.2) for mapping and quantification 
were obtained from Ensembl genome browser (https://ftp.ensembl.org/pub/release-
108/fasta/bos_taurus/cdna/). The initial step involved indexing the cow reference transcript file using 
the Salmon index option. (command line: salmon_index -t cow_transcripts.fasta -d decoys.txt -p 12 -
i cow_salmon_index). The transcriptome-wide quantification in the form of TPM (transcript per 
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million) on clean reads were performed using salmon v 1.6.0 (command line: salmon quant -i 
salmon_index -l A -1 Clean_Read_1.fq -2 Clean_Read_2.fq --validateMappings -o salmon_quant -p 
12 --seqBias) [19]. The workflow of RNA sequencing and data analyses are shown in Figure 1. 

 
Figure 1. The workflow of RNA sequencing and co-expression analysis includes two parts: (A) Sample collection, 
RNA extraction, library preparation and sequencing. (B) Cleaning the sequencing reads, quantification of gene 
expression, weighted gene co-expression network analysis (WGCNA) analysis and functional profiling. 

2.6. Weighted Gene Co-Expression Network Analysis (WGCNA) 

The R package, Weighted Gene Co-expression Network Analysis (WGCNA) was used to 
construct co-expression networks and find co-expressed genes [20]. Gene expression data (TPM) of 
18 cows with four different traits (WT, BF, MD and BCS) were selected for WGCNA analysis. Two 
cows were removed due to being outliers. At first, the low count genes and outliers were filtered. To 
choose modules associated with traits (WT, BF, MD and BCS) of our interest, Pearson correlation 
analysis between each module’s “eigengene” and the traits were determined. Modules are groups of 
genes with similar expression profiles and tend to be functionally related and co-regulated. Modules 
with a module-trait correlation >0.4 or <-0.4 for at least one trait (P ≤ 0.10) were considered significant. 
Gene significance (GS) was calculated for each gene as the correlation between gene expression 
counts and traits (WT, BF, MD and BCS). Hub genes were identified by choosing genes with high 
gene significance and module membership in the modules of interest. 

2.7. Functional Enrichment Analysis 

Associated modules were selected (R > 0.4 or <-0.4, p≤ 0.10) for functional enrichment analysis. 
KEGG pathways and gene ontology terms enriched in these modules were identified using gprofiler 
interface (https://biit.cs.ut.ee/gprofiler/) with threshold of a Benjamini-Hochberg FDR (false 
discovery rate) of 0.05 [21]. We chose the “g:GOSt – Functional profiling of gene lists” option for 
conducting the metabolic pathway and gene ontology analysis within the selected Bos taurus 
reference database. The graphical representation of most significant pathways was done using R 
package ggplot2 (https://ggplot2.tidyverse.org/index.html). [22] 
  

Raw sequenced reads

Clean sequenced reads

Quality check : FastQC
Adaptor/low quality read : Cutadapt 4.1

Quantifying the expression of transcripts (TPM)

Bos taurus reference cDNA: Ensembl
Quantification tool: Salmon  

Correlation of gene expressions with traits 

Correlation : WGCNA (R- package)
Gene co-expression : Clust 1.8.1 (Python)

Functional profiling 

Pathway and GO:  DAVID and g:profiler
Hub genes: GS and MM

(A)
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3. Results 
3.1. Trait Relationship Analysis 

We recorded four traits in these cows (Table 1). Covariation between these four traits showed 
that all four traits are positively correlated with each other as expected. Among these traits BCS and 
WT had correlation of 0.581, whereas MD and BCS also were positively correlated being 0.463. (Figure 
2) 

 

Figure 2. Pearson correlation analysis between four beef production related traits: body weight (BW), back fat 
(BF), muscle depth (MD) and body condition score (BCS). The traits mostly exhibited positive correlations with 
each other. 

Table 1. Beef production related traits recorded in this study (18 cows). WT: Body weight, BF: Back fat, MD: 
Muscle depth and BCS: Body condition score. 

Cow_Id 
Weight (WT),  

Kg 
Backfat (BF), cm 

Muscle depth (MD), 

cm 

Body condition score 

(BCS) 

C2 535 0.62 5.02 4 

C3 509 0.42 5.32 5 

C4 584 0.82 3.96 6 

C6 555 0.3 3.29 4 

C7 652 0.99 5.45 6 

C9 463 0.4 4.08 5 

C10 585 0.63 5.05 5 

C11 540 0.72 5.05 5 

C12 483 0.37 3.34 4 

C13 513 0.4 4.53 4 

C14 575 0.69 4.83 5 

C15 415 0.25 4.93 4 

C16 599 1.04 6.41 6 

C20 508 0.55 3.74 5 

1 0.246

1

0.356

0.429

1

0.581

0.37

0.463

1

WT

BF

MD

BCS

W
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C572 612 0.89 6.44 6 

C573 478 0.47 5.12 5 

C574 599 0.22 4.68 4 

C575 482 0.37 4.14 4 

Average 538.16 0.56 4.74 4.8 

3.2. RNA Sequencing 

RNA sequencing yielded an average of 33 million raw reads per sample. On average, 98.80% of 
the raw reads successfully passed the quality check. The average percentage of mappable clean reads 
per sample were 70.13%, ranging from 64.3 to 74.7% (Supplementary File S1). The transcript per 
million (TPM) for all 37,926 cow genes were estimated, the average TPM per sample was 26 
(Supplementary File S2). Out of 37,926 genes, 7,655 genes were removed from further analysis due to 
excessive missing samples or zero variance. 

3.3. Weighted Gene Co-Expression Network Analysis (WGCNA) 

Sample dendrogram produced by hierarchical clustering is shown in Figure 3. Sample 
dendrogram based on gene expression and heatmap using trait data clearly divided the 18 cows into 
two groups: group 1- with mostly light weight cows (8 cows) and group 2- mostly cows having 
heavier live weights (10 cows). The WGCNA analysis constructed 21 modules (i.e., cluster of co-
expressed genes) identified by a different color. The WGCNA also yielded correlations between the 
genes of each module and measured traits (WT, BF, MD and BCS). Figure 4 illustrates the association 
between modules and traits, which represents Pearson’s correlation coefficients measured between 
each single module and trait. Given the vast amount of data, we focused on two modules i.e., dark-
green and magenta which showed significant positive and negative correlation with all four traits. 
Data for all genes, their respective modules (21 eigengene modules) and correlation values are given 
in Supplemental File S3. 
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Figure 3. Sample dendrogram and trait heatmap. The dendrogram plotted by hierarchical clustering using gene 
expression of 18 cow samples. The heatmap below the dendrogram indicates trait data. The analysis clearly 
divided the 18 cows into two groups: light-weight cows (8 cows) and heavyweight cows (10 cows). 

 

 

Figure 4. Correlation between modules (group of genes) and traits [body weight (BW), back fat (BF), muscle 
depth (MD) and body condition score (BCS)]. Module names are displayed on the left, and the correlation 
coefficients are shown at the top of each row. The p-values for each module are displayed at the bottom of each 
row within parentheses. The rows are colored based on the correlation of the module with the trait: Red for 
positive and green for negative correlation. 

3.4. Functional Enrichment Analysis 

KEGG pathway analysis of the dark-green module showed ‘olfactory transduction’ as the most 
significant pathway. Gene ontology molecular function and biology process analysis of dark-green 
showed RNA binding and spliceosome snRNA activity as significantly enriched GO terms (Figure 5 
and Supplementary file S4). Additionally, KEGG pathway analysis of the magenta module showed 
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hematopoietic cell lineage as the most significant pathway. Gene ontology molecular function and 
biology process analysis of magenta showed protein binding and immune system process as 
significantly enriched GO terms (Figure 6 and Supplementary File S4). 

 

Figure 5. Functional enrichment analysis of darkgreen module. (Top five pathways or terms shown). A: KEGG: 
Metabolic Pathways. B: GO: Molecular function C: GO: Biological process. 

 

Figure 6. Functional enrichment analysis of Magenta module. (Top five pathways or terms shown). A: KEGG: 
Metabolic Pathways. B: GO: Molecular function C: GO: Biological process. 

3.5. Hub Gene Identification 

For the dark-green module, CCDC88C (Coiled-coil domain containing 88C) and CACNA2D3 
(Calcium voltage-gated channel 3) were identified as hub genes. These genes have gene significance 
>0.5 with back fat and module membership >0.9 with dark-green module eigengene. In the magenta 
module, SEPTIN9 and NONO (Non-POU domain containing octamer binding) genes were defined 
as hub genes based on their gene significance >0.8 with muscle depth and module membership >0.9 
with magenta module eigengene. (Figure 7) 
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Figure 7. Hub genes determined by module membership (MM) and gene significance (GS). GS represents the 
correlation between a gene and a trait. The MM represents the correlation between an individual gene and the 
module eigengene. MM and GS values were plotted on the x and y-axis. (A) In darkgreen module hub genes 
were identified according to a GS >0.5 and an MM >0.9. (B) In Magenta hub genes were identified according to 
a GS >0.8 and an MM >0.9. Table represent the top two hub genes of individual module. 

4. Discussion 

The objective of the study was to identify candidate gene sets and metabolic pathways that could 
provide a genetic insight into tissue accretion of cull beef cows. Using gene expression data from the 
longissimus dorsi muscle tissue, gene co-expression modules were built and correlated to traits 
associated with beef production. WGCNA identified metabolic pathways and candidate genes that 
are expected to have a biological role in beef production. Out of 21 gene modules, the modules having 
the greatest significant correlations to the traits measured were further analyzed and discussed. Dark-
green module (356 genes) had a significant positive correlation with back fat and muscle depth. The 
functional analysis highlighted olfactory transduction as a significant pathway and RNA activity 
(processing, splicing, and binding) as a significant GO term. In the olfactory transduction pathway, 
odorant or food is detected with signals sent to the brain or other body parts [23]. These signals are 
in general influenced by calcium, cyclic AMP and G protein molecules. In animals, olfactory 
transduction is directed linked with appetite, feed preference and weight gain [24,25]. In the pig, 
olfactory transduction pathway exhibited direct association with residual feed intake [26]. In beef 
cattle (SimAngus), quantitative trait loci detected for residual feed intake was flanked by eight 
olfactory receptor genes [27]. Thus, biologically animals with an upregulation of feed intake would 
be expected to have increased tissue accretion or at least for the traits measured in this study. 

Another noteworthy pathway found in the dark green module is the hippo signaling pathway. 
Previous reports have shown that the hippo signaling pathway regulates the expression of Yes-
associated protein (Yap) and transcriptional co-activator with PDZ-binding motif (Taz). Both Yap 
and Taz genes are critical regulators of skeletal muscle mass. Additionally, these genes are involved 
in controlling tissue growth in various cell types [28]. The significant gene ontology terms of dark-
green modules were RNA binding, snRNA activity, RNA processing and RNA splicing. All these 
terms come under RNA processing and modifications. According to previous literature, muscle 
development relies on RNA processing. It is mainly driven by coordination among RNA binding 
proteins. Additionally, misregulation of RNA processing causes muscle diseases [29,30]. Alternative 
splicing is a mechanism that enables single genes to produce multiple mature mRNAs. Among 
various tissues, skeletal muscle cells, along with the brain and heart, display the most prominent 
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levels of tissue-specific and evolutionarily conserved alternative splicing events. These molecular 
alterations are accompanied by a multitude of transcriptional and posttranscriptional changes, many 
of which are governed by alternative splicing mechanisms [31–34]. In mice, RNA splicing of the 
Fragile-X mental retardation autosomal homologue-1 (FXR1) gene directly contributes to muscle 
development. The FXR1 gene is hypothesized to play a regulatory role in mRNA translation, 
localization, and stability within muscle cells [35]. Thus, cull beef cows which are emaciated due to 
restricted nutrient intakes and then provided an increased plane of nutrition may elicit responses for 
protein accretion. 

The magenta and turquoise modules had negative correlation with back fat, muscle depth and 
body condition score. The functional analysis of magenta highlighted hematopoietic cell lineage 
pathway as the most significant pathway. In animals, tissue self-renew, tissue growth and muscle 
tissue regeneration are mainly controlled by Hematopoietic cell lineage [36]. During muscle growth, 
Hematopoietic cell lineage pathway is activated. However, in the current study the opposite was 
observed showing less expression for increasing weight, BCS, MD and BF. Detailed characterization 
of this pathway is necessary to study the exact role of hematopoietic cell lineage in beef production. 
It is possible this response observed in this group of cull beef cows is an artifact of previous 
management in which nutrient intake was less than the animal’s requirements. In regard to the 
turquoise module, it was noted that the oxidative phosphorylation pathway was the most highly 
significant pathway. Oxidative phosphorylation provides energy in the form of ATP to support 
muscle growth and maintenance [37]. In buffalo, the WGCNA analysis identified pathways related 
to energy metabolism, such as oxidative phosphorylation, that play a role in fat deposition [38]. Thus, 
if animals were in a negative energy state previously, it would be plausible the expression of genes 
in this pathway may suppressed. 

Hub genes are candidate genes which are important in the regulation of the expression of several 
other genes in a module and are potential biomarkers for the selection of a trait [39]. Such an approach 
has already been employed in ruminants to identify genes governing traits [40–44]. The WGCNA 
analysis in buffalo identified six hub genes [FH (Fumarate Hydratase), MECR (Mitochondrial Trans-
2-Enoyl-CoA Reductase), GPI (Glucose-6-Phosphate Isomerase), PANK3 (Pantothenate Kinase 3), 
ATP6V1A (ATPase H+ Transporting V1 Subunit A), PHYH (phytanoyl-CoA Hydroxylase)]. These 
hub genes were postulated to have associations with a range of aspects, encompassing growth and 
development, fat deposition, and the levels of amino acids within muscle tissue in buffalo [38]. In the 
dark-green module, CCDC (Coiled-coil domain containing 88C) and CACNA2D3 (Calcium voltage-
gated channel 3) were reported as central hub genes. Calcium voltage-gated channel is regulated by 
calcium and responsible for muscle contraction [45]. The calcium channels also supply calcium ions 
to muscles, and these ions serve as secondary messengers, governing cellular functions within muscle 
tissue [46]. 

In magenta module, SEPTIN9 and NONO (Non-POU domain containing octamer binding) were 
identified as the most significant hub genes. Septin 9 is a cell cycle-related gene and indispensable for 
coordinating myosin motor proteins during cytokinesis [47,48]. In animals, the NONO gene is a 
multifunctional gene involved in transcription regulation and alternative splicing. Notably, in mice, 
the NONO gene plays a direct and critical role in B cell development through the ERK (Extracellular 
Signal-Regulated Kinase), AKT (PI3K/AKT/mTOR), and NF-κB (Nuclear Factor-κB) pathways [49]. 
This underscores the importance of NONO in the intricate process of cellular and muscle 
development in animals[49]. Further experiments are necessary to validate the modules, metabolic 
pathways, and hub genes uncovered in the present study. 

5. Conclusions 

Identifying genes and metabolic pathways offers tremendous help for marker-assisted selection 
and plays a key role toward the goal of increasing beef production efficiency. Genes and metabolic 
pathways highlighted in this study revealed both positive and negative correlations with the beef 
production related traits measured. Olfactory transduction, hematogenic cell lineage and oxidative 
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phosphorylation were central pathways associated with beef production. Hub genes, including 
CCDC88C, CACNA2D3, SEPTIN9 and NONO were considered putative candidates related to beef 
production. The molecular mechanisms underlying beef production warrants further explorations to 
enhance production efficiency. 
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