

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Lower and Upper Bounds for Some Degree-Based Indices of Graphs

Gul Ozkan Kizilirmak 0000-0003-3263-8685, Emre Sevgi 0000-0003-4689-3660,
Serife Buyukkose 0000-0002-6439-8439 and Ismail Naci Cangul 0000-0002-0700-5774

¹ Department of Mathematics, Science Faculty, Gazi University, Ankara, Turkey;

gulozkan@gazi.edu.tr, emresevgi@gazi.edu.tr, sbuyukkose@gazi.edu.tr

² Bursa Uludag University, Mathematics Department, Gorukle 16059 Bursa-Turkey;

cangul@uludag.edu.tr

* Correspondence: cangul@uludag.edu.tr

¹ **Abstract:** In this paper, we give some upper and lower bounds for the multiplicative Randic index, reduced reciprocal Randic index, Narumi-Katayama index and symmetric division index a graph using solely the vertex degrees. Then we obtain upper and lower bounds for these indices for the complete graphs, path graphs and Fibonacci-sum graphs. Finally, we compared the bounds of these indices for a general graph and some special graphs.

⁶ **Keywords:** graph, topological graph index

⁷ **MSC:** 05C09, 11B39, 05C75

⁸ **1. Introduction**

⁹ Let G be a graph on n vertices with vertex set $V(G)$ and edge set $E(G)$. For $v \in V(G)$, let $N_G(v)$ be
¹⁰ the set of all neighbours of v in G . The degree of $v \in V(G)$ denoted by $\deg(v)$ is the cardinality of $N_G(v)$.

¹² For $n \geq 2$, the Fibonacci sequence $\{F_n\}_{n \geq 0}$ is defined by the recurrence relation $F_n = F_{n-1} + F_{n-2}$
¹³ with the initial values $F_0 = 0$ and $F_1 = 1$ [4].

¹⁴ In [2], a Fibonacci-sum graph was defined as follows: For each positive integer n , the Fibonacci-sum graph $G_n = (V, E)$ on vertex set $V = [n] = \{F_2 = 1, F_3 = 2, F_4 = 3, 4, 5, \dots, n\}$ is defined by two vertices forming an edge if and only if they sum to a Fibonacci number, i.e.

$$E = \{\{i, j\} : i, j \in V, i \neq j, i + j \text{ is a Fibonacci number}\}.$$

¹⁵ It is obvious from the definition that G_n is a simple graph.

¹⁶
¹⁷ Also, as a result of this study, some structural properties of the Fibonacci-sum graphs were obtained in
¹⁸ the following theorems:

¹⁹ **Lemma 1.1.** [1] For each $n \geq 1$, G_n is connected.

20 **Lemma 1.2.** [1] Let $n \geq 2$, and let k be so that $F_k \leq n < F_{k+1}$. Then in G_n , the vertex F_k has only one
21 neighbour, namely F_{k-1} .

Lemma 1.3. [1] Let $n \geq 1$ and let $x \in [1, n]$. Let for $k \geq 2$, $F_k \leq x < F_{k+1}$ and for $l \geq k$, $F_l \leq x + n < F_{l+1}$. Then the degree of x in G_n is

$$\deg_{G_n}(x) = \begin{cases} l - k, & \text{if } 2x \text{ is not a Fibonacci number,} \\ l - k - 1, & \text{if } 2x \text{ is a Fibonacci number.} \end{cases}$$

Theorem 1.1. [1] Let $n \geq 1$ and let $x \in [1, n]$. Let for $k \geq 2$, $F_k \leq x < F_{k+1}$ and for $l \geq k$, $F_l \leq x + n < F_{l+1}$. Then

$$\deg_{G_n}(x) = \begin{cases} l - k - 1, & \text{if } x = 1 \text{ or } k \geq 4 \text{ and } x = \frac{1}{2}F_{k+2}; \\ l - k, & \text{otherwise.} \end{cases}$$

Corollary 1.1. [1] Let $n \geq 1$ and let $k \geq 2$ be integers satisfying $F_k \leq n < F_{k+1}$. Then

$$|E(G_n)| = \begin{cases} n + \frac{F_k+1}{2} - \frac{\lfloor \frac{4(k+1)}{3} \rfloor}{2}, & \text{if } n \leq \frac{F_{k+2}}{2}; \\ 2n + \frac{F_k+1}{2} - \frac{\lfloor \frac{4(k+1)}{3} \rfloor}{2} - \left\lceil \frac{F_{k+2}-1}{2} \right\rceil, & \text{if } n > \frac{F_{k+2}}{2}. \end{cases}$$

Theorem 1.2. [1] For $k \geq 3$ and for any n , let $F_k \leq n < F_{k+1}$. If $n < \frac{F_{k+2}}{2}$, then $F_k, F_k + 1, \dots, n$ are the pendant vertices. If $n \geq \frac{F_{k+2}}{2}$, then $F_k, F_k + 1, \dots, F_{k+2} - n - 1$ are the pendant vertices. The remaining pendant vertices are

$$\begin{cases} \frac{F_k}{2}, & \text{if } k \equiv 0 \pmod{3} \text{ and } n < F_{k+1} - \frac{F_k}{2}; \\ \frac{F_{k+1}}{2}, & \text{if } k \equiv 1 \pmod{3}; \\ \frac{F_{k+2}}{2}, & \text{if } k \equiv 2 \pmod{3} \text{ and } n \geq \frac{F_{k+2}}{2}. \end{cases}$$

22 **Theorem 1.3.** For any $n \geq 2$, vertex 2 has maximum degree in the Fibonacci-sum graph G_n . Also, if $n + 2$
23 is a Fibonacci number, then $\deg_{G_n}(1) = \deg_{G_n}(2) - 1$; otherwise, $\deg_{G_n}(1) = \deg_{G_n}(2)$.

24 **Proof.** It is clear that the vertex 2 has maximum degree due to the structure of the Fibonacci-sum graph G_n .

25

26 If $n + 2$ is a Fibonacci number, then there exists an l such that $F_l \leq n + 2 < F_{l+1}$. So, we have
27 $F_{l-1} < n + 1 < F_l$.

28

29 For $x = 2$, we have $F_{k_1} \leq 2 < F_{k_1+1}$ which satisfy that $k_1 = 3$.

30

31 For $x = 1$, we have $F_{k_2} \leq 1 < F_{k_2+1}$ which satisfy that $k_2 = 2$.

32

33 By using Theorem 1.1, we get

$$\deg(2) = l - k_1 = l - 3$$

and

$$\deg(1) = (l - 1) - k_2 - 1 = l - 4.$$

As a result, we obtain

$$\deg(1) = \deg(2) - 1.$$

³⁴ If $n + 2$ is not a Fibonacci number, then $F_l < n + 2 < F_{l+1}$. This implies that $F_l \leq n + 1 < F_{l+1}$.

³⁵

By using Theorem 1.1 again, we get

$$\deg(2) = l - k_1 = l - 3$$

and

$$\deg(1) = (l - k_2 - 1) = l - 3.$$

Hence, we get

$$\deg(1) = \deg(2).$$

³⁶

□

As a result of the above theorem, in the Fibonacci-sum graph G_n , 2 has the maximum degree and one of the vertices with maximum degree less than the degree of 2 is 1. Also, by Lemma 1.2 $d(F_k) = 1$ for $F_k \leq n < F_{k+1}$. Thus, for any $i \in V(G_n)$, we have

$$d(2) \geq d(1) \geq d(i) \geq d(F_k) \quad (1)$$

where $F_k \leq n < F_{k+1}$. In this case, by applying Theorem 1.1, we get

$$F_{l_1} \leq 2 + n < F_{l_1+1}, \text{ then } \deg(2) = l_1 - 3, \quad (2)$$

$$F_{l_2} \leq 1 + n < F_{l_2+1}, \text{ then } \deg(1) = l_2 - 3. \quad (3)$$

³⁷ In [7], the spectral properties of Fibonacci-sum and Lucas-sum graphs were examined and some bounds ³⁸ were obtained. Also, in [8] another type of graphs associated with Fibonacci numbers was studied.

³⁹

⁴⁰ A topological index is a numerical value mathematically derived from the graph structure. Several ⁴¹ significant indices such as Zagreb index, Randic index and Wiener index has been introduced to measure ⁴² the characters of graphs. The number of the vertices and the number of the edges are some examples of ⁴³ topological indices.

⁴⁴

⁴⁵ Now, we recall the definitions of some topological indices we used in this study:

⁴⁶

The multiplicative Randic index is defined in [5] as

$$MR(G) = \prod_{uv \in E(G)} \sqrt{\frac{1}{\deg(u) \deg(v)}}.$$

The reduced reciprocal Randic index was described in [5] as

$$RRR(G) = \sum_{uv \in E(G)} \sqrt{(\deg(u) - 1)(\deg(v) - 1)}.$$

The Narumi-Katayama index was introduced in [6] as

$$NK(G) = \prod_{i=1}^n \deg(v_i).$$

The symmetric division index was described in [3] as

$$SD(G) = \sum_{uv \in E(G)} \frac{\deg(u)^2 + \deg(v)^2}{\deg(u)\deg(v)}.$$

47 In this study, we give some upper and lower bounds of multiplicative Randic index, reduced reciprocal
 48 Randic index, Narumi-Katayama index and symmetric division index for the general graphs using vertex
 49 degree. Then, we obtain upper and lower bounds for these indices for some special graphs and Fibonacci-sum
 50 graphs. Finally, we compared the bounds on these indices for some graphs.

51 **2. Main Results**

Theorem 2.1. *If G is a simple connected graph with n vertices and m edges, then*

$$\left(\frac{1}{n-1}\right)^m \leq MR(G) \leq \left(\frac{1}{\sqrt{2}}\right)^m.$$

Proof. Since the graph is simple connected, the vertices have degrees at least 1 and 2. Let all edges have exactly one pendant vertex and the other vertex is of degree 2. We get the upper bound for the multiplicative Randic index of G as

$$MR(G) \leq \left(\frac{1}{\sqrt{2}}\right)^m.$$

Also, since the vertices have the maximum degree at most $n-1$, we have the lower bound for the multiplicative Randic index of G as

$$\left(\frac{1}{n-1}\right)^m \leq MR(G).$$

As a conclusion, we obtain

$$\left(\frac{1}{n-1}\right)^m \leq MR(G) \leq \left(\frac{1}{\sqrt{2}}\right)^m.$$

52 \square

Theorem 2.2. *Let G be a simple connected graph with m edges, then*

$$\left(\frac{1}{\Delta}\right)^m \leq MR(G) \leq \left(\frac{1}{\delta}\right)^m$$

53 *where δ is the minimum degree and Δ is the maximum degree of vertices in G .*

Proof. Hence we obtain

$$\left(\frac{1}{\Delta}\right)^m \leq MR(G) \leq \left(\frac{1}{\delta}\right)^m.$$

54 \square

Corollary 2.1. *Let $G = K_n$ be a complete graph with n vertices, then*

$$MR(K_n) = \left(\frac{1}{n-1}\right)^{\frac{n(n-1)}{2}}.$$

55 **Proof.** K_n is a simple graph and since it does not contain multiple edges and loops, the maximum vertex
 56 degree is $n - 1$. In addition, complete graph has $\frac{n(n-1)}{2}$ edges, hence the proof follows from the above
 57 theorem. \square

Corollary 2.2. Let $G = K_{p,q}$. If $p < q$, then

$$\left(\frac{1}{q}\right)^{pq} \leq MR(K_{p,q}) \leq \left(\frac{1}{p}\right)^{pq}.$$

If $p = q$, then

$$MR(K_{p,q}) = \left(\frac{1}{p}\right)^{p^2}.$$

58 **Proof.** Since the $K_{p,q}$ graph has pq edges, the proof can be seen easily. \square

Corollary 2.3. Let $G = P_n$ be a path graph, then

$$MR(P_n) = \left(\frac{1}{2}\right)^{n-2}.$$

Proof. Since there are $n - 1$ edges in P_n , two of which are endpoints, $\prod_{uv \in E(G)} \sqrt{\frac{1}{\deg(u)\deg(v)}}$ has $\left(\frac{1}{\sqrt{2}}\right)^2$. $\left(\frac{1}{2}\right)^{n-3}$ comes from the remaining $n - 3$ edges. Hence we get

$$MR(P_n) = \left(\frac{1}{\sqrt{2}}\right)^2 \cdot \left(\frac{1}{2}\right)^{n-3} = \left(\frac{1}{2}\right)^{n-2}.$$

59 \square

Theorem 2.3. If G_n is a Fibonacci-sum graph, then

$$\left(\frac{1}{\sqrt{(l_1-3)(l_2-3)}}\right)^{n-1} \leq MR(G_n) \leq \left(\frac{1}{\sqrt{2}}\right)^{n-r}$$

60 where l_1, l_2 are integers in (2), (3), respectively and r is the number of the vertices with degree 1 in G_n .

Proof. Since r is the number of the vertices with degree 1 in G_n , the degrees of the other vertices are at least 2. Thus, there are r vertices with degree 1 and $n - r$ vertices with degree at least 2. Hence, we get the upper bound for the multiplicative Randic index of G_n as

$$MR(G_n) \leq \left(\frac{1}{\sqrt{2}}\right)^{n-r}.$$

Also, since by Theorem 1.3, 2 has the maximum degree and one of the vertices with maximum degree less than the degree of 2 is 1, we have the lower bound for the multiplicative Randic index of G_n as

$$\left(\frac{1}{\sqrt{\deg(2)\deg(1)}}\right)^{n-1} \leq MR(G_n).$$

As a conclusion, we obtain

$$\left(\frac{1}{\sqrt{(l_1-3)(l_2-3)}} \right)^{n-1} \leq MR(G_n) \leq \left(\frac{1}{\sqrt{2}} \right)^{n-r}.$$

61

□

Theorem 2.4. *Let G be a simple connected graph with n vertices and m edges, then*

$$0 \leq RRR(G) \leq m(n-2).$$

Proof. Since the graph is simple connected, there are no isolated vertices and we get the lower bound as

$$0 \leq RRR(G).$$

Also, since the vertices have the maximum degree at most $n-1$, we have the upper bound as

$$RRR(G) \leq m(n-2).$$

As a conclusion, we obtain

$$0 \leq RRR(G) \leq m(n-2).$$

62

□

Theorem 2.5. *Let G be a simple connected graph with m edges, then*

$$m(\delta-1) \leq RRR(G) \leq m(\Delta-1)$$

63 where δ is the minimum degree and Δ is the maximum degree of vertices in G .

Proof. Since δ is the minimum degree and Δ is the maximum degree of vertices in G , we obtain

$$m(\delta-1) \leq RRR(G) \leq m(\Delta-1).$$

64

□

Corollary 2.4. *Let $G = K_n$ be a complete graph with n vertices, then*

$$RRR(K_n) = \frac{n(n-1)(n-2)}{2}.$$

65 **Proof.** K_n is a simple graph and since it does not contain multiple edges and loops, the maximum degree is
66 $n-1$. Also, complete graph K_n has $\frac{n(n-1)}{2}$ edges implying the proof by the above theorem. □

Corollary 2.5. *Let $G = K_{p,q}$. If $p < q$, then*

$$RRR(K_{p,q}) = pq\sqrt{(p-1)(q-1)}.$$

If $p = q$

$$RRR(K_{p,q}) = p^2(p-1).$$

⁶⁷ **Proof.** Since $m = pq$ in $K_{p,q}$, the proof is trivial. \square

Corollary 2.6. *Let $G = P_n$ be a path graph, then*

$$0 \leq RRR(P_n) \leq n - 3.$$

⁶⁸ **Proof.** 0 comes from 2 edges with endpoints in P_n . The inner $n - 3$ is $\sqrt{(2-1)(2-1)} = 1$ from the edge and the desired is obtained. \square

Theorem 2.6. *If G_n is a Fibonacci-sum graph, then*

$$m \leq RRR(G_n) \leq m\sqrt{(l_1-4)(l_2-4)}$$

⁷⁰ where l_1, l_2 are the integers in (2), (3), respectively, and $m = |E(G_n)|$.

Proof. By Lemma 1.2, in the Fibonacci-sum graph G_n , F_k is adjacent to only F_{k-1} for $F_k \leq n < F_{k+1}$. Also, since the other neighbour of F_{k-1} is F_{k-2} , $\deg(F_{k-1}) = 2$. By the same way, $\deg(F_{k-2}) \geq 2$. Thus, we get the lower bound for the reduced reciprocal Randic index of G_n as

$$m\sqrt{\deg(F_{k-1}-1)\deg(F_{k-2}-1)} = m \leq RRR(G_n).$$

Since $1 \sim 2$ and by using (1), we get the upper bound for the reduced reciprocal Randic index of G_n as

$$RRR(G_n) \leq m\sqrt{(\deg(1)-1)(\deg(2)-1)}.$$

Hence, we obtain

$$m \leq RRR(G_n) \leq m\sqrt{(l_1-4)(l_2-4)}.$$

⁷¹ \square

Theorem 2.7. *Let G be a simple connected graph with n vertices, then*

$$1 + 2^{n-k} \leq NK(G) \leq (n-1)^n$$

⁷² where k is the number of the vertices with degree 1 in G .

Proof. Since the graph is simple connected, there are no pendant vertices. Let there be k pendant vertices and $n - k$ vertices with degree at least 2, we get the lower bound as

$$1 + 2^{n-k} \leq NK(G).$$

Also, since the vertices have the maximum degree at most $n - 1$, we get the upper bound as

$$NK(G) \leq (n-1)^n.$$

⁷³ \square

Theorem 2.8. *Let G be a simple connected graph with n vertices, then*

$$\delta^k(\delta+1)^{n-k} \leq NK(G) \leq \Delta^r(\Delta-1)^{n-r}$$

74 where k is the number of the vertices with minimum degree and r is the number of the vertices with maximum
 75 degree in G .

Proof. If we take the k vertices with minimum degree and $n - k$ vertices with degree $\delta + 1$, we get the lower bound as

$$\delta^k(\delta + 1)^{n-k} \leq NK(G).$$

If we take the r vertices with maximum degree and $n - r$ vertices with degree $\Delta - 1$, we get the upper bound as

$$NK(G) \leq \Delta^r(\Delta - 1)^{n-r}.$$

76 \square

Corollary 2.7. Let $G = K_n$ be a complete graph with n vertices, then

$$NK(K_n) = (n - 1)^n.$$

77 **Proof.** K_n is a simple graph and since it does not contain multiple edges and loops, the degree of any vertex
 78 is $n - 1$. Hence the proof follows. \square

Corollary 2.8. Let $G = K_{p,q}$ then

$$NK(K_{p,q}) = p^q q^p.$$

79 **Proof.** Since there are q points of degree p and p points of degree q in the graph $K_{p,q}$, we obtain
 80 $NK(K_{p,q}) = p^q q^p$. \square

Corollary 2.9. Let $G = P_n$ be a path graph, then

$$NK(P_n) = 2^{n-2}.$$

Proof. Since P_n is a graph with degrees 1 at the end vertices and 2 on the other vertices, we obtain,

$$NK(P_n) = 2^{n-2}.$$

81 \square

Theorem 2.9. For the Narumi-Katayama index of the Fibonacci-sum graph G_n , the following inequality holds:

$$2^{n-r} \leq NK(G_n) \leq (l_1 - 3)(l_2 - 3)^{n-1}$$

82 where l_1, l_2 are the integers in (2), (3), respectively and r is the number of the vertices with degree 1 in G .

Proof. Since r is the number of the vertices with degree 1 in G_n , then the degrees of the other vertices are at least 2. Thus, there are r vertices with degree 1 and $n - r$ vertices with degree at least 2. Hence, we get the lower bound for the Narumi-Katayama index of G_n as

$$2^{n-r} \leq NK(G_n).$$

Also, since by Theorem 1.3, 2 has the maximum degree and one of the vertices with maximum degree less than the degree of 2 is 1, we have the upper bound for the Narumi-Katayama index of G_n as

$$NK(G_n) \leq \deg(2)(\deg(1))^{n-1}.$$

As a result, we obtain

$$2^{n-r} \leq NK(G_n) \leq (l_1 - 3)(l_2 - 3)^{n-1}.$$

83

□

Theorem 2.10. *If G is a simple connected graph with n vertices and m edges, then*

$$2m \leq SD(G) \leq m \frac{(n-1)^2 + 1}{n-1}.$$

Proof. If $\deg(u)$ is maximum and $\deg(v)$ is minimum, then the expression

$$\frac{\deg(u)^2 + \deg(v)^2}{\deg(u) \deg(v)} \quad (4)$$

takes its maximum value. In G , $n-1$ is the maximum degree and if we take the pendant vertex which is adjacent to $n-1$, then the expression (4) takes its maximum value. Thus, we get

$$SD(G) = \frac{\deg(u)^2 + \deg(v)^2}{\deg(u) \deg(v)} \leq m \frac{(n-1)^2 + 1}{n-1}.$$

In other way, when $\deg(u)$ and $\deg(v)$ are equal, then the expression (4) takes its minimum value. Thus, we get

$$2m \leq SD(G).$$

Hence, we obtain

$$2m \leq SD(G) \leq m \frac{(n-1)^2 + 1}{n-1}.$$

84

□

Theorem 2.11. *Let G be a simple connected graph with m edges, then*

$$2m \leq SD(G) \leq m \frac{\Delta^2 + \delta^2}{\Delta\delta}.$$

Proof. We obtain

$$2m \leq SD(G) \leq m \frac{\Delta^2 + \delta^2}{\Delta\delta}.$$

85

□

Corollary 2.10. *Let $G = K_n$ be a complete graph with n vertices, then*

$$SD(K_n) = 2n(n-1).$$

⁸⁶ **Proof.** K_n is a simple graph and since it does not contain multiple edges and loops, the maximum degree is $n-1$. Also, complete graph has $\frac{n(n-1)}{2}$ edges, hence we get $SD(G) = 2n(n-1)$ from the above theorem. □

Corollary 2.11. Let $G = K_{p,q}$ then

$$SD(K_{p,q}) = p^2 + q^2.$$

⁸⁹ **Proof.** Since $m = pq$ in $K_{p,q}$, the proof is trivial. \square

⁹⁰ **Corollary 2.12.** Let $G = P_n$ be a path graph, then

$$SD(P_n) = 2n - 1.$$

Proof. Since two edges in P_n have 1 and 2 degree vertices and the other $n - 3$ edges are composed of 2 degree vertices at each end, we obtain

$$SD(P_n) = 2 \frac{2^2 + 1^2}{2.1} + (n - 3) \frac{2^2 + 2^2}{2.2} = 2n - 1.$$

⁹¹ \square

Theorem 2.12. If G_n is a Fibonacci-sum graph, then

$$2m \leq SD(G_n) \leq m(l_1 - 2)$$

⁹² where l_1 is the integer in (2) and $m = |E(G_n)|$.

Proof. If $\deg(u)$ is maximum and $\deg(v)$ is minimum, then the expression

$$\frac{\deg(u)^2 + \deg(v)^2}{\deg(u) \deg(v)} \quad (5)$$

takes its maximum value. In G_n , 2 has the maximum degree and if we take the 1 degree vertex which is adjacent to 2, then the expression (5) takes its maximum value. Thus we have

$$\frac{\deg(u)^2 + \deg(v)^2}{\deg(u) \deg(v)} \leq \deg(2) + 1.$$

Hence, we get the upper bound for the symmetric division index of G_n as

$$SD(G_n) \leq m(l_1 - 2).$$

In other way, when $\deg(u)$ and $\deg(v)$ are equal, then the expression (5) takes its minimum value. Thus we have

$$2 \leq \frac{\deg(u)^2 + \deg(v)^2}{\deg(u) \deg(v)}.$$

Hence, we get

$$2m \leq SD(G_n).$$

In conclusion, we obtain

$$2m \leq SD(G_n) \leq m(l_1 - 2).$$

⁹³ \square

94 **Author Contributions:** Conceptualization, S. B., G. O. K. and E. S.; methodology, S. B. and I. N. C.; writing—original
95 draft preparation, S. B., G. O. K. and E. S.; visualization, S. B., G. O. K. and E. S.; supervision, I. N. C. All authors
96 have read and agreed to the published version of the manuscript.

97 **Funding:** The last author has been supported by the Research Fund of Bursa Uludag University, Project no: KUAP (F)
98 2022/1049.

99 **Conflicts of Interest:** We declare no conflict of interest.

100 **References**

- 101 1. Arman, A., Gunderson, D.S., Li, P.C., Properties of the Fibonacci-sum graph, arXiv:1710.10303v1[math.CO] **2017**.
- 102 2. Fox, K., Kinnersley, W. B., McDonald, D., Orlow, N. and Puleo, G. J., Spanning paths in Fibonacci-Sum graphs, *Fibonacci Quart.* **2014**, 52, 46-49.
- 103 3. Gupta, C. K., Lokesha, V., Shwetha, S. B., Ranjini, P. S., On the Symmetric Division deg Index of Graph, *Southeast Asian Bulletin of Mathematics* **2016**, 40 (1), 59-80.
- 104 4. Koshy, T., *Fibonacci and Lucas Numbers with Applications*, John Wiley and Sons Inc., New York, 2001.
- 105 5. Li, X., Gutman, I., Randic, M., Mathematical aspects of Randic-type molecular structure descriptors, *Mathematical Chemistry Monographs No. 1, University of Kragujevac*, **2006**.
- 106 6. Narumi, H., Katayama, M., Simple topological index. a newly devised index characterizing the topological nature of structural isomers of saturated hydrocarbons, *Mem. Fac. Engin. Hokkaido Univ.* **1984**, 16, 209-214.
- 107 7. Taşci, D., Özkan Kızılırmak, G., Sevgi, E., Büyükköse, Ş., The Bounds for the Largest Eigenvalues of Fibonacci-sum and Lucas-sum Graphs, *TWMS J. App. Eng. Math.* (accepted).
- 108 8. Yurttas Gunes, A., Delen, S., Demirci, M., Cevik, A.S., Cangul, I.N., Fibonacci Graphs, *Symmetry* **2020**, 12 (1383).