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Abstract: In this paper, we give some upper and lower bounds for the multiplicative Randic index, reduced1

reciprocal Randic index, Narumi-Katayama index and symmetric division index a graph using solely the2

vertex degrees. Then we obtain upper and lower bounds for these indices for the complete graphs, path3

graphs and Fibonacci-sum graphs. Finally, we compared the bounds of these indices for a general graph4

and some special graphs.5
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1. Introduction8

Let G be a graph on n vertices with vertex set V(G) and edge set E(G). For v ∈ V(G), let NG(v) be9

the set of all neighbours of v in G. The degree of v ∈ V(G) denoted by deg(v) is the cardinality of NG(v).10

11

For n ≥ 2, the Fibonacci sequence {Fn}n≥0 is defined by the recurrence relation Fn = Fn−1 + Fn−212

with the initial values F0 = 0 and F1 = 1 [4].13

14

In [2], a Fibonacci-sum graph was defined as follows: For each positive integer n, the Fibonacci-sum
graph Gn = (V, E) on vertex set V = [n] = {F2 = 1, F3 = 2, F4 = 3, 4, 5, · · · , n} is defined by two
vertices forming an edge if and only if they sum to a Fibonacci number, i.e.

E = {{i, j} : i, j ∈ V, i ̸= j, i + j is a Fibonacci number} .

It is obvious from the definition that Gn is a simple graph.15

16

Also, as a result of this study, some structural properties of the Fibonacci-sum graphs were obtained in17

the following theorems:18

Lemma 1.1. [1] For each n ≥ 1, Gn is connected.19
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Lemma 1.2. [1] Let n ≥ 2, and let k be so that Fk ≤ n < Fk+1. Then in Gn, the vertex Fk has only one20

neighbour, namely Fk−1.21

Lemma 1.3. [1] Let n ≥ 1 and let x ∈ [1, n] . Let for k ≥ 2, Fk ≤ x < Fk+1 and for l ≥ k, Fl ≤ x + n <

Fl+1. Then the degree of x in Gn is

degGn
(x) =

{
l − k, if 2x is not a Fibonacci number,

l − k − 1, if 2x is a Fibonacci number.

Theorem 1.1. [1] Let n ≥ 1 and let x ∈ [1, n] . Let for k ≥ 2, Fk ≤ x < Fk+1 and for l ≥ k,
Fl ≤ x + n < Fl+1. Then

degGn
(x) =

{
l − k − 1, if x = 1 or k ≥ 4 and x = 1

2 Fk+2;
l − k, otherwise.

Corollary 1.1. [1] Let n ≥ 1 and let k ≥ 2 be integers satisfying Fk ≤ n < Fk+1. Then

|E(Gn)| =

 n + Fk+1
2 −

⌊
4(k+1)

3

⌋
2 , if n ≤ Fk+2

2 ;

2n + Fk+1
2 −

⌊
4(k+1)

3

⌋
2 −

⌈
Fk+2−1

2

⌉
, if n >

Fk+2
2 .

Theorem 1.2. [1] For k ≥ 3 and for any n, let Fk ≤ n < Fk+1. If n <
Fk+2

2 , then Fk, Fk + 1, · · · , n are the

pendant vertices. If n ≥ Fk+2
2 , then Fk, Fk + 1, · · · , Fk+2 − n − 1 are the pendant vertices. The remaining

pendant vertices are 
Fk
2 , if k ≡ 0(mod 3) and n < Fk+1 − Fk

2 ;
Fk+1

2 , if k ≡ 1(mod 3);
Fk+2

2 , if k ≡ 2(mod 3) and n ≥ Fk+2
2 .

Theorem 1.3. For any n ≥ 2, vertex 2 has maximum degree in the Fibonacci-sum graph Gn. Also, if n + 222

is a Fibonacci number, then degGn
(1) = degGn

(2)− 1; otherwise, degGn
(1) = degGn

(2).23

Proof. It is clear that the vertex 2 has maximum degree due to the structure of the Fibonacci-sum graph Gn.24

25

If n + 2 is a Fibonacci number, then there exists an l such that Fl ≤ n + 2 < Fl+1. So, we have26

Fl−1 < n + 1 < Fl .27

28

For x = 2, we have Fk1 ≤ 2 < Fk1+1 which satisfy that k1 = 3.29

30

For x = 1, we have Fk2 ≤ 1 < Fk2+1 which satisfy that k2 = 2.31

32

By using Theorem 1.1, we get33

deg(2) = l − k1 = l − 3

and
deg(1) = (l − 1)− k2 − 1 = l − 4.

As a result, we obtain
deg(1) = deg(2)− 1.
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If n + 2 is not a Fibonacci number, then Fl < n + 2 < Fl+1. This implies that Fl ≤ n + 1 < Fl+1.34

35

By using Theorem 1.1 again, we get

deg(2) = l − k1 = l − 3

and
deg(1) = (l − k2 − 1 = l − 3.

Hence, we get
deg(1) = deg(2).

36

As a result of the above theorem, in the Fibonacci-sum graph Gn, 2 has the maximum degree and one
of the vertices with maximum degree less than the degree of 2 is 1. Also, by Lemma 1.2 d(Fk) = 1 for
Fk ≤ n < Fk+1. Thus, for any i ∈ V(Gn), we have

d(2) ≥ d(1) ≥ d(i) ≥ d(Fk) (1)

where Fk ≤ n < Fk+1. In this case, by applying Theorem 1.1, we get

Fl1 ≤ 2 + n < Fl1+1, then deg(2) = l1 − 3, (2)

Fl2 ≤ 1 + n < Fl2+1, then deg(1) = l2 − 3. (3)

In [7], the spectral properties of Fibonacci-sum and Lucas-sum graphs were examined and some bounds37

were obtained. Also, in [8] another type of graphs associated with Fibonacci numbers was studied.38

39

A topological index is a numerical value mathematically derived from the graph structure. Several40

significant indices such as Zagreb index, Randic index and Wiener index has been introduced to measure41

the characters of graphs. The number of the vertices and the number of the edges are some examples of42

topological indices.43

44

Now, we recall the definitions of some topological indices we used in this study:45

46

The multiplicative Randic index is defined in [5] as

MR(G) = ∏
uv∈E(G)

√
1

deg(u)deg(v)
.

The reduced reciprocal Randic index was described in [5] as

RRR(G) = ∑
uv∈E(G)

√
(deg(u)− 1) (deg(v)− 1).

The Narumi-Katayama index was introduced in [6] as

NK(G) =
n

∏
i=1

deg(vi).
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The symmetric division index was described in [3] as

SD(G) = ∑
uv∈E(G)

deg(u)2 + deg(v)2

deg(u)deg(v)
.

In this study, we give some upper and lower bounds of multiplicative Randic index, reduced reciprocal47

Randic index, Narumi-Katayama index and symmetric division index for the general graphs using vertex48

degree. Then, we obtain upper and lower bounds for these indices for some special graphs and Fibonacci-sum49

graphs. Finally, we compared the bounds on these indices for some graphs.50

2. Main Results51

Theorem 2.1. If G is a simple connected graph with n vertices and m edges, then(
1

n − 1

)m
≤ MR(G) ≤

(
1√
2

)m
.

Proof. Since the graph is simple connected, the vertices have degrees at least 1 and 2. Let all edges have
exactly one pendant vertex and the other vertex is of degree 2. We get the upper bound for the multiplicative
Randic index of G as

MR(G) ≤
(

1√
2

)m
.

Also, since the vertices have the maximum degree at most n − 1, we have the lower bound for the
multiplicative Randic index of G as (

1
n − 1

)m
≤ MR(G).

As a conclusion, we obtain (
1

n − 1

)m
≤ MR(G) ≤

(
1√
2

)m
.

52

Theorem 2.2. Let G be a simple connected graph with m edges, then(
1
∆

)m
≤ MR(G) ≤

(
1
δ

)m

where δ is the minimum degree and ∆ is the maximum degree of vertices in G.53

Proof. Hence we obtain (
1
∆

)m
≤ MR(G) ≤

(
1
δ

)m
.

54

Corollary 2.1. Let G = Kn be a complete graph with n vertices, then

MR(Kn) =

(
1

n − 1

) n(n−1)
2

.
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Proof. Kn is a simple graph and since it does not contain multiple edges and loops, the maximum vertex55

degree is n − 1. In addition, complete graph has n(n−1)
2 edges, hence the proof follows from the above56

theorem.57

Corollary 2.2. Let G = Kp,q. If p < q, then(
1
q

)pq
≤ MR(Kp,q) ≤

(
1
p

)pq
.

If p = q, then

MR(Kp,q) =

(
1
p

)p2

.

Proof. Since the Kp,q graph has pq edges, the proof can be seen easily.58

Corollary 2.3. Let G = Pn be a path graph, then

MR(Pn) =

(
1
2

)n−2
.

Proof. Since there are n − 1 edges in Pn, two of which are endpoints, ∏
uv∈E(G)

√
1

deg(u)deg(v) has
(

1√
2

)2
.(

1
2

)n−3
comes from the remaining n − 3 edges. Hence we get

MR(Pn) =

(
1√
2

)2
.
(

1
2

)n−3
=

(
1
2

)n−2
.

59

Theorem 2.3. If Gn is a Fibonacci-sum graph, then(
1√

(l1 − 3)(l2 − 3)

)n−1

≤ MR(Gn) ≤
(

1√
2

)n−r

where l1,l2 are integers in (2), (3), respectively and r is the number of the vertices with degree 1 in Gn.60

Proof. Since r is the number of the vertices with degree 1 in Gn, the degrees of the other vertices are at
least 2. Thus, there are r vertices with degree 1 and n − r vertices with degree at least 2. Hence, we get the
upper bound for the multiplicative Randic index of Gn as

MR(Gn) ≤
(

1√
2

)n−r
.

Also, since by Theorem 1.3, 2 has the maximum degree and one of the vertices with maximum degree less
than the degree of 2 is 1, we have the lower bound for the multiplicative Randic index of Gn as(

1√
deg(2)deg(1)

)n−1

≤ MR(Gn).

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 November 2022                   doi:10.20944/preprints202211.0152.v1

https://doi.org/10.20944/preprints202211.0152.v1


Version 6th November 2022 submitted to Symmetry 6 of 11

As a conclusion, we obtain(
1√

(l1 − 3)(l2 − 3)

)n−1

≤ MR(Gn) ≤
(

1√
2

)n−r
.

61

Theorem 2.4. Let G be a simple connected graph with n vertices and m edges, then

0 ≤ RRR(G) ≤ m(n − 2).

Proof. Since the graph is simple connected, there are no isolated vertices and we get the lower bound as

0 ≤ RRR(G).

Also, since the vertices have the maximum degree at most n − 1, we have the upper bound as

RRR(G) ≤ m(n − 2).

As a conclusion, we obtain
0 ≤ RRR(G) ≤ m(n − 2).

62

Theorem 2.5. Let G be a simple connected graph with m edges, then

m(δ − 1) ≤ RRR(G) ≤ m(∆ − 1)

where δ is the minimum degree and ∆ is the maximum degree of vertices in G.63

Proof. Since δ is the minimum degree and ∆ is the maximum degree of vertices in G, we obtain

m(δ − 1) ≤ RRR(G) ≤ m(∆ − 1).

64

Corollary 2.4. Let G = Kn be a complete graph with n vertices, then

RRR(Kn) =
n(n−1)(n−2)

2
.

Proof. Kn is a simple graph and since it does not contain multiple edges and loops, the maximum degree is65

n − 1. Also, complete graph Kn has
n(n−1)

2 edges implying the proof by the above theorem.66

Corollary 2.5. Let G = Kp,q. If p < q, then

RRR(Kp,q) = pq
√
(p − 1)(q − 1).

If p = q
RRR(Kp,q) = p2(p − 1).
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Proof. Since m = pq in Kp,q,the proof is trivial.67

Corollary 2.6. Let G = Pn be a path graph, then

0 ≤ RRR(Pn) ≤ n − 3.

Proof. 0 comes from 2 edges with endpoints in Pn. The inner n − 3 is
√
(2 − 1) (2 − 1) = 1 from the68

edge and the desired is obtained.69

Theorem 2.6. If Gn is a Fibonacci-sum graph, then

m ≤ RRR(Gn) ≤ m
√
(l1 − 4) (l2 − 4)

where l1,l2 are the integers in (2), (3), respectively, and m = |E(Gn)| .70

Proof. By Lemma 1.2, in the Fibonacci-sum graph Gn, Fk is adjacent to only Fk−1 for Fk ≤ n < Fk+1.
Also, since the other neighbour of Fk−1 is Fk−2, deg(Fk−1) = 2. By the same way, deg(Fk−2) ≥ 2. Thus,
we get the lower bound for the reduced reciprocal Randic index of Gn as

m
√

deg(Fk−1 − 1)deg(Fk−2 − 1) = m ≤ RRR(Gn).

Since 1 ∼ 2 and by using (1), we get the upper bound for the reduced reciprocal Randic index of Gn as

RRR(Gn) ≤ m
√
(deg(1)− 1) (deg(2)− 1).

Hence, we obtain

m ≤ RRR(Gn) ≤ m
√
(l1 − 4) (l2 − 4).

71

Theorem 2.7. Let G be a simple connected graph with n vertices, then

1 + 2n−k ≤ NK(G) ≤ (n − 1)n

where k is the number of the vertices with degree 1 in G.72

Proof. Since the graph is simple connected, there are no pendant vertices. Let there be k pendant vertices
and n − k vertices with degree at least 2, we get the lower bound as

1 + 2n−k ≤ NK(G).

Also, since the vertices have the maximum degree at most n − 1, we get the upper bound as

NK(G) ≤ (n − 1)n.

73

Theorem 2.8. Let G be a simple connected graph with n vertices, then

δk(δ + 1)n−k ≤ NK(G) ≤ ∆r(∆ − 1)n−r
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where k is the number of the vertices with minimum degree and r is the number of the vertices with maximum74

degree in G.75

Proof. If we take the k vertices with minimum degree and n − k vertices with degree δ + 1, we get the
lower bound as

δk(δ + 1)n−k ≤ NK(G).

If we take the r vertices with maximum degree and n − r vertices with degree ∆ − 1, we get the upper
bound as

NK(G) ≤ ∆r(∆ − 1)n−r.

76

Corollary 2.7. Let G = Kn be a complete graph with n vertices, then

NK(Kn) = (n − 1)n.

Proof. Kn is a simple graph and since it does not contain multiple edges and loops, the degree of any vertex77

is n − 1. Hence the proof follows.78

Corollary 2.8. Let G = Kp,q then
NK(Kp,q) = pqqp.

Proof. Since there are q points of degree p and p points of degree q in the graph Kp,q, we obtain79

NK(Kp,q) = pqqp.80

Corollary 2.9. Let G = Pn be a path graph, then

NK(Pn) = 2n−2.

Proof. Since Pn is a graph with degrees 1 at the end vertices and 2 on the other vertices, we obtain,

NK(Pn) = 2n−2.

81

Theorem 2.9. For the Narumi-Katayama index of the Fibonacci-sum graph Gn, the following inequality
holds:

2n−r ≤ NK(Gn) ≤ (l1 − 3)(l2 − 3)n−1

where l1,l2 are the integers in (2), (3) , respectively and r is the number of the vertices with degree 1 in G.82

Proof. Since r is the number of the vertices with degree 1 in Gn, then the degrees of the other vertices are
at least 2. Thus, there are r vertices with degree 1 and n − r vertices with degree at least 2. Hence, we get
the lower bound for the Narumi-Katayama index of Gn as

2n−r ≤ NK(Gn).
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Also, since by Theorem 1.3, 2 has the maximum degree and one of the vertices with maximum degree less
than the degree of 2 is 1, we have the upper bound for the Narumi-Katayama index of Gn as

NK(Gn) ≤ deg(2)(deg(1))n−1.

As a result, we obtain
2n−r ≤ NK(Gn) ≤ (l1 − 3)(l2 − 3)n−1.

83

Theorem 2.10. If G is a simple connected graph with n vertices and m edges, then

2m ≤ SD(G) ≤ m
(n − 1)2 + 1

n − 1
.

Proof. If deg(u) is maximum and deg(v) is minimum, then the expression

deg(u)2 + deg(v)2

deg(u)deg(v)
(4)

takes its maximum value. In G, n − 1 is the maximum degree and if we take the pendant vertex which is
adjacent to n − 1, then the expression (4) takes its maximum value. Thus, we get

SD(G) =
deg(u)2 + deg(v)2

deg(u)deg(v)
≤ m

(n − 1)2 + 1
n − 1

.

In other way, when deg(u) and deg(v) are equal, then the expression (4) takes its minimum value. Thus,
we get

2m ≤ SD(G).

Hence, we obtain

2m ≤ SD(G) ≤ m
(n − 1)2 + 1

n − 1
.

84

Theorem 2.11. Let G be a simple connected graph with m edges, then

2m ≤ SD(G) ≤ m
∆2 + δ2

∆δ
.

Proof. We obtain

2m ≤ SD(G) ≤ m
∆2 + δ2

∆δ
.

85

Corollary 2.10. Let G = Kn be a complete graph with n vertices, then

SD(Kn) = 2n(n − 1).

Proof. Kn is a simple graph and since it does not contain multiple edges and loops, the maximum degree86

is n − 1. Also, complete graph has
n(n−1)

2 edges, hence we get SD(G) = 2n(n − 1) from the above87

theorem.88
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Corollary 2.11. Let G = Kp,q then
SD(Kp,q) = p2 + q2.

Proof. Since m = pq in Kp,q, the proof is trivial.89

Corollary 2.12. Let G = Pn be a path graph, then90

SD(Pn) = 2n − 1.

Proof. Since two edges in Pn have 1 and 2 degree vertices and the other n − 3 edges are composed of 2
degree vertices at each end, we obtain

SD(Pn) = 2
22 + 12

2.1
+ (n − 3)

22 + 22

2.2
= 2n − 1.

91

Theorem 2.12. If Gn is a Fibonacci-sum graph, then

2m ≤ SD(Gn) ≤ m (l1 − 2)

where l1 is the integer in (2) and m = |E(Gn)| .92

Proof. If deg(u) is maximum and deg(v) is minimum, then the expression

deg(u)2 + deg(v)2

deg(u)deg(v)
(5)

takes its maximum value. In Gn, 2 has the maximum degree and if we take the 1 degreed vertex which is
adjacent to 2, then the expression (5) takes its maximum value. Thus we have

deg(u)2 + deg(v)2

deg(u)deg(v)
≤ deg(2) + 1.

Hence, we get the upper bound for the symmetric division index of Gn as

SD(Gn) ≤ m (l1 − 2) .

In other way, when deg(u) and deg(v) are equal, then the expression (5) takes its minimum value. Thus
we have

2 ≤ deg(u)2 + deg(v)2

deg(u)deg(v)
.

Hence, we get
2m ≤ SD(Gn).

In conclusion, we obtain
2m ≤ SD(Gn) ≤ m (l1 − 2) .

93
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