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1 Abstract: In this paper, we give some upper and lower bounds for the multiplicative Randic index, reduced
2 reciprocal Randic index, Narumi-Katayama index and symmetric division index a graph using solely the
s vertex degrees. Then we obtain upper and lower bounds for these indices for the complete graphs, path
4+ graphs and Fibonacci-sum graphs. Finally, we compared the bounds of these indices for a general graph
s and some special graphs.
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s 1. Introduction

0 Let G be a graph on 1 vertices with vertex set V(G) and edge set E(G). For v € V(G), let Ng(v) be
10 the set of all neighbours of v in G. The degree of v € V(G) denoted by deg(v) is the cardinality of N (v).

12 For n > 2, the Fibonacci sequence {Fn}nzo is defined by the recurrence relation F,, = F,, 1 + F,,_»
13 with the initial values Fp = O and F; = 1 [4].

In [2], a Fibonacci-sum graph was defined as follows: For each positive integer 1, the Fibonacci-sum
graph G, = (V,E) on vertex set V = [n] = {F, = 1,F; = 2,F, = 3,4,5,--- ,n} is defined by two
vertices forming an edge if and only if they sum to a Fibonacci number, i.e.

E={{i,j}:i,jeV,i#j, i+ jisaFibonacci number} .

15 It is obvious from the definition that Gy, is a simple graph.

17 Also, as a result of this study, some structural properties of the Fibonacci-sum graphs were obtained in
18 the following theorems:

1o Lemma 1.1. [/] For eachn > 1, G,, is connected.
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2 Lemma 1.2. [I] Let n > 2, and let k be so that F, < n < Fjy1. Then in Gy, the vertex Fy has only one
21 neighbour, namely F._1.

Lemma 1.3. [/]Letn > 1andlet x € [1,n]. Let fork > 2, F, < x < Fyyqyandforl >k F;<x+n <
Fi 1. Then the degree of x in Gy, is

deg,. (x) = I —k, if 2x is not a Fibonacci number,
8G. | I—k—1, if2x isa Fibonacci number.

Theorem 1.1. [/] Let n > 1 and let x € [1,n]. Let for k > 2, F, < x < Fyq1 and forl > k,
Fl <x+n< Pl+1- Then

l—k—1, ifx=1ork>4andx = LF _,;
d — 7 jil 2L k+2»
&Gy (%) { I —k, otherwise.

Corollary 1.1. [/] Let n > 1 and let k > 2 be integers satisfying Fy < n < Fy1. Then

F+1 [4(k3+1)J K
nt Bt Lo ifn < B2
4(k+1)

E(Gy)| =
| (n)| 2714_%_{ ; J_[Fk%l"/ ifn>%.

Theorem 1.2. []] For k > 3 and for any n, let F, <n < Fe 1. Ifn < %, then F., F,+1,--- ,n are the
pendant vertices. If n > %, then Fy, Fr +1,- -+, Feyp —n — 1 are the pendant vertices. The remaining
pendant vertices are

%, ifk = 0(mod 3) andn < F,q — %,‘

%, ifk = 1(mod 3);

Bz irk = 2(mod 3) and n > 552

22 Theorem 1.3. For any n > 2, vertex 2 has maximum degree in the Fibonacci-sum graph Gy,. Also, if n + 2
2 is a Fibonacci number, then degg (1) = degg (2) — 1; otherwise, degg (1) = degg (2).

2« Proof. Itis clear that the vertex 2 has maximum degree due to the structure of the Fibonacci-sum graph G,,.

2 If n + 2 is a Fibonacci number, then there exists an [ such that F; < n 42 < F;, 7. So, we have
7 F1<n+1<F.

28

29 For x = 2, we have Fi, < 2 < Fi, 1 which satisfy that k; = 3.
30

a1 For x = 1, we have F, <1 < F, 1 which satisfy that kp = 2.
32

33 By using Theorem 1.1, we get

deg(2)=1—ky =1-3

and

deg(l)=(1—-1)—ky—1=1—-4.

As a result, we obtain
deg(1) = deg(2) — 1.
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s If n + 2 is not a Fibonacci number, then F; < n 42 < Fjyq. This implies that F; <n +1 < F .
35

By using Theorem 1.1 again, we get
deg(2) =1—ky =1-3

and
deg(l)=(I—ky—1=1-3.

Hence, we get
deg(1) = deg(2).
36 D

As a result of the above theorem, in the Fibonacci-sum graph G;;, 2 has the maximum degree and one
of the vertices with maximum degree less than the degree of 2 is 1. Also, by Lemma 1.2 d(F;) = 1 for
Fr <n < Fgyq. Thus, forany i € V(G,), we have

4(2) > d(1) > d(i) > d(F) 0
where F < n < F 4. In this case, by applying Theorem 1.1, we get
F, <2+4n < Fy 44, then deg(2) =11 — 3, 2)

F,, <1+n < F,q, then deg(1) =1, —3. 3)

a7 In [7], the spectral properties of Fibonacci-sum and Lucas-sum graphs were examined and some bounds
s were obtained. Also, in [8] another type of graphs associated with Fibonacci numbers was studied.

39

40 A topological index is a numerical value mathematically derived from the graph structure. Several
41 significant indices such as Zagreb index, Randic index and Wiener index has been introduced to measure
22 the characters of graphs. The number of the vertices and the number of the edges are some examples of
s topological indices.

44

45 Now, we recall the definitions of some topological indices we used in this study:

46

The multiplicative Randic index is defined in [5] as

1
Mr©= L dest destor

The reduced reciprocal Randic index was described in [5] as

RRR(G)= Y /(deg(u)— 1) (deg(v) —1).
uveE(G)

The Narumi-Katayama index was introduced in [6] as

NK(G) = lideg(vi).


https://doi.org/10.20944/preprints202211.0152.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 November 2022 d0i:10.20944/preprints202211.0152.v1

4of 11
The symmetric division index was described in [3] as
d 2+d 2
wo€E(G) deg(u) deg(v)
a7 In this study, we give some upper and lower bounds of multiplicative Randic index, reduced reciprocal

4 Randic index, Narumi-Katayama index and symmetric division index for the general graphs using vertex
s degree. Then, we obtain upper and lower bounds for these indices for some special graphs and Fibonacci-sum
so graphs. Finally, we compared the bounds on these indices for some graphs.

51 2. Main Results

Theorem 2.1. If G is a simple connected graph with n vertices and m edges, then

()= mo ()"

Proof. Since the graph is simple connected, the vertices have degrees at least 1 and 2. Let all edges have

exactly one pendant vertex and the other vertex is of degree 2. We get the upper bound for the multiplicative

MR(G) < (%)m

Also, since the vertices have the maximum degree at most # — 1, we have the lower bound for the

( L )m < MR(G).

n—1
() mmo= ()

Theorem 2.2. Let G be a simple connected graph with m edges, then

()= wmos ()

s3  where 6 is the minimum degree and A is the maximum degree of vertices in G.

()" smos ()

Corollary 2.1. Let G = K, be a complete graph with n vertices, then

Randic index of G as

multiplicative Randic index of G as

As a conclusion, we obtain

52 D

Proof. Hence we obtain

54 D

n(n—1)

MR(Kn):< ! > ’

n—1
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ss  Proof. K, is a simple graph and since it does not contain multiple edges and loops, the maximum vertex

n(n—1)

ss degree is n — 1. In addition, complete graph has edges, hence the proof follows from the above

57 theorem. [J

Corollary 2.2. Let G = K 4. If p < g, then

(B <mass ()

pZ

If p = q, then

MR(Kp,q) = (;)

s Proof. Since the Kp 5 graph has pg edges, the proof can be seen easily. [J

Corollary 2.3. Let G = Py, be a path graph, then
1 n—2
MR(P,) = (2) .

2
Proof. Since there are n — 1 edges in Py, two of which are endpoints, [] m has (i) .
uveE(G) 8 8

N

n—3
(%) comes from the remaining 7 — 3 edges. Hence we get

1 2 1 n—3 1 n—2
MRPy)=|—%) .| = == .
m=(7) () -6)
Theorem 2.3. If G, is a Fibonacci-sum graph, then

1 n-1 1 n—r
( (11—3)(12—3)> < MR(Gy) < (5)

o where Iyl are integers in (2), (3), respectively and 1 is the number of the vertices with degree 1 in G,,.

59 D

Proof. Since r is the number of the vertices with degree 1 in G, the degrees of the other vertices are at
least 2. Thus, there are r vertices with degree 1 and n — r vertices with degree at least 2. Hence, we get the
upper bound for the multiplicative Randic index of G, as

MR(Gy) < (é>_

Also, since by Theorem 1.3, 2 has the maximum degree and one of the vertices with maximum degree less
than the degree of 2 is 1, we have the lower bound for the multiplicative Randic index of G, as

n—1
( ! ) < MR(Gy).
deg(2) deg(1)
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As a conclusion, we obtain

n—1
1 1 \"*"7"
( ¢ —3)(&—3)) < MR(G) < (ﬁ) ‘

o1 O
Theorem 2.4. Let G be a simple connected graph with n vertices and m edges, then
0 < RRR(G) < m(n—2).
Proof. Since the graph is simple connected, there are no isolated vertices and we get the lower bound as
0 < RRR(G).
Also, since the vertices have the maximum degree at most n — 1, we have the upper bound as
RRR(G) < m(n—2).

As a conclusion, we obtain
0 < RRR(G) < m(n—2).

62 O
Theorem 2.5. Let G be a simple connected graph with m edges, then
m(6 —1) < RRR(G) <m(A—1)
& where 0 is the minimum degree and A is the maximum degree of vertices in G.
Proof. Since ¢ is the minimum degree and A is the maximum degree of vertices in G, we obtain
m(6 —1) < RRR(G) <m(A—1).
64 O

Corollary 2.4. Let G = K, be a complete graph with n vertices, then

n(n—1)(n-2)

RRR(Ky) = ——

es Proof. K, is a simple graph and since it does not contain multiple edges and loops, the maximum degree is
n(n—1)

s 1 — 1. Also, complete graph Kj; has —— edges implying the proof by the above theorem. [

Corollary 2.5. Let G = K 4. If p < g, then

RRR(Kp,q) = pgy/(p—1)(g —1).

Ifp=9q
RRR(Kpq) = p*(p = 1).
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&7 Proof. Since m = pqin Kp,q,the proof is trivial. [
Corollary 2.6. Let G = P, be a path graph, then
0 < RRR(P;) <n-3.

¢ Proof. 0 comes from 2 edges with endpoints in P,. The inner n — 3 is /(2 — 1) (2 —1) = 1 from the
eo edge and the desired is obtained. [

Theorem 2.6. If G, is a Fibonacci-sum graph, then
m < RRR(Gy) < m\ /(1 — 4) (I, —4)
70 where I3,ly are the integers in (2), (3), respectively, and m = |E(Gy,)| .

Proof. By Lemma 1.2, in the Fibonacci-sum graph G, Fy is adjacent to only Fy_q for F, < n < Fyq.
Also, since the other neighbour of Fy_1 is F;_5, deg(Fy_1) = 2. By the same way, deg(Fy_,) > 2. Thus,
we get the lower bound for the reduced reciprocal Randic index of G, as

my/deg(Fe_1 — 1) deg(F_ — 1) = m < RRR(Gy).

Since 1 ~ 2 and by using (1), we get the upper bound for the reduced reciprocal Randic index of G, as

RRR(Gy) < my/(deg(1) — 1) (deg(2) — 1).

m < RRR(Gy) < my/ (I —4) (I — 4).

Hence, we obtain

7 O
Theorem 2.7. Let G be a simple connected graph with n vertices, then
1+2"F < NK(G) < (n—1)"
72 where k is the number of the vertices with degree 1 in G.

Proof. Since the graph is simple connected, there are no pendant vertices. Let there be k pendant vertices
and n — k vertices with degree at least 2, we get the lower bound as

1+2"%F < NK(G).
Also, since the vertices have the maximum degree at most n — 1, we get the upper bound as
NK(G) < (n—=1)"
73 O
Theorem 2.8. Let G be a simple connected graph with n vertices, then

(6 +1)"F < NK(G) < A"(A—1)"""
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7a  where k is the number of the vertices with minimum degree and v is the number of the vertices with maximum
75 degree in G.

Proof. If we take the k vertices with minimum degree and n — k vertices with degree 6 + 1, we get the
lower bound as

&5 (6 +1)"F < NK(G).

If we take the r vertices with maximum degree and n — r vertices with degree A — 1, we get the upper
bound as

NK(G) < A (A-1)"".
76 D
Corollary 2.7. Let G = K, be a complete graph with n vertices, then
NK(K,) = (n—=1)".

77 Proof. K, is a simple graph and since it does not contain multiple edges and loops, the degree of any vertex
78 is n — 1. Hence the proof follows. [

Corollary 2.8. Let G = K, 4 then
NK(Kp4) = pqP.

79 Proof. Since there are g points of degree p and p points of degree g in the graph K, ,;, we obtain
00 NK(Kpgq) =piqP. O

Corollary 2.9. Let G = P, be a path graph, then
NK(P,) =2"2.
Proof. Since P, is a graph with degrees 1 at the end vertices and 2 on the other vertices, we obtain,
NK(P,) =2"2,
81 O

Theorem 2.9. For the Narumi-Katayama index of the Fibonacci-sum graph G, the following inequality
holds:
2" < NK(Gy) < (h —3) (I, —3)"!

s2  where Iy,lp are the integers in (2), (3), respectively and 1 is the number of the vertices with degree 1 in G.

Proof. Since r is the number of the vertices with degree 1 in G, then the degrees of the other vertices are
at least 2. Thus, there are r vertices with degree 1 and n — r vertices with degree at least 2. Hence, we get
the lower bound for the Narumi-Katayama index of G, as

2" < NK(Gy).
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Also, since by Theorem 1.3, 2 has the maximum degree and one of the vertices with maximum degree less
than the degree of 2 is 1, we have the upper bound for the Narumi-Katayama index of G, as

NK(Gy) < deg(2)(deg(1))"".

As a result, we obtain
2" < NK(Gy) < (I =3) (I, —3)" L,

83 D

Theorem 2.10. If G is a simple connected graph with n vertices and m edges, then

(n—1)2+1

2m < SD <
m < SD(G) <m p—

Proof. If deg(u) is maximum and deg(v) is minimum, then the expression

deg(u)? + deg(v)?
deg(u) deg(v)

takes its maximum value. In G, n — 1 is the maximum degree and if we take the pendant vertex which is
adjacent to n — 1, then the expression (4) takes its maximum value. Thus, we get

“)

_ deg(u)* + deg(v)? (n—1)2+1
SD(G) = deg(u) deg(v) SmeeTT

In other way, when deg(u) and deg(v) are equal, then the expression (4) takes its minimum value. Thus,
we get
2m < SD(G).
Hence, we obtain ,
-1 1
2m < SD(G) < m%.

84 D

Theorem 2.11. Let G be a simple connected graph with m edges, then

A2 4 52
AS

2m < SD(G) <m

Proof. We obtain

A% 4 52
< < .
2m < SD(G) <m Y

85 D
Corollary 2.10. Let G = K, be a complete graph with n vertices, then
SD(Ky) =2n(n—1).

s Proof. K, is a simple graph and since it does not contain multiple edges and loops, the maximum degree
&7 is 1 — 1. Also, complete graph has W; Y edges, hence we get SD(G) = 2n(n — 1) from the above

es theorem. [J
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Corollary 2.11. Let G = K 4 then

so  Proof. Since m = pgin K, 4, the proof is trivial. []

90 Corollary 2.12. Let G = P, be a path graph, then

SD(P,) =2n—1.
Proof. Since two edges in P, have 1 and 2 degree vertices and the other n — 3 edges are composed of 2
degree vertices at each end, we obtain

22 +12 22 422

SD(P,) = +(n=3) 55— =21

ot O
Theorem 2.12. If G, is a Fibonacci-sum graph, then
2m < SD(Gp) <m(l; —2)
w2 where |y is the integer in (2) and m = |E(Gy)]| .

Proof. If deg(u) is maximum and deg(v) is minimum, then the expression

deg(u)? + deg(v)?
deg(u) deg(v)

takes its maximum value. In Gy, 2 has the maximum degree and if we take the 1 degreed vertex which is

o)

adjacent to 2, then the expression (5) takes its maximum value. Thus we have

deg(u)? + deg(v)?
deg(ir) deg(v)

Hence, we get the upper bound for the symmetric division index of G, as

< deg(2) +1.

SD(G,) <m(l; —2).

In other way, when deg (1) and deg(v) are equal, then the expression (5) takes its minimum value. Thus

we have
deg(u)? + deg(v)?
deg(u) deg(v) -
Hence, we get
2m < SD(Gp).

In conclusion, we obtain
2m < SD(Gp) <m(l; —2).

93 D
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