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Abstract

We employed a global high-resolution inverse model to estimate sectoral methane emissions,
integrating observations from the GOSAT-2 satellite for the first time, along with observations from
the surface observation network. A similar set of inversions using GOSAT observations was carried
out to evaluate the consistency between emissions estimates derived from these two satellites and to
ensure that GOSAT-2 data could seamlessly integrate with the existing data series without disrupting
the continuity of flux estimates. This analysis, covering the period from 2019 to 2022, utilized prior
anthropogenic emissions data mainly from EDGAR v6 and incorporated additional natural sources
and sinks as outlined by Saunois et al. (2020). Our analysis reveals a general agreement between total
methane emissions estimates from GOSAT and GOSAT-2. However, on a sectoral basis, we found
notable regional differences in the flux estimates. While GOSAT inversion estimates ~8 Tg a' more
anthropogenic emissions for China and around 4 Tg a! more wetland emissions for Brazil and
Indonesia, the posterior error distribution suggests that GOSAT-2 inversion is closer to surface
observations over Asia. These discrepancies are found in regions with significant differences in XCHa
data from the two satellites, such as East Asia and North America, tropical South America, and
tropical Africa. These regional biases persist due to limited representative surface reference sites for
Level 2 bias correction. The relatively lower data volume from GOSAT also introduces seasonal biases
in the flux estimates when the quality filtering of Level 2 data persistently reduces usable
observations during certain seasons, resulting in inadequate representation of the seasonal cycle in
regions such as East Asia. Similarly, in tropical South America, where the model is relatively under-
constrained by the limited surface observations, the lower data volume of GOSAT-2 suffers. While
the two inversions exhibit consistent overall performance across North America and Europe,
GOSAT-2-based inversion demonstrates a better performance over East Asia. Therefore, while the
two satellite datasets are broadly consistent, considering the fact that the biases in the XCH: data
overlap with regions under-constrained by surface observations, establishing additional surface
reference measurement sites is desirable to ensure consistent inversion results.

Keywords: GOSAT;, GOSAT-2; methane emissions; sectoral methane emissions; inverse model;
anthropogenic

1. Introduction

Methane is a potent greenhouse gas that has been increasing at a steeper rate of 8.6 ppb a year
during recent years (2011-2020; Liang et al., 2023; Lan et al., 2024). Rising concentrations of methane
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have contributed to a 0.6°C rise in global temperatures since pre-industrial times (Shen et al., 2023).
Hence, the emission mitigation efforts require more realistic emission quantification. Its sources are
diverse, encompassing natural processes such as wetlands and geological seepage, as well as
anthropogenic activities including agriculture, fossil fuel extraction, and waste management.
Effective monitoring and quantification of methane emissions are essential for understanding climate
change impacts and guiding mitigation. While bottom-up emission inventories form the basis of these
efforts, their accuracy varies by country due to uncertainties. Inverse modeling, which assimilates
observations from multiple platforms (e.g., Shen et al., 2023; Nesser et al., 2024), helps assess these
emissions. Accurate predictions of future methane growth depend on thoroughly understanding
emission sources and processes. Anthropogenic and natural sources contribute by their pathways
to the global growth rate. Anthropogenic emissions are influenced by the growing activities in
agriculture, fossil fuel exploitation, and waste production. Natural sources, such as wetlands, are, on
the other hand, influenced by climate change itself, such as the recent increase in wetland emissions
reported by several studies (e.g., Peng et al., 2022; Zhang et al., 2023). National greenhouse gas
inventories are fundamental for countries to report their emissions and commitments under
international agreements. However, these inventories often rely on uncertain assumptions and sparse
ground-based measurements, highlighting the need for independent verification and refinement
using advanced observational tools like atmospheric measurements and inverse modeling.

Greenhouse gases Observing SATellite (GOSAT), launched by the Japan Aerospace Exploration
Agency (JAXA) in 2009, marked a significant milestone in satellite-based methane observation.
GOSAT series are satellites observing atmospheric greenhouse gases jointly developed and operated
by the Ministry of the Environment, Japan, JAXA, and the National Institute for Environmental
Studies (NIES) (Kuze et al., 2009; Yokota et al., 2009). Equipped with the Thermal And Near infrared
Sensor for carbon Observation (TANSO), GOSAT provides XCO: and XCHa retrievals for the total
atmospheric column. Its successor, GOSAT-2, launched in 2018, builds upon this legacy with
improved capabilities, including a slightly higher spatial footprint (9.7 against 10.5km), netter spatial
coverage, and enhanced sensitivity to methane emissions. The comparative analysis of GOSAT and
GOSAT-2 inversions is pivotal for assessing the consistency and reliability of methane emission
estimates derived from these satellites. This comparison not only validates the advancements made
in satellite technology but also identifies areas for improvement in future missions. As satellite
missions evolve and new technologies emerge, continuity and consistency in methane monitoring
are essential for maintaining long-term datasets and ensuring the robustness of emission estimates.

Consistency between space-based instruments is crucial because successor missions (like
GOSAT-2) follow their predecessors (like GOSAT). When using such data for emission inversions,
ensuring compatibility between datasets from consecutive missions is vital for accurate estimates.
Differences due to major improvements in the remote sensing instruments or retrieval algorithms
may change the data, but for other reasons, such as systematic errors (biases), ideally, we expect them
to be minor so that both datasets have similar information content. As satellite Level 2 products are
retrieved from radiance spectra, unlike direct measurements, they need to be corrected for biases
based on reference observations. For a similar reason, we also include direct surface-based CHzs
measurements from the same surface observation network for both inversions. In this study, we
report the results of inverse modeling of GOSAT-2 for the first time and the analysis results of its
sectoral comparison with the inversion of GOSAT for the period 2019-2022. Section 2 describes the
data used and the methods involved in this study, and section 3 shows the results, including the
comparison of sectoral emission estimates, validation with independent observations, and discussion
of the causes behind regional inconsistencies, followed by the conclusion.

2. Data and Methods

2.1. Observations
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CHa observations were collected from a network of surface monitoring stations, as compiled in
the GLOBALVIEWplus_v4.0_2021-10-14 dataset (Schuldt et al., 2021), with additional data from the
ICOS network (ICOS RI, 2021). A list of sites along with site-specific information is given in Table S1
(used for assimilation) and Table S2 (used for validation). Surface sites used in the inversion are also
marked in Figure Sla. To ensure that the measurements were representative of well-mixed
atmospheric conditions, continuous observations were averaged between 12:00 and 16:00 local time.
For high-altitude sites, early morning averages (00:00-04:00 local time) were used to minimize the
influence of local emissions transported upslope due to daytime heating. Data uncertainties for
surface sites were assessed using the root mean squared error (RMSE) from prior forward
simulations, with a minimum threshold of 6 ppb applied to provide greater flexibility for inversion
in the Southern Hemisphere. Rejection criteria for surface, aircraft, and ship observations were based
on data variance, with a threshold set at double the observed variance.

The satellite observations for this study were obtained from the GOSAT and its successor,
GOSAT-2. We utilized the National Institute for Environmental Studies (NIES) Short-Wavelength
Infrared (SWIR) bias-corrected Level 2 product V02.95/96 for GOSAT (Yoshida et al., 2013) and the
GOSAT-2 NIES full-physics-based bias-uncorrected Level 2 product V02.00 (Yoshida et al., 2023).
Yoshida et al. (2023) proposed an empirical formula for correcting the systematic biases in the
GOSAT-2 level-2 product. However, for this study, this bias correction has not been applied. Both
GOSAT and GOSAT-2 are sun-synchronous satellites, with GOSAT having a revisit cycle of three
days and GOSAT-2 a cycle of six days. The TANSO-FTS onboard GOSAT provides observations with
a nadir footprint diameter of approximately 10.5 km, while the newer TANSO-FTS-2 (Suto et al.,
2021) has a footprint diameter of 9.7 km. TANSO-FTS-2 includes an advanced "intelligent pointing"
function, which shifts the instrument's line of sight to avoid clouds detected within its field of view,
enhancing the availability of cloud-free data. A plot of one month (October 2019) of GOSAT and
GOSAT-2 XCHa observations is given in supplementary Figure S1.

2.2. Prior Fluxes

Anthropogenic prior fluxes we used were from the Emission Database for Global Atmospheric
Research (EDGAR v6, Crippa et al., 2020), excluding emissions from the oil and gas sector. For oil
and gas, we used data from the greenhouse gas and air pollution interactions and synergies (GAINS)
model (Hoglund-Isaksson, 2012). Biomass burning emissions were taken from the Global Fire
Emission Database (GFED v4, Randerson et al., 2017). Wetlands and termites were taken from
Saunois et al. (2020). Geological and oceanic emissions were taken from Etiope et al. (2019) and Weber
et al. (2019), respectively. The methane sink in the soil was taken from MeMo v1.0 (Murguia-Flores
et al., 2018). All prior fluxes were provided to the model at 0.1° spatial resolution. Climatological
maps of major emission sectors used in the model are given in Figure 1. Monthly climatologies were
used for wetlands, geological, termite, and oceanic fluxes. All other fluxes were given at the monthly
time step. The prior uncertainties were prescribed as 30% of the climatology of each anthropogenic
sector and 50% for wetland emissions.
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Figure 1. Climatological sectoral prior fluxes used in this study (gCHs m? day~, scale different for each panel).

2.3. Meteorological Data

The meteorological data used for the transport model were obtained from the Japanese
Reanalysis (JRA-55; Kobayashi et al., 2015, which provides the required parameters, such as three-
dimensional wind fields, temperature, and humidity at 1.25°x1.25° spatial resolution, 40 vertical
hybrid sigma-pressure levels, and a temporal resolution of 6 h.

2.4. Inverse Modeling System

2.4.1. NIES-TM-FLEXPART-VAR (NTFVAR) Inverse Modeling System

We utilized a global Eulerian-Lagrangian coupled inverse model known as NTFVAR, which
integrates the National Institute for Environmental Studies (NIES) model with FLEXPART (FLEXible
PARTicle dispersion model), representing a Eulerian three-dimensional transport model and a
Lagrangian particle dispersion model, respectively. The development of this model was documented
by Belikov et al. (2016). Our version of the transport model is a modified iteration of the one
previously described. This coupled model combines NIES-TM v08.1i, which features a horizontal
resolution of 3.75° and 42 hybrid-isentropic vertical levels, with FLEXPART model v.8.0, run in
backward mode with a surface flux resolution of 0.1°. The resolution of the Lagrangian model is
constrained by the resolution of the available surface fluxes. The current version incorporates
revisions to the transport matrix, indexing, and sorting algorithms to enhance memory efficiency for
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managing large matrices of Lagrangian responses to surface fluxes, particularly for utilizing GOSAT
data in the inversion process. Additional details can be found in Maksyutov et al. (2021). Different
variants of this model have been used for methane inversion previously (e.g. Wang et al., 2019), but
this study uses a modified version used by Janardanan et al. (2024).

2.4.2. The Inverse Modeling Scheme

We employed a high-resolution version of the transport model and its adjoint as detailed by
Belikov et al. (2016), combined with the optimization schemes proposed by Meirink et al. (2008) and
Basu et al. (2013). Following their methodology, flux corrections were estimated separately for
anthropogenic and natural emissions. Variational optimization was utilized to derive two sets of
scaling factors for monthly varying prior uncertainty fields at a resolution of 0.1°x0.1°, applied
independently to anthropogenic and natural wetland emissions with a bi-weekly time step.
Corrections to anthropogenic emissions were based on the monthly climatology provided by
EDGAR, while wetland emissions were adjusted according to the monthly climatology from the
VISIT model, both of which were defined as prior uncertainty fields. The grid-scale flux uncertainty
was set at 30% of EDGAR climatology for anthropogenic emissions and 50% of VISIT climatological
emissions for wetland emissions. Other natural flux categories, such as biomass burning, geological
sources, termites, and soil sinks, were not optimized due to their significantly lower amplitude
compared to wetlands. A spatial correlation length of 50 km and a temporal correlation of two weeks
were applied to ensure smooth scaling factors. The inverse modeling problem was formulated to find
the optimal values of x, which represent the corrections to prior fluxes, minimizing the cost function

J(x).
J(x) = %(H.x —rTRYH.x—71) + %xTB‘lx (1)

In this context, H represents the atmospheric transport operator, r denotes the difference
between the observed concentrations and the forward simulations conducted using prior fluxes
without any corrections, R is the covariance matrix of the observations, and B is the covariance matrix
of the prior fluxes. The design of the B matrix involves representing it as a product of a non-
dimensional covariance matrix C and a diagonal flux uncertainty matrix D, such that:

B=DT-C-D(2)

The C matrix is typically implemented as a band matrix, where the non-diagonal elements
decrease according to ~exp(—l?/d?), with | representing the distance between grid cells and d the
correlation distance. The optimal solution, defined as the minimum of the cost function | was
determined iteratively using the efficient Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, as
described by Gilbert and Lemaréchal (1989). For additional details on the implementation, refer to
Maksyutov et al. (2021).

2.4.3. Posterior Uncertainties

Posterior flux uncertainties were calculated from an ensemble of fifteen simulations by
randomly perturbing the observations and the prior fluxes, as in the method described by Chevallier
(2007). Pseudo-observations were prepared by perturbing the observations with their uncertainty at
each site. Also, prior monthly perturbed fluxes were prepared, applying random scaling factors
separately for each global carbon project (GCP) region and month. Inversions were carried out using
the perturbed pseudo-observations and the perturbed fluxes (perturbed anthropogenic and wetlands
with non-perturbed soil sink, biomass burning, and other natural emissions from the ocean,
geological sources, and termites) as the prior fluxes and calculating the posterior uncertainty as the
standard deviation of the inverted fluxes.
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2.4.4. Statistical Significance Test for Difference in Mean

To assess whether the mean flux corrections from the two inversions differ significantly, we
performed Welch’s t-test (Welch, 1947) on the monthly flux corrections at 0.1° resolution. The analysis
was conducted separately for each of the six optimized source sectors. Results are shown in Figure 2,
with hatched areas indicating regions where the differences are statistically significant.

f) Wetlands

e —
03 001 -0.00001 0 000001 001 03

Figure 2. The sectoral mean (2019-2022) difference in the flux corrections (gCHs m2d™) in the inversion of
GOSAT and GOSAT-2 (GOSAT-2-GOSAT). The hatchings indicate regions where the mean differences are
statistically significant at p <0.01. The country maps may not represent the actual political boundaries, but only

a software-dependent approximate outline.
3. Results and Discussion

3.1.. Methane Emission Estimates by GOSAT and GOSAT-2 Inversions

Figure 2 illustrates the grid-wise differences in flux corrections inferred from GOSAT and
GOSAT-2 inversions to the prior sectoral methane emissions. Statistically significant differences are
observed in the agriculture, waste, and wetland sectors, of which the most notable being the lower
estimate for wetland emissions. We estimate a mean (2019-2022) global total emission of 605.2 Tg yr-
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1 for GOSAT and 601.8 Tg yr! for GOSAT-2 compared to the prior total of 615.3 Tg yr'. Table 1
presents the global total sectoral emissions averaged over the study period for the prior and the two
sets of inversions. Our estimate is in good agreement with the ensemble mean of the recent global
methane synthesis (Saunois et al., 2025). Any mention of emission estimate in the following sections
follows the order, GOSAT followed by GOSAT-2. When comparing the sectoral posterior emissions
estimated by the GOSAT and GOSAT-2 inversions, there is a noticeable trend: GOSAT-2 generally
estimates lower emissions for Southeast Asia (Figure 2) than GOSAT. GOSAT-2 provides lower
estimates for the agriculture sector in Southeast Asia, parts of Europe, and tropical America. For
instance, in China, GOSAT estimated 23.18+1.54 Tg yr' of methane emissions from agriculture, while
GOSAT-2 estimated 16.82+1.12 Tg yr! (Table 2). This estimate is lower than recent studies, such as
the one by Chen et al. (2022) on TROPOMI inversion, which reported 17.8 Tg yr! from livestock and
11.9 Tg yr! from rice paddies using GOSAT as a reference to omit outliers in the inversion. Therefore,
it is reasonable that our GOSAT inversion is on the upper side, closer to Chen et al. (2022). The
primary reason for the difference with GOSAT-2 inversion is the lower XCHas observed by GOSAT-2
over eastern China and the surrounding regions. In contrast, for other regions of the globe, GOSAT-
2 inversion estimates higher emissions compared to GOSAT, particularly in central North America,
eastern temperate South America (Argentina 2.34+0.25; 2.9740.31 Tg yr, Brazil 13.52+0.36; 14.29+0.38
Tg yr1), tropical Africa, and Southwest Asia (Pakistan). However, the difference in the posterior
agricultural emission in the two inversions for Pakistan is greater than the uncertainty level
(5.34+0.37; 5.87+0.41 Tg yr).

Table 1. Global totals of sectoral emission estimates for prior, GOSAT, and GOSAT-2 inversions in units of Tg

yr'. The values are the mean for the 2019-2022 period. Sectors marked with an asterisk were not optimized.

Sectors Prior GOSAT inversion GOSAT-2 inversion
Total 615.27 605.20 601.83
Agriculture 159.85 156.23 154.72
Waste 82.34 80.02 80.28
Biomass burning  26.86 22.78 22.79
Coal 37.81 36.50 36.14
Geological* 23.02 23.02 23.02
Other microbial* 9.91 9.91 9.91
Ocean* 11.48 11.48 11.48
Oil & gas 90.02 83.52 87.79
Wetlands 173.99 177.84 171.80
Soil sink* -35.51 -35.51 -35.51

In the waste sector, the largest emitter is China, with GOSAT estimating 14.36+0.7 Tg yr' and
GOSAT-2 estimating 13.35+0.65 Tg yr' followed by USA (4.29+0.05; 4.62+0.06 Tg yr'), India
(6.56+0.15; 6.44+0.15 Tg yr'), and Brazil (4.91+0.09; 5.06£0.09 Tg yr?'). GOSAT-2 also estimates lower
emissions for Mexico, northern South American countries, and East, South, and Southeast Asia.
Generally, GOSAT-2 has a good agreement with GOSAT over Australia, boreal Eurasia, and South
Africa, while GOSAT-2 suggests higher emissions over Europe and eastern North America. For the
coal sector, GOSAT estimates higher emissions than GOSAT-2 for India, China, Southeast Asia, and
Australia. Conversely, GOSAT-2 provides higher emission estimates for the USA, Europe, and
Russia. Emissions from coal mining in China are consistent between GOSAT and GOSAT-2
(18.97+0.98 and 18.31+0.95 Tg yr', respectively), aligning with recent studies such as Chen et al.
(2022), which reported 16.6 Tg yr'. The differences between the inversions are within the estimation
uncertainty for China. Additionally, slight variations in coal emission estimates between the two
inversions are observed for Indonesia.

In the oil and gas sector, GOSAT-2 suggests higher emissions from localized sources in the
United States, Europe, Russia, the Middle East, and parts of Africa. Conversely, GOSAT estimates
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higher emissions in Southeast Asian countries. The largest differences between the two inversions
are observed for Nigeria (2.08+0.37 Tg yr! vs. 2.86+0.51 Tg yr), one of Africa’s largest producers, and
similar differences are noted for oil and gas producers in the Middle East, such as Iraq and Saudi
Arabia. GOSAT-2 estimates higher emissions from major sources in the Middle East, Africa, and the
United States. However, at the country level, the differences generally fall within the uncertainties of
the inversions.

For wetland emissions, GOSAT estimates higher emissions in Amazonia, Southeast Asia, central
Africa, and Australia. Figure 3b illustrates a slight bias remaining in the GOSAT-optimized forward
simulation compared to observations in Amazonia and Southeast Asia, in contrast to the GOSAT-2
inversion (Figure 3d). GOSAT-2 suggests higher emissions in Canada, Russia, tropical Africa, and
southern South America. The most notable differences at the country level are seen for Brazil
(30.50£1.67 Tg yr' vs. 26.19+1.44 Tg yr'), Colombia (6.19+0.35 Tg yr' vs. 4.71+0.27 Tg yr'), and
Indonesia (12.12+0.77 Tg yr' vs. 7.72+0.49 Tg yr1). Previous estimates for Brazil's wetland emissions
using GOSAT inversions (Janardanan et al., 2020) were higher (e.g., ~39 Tg yr'), compared to ~13 Tg
yr! by Tunnicliffe et al. (2020). In the present study with GOSAT and GOSAT-2 inversions, the
estimates are 30.5 Tg yr' and 26.2 Tg yr, respectively. Figure 3d shows that the posterior simulation
by GOSAT-2 exhibits less bias over Brazil compared to the optimized forward simulation by GOSAT
whereas GOSAT-2 estimates lower emissions in central African countries compared to GOSAT.

Table 2. Comparison of country-level sectoral emissions inferred by inversion of GOSAT and GOSAT-2 data

and the associated uncertainties for selected major emitting countries in units of Tg yr..

Sectors  Agriculture Waste Biomass and biofuel Coal Oil & Gas Wetland

Country GOSAT _GZOSAT GOSAT _G205AT GOSAT GOSAT-2 GOSAT _(;OSAT GOSAT _GZOSAT GOSAT _(;OSAT

ARG 2.34+0.25 2.97+0.31 0.52+0.01 0.55+0.01 0.11+0.00 0.11+0.00 0.00+0.00 0.00£0.00 0.44+0.01 0.47+0.01 3.58+0.15 3.86+0.16

AUS.1 1.89+0.24 2.04+0.26 0.31+0.01 0.31+0.01 0.88+0.02 0.88+0.02  0.79+0.05 0.79+0.05 0.27+0.00 0.26+0.00 3.84+0.16 3.40+0.14

BOL 0.72+0.02 0.75+0.02 0.08+0.00 0.08+0.00 0.44+0.00 0.44+0.00 0.00+0.00 0.00+0.00 0.12+0.00 0.12+0.00 4.68+0.27 4.38+0.26

BRA 13.52+0.36 334'29i0'3 4.91+0.09 5.06+0.09 1.85+0.04 1.85+0.04 0.05+0.00 0.05+0.00 0.22+0.01 0.23+0.01 50'5(&1'6 4216’19ﬂ'4

11.20+0.7 13.49+0.8

CAN 1.06+0.02 1.15+0.02 0.57+0.01 0.62+0.01 0.46+0.00 0.46x0.00 0.08+0.01 0.08+0.01 2.68+0.11 2.84+0.12 0 4

CHN  23.18:1.54 ;6'82ﬂ'1 34‘3&0‘7 ;3‘3&0‘6 247+0.03 2.42+0.03 ;897&9 ;83&09 2.69:0.02 2.75:0.02 3.03:0.09 2.92+0.09

COL 1.89+0.05 1.80+0.05 0.82+0.01 0.80+0.01 0.07+0.00 0.07+0.00  0.20+0.00 0.20+0.00 0.44+0.02 0.43+0.02 6.19+0.35 4.71+0.27

COG 0.02+0.00 0.03+0.00 0.03+0.00 0.03+0.00 0.08+0.00 0.08+0.00  0.00+0.00 0.00+0.00 0.06+0.00 0.07+0.00 5.97+0.25 5.95+0.25

COD 0.30+0.00 0.31+0.00 0.64+0.02 0.64+0.02 1.35+0.04 1.35+0.04 0.00+0.00 0.00+0.00 0.02+0.00 0.02+0.00 1359208 13.44207

0 9
15.73+1.5
IND 16.37+1.63 6 6.56+0.15 6.44+0.15 1.23+0.05 1.23x0.05 1.11x0.05 1.05+0.05 0.47+0.01 0.47+0.01 3.92+0.17 4.06+0.17
12.12+0.7
IDN 3.70+0.34 3.20+0.30 2.04+0.11 1.89+0.10 2.17+0.01 2.17+0.01 4.83+0.30 4.53+0.28 0.79+0.06 0.60+0.04 7 7.72+0.49
IRQ 0.13+0.02 0.14+0.03 0.44+0.01 0.46+0.01 0.00+0.00 0.00+0.00  0.00+0.00 0.00£0.00 6.38+0.96 6.91+1.04 0.09+0.00 0.10+0.00

MEX 2.67+0.05 2.65+0.05 2.48+0.03 2.43+0.03 0.21+0.00 0.21+0.00 0.01+0.01 0.01+0.01 0.29+0.02 0.30+0.02 1.35+0.05 1.29+0.05

NGA 1.85+0.04 2.25+0.05 1.47+0.02 1.57+0.02 0.85+0.01 0.90+0.01  0.00+0.00 0.00+0.00 2.08+0.37 2.86+0.51 1.77+0.11 2.09+0.13

PAK 5.34+0.37 5.87+0.41 1.30+0.03 1.33+0.04 0.32+0.01 0.33x0.01  0.03+0.00 0.03+0.00 0.53+0.03 0.56+0.04 0.16+0.01 0.16+0.01

PER 0.53+0.00 0.52+0.00 0.27+0.00 0.27+0.00 0.04+0.00 0.04+0.00  0.00+0.00 0.00+0.00 0.03+0.00 0.03+0.00 7.80+0.53 6.18+0.42

15.78+0.4 16.36+0.4 14.54+1.1 15.50+1.2

RUS 1.59+0.02 1.67+0.02 3.36+0.03 3.53+0.04 2.93+0.35 2.93+0.35 3.15+0.13 3.24+0.13 1 3 9 ”

r(s). Distributed under a Creative Commons CC BY license.
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SDN 2.58+0.03 2.98+0.04 0.44+0.01 0.45+0.01 0.34+0.00 0.34+0.00 g'ggi_ g'ggi_ 0.59+0.02 0.61+0.02 3.13+0.23 3.40+0.25

THA 2.50+0.49 2.01+0.39 0.95+0.03 0.87+0.03 0.13+0.03 0.13x0.03  0.01+0.00 0.01+0.00 0.12+0.01 0.08+0.01 1.10+0.08 0.89+0.06

10.79+0. 20.57+0.2 21.09+0.2
USA 9.63+0.29 20 920.3 4.29+0.05 4.62+0.06 0.68+0.08 0.68+0.08 1.44+0.28 1.60+0.31 805 *0 9 09:0 5.58+0.28 6.20+0.32

VEN 1.17+0.02 1.12+0.02 0.36+0.00 0.36+0.00 0.15+0.01 0.15+0.01 0.01+0.00 0.01+0.00 0.47+0.01 0.45+0.01 4.52+0.35 3.44+0.26

In East Asia and adjacent oceanic regions, GOSAT often shows higher XCHa values, especially
over China. Figure 4 highlights this, with some months showing XCHa values exceeding 30 ppb or
more in GOSAT compared to GOSAT-2. This discrepancy may account for the elevated emissions in
sectors like Agriculture, Waste, and Coal in the East China region. Figure 3 compares the differences
between prior forward and optimized forward simulations of GOSAT and GOSAT-2. It is evident
that the prior forward simulation for GOSAT-2 was more biased over North American and Asian
regions (Figure 3¢, h, j) compared to GOSAT, possibly due to the biases in the GOSAT-2 Level 2 data
over North America and Asia (Yoshida et al., 2023). These regions, having a bias in XCH4 data
identified by Yoshida et al. (2023), exhibit biases in the prior forward also. The reasons for the spatial
and temporal biases in these two datasets are still under investigation.

Modelpri - GOSAT Modelopt - GOSAT & Surface 0.050 Satellite
ol ~. 5 =4 LT : gl e S| h
£ /\ 0.025 /\
£
0 S
z 0.000
0.0501—
-50 » ° f 1
< Q
Modelyi - GOSAT-2 g / 0.025 :
e 1 R s o
50 0.000
0.050—
0 g J
2 0.025
-50
50 0 50 2905 5 &
Difference (ppb) - Prio. Residuals (GOSAT) Prio. Residuals (GOSAT-2)
-30 -20 -10 0 10 20 30 —— Opti. Residuals (GOSAT)  —— Opti. Residuals (GOSAT-2)

Figure 3. The mean difference of prior and optimized forward model with GOSAT and GOSAT-2 observations
gridded on a 4°x4° grid (a-d). Frequency distribution curves of prior (lighter color) and optimized (darker color)
forward residuals corresponding to GOSAT (red) and GOSAT-2 (blue) inversions, for surface (e-g) and satellite
(h-j) observations for three regions, North America (e, h), Europe (f, i), and Asia (g, j). The country maps may

not represent the actual political boundaries.

The analysis of the residual for forward and optimized simulations for GOSAT and GOSAT-2
reveals that both the inversions, on average work well for North America and Europe (Figure 3e, f),
but for East Asia, the posterior fit of the surface observations are handled better by GOSAT-2
inversion (Figure 3g). We have analyzed the results for these three regions defined as North
America (60-135°W; 15-85°N), Europe (60°E-30°W; 35-72°N), and Asia (60-160°E; 10-75°N) to evaluate
the estimated fluxes (Figure 3e-j). The figure shows the spatial distribution and the density curves for
prior and optimized residuals for these three regions for GOSAT and GOSAT-2 inversions. The
ability of the two inversions to reduce the posterior mean residuals for surface sites over North
America is quite similar, and the distribution curves shift to neutral for both inversions. Similar
observations can be made over Europe as well, but with almost indistinguishable performance by the
two inversions in bias reduction (Figure 3f). The reason behind this is reflected in the analysis by
Yoshida et al. (2023) in their bias estimation of GOSAT and GOSAT-2 relative to the TCCON sites
over Europe, both satellite products showed similar performance in the region. This means that both
inversions could reduce the biases to the same degree. However, for Asia, there is a distinct difference
between the two inversions. All other inputs being the same, GOSAT-2 inversion brings the biases to
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a minimum in this region compared to GOSAT inversion. This means that despite GOSAT being
more mature and evolved in the retrieval processes over the years, GOSAT-2 performs well for the
Asian region, which is less constrained by the limited surface observations.

Prior forward simulations for GOSAT show differences from GOSAT-2 prior simulations
(Figure 3). GOSAT-2 prior residuals are more biased than GOSAT over North America and Asia. But
this can be due to a combination of biases in prior emissions and the Level 2 data itself. However,
considering the ability of the two inversions to represent the surface observations (Figure 3e, f, g), it
is likely that GOSAT-2 inversions perform better for Asia, while GOSAT and GOSAT-2 are similar in
Europe and North America.

-5

IN =)
o
Difference in Mean CH, (ppb)

-100 0 100 -100 0 100 -100 0 100

Figure 4. The difference in mean XCHai (GOSAT-2 - GOSAT) averaged on a 10°x10° grid for each calendar month.

The country maps may not represent the actual political boundaries.

3.2. Evaluation with Independent Observations

We used a set of observations that were not assimilated in the inversion process to have an
independent evaluation of the posterior emissions in the two sets of inversions. The dataset includes
surface and aircraft data across the globe. But a lack of coverage over the southern hemisphere
generally and in the northern hemisphere over Asia, Africa, and South America is noted. The
locations of the data are given in Figure 5a, and additionally, the details are tabulated in the
supplementary Table S2. Globally, the two inversions are consistent with similar residual statistics.
Prior RMSE and BIAS were 32.1 and -3.95 ppb, respectively, while after optimization by GOSAT,
RMSE and BIAS were 30.8 and -4.8 ppb, and with GOSAT-2 were 31.1 and -3.5 ppb. The detailed
RMSE and BIAS for each validation site are given in supplementary Figure S4. The probability
density plot of prior and optimized residuals of the two inversions shows that the distribution of the
residuals shifts closer to zero after optimization (Figure 5b). Moreover, the two inversions have
similar posterior residual distributions. However, we found that for the validation sites in Russia and
the northeastern USA, the BIAS has increased in both the inversions (Figure S5). Over northern
African validation sites, GOSAT-2 optimization has increased BIAS. However, RMSE was found to
have generally reduced except over the northeast USA and Mexico regions. The opposite biases in
the African region are attributable mainly to the difference in GOSAT and GOSAT-2 level 2 products.
Over Russia, we have few ground observations, and the use of the oil and gas emissions from the
GAINS model as prior over Russia introduces some unreasonably high posterior emissions for this
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sector over the region (Table 2). Unfortunately, there is not enough observation coverage over East
Asia, Africa, or South America for validation.

a) Location of validation sites b) Kernel density estimate of residuals
75 0.03
1 : ---- Forward Residuals
Qg —— Optimizedl Residuals (GOSAT)
504 Forward Residuals (GOSAT-2)
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Figure 5. Validation of the two inversions with observations that were not assimilated in the inversion step.
Locations of the observation sites used in this validation are presented in a), and the kernel density estimates of
the prior and posterior residuals are given in b). More details on the sites selected for validation are given in
Table S2. C) comparison of the NOAA marine boundary layer reference with the latitude-wise average of
optimized simulations using GOSAT and GOSAT-2 data. The sites used for averaging are a subset of the list.

In order to check the performance of the models in representing the marine boundary layer
latitudinal profile, we sampled our posterior simulations by GOSAT and GOSAT-2 inversions at the
same sites as those used in the NOAA marine boundary layer reference. The marine boundary layer
reference (MBLR) is a reference of CHs concentrations (Lan et al, 2023) represented on latitude
constructed from air samples of the Cooperative Air Sampling Network (Dlugokencky et al., 2021).
It is created by using selected marine boundary layer sites with measurements representative of a
large volume of air masses for each trace gas, providing a latitudinally smoothed distribution of CHa.
A detailed explanation can be found on the NOAA website https://gml.noaa.gov/ccgg/mbl/mbl.html
(Lan et al., 2023). In the northern latitudes, GOSAT-2-based inversions show a better match to the
MBLR, but in the southern hemisphere, GOSAT optimization brings the simulation closer to the
reference (Figure 5¢c). However, inversion results for the Southern Hemisphere deviate more from the
MBLR due to sparse observational constraints in this region.

3.3. Attribution of Regional Differences in Posterior Emissions

Since the two sets of inversions differ only by the set of satellite observations used, the estimated
flux differences can be attributed to the regional differences in the Level 2 products. Another aspect
that could influence the estimated flux is the data volume during the 4 years of analysis. That is the
representativeness of satellite data in regions not covered by surface observations. Generally,
GOSAT-2 has more observations than GOSAT, and sometimes, GOSAT has very little coverage over
certain regions during certain times. We will examine the influence of these two aspects on the
regional inconsistencies between the two inversions.
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3.3.1. Regional Inconsistency Between XCHa Retrieval Products

Though observations were retrieved using similar algorithms from two satellites, there can be
regional inconsistencies between the products. Figure 4 presents the monthly perspective of the
difference between GOSAT and GOSAT-2 XCHa products (averaged on a 10°x10° grid). We can see
that there exist considerable regional differences between the two Level 2 products, especially over
Africa, Europe, and eastern Asia. GOSAT-2 XCHas is higher over northern Africa, the Middle East,
Europe, and India during most of the months (Jan- Sept). GOSAT-2 XCHa is lower than GOSAT over
Russia, China, Southeast Asia, and adjoining oceanic regions from March to September (Figure 4).
Over the United States, GOSAT-2 has lower XCHa for almost all months. These seasonally persistent
differences in the XCHa4 influence the estimated fluxes, as can be seen in Figure 2. We should,
however, note that the differences in the two data products shown in the mean picture need not be
only due to regional biases in Level 2 products, but also due to any seasonally dependent quality
control filter applied to each observation. For example, over regions with seasonal cloud cover, such
as monsoon Asia, filtering out observations from cloudy scenes can leave the remaining data not
representative of the whole year. As an example, in Figure 7, we present the time series evolution of
average XCH4 roughly over Amazonia (80-50°W; 10°S-10°N) and East Asia (80-120°E; 20-60°N). For
both regions, there is a seasonal minimum concentration from June to September months. So, if
observations are cleared for cloud cover, there is a chance that the majority of observations represent
a slightly elevated XCH4 over East Asia than it would be in the actual case. On the contrary, the
convective season over Amazonia is from December to April. Filtering observations during this
season will reduce observations of peak wetland methane emissions following the inundation. For
satellites having a large number of observations, such as GOSAT-2 (almost double compared to
GOSAT), there will still be more observations to compensate for the filtered-out data (Figure 6). These
differences become crucial when the region is poorly constrained by surface observations. For
example, for almost half of the year, the east and southeast Asian and tropical African regions have
significant differences in the representative XCHs shown in Figure 4. This can be seen reflected in the
difference in the flux corrections with the two sets of Level 2 products (Figure 2).

n
=]
S

n Observation Count

-200'g

-100 0 100 -100 0 100 -100 0 100

Figure 6. The difference in the number of observations of GOSAT and GOSAT-2 in each 10° grid (GOSAT-2 -

GOSAT). The country maps may not represent the actual political boundaries.
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Figure 7. Time series of monthly area-averaged XCHa values over Amazonia and East Asia regions. The months

of June to September are shaded, which means the dry season for Brazil and the wet season for East Asia.

Yoshida et al. (2023) examined the consistency of XCO:z and XCHa retrievals between GOSAT
and GOSAT-2 and found an overall agreement between the two satellites, but pointed out the need
for additional surface-based validation sites in light of the regional differences in bias between them.
In their validation of GOSAT and GOSAT-2 XCH: products with TCCON observations, they found a
negative bias of -5.7 ppb around the Darwin TCCON site for GOSAT-2, but no sufficient data is
available for GOSAT. A similar negative BIAS was found over Burgos for GOSAT-2, while a strong
positive BIAS was found for Saga (Table 2 of Yoshida et al., 2023). In summary, though there are only
a few sites for validation, their results indicate that there is likely considerable BIAS for both GOSAT
and GOSAT-2 over East Asia remaining in the products. Comparatively lower emissions by GOSAT-
2 inversion over the region covering Southeast Asia and Australia indicate that this is influenced by
the lower GOSAT-2 XCHas data. They have attributed the higher Xgas concentration in GOSAT-2 over
Northern Africa (similar to biases in Figure 4) to the bias in the aerosol optical thickness in GOSAT-
2 retrieval compared to GOSAT.

3.3.2. Regional Differences in Data Density

Comparing the data volume for composite months (Figure 6), there is apparently a lower
number of GOSAT-2 observations over Northern North America, Russia, and southern South
America. Apart from these regions, all other regions have a higher data count for GOSAT-2. This
means that these regions have additional observational constraints by GOSAT-2, especially over
regions not adequately observed by surface sites. Though there is a reduction in GOSAT-2 data over
Russia, the differences in posterior emissions are not statistically significant. Instead, there are
statistically significant differences in the other regions, e.g., Canada, Argentina, Chile, etc. The XCHs
over the southern part of South America, North America, and Russia is remarkably lower (Figure 4),
however, the GOSAT-2 inversion allocates more emissions over southern South America and boreal
North America. The higher emission over southern South America in GOSAT-2 inversions is
attributable to the anomalously low number of satellite observations (Figure 6), which makes this
region the most under-constrained when comparing the two inversions. In the case of boreal North
America, both satellite datasets have limited observations. This makes this region yet another under-
constrained area, and the model allocates more flux there. Over Africa, GOSAT-2 is biased (higher
than GOSAT) and has the largest regional data volume, so that this region is normally under-
constrained by the surface observation network and has larger emissions across all sectors in GOSAT-
2 inversion. A major reason for the observed differences in the regionally inferred fluxes could
potentially be the seasonal dependence in quality filtering of Level 2 data between these products.
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For example, the cloud screening of the Level 2 products can be seasonally dependent over monsoon
Asia during the northern hemispheric summer. Since GOSAT has a lower data volume compared to
GOSAT-2 per month (Figures S2 and S3), cloud filtering during the monsoon season increases the
fraction of available observations during non-monsoon months. Considering that this is a data-sparse
region as far as surface observations are concerned, this region remains under-constrained during
summer. However, for the East Asian domain, the average XCH4 has a seasonal low during monsoon
(Figure 7) and hence has an inherent tendency to infer higher aggregated emissions over this region.
In other words, this leads to an insufficient representation of the CH4 seasonal cycle. On the other
hand, GOSAT-2 has a higher number of observations to compensate for the filtered-out observations.
Considering that these regions are poorly constrained by the surface networks, there is an apparent
difference in the estimated fluxes.

The GOSAT and GOSAT-2 Level 2 products exhibit considerable regional differences (Figure 4)
that need to be fixed. The African continent has high CH4 for GOSAT-2 from February to August,
while it has lower XCHa4 over and adjoining regions of East Asia from May through September. Figure
6 shows the difference in the number of observations between GOSAT and GOSAT-2 during the 2019-
2022 period, counted in 10°x10° grids over the globe. The actual data count for them can be seen in
Figures S2 and S3. The difference is not very significant during the northern winter months (Nov-
Feb) but is apparent in the months from March to September, especially over Africa, South America,
and regions of India and China. GOSAT-2 has twice as the observations per day as GOSAT and thus
leaves more observations after filtering out cloudy scenes. Therefore, GOSAT-2 has higher data
volume during warmer months in Africa and Southeast Asia. However, despite GOSAT-2 having
more data overall, GOSAT has higher data density over southern South America. This depends on
the higher sensitivity of FTS-2 onboard GOSAT-2 to abundant cosmic ray influx over the South
Atlantic Anomaly of the geomagnetic field and the resultant contamination of spectra, which are
filtered out during the retrieval process. From Figure 4, we can see that there are some significant
regional biases from March to September over Asia, Africa, and South American regions between the
observations from the two instruments. Figure 7 gives the time series of XCH4 averaged over the
spatial regions represented by 80-50°W, 10°S-10°N, and 80-120°E, 0-30°N, respectively, over
Amazonia and East Asian regions. We focus only on these two regions because the difference in flux
corrections by the inversions using the two satellite data is sizable (Figure 2). Over East Asia, the time
series has a seasonal minimum during the June to September period, or close to northern summer.
Similarly, over the Amazon region, averaged XCH4 by GOSAT and GOSAT-2 shows a seasonal
minimum during this season, though the cycle is not well defined. The ultimate effect of this
seasonally dependent quality filtering is inadequate representation of the seasonal cycle in XCHa
data, leading to biased estimates in the fluxes, where GOSAT-2 has an advantage in East Asia due to
its larger volume of data.

4. Conclusions

In this paper, for the first time, we use GOSAT-2 observations along with observations from a
surface observation network for inverse estimation of sectoral methane emissions for the 2019-2022
period. We have analyzed the results of GOSAT-2 inversion together with methane emissions
estimated using GOSAT observations. The objective of the study was a comparative analysis of
estimated sectoral fluxes from these two inversions and their regional consistency, identifying the
potential causes of any inconsistency, and noting which dataset performs better over large regions
such as North America, East Asia, and Europe. Overall, the two inversions generally agree over the
global sectoral emissions, while they have differences from a regional point of view. Major
differences in the estimated sectoral fluxes are generally over East and Southeast Asia, Africa, and
tropical South America. These regions coincide with the areas where GOSAT and GOSAT-2 have
inconsistencies in the XCHas product. GOSAT-2 tends to have lower XCHs over East and Southeast
Asia and the neighboring oceanic regions, while GOSAT-2 has higher XCHs values over Africa, the
Middle East, and India. Although validation of the sectoral optimized fluxes is difficult using
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independent observations, we analyze the plausible reasons for the regional differences in the total
fluxes inferred by the two sets of satellite observations. Most of our independent data are from North
America and Europe, and the distribution of residuals after optimization shows reduced bias than
prior residuals over these two spatial domains. However, there are other regions, such as Asia, where
GOSAT-2 performs better. The most valuable contribution of satellite observations in flux inversion
is over such regions with sparse surface-based observation coverage. The NIES retrieval algorithm
used for the two satellite Level 2 products is similar, but there are regional differences in the XCHa
data. Remaining biases in Level 2 products significantly affect flux estimates, especially in regions
with limited surface network constraints. Recent studies emphasized the causes for such regional
differences in XCHa4 products, such as the simultaneously retrieved aerosol optical depth over, for
example, the African continent, and the need for further corrections of biases in the Level 2 data.
Apart from the differences in the retrieval products, quality filtering that removes data for a
particular season in one product can also make a difference. We have found that the net annual
emissions inferred from the satellite products can be influenced by the regional biases in the data
from different sources when the region has poor coverage by the surface observations included in
the inversion, as well as when surface-based total column observation sites like TCCON used for bias
correction of the satellite data do not represent the region adequately. This difficulty is exacerbated
if the region’s XCHa has lower data volume due to quality filtering, which depends on seasonal cloud
cover, such as monsoon Asia. From the results of the analysis in this study, we emphasize the need
for establishing key observation sites in data-sparse regions such as Asia, including reference sites
used for the validation of satellite observations, and ensuring sufficient data volume during cloudy
seasons, especially for the utility of the combined use of satellite data from different platforms in
inferring surface fluxes.

The limitations of the study include the use of non-bias-corrected GOSAT-2 data, while we used
bias-corrected GOSAT data. However, we do apply a bias correction based on a surface-optimized
forward model. Another point is that, for validation, we have quite a few observations in the Asian
region, especially East Asia, where we found a better performance for GOSAT-2.
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