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Abstract 

We employed a global high-resolution inverse model to estimate sectoral methane emissions, 
integrating observations from the GOSAT-2 satellite for the first time, along with observations from 
the surface observation network. A similar set of inversions using GOSAT observations was carried 
out to evaluate the consistency between emissions estimates derived from these two satellites and to 
ensure that GOSAT-2 data could seamlessly integrate with the existing data series without disrupting 
the continuity of flux estimates. This analysis, covering the period from 2019 to 2022, utilized prior 
anthropogenic emissions data mainly from EDGAR v6 and incorporated additional natural sources 
and sinks as outlined by Saunois et al. (2020). Our analysis reveals a general agreement between total 
methane emissions estimates from GOSAT and GOSAT-2. However, on a sectoral basis, we found 
notable regional differences in the flux estimates. While GOSAT inversion estimates ~8 Tg a-1 more 
anthropogenic emissions for China and around 4 Tg a-1 more wetland emissions for Brazil and 
Indonesia, the posterior error distribution suggests that GOSAT-2 inversion is closer to surface 
observations over Asia. These discrepancies are found in regions with significant differences in XCH4 
data from the two satellites, such as East Asia and North America, tropical South America, and 
tropical Africa. These regional biases persist due to limited representative surface reference sites for 
Level 2 bias correction. The relatively lower data volume from GOSAT also introduces seasonal biases 
in the flux estimates when the quality filtering of Level 2 data persistently reduces usable 
observations during certain seasons, resulting in inadequate representation of the seasonal cycle in 
regions such as East Asia. Similarly, in tropical South America, where the model is relatively under-
constrained by the limited surface observations, the lower data volume of GOSAT-2 suffers. While 
the two inversions exhibit consistent overall performance across North America and Europe, 
GOSAT-2-based inversion demonstrates a better performance over East Asia. Therefore, while the 
two satellite datasets are broadly consistent, considering the fact that the biases in the XCH4 data 
overlap with regions under-constrained by surface observations, establishing additional surface 
reference measurement sites is desirable to ensure consistent inversion results.  

Keywords: GOSAT; GOSAT-2; methane emissions; sectoral methane emissions; inverse model; 
anthropogenic 
 

1. Introduction 

Methane is a potent greenhouse gas that has been increasing at a steeper rate of 8.6 ppb a year 
during recent years (2011-2020; Liang et al., 2023; Lan et al., 2024). Rising concentrations of methane 
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have contributed to a 0.6°C rise in global temperatures since pre-industrial times (Shen et al., 2023). 
Hence, the emission mitigation efforts require more realistic emission quantification. Its sources are 
diverse, encompassing natural processes such as wetlands and geological seepage, as well as 
anthropogenic activities including agriculture, fossil fuel extraction, and waste management. 
Effective monitoring and quantification of methane emissions are essential for understanding climate 
change impacts and guiding mitigation. While bottom-up emission inventories form the basis of these 
efforts, their accuracy varies by country due to uncertainties. Inverse modeling, which assimilates 
observations from multiple platforms (e.g., Shen et al., 2023; Nesser et al., 2024), helps assess these 
emissions. Accurate predictions of future methane growth depend on thoroughly understanding 
emission sources and processes.  Anthropogenic and natural sources contribute by their pathways 
to the global growth rate. Anthropogenic emissions are influenced by the growing activities in 
agriculture, fossil fuel exploitation, and waste production. Natural sources, such as wetlands, are, on 
the other hand, influenced by climate change itself, such as the recent increase in wetland emissions 
reported by several studies (e.g., Peng et al., 2022; Zhang et al., 2023). National greenhouse gas 
inventories are fundamental for countries to report their emissions and commitments under 
international agreements. However, these inventories often rely on uncertain assumptions and sparse 
ground-based measurements, highlighting the need for independent verification and refinement 
using advanced observational tools like atmospheric measurements and inverse modeling. 

Greenhouse gases Observing SATellite (GOSAT), launched by the Japan Aerospace Exploration 
Agency (JAXA) in 2009, marked a significant milestone in satellite-based methane observation. 
GOSAT series are satellites observing atmospheric greenhouse gases jointly developed and operated 
by the Ministry of the Environment, Japan, JAXA, and the National Institute for Environmental 
Studies (NIES) (Kuze et al., 2009; Yokota et al., 2009). Equipped with the Thermal And Near infrared 
Sensor for carbon Observation (TANSO), GOSAT provides XCO2 and XCH4 retrievals for the total 
atmospheric column. Its successor, GOSAT-2, launched in 2018, builds upon this legacy with 
improved capabilities, including a slightly higher spatial footprint (9.7 against 10.5km), netter spatial 
coverage, and enhanced sensitivity to methane emissions. The comparative analysis of GOSAT and 
GOSAT-2 inversions is pivotal for assessing the consistency and reliability of methane emission 
estimates derived from these satellites. This comparison not only validates the advancements made 
in satellite technology but also identifies areas for improvement in future missions. As satellite 
missions evolve and new technologies emerge, continuity and consistency in methane monitoring 
are essential for maintaining long-term datasets and ensuring the robustness of emission estimates. 

Consistency between space-based instruments is crucial because successor missions (like 
GOSAT-2) follow their predecessors (like GOSAT). When using such data for emission inversions, 
ensuring compatibility between datasets from consecutive missions is vital for accurate estimates. 
Differences due to major improvements in the remote sensing instruments or retrieval algorithms 
may change the data, but for other reasons, such as systematic errors (biases), ideally, we expect them 
to be minor so that both datasets have similar information content. As satellite Level 2 products are 
retrieved from radiance spectra, unlike direct measurements, they need to be corrected for biases 
based on reference observations. For a similar reason, we also include direct surface-based CH4 
measurements from the same surface observation network for both inversions. In this study, we 
report the results of inverse modeling of GOSAT-2 for the first time and the analysis results of its 
sectoral comparison with the inversion of GOSAT for the period 2019-2022. Section 2 describes the 
data used and the methods involved in this study, and section 3 shows the results, including the 
comparison of sectoral emission estimates, validation with independent observations, and discussion 
of the causes behind regional inconsistencies, followed by the conclusion. 

2. Data and Methods 

2.1. Observations 
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CH4 observations were collected from a network of surface monitoring stations, as compiled in 
the GLOBALVIEWplus_v4.0_2021-10-14 dataset (Schuldt et al., 2021), with additional data from the 
ICOS network (ICOS RI, 2021). A list of sites along with site-specific information is given in Table S1 
(used for assimilation) and Table S2 (used for validation). Surface sites used in the inversion are also 
marked in Figure S1a. To ensure that the measurements were representative of well-mixed 
atmospheric conditions, continuous observations were averaged between 12:00 and 16:00 local time. 
For high-altitude sites, early morning averages (00:00–04:00 local time) were used to minimize the 
influence of local emissions transported upslope due to daytime heating. Data uncertainties for 
surface sites were assessed using the root mean squared error (RMSE) from prior forward 
simulations, with a minimum threshold of 6 ppb applied to provide greater flexibility for inversion 
in the Southern Hemisphere. Rejection criteria for surface, aircraft, and ship observations were based 
on data variance, with a threshold set at double the observed variance. 

The satellite observations for this study were obtained from the GOSAT and its successor, 
GOSAT-2. We utilized the National Institute for Environmental Studies (NIES) Short-Wavelength 
Infrared (SWIR) bias-corrected Level 2 product V02.95/96 for GOSAT (Yoshida et al., 2013) and the 
GOSAT-2 NIES full-physics-based bias-uncorrected Level 2 product V02.00 (Yoshida et al., 2023). 
Yoshida et al. (2023) proposed an empirical formula for correcting the systematic biases in the 
GOSAT-2 level-2 product. However, for this study, this bias correction has not been applied. Both 
GOSAT and GOSAT-2 are sun-synchronous satellites, with GOSAT having a revisit cycle of three 
days and GOSAT-2 a cycle of six days. The TANSO-FTS onboard GOSAT provides observations with 
a nadir footprint diameter of approximately 10.5 km, while the newer TANSO-FTS-2 (Suto et al., 
2021) has a footprint diameter of 9.7 km. TANSO-FTS-2 includes an advanced "intelligent pointing" 
function, which shifts the instrument's line of sight to avoid clouds detected within its field of view, 
enhancing the availability of cloud-free data. A plot of one month (October 2019) of GOSAT and 
GOSAT-2 XCH4 observations is given in supplementary Figure S1. 

2.2. Prior Fluxes 

Anthropogenic prior fluxes we used were from the Emission Database for Global Atmospheric 
Research (EDGAR v6, Crippa et al., 2020), excluding emissions from the oil and gas sector. For oil 
and gas, we used data from the greenhouse gas and air pollution interactions and synergies (GAINS) 
model (Höglund-Isaksson, 2012). Biomass burning emissions were taken from the Global Fire 
Emission Database (GFED v4, Randerson et al., 2017). Wetlands and termites were taken from 
Saunois et al. (2020). Geological and oceanic emissions were taken from Etiope et al. (2019) and Weber 
et al. (2019), respectively. The methane sink in the soil was taken from MeMo v1.0 (Murguia-Flores 
et al., 2018). All prior fluxes were provided to the model at 0.1° spatial resolution. Climatological 
maps of major emission sectors used in the model are given in Figure 1. Monthly climatologies were 
used for wetlands, geological, termite, and oceanic fluxes. All other fluxes were given at the monthly 
time step. The prior uncertainties were prescribed as 30% of the climatology of each anthropogenic 
sector and 50% for wetland emissions. 
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Figure 1. Climatological sectoral prior fluxes used in this study (gCH4 m-2 day-1, scale different for each panel). 

2.3. Meteorological Data 

The meteorological data used for the transport model were obtained from the Japanese 
Reanalysis (JRA-55; Kobayashi et al., 2015, which provides the required parameters, such as three-
dimensional wind fields, temperature, and humidity at 1.25°×1.25° spatial resolution, 40 vertical 
hybrid sigma-pressure levels, and a temporal resolution of 6 h. 

2.4. Inverse Modeling System 

2.4.1. NIES-TM-FLEXPART-VAR (NTFVAR) Inverse Modeling System 

We utilized a global Eulerian-Lagrangian coupled inverse model known as NTFVAR, which 
integrates the National Institute for Environmental Studies (NIES) model with FLEXPART (FLEXible 
PARTicle dispersion model), representing a Eulerian three-dimensional transport model and a 
Lagrangian particle dispersion model, respectively. The development of this model was documented 
by Belikov et al. (2016). Our version of the transport model is a modified iteration of the one 
previously described. This coupled model combines NIES-TM v08.1i, which features a horizontal 
resolution of 3.75° and 42 hybrid-isentropic vertical levels, with FLEXPART model v.8.0, run in 
backward mode with a surface flux resolution of 0.1°. The resolution of the Lagrangian model is 
constrained by the resolution of the available surface fluxes. The current version incorporates 
revisions to the transport matrix, indexing, and sorting algorithms to enhance memory efficiency for 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 July 2025 doi:10.20944/preprints202507.0977.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0977.v1
http://creativecommons.org/licenses/by/4.0/


 5 of 19 

 

managing large matrices of Lagrangian responses to surface fluxes, particularly for utilizing GOSAT 
data in the inversion process. Additional details can be found in Maksyutov et al. (2021). Different 
variants of this model have been used for methane inversion previously (e.g. Wang et al., 2019), but 
this study uses a modified version used by Janardanan et al. (2024). 

2.4.2. The Inverse Modeling Scheme 

We employed a high-resolution version of the transport model and its adjoint as detailed by 
Belikov et al. (2016), combined with the optimization schemes proposed by Meirink et al. (2008) and 
Basu et al. (2013). Following their methodology, flux corrections were estimated separately for 
anthropogenic and natural emissions. Variational optimization was utilized to derive two sets of 
scaling factors for monthly varying prior uncertainty fields at a resolution of 0.1°×0.1°, applied 
independently to anthropogenic and natural wetland emissions with a bi-weekly time step. 
Corrections to anthropogenic emissions were based on the monthly climatology provided by 
EDGAR, while wetland emissions were adjusted according to the monthly climatology from the 
VISIT model, both of which were defined as prior uncertainty fields. The grid-scale flux uncertainty 
was set at 30% of EDGAR climatology for anthropogenic emissions and 50% of VISIT climatological 
emissions for wetland emissions. Other natural flux categories, such as biomass burning, geological 
sources, termites, and soil sinks, were not optimized due to their significantly lower amplitude 
compared to wetlands. A spatial correlation length of 50 km and a temporal correlation of two weeks 
were applied to ensure smooth scaling factors. The inverse modeling problem was formulated to find 
the optimal values of 𝑥, which represent the corrections to prior fluxes, minimizing the cost function 𝐽(𝑥). 𝐽ሺ𝑥ሻ = ଵଶ ሺ𝐻. 𝑥 − 𝑟ሻ்𝑅ିଵሺ𝐻. 𝑥 − 𝑟ሻ + ଵଶ 𝑥்𝐵ିଵ𝑥 (1) 

In this context, H represents the atmospheric transport operator, r denotes the difference 
between the observed concentrations and the forward simulations conducted using prior fluxes 
without any corrections, R is the covariance matrix of the observations, and B is the covariance matrix 
of the prior fluxes. The design of the B matrix involves representing it as a product of a non-
dimensional covariance matrix C and a diagonal flux uncertainty matrix D, such that: 𝐵=𝐷𝑇·𝐶·𝐷(2) 

The C matrix is typically implemented as a band matrix, where the non-diagonal elements 
decrease according to ~exp(−𝑙2/𝑑2), with l representing the distance between grid cells and d the 
correlation distance. The optimal solution, defined as the minimum of the cost function J was 
determined iteratively using the efficient Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm, as 
described by Gilbert and Lemaréchal (1989). For additional details on the implementation, refer to 
Maksyutov et al. (2021). 

2.4.3. Posterior Uncertainties 

Posterior flux uncertainties were calculated from an ensemble of fifteen simulations by 
randomly perturbing the observations and the prior fluxes, as in the method described by Chevallier 
(2007). Pseudo-observations were prepared by perturbing the observations with their uncertainty at 
each site. Also, prior monthly perturbed fluxes were prepared, applying random scaling factors 
separately for each global carbon project (GCP) region and month. Inversions were carried out using 
the perturbed pseudo-observations and the perturbed fluxes (perturbed anthropogenic and wetlands 
with non-perturbed soil sink, biomass burning, and other natural emissions from the ocean, 
geological sources, and termites) as the prior fluxes and calculating the posterior uncertainty as the 
standard deviation of the inverted fluxes. 
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2.4.4. Statistical Significance Test for Difference in Mean 

To assess whether the mean flux corrections from the two inversions differ significantly, we 
performed Welch’s t-test (Welch, 1947) on the monthly flux corrections at 0.1° resolution. The analysis 
was conducted separately for each of the six optimized source sectors. Results are shown in Figure 2, 
with hatched areas indicating regions where the differences are statistically significant. 

 

Figure 2. The sectoral mean (2019-2022) difference in the flux corrections (gCH4 m−2 d−1) in the inversion of 
GOSAT and GOSAT-2 (GOSAT-2−GOSAT). The hatchings indicate regions where the mean differences are 
statistically significant at p < 0.01. The country maps may not represent the actual political boundaries, but only 
a software-dependent approximate outline. 

3. Results and Discussion 

3.1.. Methane Emission Estimates by GOSAT and GOSAT-2 Inversions 

Figure 2 illustrates the grid-wise differences in flux corrections inferred from GOSAT and 
GOSAT-2 inversions to the prior sectoral methane emissions. Statistically significant differences are 
observed in the agriculture, waste, and wetland sectors, of which the most notable being the lower 
estimate for wetland emissions. We estimate a mean (2019-2022) global total emission of 605.2 Tg yr-
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1 for GOSAT and 601.8 Tg yr-1 for GOSAT-2 compared to the prior total of 615.3 Tg yr-1. Table 1 
presents the global total sectoral emissions averaged over the study period for the prior and the two 
sets of inversions. Our estimate is in good agreement with the ensemble mean of the recent global 
methane synthesis (Saunois et al., 2025). Any mention of emission estimate in the following sections 
follows the order, GOSAT followed by GOSAT-2. When comparing the sectoral posterior emissions 
estimated by the GOSAT and GOSAT-2 inversions, there is a noticeable trend: GOSAT-2 generally 
estimates lower emissions for Southeast Asia (Figure 2) than GOSAT. GOSAT-2 provides lower 
estimates for the agriculture sector in Southeast Asia, parts of Europe, and tropical America. For 
instance, in China, GOSAT estimated 23.18±1.54 Tg yr-1 of methane emissions from agriculture, while 
GOSAT-2 estimated 16.82±1.12 Tg yr-1 (Table 2). This estimate is lower than recent studies, such as 
the one by Chen et al. (2022) on TROPOMI inversion, which reported 17.8 Tg yr-1 from livestock and 
11.9 Tg yr-1 from rice paddies using GOSAT as a reference to omit outliers in the inversion. Therefore, 
it is reasonable that our GOSAT inversion is on the upper side, closer to Chen et al. (2022). The 
primary reason for the difference with GOSAT-2 inversion is the lower XCH4 observed by GOSAT-2 
over eastern China and the surrounding regions. In contrast, for other regions of the globe, GOSAT-
2 inversion estimates higher emissions compared to GOSAT, particularly in central North America, 
eastern temperate South America (Argentina 2.34±0.25; 2.97±0.31 Tg yr-1, Brazil 13.52±0.36; 14.29±0.38 
Tg yr-1), tropical Africa, and Southwest Asia (Pakistan). However, the difference in the posterior 
agricultural emission in the two inversions for Pakistan is greater than the uncertainty level 
(5.34±0.37; 5.87±0.41 Tg yr-1). 

Table 1. Global totals of sectoral emission estimates for prior, GOSAT, and GOSAT-2 inversions in units of Tg 
yr-1. The values are the mean for the 2019-2022 period. Sectors marked with an asterisk were not optimized. 

Sectors Prior GOSAT inversion GOSAT-2 inversion 
Total 615.27 605.20 601.83 
Agriculture 159.85 156.23 154.72 
Waste 82.34 80.02 80.28 
Biomass burning 26.86 22.78 22.79 
Coal 37.81 36.50 36.14 
Geological* 23.02 23.02 23.02 
Other microbial* 9.91 9.91 9.91 
Ocean* 11.48 11.48 11.48 
Oil & gas 90.02 83.52 87.79 
Wetlands 173.99 177.84 171.80 
Soil sink* -35.51 -35.51 -35.51 

In the waste sector, the largest emitter is China, with GOSAT estimating 14.36±0.7 Tg yr-1 and 
GOSAT-2 estimating 13.35±0.65 Tg yr-1, followed by USA (4.29±0.05; 4.62±0.06 Tg yr-1), India 
(6.56±0.15; 6.44±0.15 Tg yr-1), and Brazil (4.91±0.09; 5.06±0.09 Tg yr-1). GOSAT-2 also estimates lower 
emissions for Mexico, northern South American countries, and East, South, and Southeast Asia. 
Generally, GOSAT-2 has a good agreement with GOSAT over Australia, boreal Eurasia, and South 
Africa, while GOSAT-2 suggests higher emissions over Europe and eastern North America. For the 
coal sector, GOSAT estimates higher emissions than GOSAT-2 for India, China, Southeast Asia, and 
Australia. Conversely, GOSAT-2 provides higher emission estimates for the USA, Europe, and 
Russia. Emissions from coal mining in China are consistent between GOSAT and GOSAT-2 
(18.97±0.98 and 18.31±0.95 Tg yr-1, respectively), aligning with recent studies such as Chen et al. 
(2022), which reported 16.6 Tg yr-1. The differences between the inversions are within the estimation 
uncertainty for China. Additionally, slight variations in coal emission estimates between the two 
inversions are observed for Indonesia. 

In the oil and gas sector, GOSAT-2 suggests higher emissions from localized sources in the 
United States, Europe, Russia, the Middle East, and parts of Africa. Conversely, GOSAT estimates 
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higher emissions in Southeast Asian countries. The largest differences between the two inversions 
are observed for Nigeria (2.08±0.37 Tg yr-1 vs. 2.86±0.51 Tg yr-1), one of Africa’s largest producers, and 
similar differences are noted for oil and gas producers in the Middle East, such as Iraq and Saudi 
Arabia. GOSAT-2 estimates higher emissions from major sources in the Middle East, Africa, and the 
United States. However, at the country level, the differences generally fall within the uncertainties of 
the inversions. 

For wetland emissions, GOSAT estimates higher emissions in Amazonia, Southeast Asia, central 
Africa, and Australia. Figure 3b illustrates a slight bias remaining in the GOSAT-optimized forward 
simulation compared to observations in Amazonia and Southeast Asia, in contrast to the GOSAT-2 
inversion (Figure 3d). GOSAT-2 suggests higher emissions in Canada, Russia, tropical Africa, and 
southern South America. The most notable differences at the country level are seen for Brazil 
(30.50±1.67 Tg yr-1 vs. 26.19±1.44 Tg yr-1), Colombia (6.19±0.35 Tg yr-1 vs. 4.71±0.27 Tg yr-1), and 
Indonesia (12.12±0.77 Tg yr-1 vs. 7.72±0.49 Tg yr-1). Previous estimates for Brazil's wetland emissions 
using GOSAT inversions (Janardanan et al., 2020) were higher (e.g., ~39 Tg yr-1), compared to ~13 Tg 
yr-1 by Tunnicliffe et al. (2020). In the present study with GOSAT and GOSAT-2 inversions, the 
estimates are 30.5 Tg yr-1 and 26.2 Tg yr-1, respectively. Figure 3d shows that the posterior simulation 
by GOSAT-2 exhibits less bias over Brazil compared to the optimized forward simulation by GOSAT 
whereas GOSAT-2 estimates lower emissions in central African countries compared to GOSAT.  

Table 2. Comparison of country-level sectoral emissions inferred by inversion of GOSAT and GOSAT-2 data 
and the associated uncertainties for selected major emitting countries in units of Tg yr-1. 

Sectors Agriculture Waste Biomass and biofuel Coal Oil & Gas Wetland 

Country GOSAT 
GOSAT
-2 

GOSAT 
GOSAT
-2 

GOSAT GOSAT-2 GOSAT 
GOSAT
-2 

GOSAT 
GOSAT
-2 

GOSAT 
GOSAT
-2 

ARG 2.34±0.25 2.97±0.31 0.52±0.01 0.55±0.01 0.11±0.00 0.11±0.00 0.00±0.00 0.00±0.00 0.44±0.01 0.47±0.01 3.58±0.15 3.86±0.16 

AUS.1 1.89±0.24 2.04±0.26 0.31±0.01 0.31±0.01 0.88±0.02 0.88±0.02 0.79±0.05 0.79±0.05 0.27±0.00 0.26±0.00 3.84±0.16 3.40±0.14 

BOL 0.72±0.02 0.75±0.02 0.08±0.00 0.08±0.00 0.44±0.00 0.44±0.00 0.00±0.00 0.00±0.00 0.12±0.00 0.12±0.00 4.68±0.27 4.38±0.26 

BRA 13.52±0.36 14.29±0.3
8 

4.91±0.09 5.06±0.09 1.85±0.04 1.85±0.04 0.05±0.00 0.05±0.00 0.22±0.01 0.23±0.01 30.50±1.6
7 

26.19±1.4
4 

CAN 1.06±0.02 1.15±0.02 0.57±0.01 0.62±0.01 0.46±0.00 0.46±0.00 0.08±0.01 0.08±0.01 2.68±0.11 2.84±0.12 
11.20±0.7
0 

13.49±0.8
4 

CHN 23.18±1.54 
16.82±1.1
2 

14.36±0.7
0 

13.35±0.6
5 

2.47±0.03 2.42±0.03 
18.97±0.9
8 

18.31±0.9
5 

2.69±0.02 2.75±0.02 3.03±0.09 2.92±0.09 

COL 1.89±0.05 1.80±0.05 0.82±0.01 0.80±0.01 0.07±0.00 0.07±0.00 0.20±0.00 0.20±0.00 0.44±0.02 0.43±0.02 6.19±0.35 4.71±0.27 

COG 0.02±0.00 0.03±0.00 0.03±0.00 0.03±0.00 0.08±0.00 0.08±0.00 0.00±0.00 0.00±0.00 0.06±0.00 0.07±0.00 5.97±0.25 5.95±0.25 

COD 0.30±0.00 0.31±0.00 0.64±0.02 0.64±0.02 1.35±0.04 1.35±0.04 0.00±0.00 0.00±0.00 0.02±0.00 0.02±0.00 
13.59±0.8
0 

13.44±0.7
9 

IND 16.37±1.63 
15.73±1.5
6 

6.56±0.15 6.44±0.15 1.23±0.05 1.23±0.05 1.11±0.05 1.05±0.05 0.47±0.01 0.47±0.01 3.92±0.17 4.06±0.17 

IDN 3.70±0.34 3.20±0.30 2.04±0.11 1.89±0.10 2.17±0.01 2.17±0.01 4.83±0.30 4.53±0.28 0.79±0.06 0.60±0.04 
12.12±0.7
7 7.72±0.49 

IRQ 0.13±0.02 0.14±0.03 0.44±0.01 0.46±0.01 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 6.38±0.96 6.91±1.04 0.09±0.00 0.10±0.00 

MEX 2.67±0.05 2.65±0.05 2.48±0.03 2.43±0.03 0.21±0.00 0.21±0.00 0.01±0.01 0.01±0.01 0.29±0.02 0.30±0.02 1.35±0.05 1.29±0.05 

NGA 1.85±0.04 2.25±0.05 1.47±0.02 1.57±0.02 0.85±0.01 0.90±0.01 0.00±0.00 0.00±0.00 2.08±0.37 2.86±0.51 1.77±0.11 2.09±0.13 

PAK 5.34±0.37 5.87±0.41 1.30±0.03 1.33±0.04 0.32±0.01 0.33±0.01 0.03±0.00 0.03±0.00 0.53±0.03 0.56±0.04 0.16±0.01 0.16±0.01 

PER 0.53±0.00 0.52±0.00 0.27±0.00 0.27±0.00 0.04±0.00 0.04±0.00 0.00±0.00 0.00±0.00 0.03±0.00 0.03±0.00 7.80±0.53 6.18±0.42 

RUS 1.59±0.02 1.67±0.02 3.36±0.03 3.53±0.04 2.93±0.35 2.93±0.35 3.15±0.13 3.24±0.13 
15.78±0.4
1 

16.36±0.4
3 

14.54±1.1
9 

15.50±1.2
7 
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SDN 2.58±0.03 2.98±0.04 0.44±0.01 0.45±0.01 0.34±0.00 0.34±0.00 
0.00±-
0.00 

0.00±-
0.00 

0.59±0.02 0.61±0.02 3.13±0.23 3.40±0.25 

THA 2.50±0.49 2.01±0.39 0.95±0.03 0.87±0.03 0.13±0.03 0.13±0.03 0.01±0.00 0.01±0.00 0.12±0.01 0.08±0.01 1.10±0.08 0.89±0.06 

USA 9.63±0.29 
10.79±0.3
2 

4.29±0.05 4.62±0.06 0.68±0.08 0.68±0.08 1.44±0.28 1.60±0.31 
20.57±0.2
8 

21.09±0.2
9 

5.58±0.28 6.20±0.32 

VEN 1.17±0.02 1.12±0.02 0.36±0.00 0.36±0.00 0.15±0.01 0.15±0.01 0.01±0.00 0.01±0.00 0.47±0.01 0.45±0.01 4.52±0.35 3.44±0.26 

In East Asia and adjacent oceanic regions, GOSAT often shows higher XCH4 values, especially 
over China. Figure 4 highlights this, with some months showing XCH4 values exceeding 30 ppb or 
more in GOSAT compared to GOSAT-2. This discrepancy may account for the elevated emissions in 
sectors like Agriculture, Waste, and Coal in the East China region. Figure 3 compares the differences 
between prior forward and optimized forward simulations of GOSAT and GOSAT-2. It is evident 
that the prior forward simulation for GOSAT-2 was more biased over North American and Asian 
regions (Figure 3c, h, j) compared to GOSAT, possibly due to the biases in the GOSAT-2 Level 2 data 
over North America and Asia (Yoshida et al., 2023). These regions, having a bias in XCH4 data 
identified by Yoshida et al. (2023), exhibit biases in the prior forward also. The reasons for the spatial 
and temporal biases in these two datasets are still under investigation.  

 
Figure 3. The mean difference of prior and optimized forward model with GOSAT and GOSAT-2 observations 
gridded on a 4°×4° grid (a-d). Frequency distribution curves of prior (lighter color) and optimized (darker color) 
forward residuals corresponding to GOSAT (red) and GOSAT-2 (blue) inversions, for surface (e-g) and satellite 
(h-j) observations for three regions, North America (e, h), Europe (f, i), and Asia (g, j). The country maps may 
not represent the actual political boundaries. 

The analysis of the residual for forward and optimized simulations for GOSAT and GOSAT-2 
reveals that both the inversions, on average work well for North America and Europe (Figure 3e, f), 
but for East Asia, the posterior fit of the surface observations are handled better by GOSAT-2 
inversion (Figure 3g).  We have analyzed the results for these three regions defined as North 
America (60-135°W; 15-85°N), Europe (60°E-30°W; 35-72°N), and Asia (60-160°E; 10-75°N) to evaluate 
the estimated fluxes (Figure 3e-j). The figure shows the spatial distribution and the density curves for 
prior and optimized residuals for these three regions for GOSAT and GOSAT-2 inversions. The 
ability of the two inversions to reduce the posterior mean residuals for surface sites over North 
America is quite similar, and the distribution curves shift to neutral for both inversions. Similar 
observations can be made over Europe as well, but with almost indistinguishable performance by the 
two inversions in bias reduction (Figure 3f). The reason behind this is reflected in the analysis by 
Yoshida et al. (2023) in their bias estimation of GOSAT and GOSAT-2 relative to the TCCON sites 
over Europe, both satellite products showed similar performance in the region. This means that both 
inversions could reduce the biases to the same degree. However, for Asia, there is a distinct difference 
between the two inversions. All other inputs being the same, GOSAT-2 inversion brings the biases to 
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a minimum in this region compared to GOSAT inversion. This means that despite GOSAT being 
more mature and evolved in the retrieval processes over the years, GOSAT-2 performs well for the 
Asian region, which is less constrained by the limited surface observations.  

Prior forward simulations for GOSAT show differences from GOSAT-2 prior simulations 
(Figure 3). GOSAT-2 prior residuals are more biased than GOSAT over North America and Asia. But 
this can be due to a combination of biases in prior emissions and the Level 2 data itself. However, 
considering the ability of the two inversions to represent the surface observations (Figure 3e, f, g), it 
is likely that GOSAT-2 inversions perform better for Asia, while GOSAT and GOSAT-2 are similar in 
Europe and North America. 

 

Figure 4. The difference in mean XCH4 (GOSAT-2 – GOSAT) averaged on a 10°×10° grid for each calendar month. 
The country maps may not represent the actual political boundaries. 

3.2. Evaluation with Independent Observations 

We used a set of observations that were not assimilated in the inversion process to have an 
independent evaluation of the posterior emissions in the two sets of inversions. The dataset includes 
surface and aircraft data across the globe. But a lack of coverage over the southern hemisphere 
generally and in the northern hemisphere over Asia, Africa, and South America is noted. The 
locations of the data are given in Figure 5a, and additionally, the details are tabulated in the 
supplementary Table S2. Globally, the two inversions are consistent with similar residual statistics. 
Prior RMSE and BIAS were 32.1 and -3.95 ppb, respectively, while after optimization by GOSAT, 
RMSE and BIAS were 30.8 and -4.8 ppb, and with GOSAT-2 were 31.1 and -3.5 ppb. The detailed 
RMSE and BIAS for each validation site are given in supplementary Figure S4. The probability 
density plot of prior and optimized residuals of the two inversions shows that the distribution of the 
residuals shifts closer to zero after optimization (Figure 5b). Moreover, the two inversions have 
similar posterior residual distributions. However, we found that for the validation sites in Russia and 
the northeastern USA, the BIAS has increased in both the inversions (Figure S5). Over northern 
African validation sites, GOSAT-2 optimization has increased BIAS. However, RMSE was found to 
have generally reduced except over the northeast USA and Mexico regions. The opposite biases in 
the African region are attributable mainly to the difference in GOSAT and GOSAT-2 level 2 products. 
Over Russia, we have few ground observations, and the use of the oil and gas emissions from the 
GAINS model as prior over Russia introduces some unreasonably high posterior emissions for this 
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sector over the region (Table 2). Unfortunately, there is not enough observation coverage over East 
Asia, Africa, or South America for validation. 

 
Figure 5. Validation of the two inversions with observations that were not assimilated in the inversion step. 
Locations of the observation sites used in this validation are presented in a), and the kernel density estimates of 
the prior and posterior residuals are given in b). More details on the sites selected for validation are given in 
Table S2. C) comparison of the NOAA marine boundary layer reference with the latitude-wise average of 
optimized simulations using GOSAT and GOSAT-2 data. The sites used for averaging are a subset of the list. 

In order to check the performance of the models in representing the marine boundary layer 
latitudinal profile, we sampled our posterior simulations by GOSAT and GOSAT-2 inversions at the 
same sites as those used in the NOAA marine boundary layer reference. The marine boundary layer 
reference (MBLR) is a reference of CH4 concentrations (Lan et al, 2023) represented on latitude 
constructed from air samples of the Cooperative Air Sampling Network (Dlugokencky et al., 2021). 
It is created by using selected marine boundary layer sites with measurements representative of a 
large volume of air masses for each trace gas, providing a latitudinally smoothed distribution of CH4. 
A detailed explanation can be found on the NOAA website https://gml.noaa.gov/ccgg/mbl/mbl.html 
(Lan et al., 2023). In the northern latitudes, GOSAT-2-based inversions show a better match to the 
MBLR, but in the southern hemisphere, GOSAT optimization brings the simulation closer to the 
reference (Figure 5c). However, inversion results for the Southern Hemisphere deviate more from the 
MBLR due to sparse observational constraints in this region. 

3.3. Attribution of Regional Differences in Posterior Emissions 

Since the two sets of inversions differ only by the set of satellite observations used, the estimated 
flux differences can be attributed to the regional differences in the Level 2 products. Another aspect 
that could influence the estimated flux is the data volume during the 4 years of analysis. That is the 
representativeness of satellite data in regions not covered by surface observations. Generally, 
GOSAT-2 has more observations than GOSAT, and sometimes, GOSAT has very little coverage over 
certain regions during certain times. We will examine the influence of these two aspects on the 
regional inconsistencies between the two inversions. 
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3.3.1. Regional Inconsistency Between XCH4 Retrieval Products 

Though observations were retrieved using similar algorithms from two satellites, there can be 
regional inconsistencies between the products. Figure 4 presents the monthly perspective of the 
difference between GOSAT and GOSAT-2 XCH4 products (averaged on a 10°×10° grid). We can see 
that there exist considerable regional differences between the two Level 2 products, especially over 
Africa, Europe, and eastern Asia. GOSAT-2 XCH4 is higher over northern Africa, the Middle East, 
Europe, and India during most of the months (Jan- Sept). GOSAT-2 XCH4 is lower than GOSAT over 
Russia, China, Southeast Asia, and adjoining oceanic regions from March to September (Figure 4). 
Over the United States, GOSAT-2 has lower XCH4 for almost all months. These seasonally persistent 
differences in the XCH4 influence the estimated fluxes, as can be seen in Figure 2. We should, 
however, note that the differences in the two data products shown in the mean picture need not be 
only due to regional biases in Level 2 products, but also due to any seasonally dependent quality 
control filter applied to each observation. For example, over regions with seasonal cloud cover, such 
as monsoon Asia, filtering out observations from cloudy scenes can leave the remaining data not 
representative of the whole year. As an example, in Figure 7, we present the time series evolution of 
average XCH4 roughly over Amazonia (80-50°W; 10°S-10°N) and East Asia (80-120°E; 20-60°N). For 
both regions, there is a seasonal minimum concentration from June to September months. So, if 
observations are cleared for cloud cover, there is a chance that the majority of observations represent 
a slightly elevated XCH4 over East Asia than it would be in the actual case. On the contrary, the 
convective season over Amazonia is from December to April. Filtering observations during this 
season will reduce observations of peak wetland methane emissions following the inundation. For 
satellites having a large number of observations, such as GOSAT-2 (almost double compared to 
GOSAT), there will still be more observations to compensate for the filtered-out data (Figure 6). These 
differences become crucial when the region is poorly constrained by surface observations. For 
example, for almost half of the year, the east and southeast Asian and tropical African regions have 
significant differences in the representative XCH4 shown in Figure 4. This can be seen reflected in the 
difference in the flux corrections with the two sets of Level 2 products (Figure 2). 

 

Figure 6. The difference in the number of observations of GOSAT and GOSAT-2 in each 10° grid (GOSAT-2 – 
GOSAT). The country maps may not represent the actual political boundaries. 
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Figure 7. Time series of monthly area-averaged XCH4 values over Amazonia and East Asia regions. The months 
of June to September are shaded, which means the dry season for Brazil and the wet season for East Asia. 

Yoshida et al. (2023) examined the consistency of XCO2 and XCH4 retrievals between  GOSAT 
and GOSAT-2 and found an overall agreement between the two satellites, but pointed out the need 
for additional surface-based validation sites in light of the regional differences in bias between them. 
In their validation of GOSAT and GOSAT-2 XCH4 products with TCCON observations, they found a 
negative bias of -5.7 ppb around the Darwin TCCON site for GOSAT-2, but no sufficient data is 
available for GOSAT. A similar negative BIAS was found over Burgos for GOSAT-2, while a strong 
positive BIAS was found for Saga (Table 2 of Yoshida et al., 2023). In summary, though there are only 
a few sites for validation, their results indicate that there is likely considerable BIAS for both GOSAT 
and GOSAT-2 over East Asia remaining in the products. Comparatively lower emissions by GOSAT-
2 inversion over the region covering Southeast Asia and Australia indicate that this is influenced by 
the lower GOSAT-2 XCH4 data. They have attributed the higher Xgas concentration in GOSAT-2 over 
Northern Africa (similar to biases in Figure 4) to the bias in the aerosol optical thickness in GOSAT-
2 retrieval compared to GOSAT. 

3.3.2. Regional Differences in Data Density 

Comparing the data volume for composite months (Figure 6), there is apparently a lower 
number of GOSAT-2 observations over Northern North America, Russia, and southern South 
America. Apart from these regions, all other regions have a higher data count for GOSAT-2. This 
means that these regions have additional observational constraints by GOSAT-2, especially over 
regions not adequately observed by surface sites. Though there is a reduction in GOSAT-2 data over 
Russia, the differences in posterior emissions are not statistically significant. Instead, there are 
statistically significant differences in the other regions, e.g., Canada, Argentina, Chile, etc. The XCH4 
over the southern part of South America, North America, and Russia is remarkably lower (Figure 4), 
however, the GOSAT-2 inversion allocates more emissions over southern South America and boreal 
North America. The higher emission over southern South America in GOSAT-2 inversions is 
attributable to the anomalously low number of satellite observations (Figure 6), which makes this 
region the most under-constrained when comparing the two inversions. In the case of boreal North 
America, both satellite datasets have limited observations. This makes this region yet another under-
constrained area, and the model allocates more flux there. Over Africa, GOSAT-2 is biased (higher 
than GOSAT) and has the largest regional data volume, so that this region is normally under-
constrained by the surface observation network and has larger emissions across all sectors in GOSAT-
2 inversion. A major reason for the observed differences in the regionally inferred fluxes could 
potentially be the seasonal dependence in quality filtering of Level 2 data between these products. 
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For example, the cloud screening of the Level 2 products can be seasonally dependent over monsoon 
Asia during the northern hemispheric summer. Since GOSAT has a lower data volume compared to 
GOSAT-2 per month (Figures S2 and S3), cloud filtering during the monsoon season increases the 
fraction of available observations during non-monsoon months. Considering that this is a data-sparse 
region as far as surface observations are concerned, this region remains under-constrained during 
summer. However, for the East Asian domain, the average XCH4 has a seasonal low during monsoon 
(Figure 7) and hence has an inherent tendency to infer higher aggregated emissions over this region. 
In other words, this leads to an insufficient representation of the CH4 seasonal cycle. On the other 
hand, GOSAT-2 has a higher number of observations to compensate for the filtered-out observations. 
Considering that these regions are poorly constrained by the surface networks, there is an apparent 
difference in the estimated fluxes. 

The GOSAT and GOSAT-2 Level 2 products exhibit considerable regional differences (Figure 4) 
that need to be fixed. The African continent has high CH4 for GOSAT-2 from February to August, 
while it has lower XCH4 over and adjoining regions of East Asia from May through September. Figure 
6 shows the difference in the number of observations between GOSAT and GOSAT-2 during the 2019-
2022 period, counted in 10°×10° grids over the globe. The actual data count for them can be seen in 
Figures S2 and S3. The difference is not very significant during the northern winter months (Nov-
Feb) but is apparent in the months from March to September, especially over Africa, South America, 
and regions of India and China. GOSAT-2 has twice as the observations per day as GOSAT and thus 
leaves more observations after filtering out cloudy scenes. Therefore, GOSAT-2 has higher data 
volume during warmer months in Africa and Southeast Asia. However, despite GOSAT-2 having 
more data overall, GOSAT has higher data density over southern South America. This depends on 
the higher sensitivity of FTS-2 onboard GOSAT-2 to abundant cosmic ray influx over the South 
Atlantic Anomaly of the geomagnetic field and the resultant contamination of spectra, which are 
filtered out during the retrieval process. From Figure 4, we can see that there are some significant 
regional biases from March to September over Asia, Africa, and South American regions between the 
observations from the two instruments. Figure 7 gives the time series of XCH4 averaged over the 
spatial regions represented by 80-50°W, 10°S-10°N, and 80-120°E, 0-30°N, respectively, over 
Amazonia and East Asian regions. We focus only on these two regions because the difference in flux 
corrections by the inversions using the two satellite data is sizable (Figure 2). Over East Asia, the time 
series has a seasonal minimum during the June to September period, or close to northern summer. 
Similarly, over the Amazon region, averaged XCH4 by GOSAT and GOSAT-2 shows a seasonal 
minimum during this season, though the cycle is not well defined. The ultimate effect of this 
seasonally dependent quality filtering is inadequate representation of the seasonal cycle in XCH4 
data, leading to biased estimates in the fluxes, where GOSAT-2 has an advantage in East Asia due to 
its larger volume of data. 

4. Conclusions 

In this paper, for the first time, we use GOSAT-2 observations along with observations from a 
surface observation network for inverse estimation of sectoral methane emissions for the 2019-2022 
period. We have analyzed the results of GOSAT-2 inversion together with methane emissions 
estimated using GOSAT observations. The objective of the study was a comparative analysis of 
estimated sectoral fluxes from these two inversions and their regional consistency, identifying the 
potential causes of any inconsistency, and noting which dataset performs better over large regions 
such as North America, East Asia, and Europe. Overall, the two inversions generally agree over the 
global sectoral emissions, while they have differences from a regional point of view.  Major 
differences in the estimated sectoral fluxes are generally over East and Southeast Asia, Africa, and 
tropical South America. These regions coincide with the areas where GOSAT and GOSAT-2 have 
inconsistencies in the XCH4 product. GOSAT-2 tends to have lower XCH4 over East and Southeast 
Asia and the neighboring oceanic regions, while GOSAT-2 has higher XCH4 values over Africa, the 
Middle East, and India. Although validation of the sectoral optimized fluxes is difficult using 
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independent observations, we analyze the plausible reasons for the regional differences in the total 
fluxes inferred by the two sets of satellite observations. Most of our independent data are from North 
America and Europe, and the distribution of residuals after optimization shows reduced bias than 
prior residuals over these two spatial domains. However, there are other regions, such as Asia, where 
GOSAT-2 performs better.  The most valuable contribution of satellite observations in flux inversion 
is over such regions with sparse surface-based observation coverage. The NIES retrieval algorithm 
used for the two satellite Level 2 products is similar, but there are regional differences in the XCH4 
data. Remaining biases in Level 2 products significantly affect flux estimates, especially in regions 
with limited surface network constraints. Recent studies emphasized the causes for such regional 
differences in XCH4 products, such as the simultaneously retrieved aerosol optical depth over, for 
example, the African continent, and the need for further corrections of biases in the Level 2 data. 
Apart from the differences in the retrieval products, quality filtering that removes data for a 
particular season in one product can also make a difference. We have found that the net annual 
emissions inferred from the satellite products can be influenced by the regional biases in the data 
from different sources when the region has poor coverage by the surface observations included in 
the inversion, as well as when surface-based total column observation sites like TCCON used for bias 
correction of the satellite data do not represent the region adequately. This difficulty is exacerbated 
if the region’s XCH4 has lower data volume due to quality filtering, which depends on seasonal cloud 
cover, such as monsoon Asia. From the results of the analysis in this study, we emphasize the need 
for establishing key observation sites in data-sparse regions such as Asia, including reference sites 
used for the validation of satellite observations, and ensuring sufficient data volume during cloudy 
seasons, especially for the utility of the combined use of satellite data from different platforms in 
inferring surface fluxes. 

The limitations of the study include the use of non-bias-corrected GOSAT-2 data, while we used 
bias-corrected GOSAT data. However, we do apply a bias correction based on a surface-optimized 
forward model. Another point is that, for validation, we have quite a few observations in the Asian 
region, especially East Asia, where we found a better performance for GOSAT-2. 

Supplementary Materials: The following supporting information can be downloaded at the website of this 
paper posted on Preprints.org. 
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