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Abstract: Objective To investigate the functional and biological significance of telomere-related
active genes in cholangiocarcinoma (CCA) using single-cell sequencing and cell communication
analysis. Methods First, we identified and annotated different cell types in CCA samples using
single-cell sequencing data. Pseudotime analysis revealed the transcriptional status and
differentiation process of CCA cells. We then explored interactions between CCA cells and their
regulatory pathways through cell communication analysis. 47 key genes related to telomere activity
were identified, and GO and KEGG pathway enrichment analysis was performed. Additionally, we
constructed a prognostic model and verified the model’s predictive efficacy. Finally, we identified
genes associated with drug sensitivity in CCA patients and identified pathways associated with
CCA prognosis through tumor TMB analysis. Results We identified 452 active telomere-associated
cells. Then, we assessed telomere associated gene activity, obtaining 47 differentially expressed
telomere genes by intersecting with CCA differentially expressed genes. Major up-regulated
signaling pathways, including MIF-(CD74+CXCR4) and HLA-A-CD8A, were identified through
pseudotime analysis. Three telomere-associated prognostic genes were identified using LASSO
analysis, and prognostic-related models were built. In addition, PBRM1 mutation load was found
to be highest in the high-risk group, making it a potential diagnostic target. Finally, drug sensitivity
analysis revealed higher sensitivity to certain therapeutic drugs in the high-risk group, providing
guidance for tailored CCA treatment. Conclusion The MIF-(CD74+CXCR4) and HLA-A-CD8A
signaling pathways appear to be major pathways for CCA cell proliferation. Prognostic models
based on telomere-associated genes show promise for application, indicating the biological and
clinical significance of telomere activity genes in CCA.

Keywords CCA; telomere; single-cell sequencing; Cell communication; pseudotime analysis

1. Introduction

CCA is a very deadly form of adenocarcinoma that develops in the epithelial cells of the bile
ducts within the hepatobiliary system [1-3]. Worldwide, approximately 106,000 people are diagnosed
with CCA each year, accounting for 0.3% of all cancers, and the incidence is higher in Asian
populations compared to European and North American populations [4]. As early symptoms of bile
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duct cancer are not obvious, most of the patients have already progressed to advanced stages by the
time of diagnosis, losing the opportunity for surgical treatment and ultimately affecting the prognosis
[5]. Globally, about 99,000 people die from bile duct cancer every year, accounting for about 0.4% of
all cancer mortality. Hence, there is an immediate requirement to develop prognostic models using
novel biomarkers in order to enhance the unfavorable prognosis of patients with CCA.

Telomeres, consisting of repetitive DNA sequences found at the tips of chromosomes, are
essential for preserving chromosome stability and integrity [6,7]. Telomere shortening and damage
are closely related to the development of many diseases such as aging and cancer. Studies have shown
that telomere length in malignant cells is usually longer than in normal cells, which is associated with
the unlimited proliferative capacity and resistance to apoptosis of tumor cells. Regulating this process
is a group of highly conserved regulatory factors, telomere-related genes. telomere-related genes are
genes related to telomere structure, function, and regulation of telomerase [6]. Abnormal expression
or mutation of these genes will lead to abnormal shortening or damage of telomeres, which will
trigger chromosomal instability and abnormal cellular function. In tumor development, the abnormal
expression of telomere-related genes is closely related to the shortening of telomeres and
chromosomal rearrangements. These abnormalities lead to genomic instability, which promotes the
proliferation, metastasis, and drug resistance of tumor cells. Therefore, telomere-associated genes
play an important role in regulating tumor development by modulating the stability and function of
telomeres [8]. In CCA, several telomere-associated genes are differentially expressed and play a wide
range of biological roles, and these genes may be closely related to the treatment and prognosis of
CCA. However, the complex role and prognostic significance of telomere-associated genes in CCA
are still largely unknown [9-11].

The contribution of single-cell sequencing technology to tumor research has been immense. It
has enabled researchers to gain insight into the cellular heterogeneity and evolutionary processes of
tumors [12]. Single-cell sequencing data are important in identifying cellular heterogeneity,
constructing cellular trajectories, and analyzing intracell communication and ligand receptor
expression. By analyzing the genomes, transcriptomes, and epigenomes of individual cells, we can
reveal the differences between different tumor cells, identify potential therapeutic targets, and
provide a basis for personalized therapy. The rapid development of single-cell genomics in recent
years has revealed the unknown biological processes and disease causes of CCA [13].

In this study, transcriptomic data, clinical data, and mutation data of CCA were downloaded
through TCGA and GEO databases. Single-cell analysis was performed based on single-cell
sequencing datasets to identify different cell types and telomere-associated active cells in CCA. The
pseudotime analysis to construct cell trajectories and identify branching events, and cell
communication analysis to reveal the interactions and signaling pathways between CCA cells. Next,
we performed an enrichment analysis of telomere activity-related differential genes and explored the
functions of these genes in biological processes and pathways. We constructed prognostic models
and column line plots based on the acquired prognostic-related genes, predicted the overall survival
of patients, and evaluated the efficacy of the models. Furthermore, we conducted gene set enrichment
analysis, gene set variant analysis, immune infiltration analysis, and drug sensitivity analysis to
uncover the molecular characteristics and biological pathways underlying CCA. This comprehensive
approach offers valuable insights for diagnosing and treating CCA, with the ultimate goal of
discovering novel biomarkers and enhancing prognostic prediction for patients with this disease.

Materials and Methods
2.1. Transcriptome Data Download and Preparation

All data used in this study are freely available to the public, mainly from the TCGA (The Cancer
Genome Atlas, https://portal.gdc.cancer.gov/) database and GEO (Gene Expression Omnibus,
https://www.ncbi. nlm.nih.gov/geo/) databases. CCA expression profiling data, and clinical data
were downloaded from the TCGA database via the R package “TCGAbiolinks (version 2.25.0)” [14]
as well as by the Single nucleotide mutation (SNV) data predicted by the “VarScan2 Variant
Aggregation and Masking” tool were downloaded from the TCGA database. 36 tumor samples and
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9 paraneoplastic control samples from TCGA-CHOL and 30 tumor samples from GSE107943 were
included in this study. The ComBat method using the R package “sva” [15] corrected for the batch
effect of non-biotechnology bias. Principal component analysis (PCA) was used to check the extent
of correction.

2.2. Downloading and Processing of Single-Cell Sequencing Data

The GEO database contains a large amount of single-cell sequencing data. In this study, the
single-cell sequencing dataset GSE138709 of CCA, which contains five CCA disease samples and
three paracancerous controls, was obtained from the GEO database. The single-cell raw data in
GSE138709 were imported using the Seurat package (version 4.2.0) [16] for the R programming
language. First, low-quality cells and genes were filtered by the following criteria: 1) Cells expressing
fewer than 300 genes were removed; 2) Genes expressed in fewer than 1 cell were removed. 3) Cells
with fluctuating numbers of expressed genes between 200 and 6,000 were retained. 4) Cells with a
percentage of mitochondrial genes of less than 10% were retained. 5) Cells with UMI readings of less
than 40,000 were retained. The data were normalized using the “normalizedata” function in the
Seurat R package. After data normalization, highly variable genes in single cells were identified by
balancing the relationship between average expression and dispersion. Principal component analysis
(PCA) was then performed and significant principal components (PCs) were used as input for graph-
based clustering. A harmony approach was used to eliminate batch effects across samples. For
clustering, we used the function FindClusters, which is based on the Shared Nearest Neighbor (SNN)
modular optimized clustering algorithm, to generate 18 clusters on 20 PC components at a resolution
of 0.3. The “Runtsne” function is then used for t-distributed random neighbor embedding (t-SNE).
Cell aggregation was demonstrated using t-SNE-1 and t-SNE-2. Subsequently, cell clusters were
identified by cell type-specific biomarkers, and the proportion of cell types was calculated and
evaluated.

2.3. Telomere-Related Gene Scoring

The R package “AUCell” [17] scores each cell based on gene set enrichment analysis. A gene
expression ranking for each cell was generated based on the area under the curve (AUC) values of
2089 human telomere-associated genes (Table S1) obtained from the TelNet (http://www.cancertels-
ys.org/telnet/) database to estimate the proportion of the gene set with high expression in each cell.
Cells that express more genes in the gene set have higher AUC values. The
“AUCell_exploreThresholds” function was used to determine a threshold for identifying active cells
in the gene set. The AUC score of each cell was then mapped to the TSNE embedding using the
“ggplot2” R package (version 3.3.5) to visualize the activated cell clusters.

2.4. Constructing Cellular Trajectories by Pseudotime Analysis

The pseudotime analysis was performed by Monocle 2 [18], which performs reverse graph
embedding based on a user-defined list of genes to generate a pseudo-temporal graph that can
account for branching and linear differentiation processes. For the proposed temporal analysis of
cells with high telomere activity, the raw count data were normalized by estimating a size factor for
trajectory inference. Pseudotemporal trajectories were constructed using genes with a high degree of
discretization and high expression (discretization estimate > 1 and mean expression > 0.1) [19]. default
values were selected for the parameters of the DDRTree algorithm. To further analyze these
branching events, we used branching expression analysis modeling (BEAM) implemented in
Monocle 2. It helps to identify all genes with significant branching-dependent expression. Branch-
dependent expression patterns were visualized as heatmaps using Monocle 2.

2.5. Cell Communication Analysis and Ligand-Receptor Expression

CellChat objects were created by the “CellChat” R package
(https://www.github.com/sqjin/CellChat) [20] based on the UMI count matrix of each group (CCA
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and control). Cell-to-cell communication was analyzed using the “CellChatDB.human” ligand-
receptor interaction database as the reference database with default parameters. The
“mergeCellChat” function was used to combine the CellChat objects of each group to obtain a
comparison of the total number of interactions and the intensity of interactions. The
“netVisual_diffInteraction” function was used to visualize the differences in the number or strength
of interactions between different cell types between groups. Finally, we used the “netVisual_bubble”
and “netVisual_aggregate” functions to visualize the distribution of signaling gene expression
between groups.

2.6. GO/KEGG Pathway Enrichment Analysis

Gene Ontology (GO) [21]e nrichment analysis includes biological process (BP), molecular
function (MF), and cellular component (CC) analysis. GO enrichment analysis of genes was
performed using the R package “clusterProfiler (version 4.2.2)” [22]. Kyoto Encyclopedia of Genes
and Genomes (KEGG) [23] is a bioinformatics resource for mining gene lists enriched with
significantly altered metabolic pathways. The KEGG enrichment analysis of telomere-related
differentially expressed genes (DEGs) in CCA was performed using the R package “clusterProfiler”
(p-value <0.05).

2.7. Construction and Validation of Prognostic Models

The genes obtained by taking the intersection with telomere-related genes as key genes were
analyzed by the results of the difference analysis of telomere high-activity and low-activity cells in
the single-cell dataset, the results of the difference analysis of disease and control, and the results of
the difference analysis of the CCA and normal groups in the CCA dataset of TCGA. To assess the
prognostic value of the key genes, we used one-way Cox regression analysis to assess the correlation
between each gene and survival in the tumor cohort, and genes with P < 0.05 were considered to be
significantly associated with survival for further analysis. All CCA tumor samples (n=66) with clinical
information were randomly divided into training and validation sets in a 7:3 ratio. The LASSO Cox
regression model (R package “glmnet” [24]) was then utilized to narrow down the candidate genes
and construct prognostic models. The penalty parameter (A) was determined by the minimum
criterion. Risk scores were calculated using the following formula:

n
riskScore = Z Coef(gene;) * Expression(gene;)

i=1

(Coef (genei): risk factor, Expression (genei): gene expression level)

The training group samples were divided into low-risk and high-risk groups based on the
optimal cut-off value determined by the surv_cutpoint function. Survival curves were then generated
to assess prognostic significance utilizing the Kaplan-Meier method, and statistical significance was
evaluated through the log-rank test. A subject operating characteristic curve (ROC) was used to
validate the efficacy of the prognostic model. AUC values typically ranged from 0.5 to 1, with closer
to 1 indicating better model efficacy. The validation set was also divided into low-risk and high-risk
groups for validation of the prognostic model.

2.8. Construction and Validation of Column-Line Diagrams

Clinical information of patients (age, gender and disease stage, etc.) was extracted from the
TCGA cohort. A one-way Cox regression analysis was performed combining the clinical information
with the risk scores obtained from the prognostic model. In addition, we combined the prognostic
and clinical characteristics and constructed a column chart using the R package “RMS” to predict
overall survival at 1, 3, and 5 years. The effectiveness of the column plot model was evaluated by
ROC curves.
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2.9. Gene Set Enrichment Analysis (GSEA)

The Gene Set Enrichment Analysis (GSEA) algorithm assesses whether a predefined set of genes
exhibits statistically significant differences between two biological conditions.GSEA is performed
with the R package “clusterProfiler (version 4.2.2)” on an ordered list of all genes aligned according
to log2FC, with 1000 gene set alignments performed for each analysis. In this study,
c2.cp.kegg.v7.5.1.symbols was used as the reference gene set, which is stored in the Molecular
Signatures Database (MSigDB) [25-27] database. p < 0.05 was considered to be a gene set with a P <
0.05. 0.05 of the gene set was considered significantly enriched.

2.10. Gene Set Variation Analysis (GSVA)

To investigate the differences in biological function between high and low-risk groups, Gene Set
Variation Analysis (GSVA) was performed using the R package “GSVA (version 1.42.0)” based on
“c2.cp.kegg.v7.5.1.symbols”. GSVA). The R package “pheatmap (version 1.0.12)” was used to
visualize the results.

2.11. Immune Infiltration Analysis

Single Sample Gene Set Enrichment Analysis (ssGSEA) [PMID: 36090900], an extension of Gene
Set Enrichment Analysis (GSEA), calculates separate enrichment scores for each pair of samples and
gene sets. Each ssGSEA enrichment score represents the extent to which genes in a particular gene
set are coordinately up-or down-regulated in the sample. Based on 28 immune cells downloaded
from the TISIDB (Tumor and Immune System Interactions Database)
(http://cis.hku.hk/TISIDB/index.php) [28] database, including Activated CD8 T cell, Central memory
CDS8 T cell, Effector memory CD8 T cell, Activated CD4 T cell, Central memory CD4 T cell, Effector
memory CD4 T cell, T follicular helper cell, Gamma delta cell, T cell, and T cell. helper cell, Gamma
delta T cell, Type 1 T helper cell, Type 17 T helper cell, Type 2 T helper cell, Regulatory T cell,
Activated B cell, Immature B cell, Memory B cell, Natural killer cell, CD56bright natural killer cell,
CD56dim natural killer cell, Myeloid derived suppressor cell, Natural killer T cell, Activated
dendritic cell, Type 1 T helper cell, Type 17 T helper cell, Type 2 T helper cell, Regulatory T cell
Activated dendritic cell, Plasmacytoid dendritic cell, Immature dendritic cell, Macrophage,
Eosinophil, Mast cell, Monocyte and Neutrophil, Quantification of gene expression profiles for each
CCA sample from each CCA disease samples to quantify the relative enrichment score of each
immune cell from the gene expression profiles. Differences in immune cell infiltration levels between
high and low-risk groups were visualized by the R package “ggplot2 (version 3.3.6)” [29].

2.12. Somatic Mutation Analysis

A landscape of genomic mutational variation was depicted based on mutation data. the R
package “maftools” was used to display somatic variants between different subgroups, including
single nucleotide polymorphisms (SNPs), insertions and deletions (INDELs), tumor mutational load
(TMB), and mutation frequency [30]. Generally, frequently mutated genes (FMGs) with the top 20
mutation frequencies are considered to be the main driver genes of malignant tumors [31].

2.13. Drug Sensitivity Analysis

Based on the half-maximal inhibitory concentration (IC50) data and corresponding gene
expression data downloaded from the GDSC database (Genomics of Drug Sensitivity in Cancer,
https://www.cancerrxgene.org/) [32], the R package was used “oncoPredict (version 0.2)” [33] to
predict potential therapeutic drug sensitivities in patients in the high and low-risk groups of CCA.

2.14. Statistical Analysis

This study was statistically analyzed using R software v4.1.2. Spearman correlation test was
used to infer the correlation between two parameters. The Wilcoxon test was employed to assess
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disparities between two groups, while the Kruskal-Wallis test was applied to evaluate differences
among three or more groups. A two-tailed p-value below 0.05 was deemed to indicate statistical
significance. The detailed analysis process is shown in Figure 1.

GSE138709 | TCGA-CHOL ‘ | GSE107943 ‘
\ {
r :

‘ QC/Normalization Removal of batch effects

Telomere-related genes }—l
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and Clustering annotation Active cells
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GO and KEGG

Cell communication Pseudotime analysis

Figure 1. Flowchart of this study.

3. Results
3.1. Single-Cell Dimensionality Reduction Clustering and Annotation

To explore the origin of highly expressed genes, we analyzed cell populations from CCA
samples using the single-cell sequencing dataset GSE138709. After the initial quality control
assessment, we obtained a total of 29,983 cells from the single-cell transcriptome. 8 samples were
included in the study, and all cells were aggregated into 18 clusters (Figure 2A), and different cell
types were annotated by cell-specific biomarkers based on the gene expression profile of each cluster
(Table S2). As shown in Figure 2B, 10 cell types can be found, such as NK cells, malignant cells, and
B cells. specific genes for each cell type were visualized by dot plots (Figure 2C). The proportions of
different cell types in the control samples (GSM4116579, GSM4116582, GSM4116586) are shown in
Figure 2D; the proportions of different cell types in the disease samples (GSM4116580, GSM4116581,
GSM4116583, GSM4116584, GSM4116585) are Figure 2E shown.
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Figure 2. Identification of cellular subpopulations from single-cell sequencing data. (A) TSNE plot
showing the distribution of single-cell subpopulations. (B) TSNE plot showing the annotation results
of single-cell cell subpopulations. (C) Expression of marker genes in each cell type. (D) Fan plot
showing the distribution of different cell types in control samples. (E) Fan plot showing the
distribution of different cell types in CCA samples.

3.2. Characterization of Telomere-Related Activity

A subpopulation of active cells was utilized to study the expression pattern of telomere-
associated genes at the single-cell level. Active cells were identified by the optimal threshold, which
showed the presence of 452 telomere-associated active cells, the population of cells with AUC values
greater than 0.25 (Figure 3A). Figure 3B highlights the TSNE plot of the active cells and Figure 3C
shows the telomere activity of all cells, the darker the color the higher the telomere activity, from
Figure 3B and 3C it can be seen that the telomere active cells are mainly malignant cells.

A geneSet C

Frequency
0 200 400 600 800 1000 1200

000 005 010 015 020 025
AUC histogram

geneSet

hepatocytes

Cells with AUC > 0.25

Figure 3. Identification of telomere-associated activity. (A) AUC score of telomere-associated genes
with a threshold value of 0.25. (B) TSNE plot of the distribution of cells with AUC values greater than
the threshold, with screened cells in blue. (C) TSNE chromaticity plot showing the scoring of cell
activity, the brighter the color, the higher the activity.
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3.3. Pseudotime Analysis

Using telomere-associated active cells, we built a pseudo-temporal cell trajectory to find the
important gene expression programs that determine CCA progression. Indeed, the transcriptional
states in the trajectory revealed different processes. malignant cells were distributed in different
branches, suggesting that malignant cells have different transcriptional states (Figure 4A-D). To
elucidate the molecular basis of malignant cells transformation, we explored the genes that determine
the branching of malignant cells in CCA. Genes highly expressed in pre-branch were mainly enriched
in GO BP pathways such as wound healing and skin development. Genes enriched in response to
toxic substance-related pathways were highly expressed in cell branch 2, and genes enriched in T cell
activation, antigen processing, and presentation of exogenous peptide antigen via MHC genes in
class II were highly expressed in cell branch 1 (Figure 4E).
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Figure 4. pseudotime analysis reveals cellular transcription patterns. (A) Pseudotime trajectories
showing cell distribution based on cell type. (B) Pseudo-time traces were categorized by Monocle2
into three different states. (C) Pseudotime color gradient transitions from dark blue to light blue. (D)
Stacked histogram showing the distribution of cell types in different states. (E) Heatmap showing
different branches. (cell fate) of differentially expressed genes (DEGs). GO pathways significantly
enriched in different gene clusters in the heatmap are shown to the left.

3.4. Cell Communication Analysis

To further investigate the cellular network of interactions in CCA, we used the R package
“Cellchat” to reveal changes in crosstalk between CCA cells. The network plot showed an overall
increase in the number of interactions between CCA cell types, an increase in the strength of
interactions associated with B cells, fibroblasts, and hepatocytes, and a general decrease in the
strength of interactions associated with NK cells (Figure 5A,B). We then further compared the
signaling patterns between cells from the CCA group (Figure 5C,D). NK cells were the major signal
receivers. Subsequently, from the probability point plots of communication signaling between
malignant cells and the ligand-receptor pairs between NK cells and B cells, we could see that the
stronger changing communication signaling pairs were MIF - (CD74+CXCR4), HLA-A - CD8A, etc.
(Figure 6A). We also explored the interaction of malignant cells with other cell types through the MIF,
MHC-I signaling pathway where the above signaling pairs are located (Figure 6B,C). These results
preliminarily elucidated the potential interactions between these cell types and helped us to further
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investigate the integrative role of malignant cells in CCA. As can be seen from Figure 7A-D
expression of specific pathway ligand receptors, ligand HLA-A was highly expressed in NK cells.
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Figure 5. Results of intercell communication analysis. (A) Network diagram demonstrating the
number of interactions between cells. (B) Network diagram showing the strength of interactions
between cells. Heatmap visualizing the signals sent (C) and received (D) by cells in the CCA group.
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Figure 6. Changes in intercell communication in CCA. (A) Dot plots showing signaling pathways in
which malignant cells communicate with NK cells and B cells with increased and decreased strength.
String diagrams show malignant cells interacting with other cell types through specific signaling
pathways MIF (B), and MHC-I (C).
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Figure 7. Expression of specific pathway ligand receptors in different cells of CCA. Dot plots (A)
and violin plots (B) of ligand receptors of the MIF pathway in CCA expressed in different cells. Dot
plots (C) and violin plots (D) of ligand receptors of the MHC-I pathway in CCA expressed in different
cells.
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3.5. Enrichment Analysis of Telomere Activity-Related Differentially Expressed Genes

A total of 805 differentially expressed genes (DEGs 1) were identified by taking the intersection
of the results of the differential analysis of telomere high and low activity cells in the single-cell
dataset (n=1674, Table S3), and the results of the differential analysis of disease vs. control (n=2225,
Table 54), and the differences of these genes between the two groups were statistically significant (p-
value <0.05, | Log2 fold change| >0.25). We then compared the CCA and normal groups in the TCGA
CCA dataset and identified a total of 3658 differentially expressed genes (Table S5), and intersected
with telomere-associated genes (n=2089) to obtain 472 telomere-associated differentially expressed
genes (DEGs 2), which were statistically different between the two groups (p-value <0.05, | Log?2 fold
changel >2). The distribution of telomere-associated differential genes was demonstrated by volcano
plots, and the top 5 up-regulated genes (RALY, LCMT1, CD2BP2, FUS, CCDC115) and top 5 down-
regulated genes (LINC01831, C30rf85, LINC02754, AC016682.1, SLC6A13) were illustrated by heat
maps (Figure 8A,B). The two sets of differential genes were taken to intersect to obtain 47 key genes
(hub genes, Table S6) as shown by the Wayne diagram (Figure 8C).

In order to investigate the biological functions associated with the differential genes, we
analyzed the enrichment of telomere-associated differential genes for GO entries (Table S7) and
KEGG pathway (Table S8), which are shown by lollipop diagrams. The GO results showed that these
genes were mainly involved in “DNA replication”, “positive regulation of DNA metabolic process”,
“regulation of DNA metabolic process”, “regulation of DNA metabolic process”, and “DNA
metabolism”. “regulation of DNA metabolic process” and “chromosomal region” (BP). Enriched in
biological processes such as “chromosomal region”, “chromosome, telomeric region”, “nuclear
chromosome”, etc. (BP). Enriched in “chromosomal region”, “chromosome, telomeric region”,
“nuclear chromosome” and other cellular components (CC). Enriched in “catalytic activity, acting on
DNA”, “single-stranded DNA binding”, “single-stranded DNA helicase”. “single-stranded DNA
helicase activity” were enriched in molecular functions (MF) (Figure 8D). KEGG pathway includes
“Cell cycle”, “DNA replication”, “Cellular senescence”, etc. (Figure 8E).
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Figure 8. Enrichment analysis of telomere activity-related differentially expressed genes in CCA.
(A) Volcano plot depicting genes significantly differentially expressed between CCA and normal
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control. (B) Heatmap of the top 5 significantly differentially expressed genes in up- and down-
regulation. (C) Wayne plots of the intersection of differential genes with transcriptional differential
genes and telomere-associated differential genes between different subgroups of cells and different
telomere-active cells in single cells. (D) GO-enriched lollipop plot showing the top three pathways
with the highest significance for Biological process (BP), Cellular component (CC), and Molecular
function (MF). (E) KEGG enrichment analysis.

3.6. Construction and Validation of Prognostic Models

A univariate Cox analysis was used to identify key genes associated with prognosis (p < 0.05),
and disease samples in TCGA and GEO were integrated to finally identify five genes associated with
CCA prognosis (DDX39A, SNRPE, TMEM109, ANXA4, ATP1Al). 7/10 CCA samples (66 in total)
were selected by random sampling as the training set (n=44) and 3/10 as the validation set (n=22).
LASSO regression analysis was performed on the training set to remove redundant genes, and the
random number seed was set to 17. A total of 3 genes associated with the prognosis of CCA patients
were identified (Table 59), and the results are shown in Figure 9A,B. To determine the robustness of
the model constructed using the 3 gene features, the samples were categorized into high-risk and
low-risk groups based on the median risk value as a threshold. KM survival curves were constructed
for different groups of patients in the training cohort (Figure 9C) and validation cohort (Figure 9D).
The results showed that patients in the high-risk group had a significantly worse prognosis compared
to patients in the low-risk group in all cohorts. ROC curves were used to determine the efficacy of
the model in predicting patient prognosis. In the training cohort, the AUC values for 1, 3, and 5year
survival were 0.701, 0.717, and 0.769, respectively (Figure 9E). In the validation cohort, the AUC
values for 1, 3, and 5 year survival were 0.779, 0.720, and 0.759, respectively (Figure 9F).
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Figure 9. Cox and LASSO regression analysis of the bile duct cancer dataset. (A) LASSO regression
trajectory of the independent variables, with the horizontal coordinate indicating the logarithm of the


https://doi.org/10.20944/preprints202406.0930.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2024 d0i:10.20944/preprints202406.0930.v1

13

lambda of the independent variables and the vertical coordinate indicating the independently
accessible coefficients. (B) Confirmation intervals under each lambda in the LASSO regression. (C)
Survival curves for patients in the high- and low-risk groups from the training cohort, respectively.
(D) Survival curves for patients in the high- and low-risk groups from the validation cohort,
respectively. The yellow color represents the high-risk group and the blue color represents the low-
risk group. (E) Time-dependent ROC curves for 1, 3, and 5 year survival for the model used for the
training cohort. (F) Time-dependent ROC curves for 1, 3, and 5 year survival for the validation cohort
model.

3.7. GSEA and GSVA

To further explore the potential mechanisms of differentially expressed genes, we performed a
GSEA enrichment analysis. Using the pathway information in the MsigDB database as a reference,
we selected the most significant pathways based on the normalized enrichment score (NES) (Table
510). The results of the GSEA analysis indicated that DRUG METABOLISM CYTOCHROME P450,
RETINOL METABOLISM, COMPLEMENT AND COAGULATION CASCADES, TIGHT
JUNCTION, ECM RECEPTOR INTERACTION, and FOCAL ADHESION were the most significant
pathways. FOCAL ADHESION and other pathways and biological processes were more active in
CCA (Figure 10A-F, P< 0.05). In addition, we performed GSVA enrichment analysis using the
pathway information in the MsigDB database as a reference and selected the pathways with the most
significant differences between the high- and low-risk groups to draw pathway activity maps (Figure

10G, Table S11).
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Figure 10. Pathways enriched for GSEA and GSVA. (A) DRUG METABOLISM CYTOCHROME
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TIGHT JUNCTION. (E) ECM RECEPTOR INTERACTION. (F) FOCAL ADHESION.(G) GSVA
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ENRICHMENT ANALYSIS of pathway maps differentially enriched between high and low-risk
groups.

3.8. Immune Infiltration Analysis

We further investigated the level of infiltration of 28 immune cell types in the high- and low-risk
groups using the ssGSEA method. The heat map of correlation between immune cells showed that
most immune cells were positively correlated with each other (Figure 11A). Immune cells central
memory CD4 T cell, Immature B cell, etc. showed significant differences between high and low-risk
groups (P value <0.05, Figure 11B). In addition, we examined the significant correlation between
prognostic genes and corresponding immune cells and found that ATP1A1 was positively correlated
with Central memory CD4 T cell (R=0.327, p < 0.05) and negatively correlated with Immature B cell
(R=-0.25, p < 0.05) (Figure 11C,D).
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Figure 11. Levels of immune infiltration between high and low-risk groups. (A) Heatmap of
correlation between immune cells. (B) Box line plot of the estimated proportion of immune cells
between high and low-risk groups. Correlation between ATP1A1 and Central memory CD4 T cell (C),
and Immature B cell (D) immune cells. Asterisks indicate P values : ***p < 0.0001, **p < 0.001, **p <
0.01, *p < 0.05.


https://doi.org/10.20944/preprints202406.0930.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2024 d0i:10.20944/preprints202406.0930.v1

15

3.9. Construction of Nomogram Model

In order to verify whether risk score could be used as a prognostic factor, a one-way Cox
regression analysis was performed on the clinical characteristics of patients (e.g., age, disease stage,
and gender). The results showed that risk score and disease stage were independent prognostic risk
factors for patients (Figure 12A). The results of constructing a nomogram showed that risk score
significantly predicted clinical outcomes (Figure 12B). ROC curves were used to determine the
efficacy of the nomogram in predicting patient prognosis. The results showed that the nomogram
model had good stability and accuracy at 1, 3, and 5 years (Figure 12C).
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Figure 12. Risk score as an independent prognostic factor. (A) Results of univariate Cox regression
analysis of clinical characteristics. (B) Predictive model of the nomogram. line segments indicate the
contribution of clinical factors to outcome events, the total score indicates the sum of the
corresponding individual scores for all variable values, and the bottom three lines indicate the
prognosis for 1, 3, and 5-year survival corresponding to each value point. (C) Nomogram model ROC
curves for 1, 3, and 5 years.

3.10. TMB and Drug Sensitivity Analysis

We also assessed specific gene mutations in CCA and visualized the top 20 genes with the
highest mutation frequency. PBRM1 had the highest mutation frequency in both high and low-risk
groups and was much more frequent in the high-risk group than in the low-risk group (Figure 13A,B).
Tumor mutational load (TMB) is a key criterion for the success of immunotherapy. Therefore, somatic
mutations associated with CCA were analyzed, and TMB was significantly higher in the high-risk
group than in the low-risk group (Figure 13C, P<0.05). We analyzed whether the risk score accurately
predicted chemotherapy sensitivity in patients with CCA. The results showed that high-scoring
patients were more sensitive to Vinblastine_1004 (Figure 13D), Vinorelbine 2048 (Figure 13E),
Docetaxel_1007 (Figure 13F) and other drugs.
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Figure 13. Differences in TMB and drug sensitivity between high- and low-risk groups. (A) Top 20
genes with the highest mutation frequency in the high-risk and (B) low-risk groups. (C) TMB violin
maps for the high and low-risk groups. (D) Differences in drug sensitivity of Vinblastine_1004
between high and low-risk groups. (E) Drug sensitivity difference of Vinorelbine_2048 between high
and low-risk groups. (F) The difference in drug sensitivity of Docetaxel_1007 between high and low-
risk groups.

Discussion

In order to prevent incomplete replication and instability that can occur at the ends of linear
DNA, eukaryotic chromosomes end with characteristic repetitive DNA sequences within special
structures called telomeres. Regarding the functions and roles of telomeres, which have attracted the
attention of researchers for a long time. Earlier studies have shown a strong relationship between
telomeres and human aging. As early as 1990, researchers found that the during aging in vitro and in
vivo, the number and length of telomeric DNA in human fibroblasts actually does decrease with
successive generations [34]. In 2002, it was demonstrated that aging at the clonal level occurs through
telomere shortening (a region of DNA near the end of a chromosome) shortening. Telomere
shortening leads to chromosome instability, breakage and mutation, which in turn leads to an
increased rate of cancer in people of advanced age [35]. Then, with continuous research, telomeres
have been found to play an very important role in tumorigenesis and development. About 85% of
tumor cells maintain telomere length by activating telomerase, and about 15% of tumor cells use
homologous recombination or other mechanisms to maintain telomere length when telomerase is
inactivated or insufficient, which are collectively known as alternative lengthening of telomere (ALT).
The presence of ALT enables tumor cells to maintain long telomere length and thus achieve unlimited
proliferation [36]. This result was confirmed in different cancers, but it seems that the relationship
between telomere length and cancer is not a simple one-dimensional relationship, and different
directions of influence were shown between different cancers. For example. For instance, one study
analyzed leukocyte telomere length (LTL) in relation to prostate cancer (PCa) using Mendelian
randomization and found that longer LTL was associated with a higher risk of PCa [37]. But in
another study it was mentioned that sustained cell proliferation or rapid cell renewal through
hepatocellular injury leads to a multi-step hepatocellular carcinogenesis process. Therefore,
progressive shortening of telomeres and activation of telomerase may be useful markers for early
detection of malignant progression of liver disease [38,39]. And a recent study mentioned more
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frequent telomerase reverse transcriptase (TERT) promoter mutations in HCC with significantly
higher TERT expression and longer telomere length. TERT promoter mutations were associated with
higher TERT levels and longer telomere length and were also independent predictors of poorer
overall survival after hepatectomy [40].

What is puzzling is that cancer cells generally possess long telomeres, which seems to go against
conventional knowledge? The plausible answer is that cancer develops through a succession of
mutations that bypass cell cycle checkpoints when cell replication is out of control. Thus, shorter
telomeres may constitute a fail-safe mechanism against potentially cancerous cells. Most cancers
show telomerase activity or employ other mechanisms (ALT pathway) to bypass the telomere barrier
[41-43]. It follows that the relatively short telomeres in humans are likely to be an evolutionary trade-
off, with telomeres becoming shorter as we age, sacrificing the opportunity to further extend our
lifespan in exchange for a strong resistance to cancer.

In cholangiocarcinoma, a search of the literature revealed a recent study that investigated
telomere length and the risk of developing cholangiocarcinoma, showing an inverse linear
relationship. People with the shortest telomeres had a 1.86 times higher risk of developing bile duct
cancer compared to those with the longest telomeres [44]. However, until now, no studies have been
conducted to investigate the relationship between telomere-related genes and the pathogenesis of
cholangiocarcinoma. In this study, we investigated the biological functions of telomere-associated
genes in cholangiocarcinoma for the first time.

In our study, we identified different cell types in CCA samples and annotated them by cell
communication analysis based on public database gene sequencing as well as single-cell sequencing
data. Then, by assessing the activity of telomere-associated genes, telomere-active cells were
identified mainly as malignant cells, and 452 telomere-associated active cells were found. Pseudotime
analysis was performed to reveal the transcriptional status and differentiation process of CCA cells.
In addition, the important gene expression programs in CCA were further explored, and malignant
cells were found to have an important role in the proliferation of CCA cells via MIF-(CD74+CXCR4),
HLA-A-CD8A, and the ligand HLA-A was highly expressed in NK cells. The next studies targeting
the two up-regulated pathways may bring new inspirations and ideas for further mechanistic
elaboration and diagnosis of CCA cells.

By taking the intersection of differentially expressed genes with telomere activity genes, 47 key
genes related to telomere activity were identified. The enrichment analysis of GO and KEGG
pathways for telomere-related differential genes revealed that they were mainly involved in DNA
replication, positive regulation of DNA metabolic process, and other biological functions. They are
also involved in important cellular metabolic pathways such as “Cell cycle”, “DNA replication” and
“Cellular senescence”, suggesting that telomere-associated differential genes are closely related to
the cell cycle, cell proliferation, and cellular metabolism. genes are closely related to cell cycle and
cell proliferation. The GSEA analysis showed that drug metabolism cytochrome P450, retinol
metabolism, complement and coagulation cascades, tight tunction, ECM receptor interaction, focal
adhesion and other important cellular metabolic pathways are also relatively active in CCA. Studies
targeting these pathways may shed more light on the mechanism of telomere activity genes in CCA.

Next, three genes associated with the prognosis of CCA patients were identified using one-way
Cox analysis and LASSO regression analysis. A prognostic model was constructed based on the
expression levels of these three genes related to the prognosis of CCA patients and the predictive
efficacy of the model was verified. The results showed that the prognostic model showed good
predictive efficacy and had the potential for further clinical research. However, further clinical
studies are needed to demonstrate this.

Tumor immunity is always an essential topic in oncology research, and this study also addresses
tumor immunity in CCA. In the process of exploring tumor immunity, most of the immune cells
analyzed among immune cells were positively correlated with each other, suggesting that different
immune cells are in a mutually reinforcing relationship. We also observed that the immune cells
Central memory CD4 T cell and Immature B cell showed significant differences between high and
low-risk groups. The prognostic gene ATP1A1 was positively correlated with Central memory CD4
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T cell and Immature B cell, suggesting that the prognostic gene ATP1A1 may be closely related to
tumor immunity in CCA.

Finally, we found a very high mutation rate and high TMB of PBRM1 in patients with CCA,
which may be the next therapeutic target for CCA to be further explored. The drug sensitivity
analysis also revealed that patients in the high-risk group were more sensitive to Vinblastine_1004,
Vinorelbine_2048, Docetaxel_1007, etc., this provides new inspiration and reference for the fine-tuned
treatment of CCA, which is meaningful and necessary for further investigation.

This study is comprehensive in exploring the telomere-related active genes in CCA, there are
limitations in this study as well. Although this study was conducted as scientifically and objectively
as possible, there are still some irresistible interfering factors, such as this study is based on data from
public databases, and the results are affected by the original data. Secondly, the data of the study
came from different organizations, and there are inaccuracies that have an impact on the results.

Conclusions

In summary, this study reveals the functional characteristics and biological mechanisms of
telomere-related active genes in CCA through the comprehensive analysis of single-cell
transcriptomes and TCGA databases, which provides an important reference for CCA research and
treatment.
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