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Abstract: Objective To investigate the functional and biological significance of telomere-related 

active genes in cholangiocarcinoma (CCA) using single-cell sequencing and cell communication 

analysis. Methods First, we identified and annotated different cell types in CCA samples using 

single-cell sequencing data. Pseudotime analysis revealed the transcriptional status and 

differentiation process of CCA cells. We then explored interactions between CCA cells and their 

regulatory pathways through cell communication analysis. 47 key genes related to telomere activity 

were identified, and GO and KEGG pathway enrichment analysis was performed. Additionally, we 

constructed a prognostic model and verified the model’s predictive efficacy. Finally, we identified 

genes associated with drug sensitivity in CCA patients and identified pathways associated with 

CCA prognosis through tumor TMB analysis. Results We identified 452 active telomere-associated 

cells. Then, we assessed telomere associated gene activity, obtaining 47 differentially expressed 

telomere genes by intersecting with CCA differentially expressed genes. Major up-regulated 

signaling pathways, including MIF-(CD74+CXCR4) and HLA-A-CD8A, were identified through 

pseudotime analysis. Three telomere-associated prognostic genes were identified using LASSO 

analysis, and prognostic-related models were built. In addition, PBRM1 mutation load was found 

to be highest in the high-risk group, making it a potential diagnostic target. Finally, drug sensitivity 

analysis revealed higher sensitivity to certain therapeutic drugs in the high-risk group, providing 

guidance for tailored CCA treatment. Conclusion The MIF-(CD74+CXCR4) and HLA-A-CD8A 

signaling pathways appear to be major pathways for CCA cell proliferation. Prognostic models 

based on telomere-associated genes show promise for application, indicating the biological and 

clinical significance of telomere activity genes in CCA. 

Keywords CCA; telomere; single-cell sequencing; Cell communication; pseudotime analysis 

 

1. Introduction 

CCA is a very deadly form of adenocarcinoma that develops in the epithelial cells of the bile 

ducts within the hepatobiliary system [1–3]. Worldwide, approximately 106,000 people are diagnosed 

with CCA each year, accounting for 0.3% of all cancers, and the incidence is higher in Asian 

populations compared to European and North American populations [4]. As early symptoms of bile 
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duct cancer are not obvious, most of the patients have already progressed to advanced stages by the 

time of diagnosis, losing the opportunity for surgical treatment and ultimately affecting the prognosis 

[5]. Globally, about 99,000 people die from bile duct cancer every year, accounting for about 0.4% of 

all cancer mortality. Hence, there is an immediate requirement to develop prognostic models using 

novel biomarkers in order to enhance the unfavorable prognosis of patients with CCA. 

Telomeres, consisting of repetitive DNA sequences found at the tips of chromosomes, are 

essential for preserving chromosome stability and integrity [6,7]. Telomere shortening and damage 

are closely related to the development of many diseases such as aging and cancer. Studies have shown 

that telomere length in malignant cells is usually longer than in normal cells, which is associated with 

the unlimited proliferative capacity and resistance to apoptosis of tumor cells. Regulating this process 

is a group of highly conserved regulatory factors, telomere-related genes. telomere-related genes are 

genes related to telomere structure, function, and regulation of telomerase [6]. Abnormal expression 

or mutation of these genes will lead to abnormal shortening or damage of telomeres, which will 

trigger chromosomal instability and abnormal cellular function. In tumor development, the abnormal 

expression of telomere-related genes is closely related to the shortening of telomeres and 

chromosomal rearrangements. These abnormalities lead to genomic instability, which promotes the 

proliferation, metastasis, and drug resistance of tumor cells. Therefore, telomere-associated genes 

play an important role in regulating tumor development by modulating the stability and function of 

telomeres [8]. In CCA, several telomere-associated genes are differentially expressed and play a wide 

range of biological roles, and these genes may be closely related to the treatment and prognosis of 

CCA. However, the complex role and prognostic significance of telomere-associated genes in CCA 

are still largely unknown [9–11]. 

The contribution of single-cell sequencing technology to tumor research has been immense. It 

has enabled researchers to gain insight into the cellular heterogeneity and evolutionary processes of 

tumors [12]. Single-cell sequencing data are important in identifying cellular heterogeneity, 

constructing cellular trajectories, and analyzing intracell communication and ligand receptor 

expression. By analyzing the genomes, transcriptomes, and epigenomes of individual cells, we can 

reveal the differences between different tumor cells, identify potential therapeutic targets, and 

provide a basis for personalized therapy. The rapid development of single-cell genomics in recent 

years has revealed the unknown biological processes and disease causes of CCA [13]. 

In this study, transcriptomic data, clinical data, and mutation data of CCA were downloaded 

through TCGA and GEO databases. Single-cell analysis was performed based on single-cell 

sequencing datasets to identify different cell types and telomere-associated active cells in CCA. The 

pseudotime analysis to construct cell trajectories and identify branching events, and cell 

communication analysis to reveal the interactions and signaling pathways between CCA cells. Next, 

we performed an enrichment analysis of telomere activity-related differential genes and explored the 

functions of these genes in biological processes and pathways. We constructed prognostic models 

and column line plots based on the acquired prognostic-related genes, predicted the overall survival 

of patients, and evaluated the efficacy of the models. Furthermore, we conducted gene set enrichment 

analysis, gene set variant analysis, immune infiltration analysis, and drug sensitivity analysis to 

uncover the molecular characteristics and biological pathways underlying CCA. This comprehensive 

approach offers valuable insights for diagnosing and treating CCA, with the ultimate goal of 

discovering novel biomarkers and enhancing prognostic prediction for patients with this disease. 

Materials and Methods 

2.1. Transcriptome Data Download and Preparation 

All data used in this study are freely available to the public, mainly from the TCGA (The Cancer 

Genome Atlas, https://portal.gdc.cancer.gov/) database and GEO (Gene Expression Omnibus, 

https://www.ncbi. nlm.nih.gov/geo/) databases. CCA expression profiling data, and clinical data 

were downloaded from the TCGA database via the R package “TCGAbiolinks (version 2.25.0)” [14] 

as well as by the Single nucleotide mutation (SNV) data predicted by the “VarScan2 Variant 

Aggregation and Masking” tool were downloaded from the TCGA database. 36 tumor samples and 
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9 paraneoplastic control samples from TCGA-CHOL and 30 tumor samples from GSE107943 were 

included in this study. The ComBat method using the R package “sva” [15] corrected for the batch 

effect of non-biotechnology bias. Principal component analysis (PCA) was used to check the extent 

of correction. 

2.2. Downloading and Processing of Single-Cell Sequencing Data 

The GEO database contains a large amount of single-cell sequencing data. In this study, the 

single-cell sequencing dataset GSE138709 of CCA, which contains five CCA disease samples and 

three paracancerous controls, was obtained from the GEO database. The single-cell raw data in 

GSE138709 were imported using the Seurat package (version 4.2.0) [16] for the R programming 

language. First, low-quality cells and genes were filtered by the following criteria: 1) Cells expressing 

fewer than 300 genes were removed; 2) Genes expressed in fewer than 1 cell were removed. 3) Cells 

with fluctuating numbers of expressed genes between 200 and 6,000 were retained. 4) Cells with a 

percentage of mitochondrial genes of less than 10% were retained. 5) Cells with UMI readings of less 

than 40,000 were retained. The data were normalized using the “normalizedata” function in the 

Seurat R package. After data normalization, highly variable genes in single cells were identified by 

balancing the relationship between average expression and dispersion. Principal component analysis 

(PCA) was then performed and significant principal components (PCs) were used as input for graph-

based clustering. A harmony approach was used to eliminate batch effects across samples. For 

clustering, we used the function FindClusters, which is based on the Shared Nearest Neighbor (SNN) 

modular optimized clustering algorithm, to generate 18 clusters on 20 PC components at a resolution 

of 0.3. The “Runtsne” function is then used for t-distributed random neighbor embedding (t-SNE). 

Cell aggregation was demonstrated using t-SNE-1 and t-SNE-2. Subsequently, cell clusters were 

identified by cell type-specific biomarkers, and the proportion of cell types was calculated and 

evaluated. 

2.3. Telomere-Related Gene Scoring 

The R package “AUCell” [17] scores each cell based on gene set enrichment analysis. A gene 

expression ranking for each cell was generated based on the area under the curve (AUC) values of 

2089 human telomere-associated genes (Table S1) obtained from the TelNet (http://www.cancertels-

ys.org/telnet/) database to estimate the proportion of the gene set with high expression in each cell. 

Cells that express more genes in the gene set have higher AUC values. The 

“AUCell_exploreThresholds” function was used to determine a threshold for identifying active cells 

in the gene set. The AUC score of each cell was then mapped to the TSNE embedding using the 

“ggplot2” R package (version 3.3.5) to visualize the activated cell clusters. 

2.4. Constructing Cellular Trajectories by Pseudotime Analysis 

The pseudotime analysis was performed by Monocle 2 [18], which performs reverse graph 

embedding based on a user-defined list of genes to generate a pseudo-temporal graph that can 

account for branching and linear differentiation processes. For the proposed temporal analysis of 

cells with high telomere activity, the raw count data were normalized by estimating a size factor for 

trajectory inference. Pseudotemporal trajectories were constructed using genes with a high degree of 

discretization and high expression (discretization estimate ≥ 1 and mean expression ≥ 0.1) [19]. default 

values were selected for the parameters of the DDRTree algorithm. To further analyze these 

branching events, we used branching expression analysis modeling (BEAM) implemented in 

Monocle 2. It helps to identify all genes with significant branching-dependent expression. Branch-

dependent expression patterns were visualized as heatmaps using Monocle 2. 

2.5. Cell Communication Analysis and Ligand-Receptor Expression 

CellChat objects were created by the “CellChat” R package 

(https://www.github.com/sqjin/CellChat) [20] based on the UMI count matrix of each group (CCA 
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and control). Cell-to-cell communication was analyzed using the “CellChatDB.human” ligand-

receptor interaction database as the reference database with default parameters. The 

“mergeCellChat” function was used to combine the CellChat objects of each group to obtain a 

comparison of the total number of interactions and the intensity of interactions. The 

“netVisual_diffInteraction” function was used to visualize the differences in the number or strength 

of interactions between different cell types between groups. Finally, we used the “netVisual_bubble” 

and “netVisual_aggregate” functions to visualize the distribution of signaling gene expression 

between groups. 

2.6. GO/KEGG Pathway Enrichment Analysis 

Gene Ontology (GO) [21]e nrichment analysis includes biological process (BP), molecular 

function (MF), and cellular component (CC) analysis. GO enrichment analysis of genes was 

performed using the R package “clusterProfiler (version 4.2.2)” [22]. Kyoto Encyclopedia of Genes 

and Genomes (KEGG) [23] is a bioinformatics resource for mining gene lists enriched with 

significantly altered metabolic pathways. The KEGG enrichment analysis of telomere-related 

differentially expressed genes (DEGs) in CCA was performed using the R package “clusterProfiler” 

(p-value <0.05). 

2.7. Construction and Validation of Prognostic Models 

The genes obtained by taking the intersection with telomere-related genes as key genes were 

analyzed by the results of the difference analysis of telomere high-activity and low-activity cells in 

the single-cell dataset, the results of the difference analysis of disease and control, and the results of 

the difference analysis of the CCA and normal groups in the CCA dataset of TCGA. To assess the 

prognostic value of the key genes, we used one-way Cox regression analysis to assess the correlation 

between each gene and survival in the tumor cohort, and genes with P ≤ 0.05 were considered to be 

significantly associated with survival for further analysis. All CCA tumor samples (n=66) with clinical 

information were randomly divided into training and validation sets in a 7:3 ratio. The LASSO Cox 

regression model (R package “glmnet” [24]) was then utilized to narrow down the candidate genes 

and construct prognostic models. The penalty parameter (λ) was determined by the minimum 

criterion. Risk scores were calculated using the following formula: 

 
(Coef (genei): risk factor, Expression (genei): gene expression level) 

The training group samples were divided into low-risk and high-risk groups based on the 

optimal cut-off value determined by the surv_cutpoint function. Survival curves were then generated 

to assess prognostic significance utilizing the Kaplan-Meier method, and statistical significance was 

evaluated through the log-rank test. A subject operating characteristic curve (ROC) was used to 

validate the efficacy of the prognostic model. AUC values typically ranged from 0.5 to 1, with closer 

to 1 indicating better model efficacy. The validation set was also divided into low-risk and high-risk 

groups for validation of the prognostic model. 

2.8. Construction and Validation of Column-Line Diagrams 

Clinical information of patients (age, gender and disease stage, etc.) was extracted from the 

TCGA cohort. A one-way Cox regression analysis was performed combining the clinical information 

with the risk scores obtained from the prognostic model. In addition, we combined the prognostic 

and clinical characteristics and constructed a column chart using the R package “RMS” to predict 

overall survival at 1, 3, and 5 years. The effectiveness of the column plot model was evaluated by 

ROC curves. 
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2.9. Gene Set Enrichment Analysis (GSEA) 

The Gene Set Enrichment Analysis (GSEA) algorithm assesses whether a predefined set of genes 

exhibits statistically significant differences between two biological conditions.GSEA is performed 

with the R package “clusterProfiler (version 4.2.2)” on an ordered list of all genes aligned according 

to log2FC, with 1000 gene set alignments performed for each analysis. In this study, 

c2.cp.kegg.v7.5.1.symbols was used as the reference gene set, which is stored in the Molecular 

Signatures Database (MSigDB) [25–27] database. p < 0.05 was considered to be a gene set with a P < 

0.05. 0.05 of the gene set was considered significantly enriched. 

2.10. Gene Set Variation Analysis (GSVA) 

To investigate the differences in biological function between high and low-risk groups, Gene Set 

Variation Analysis (GSVA) was performed using the R package “GSVA (version 1.42.0)” based on 

“c2.cp.kegg.v7.5.1.symbols”. GSVA). The R package “pheatmap (version 1.0.12)” was used to 

visualize the results. 

2.11. Immune Infiltration Analysis 

Single Sample Gene Set Enrichment Analysis (ssGSEA) [PMID: 36090900], an extension of Gene 

Set Enrichment Analysis (GSEA), calculates separate enrichment scores for each pair of samples and 

gene sets. Each ssGSEA enrichment score represents the extent to which genes in a particular gene 

set are coordinately up-or down-regulated in the sample. Based on 28 immune cells downloaded 

from the TISIDB (Tumor and Immune System Interactions Database) 

(http://cis.hku.hk/TISIDB/index.php) [28] database, including Activated CD8 T cell, Central memory 

CD8 T cell, Effector memory CD8 T cell, Activated CD4 T cell, Central memory CD4 T cell, Effector 

memory CD4 T cell, T follicular helper cell, Gamma delta cell, T cell, and T cell. helper cell, Gamma 

delta T cell, Type 1 T helper cell, Type 17 T helper cell, Type 2 T helper cell, Regulatory T cell, 

Activated B cell, Immature B cell, Memory B cell, Natural killer cell, CD56bright natural killer cell, 

CD56dim natural killer cell, Myeloid derived suppressor cell, Natural killer T cell, Activated 

dendritic cell, Type 1 T helper cell, Type 17 T helper cell, Type 2 T helper cell, Regulatory T cell 

Activated dendritic cell, Plasmacytoid dendritic cell, Immature dendritic cell, Macrophage, 

Eosinophil, Mast cell, Monocyte and Neutrophil, Quantification of gene expression profiles for each 

CCA sample from each CCA disease samples to quantify the relative enrichment score of each 

immune cell from the gene expression profiles. Differences in immune cell infiltration levels between 

high and low-risk groups were visualized by the R package “ggplot2 (version 3.3.6)” [29]. 

2.12. Somatic Mutation Analysis  

A landscape of genomic mutational variation was depicted based on mutation data. the R 

package “maftools” was used to display somatic variants between different subgroups, including 

single nucleotide polymorphisms (SNPs), insertions and deletions (INDELs), tumor mutational load 

(TMB), and mutation frequency [30]. Generally, frequently mutated genes (FMGs) with the top 20 

mutation frequencies are considered to be the main driver genes of malignant tumors [31]. 

2.13. Drug Sensitivity Analysis 

Based on the half-maximal inhibitory concentration (IC50) data and corresponding gene 

expression data downloaded from the GDSC database (Genomics of Drug Sensitivity in Cancer, 

https://www.cancerrxgene.org/) [32], the R package was used “oncoPredict (version 0.2)” [33] to 

predict potential therapeutic drug sensitivities in patients in the high and low-risk groups of CCA. 

2.14. Statistical Analysis 

This study was statistically analyzed using R software v4.1.2. Spearman correlation test was 

used to infer the correlation between two parameters. The Wilcoxon test was employed to assess 
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disparities between two groups, while the Kruskal-Wallis test was applied to evaluate differences 

among three or more groups. A two-tailed p-value below 0.05 was deemed to indicate statistical 

significance. The detailed analysis process is shown in Figure 1. 

 

Figure 1. Flowchart of this study. 

3. Results 

3.1. Single-Cell Dimensionality Reduction Clustering and Annotation 

To explore the origin of highly expressed genes, we analyzed cell populations from CCA 

samples using the single-cell sequencing dataset GSE138709. After the initial quality control 

assessment, we obtained a total of 29,983 cells from the single-cell transcriptome. 8 samples were 

included in the study, and all cells were aggregated into 18 clusters (Figure 2A), and different cell 

types were annotated by cell-specific biomarkers based on the gene expression profile of each cluster 

(Table S2). As shown in Figure 2B, 10 cell types can be found, such as NK cells, malignant cells, and 

B cells. specific genes for each cell type were visualized by dot plots (Figure 2C). The proportions of 

different cell types in the control samples (GSM4116579, GSM4116582, GSM4116586) are shown in 

Figure 2D; the proportions of different cell types in the disease samples (GSM4116580, GSM4116581, 

GSM4116583, GSM4116584, GSM4116585) are Figure 2E shown. 
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Figure 2. Identification of cellular subpopulations from single-cell sequencing data. (A) TSNE plot 

showing the distribution of single-cell subpopulations. (B) TSNE plot showing the annotation results 

of single-cell cell subpopulations. (C) Expression of marker genes in each cell type. (D) Fan plot 

showing the distribution of different cell types in control samples. (E) Fan plot showing the 

distribution of different cell types in CCA samples. 

3.2. Characterization of Telomere-Related Activity 

A subpopulation of active cells was utilized to study the expression pattern of telomere-

associated genes at the single-cell level. Active cells were identified by the optimal threshold, which 

showed the presence of 452 telomere-associated active cells, the population of cells with AUC values 

greater than 0.25 (Figure 3A). Figure 3B highlights the TSNE plot of the active cells and Figure 3C 

shows the telomere activity of all cells, the darker the color the higher the telomere activity, from 

Figure 3B and 3C it can be seen that the telomere active cells are mainly malignant cells. 

 

Figure 3. Identification of telomere-associated activity. (A) AUC score of telomere-associated genes 

with a threshold value of 0.25. (B) TSNE plot of the distribution of cells with AUC values greater than 

the threshold, with screened cells in blue. (C) TSNE chromaticity plot showing the scoring of cell 

activity, the brighter the color, the higher the activity. 
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3.3. Pseudotime Analysis 

Using telomere-associated active cells, we built a pseudo-temporal cell trajectory to find the 

important gene expression programs that determine CCA progression. Indeed, the transcriptional 

states in the trajectory revealed different processes. malignant cells were distributed in different 

branches, suggesting that malignant cells have different transcriptional states (Figure 4A–D). To 

elucidate the molecular basis of malignant cells transformation, we explored the genes that determine 

the branching of malignant cells in CCA. Genes highly expressed in pre-branch were mainly enriched 

in GO BP pathways such as wound healing and skin development. Genes enriched in response to 

toxic substance-related pathways were highly expressed in cell branch 2, and genes enriched in T cell 

activation, antigen processing, and presentation of exogenous peptide antigen via MHC genes in 

class II were highly expressed in cell branch 1 (Figure 4E). 

 

Figure 4. pseudotime analysis reveals cellular transcription patterns. (A) Pseudotime trajectories 

showing cell distribution based on cell type. (B) Pseudo-time traces were categorized by Monocle2 

into three different states. (C) Pseudotime color gradient transitions from dark blue to light blue. (D) 

Stacked histogram showing the distribution of cell types in different states. (E) Heatmap showing 

different branches. (cell fate) of differentially expressed genes (DEGs). GO pathways significantly 

enriched in different gene clusters in the heatmap are shown to the left. 

3.4. Cell Communication Analysis 

To further investigate the cellular network of interactions in CCA, we used the R package 

“Cellchat” to reveal changes in crosstalk between CCA cells. The network plot showed an overall 

increase in the number of interactions between CCA cell types, an increase in the strength of 

interactions associated with B cells, fibroblasts, and hepatocytes, and a general decrease in the 

strength of interactions associated with NK cells (Figure 5A,B). We then further compared the 

signaling patterns between cells from the CCA group (Figure 5C,D). NK cells were the major signal 

receivers. Subsequently, from the probability point plots of communication signaling between 

malignant cells and the ligand-receptor pairs between NK cells and B cells, we could see that the 

stronger changing communication signaling pairs were MIF - (CD74+CXCR4), HLA-A - CD8A, etc. 

(Figure 6A). We also explored the interaction of malignant cells with other cell types through the MIF, 

MHC-I signaling pathway where the above signaling pairs are located (Figure 6B,C). These results 

preliminarily elucidated the potential interactions between these cell types and helped us to further 
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investigate the integrative role of malignant cells in CCA. As can be seen from Figure 7A–D 

expression of specific pathway ligand receptors, ligand HLA-A was highly expressed in NK cells. 

 

Figure 5. Results of intercell communication analysis. (A) Network diagram demonstrating the 

number of interactions between cells. (B) Network diagram showing the strength of interactions 

between cells. Heatmap visualizing the signals sent (C) and received (D) by cells in the CCA group. 
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Figure 6. Changes in intercell communication in CCA. (A) Dot plots showing signaling pathways in 

which malignant cells communicate with NK cells and B cells with increased and decreased strength. 

String diagrams show malignant cells interacting with other cell types through specific signaling 

pathways MIF (B), and MHC-I (C). 

 

Figure 7. Expression of specific pathway ligand receptors in different cells of CCA. Dot plots (A) 

and violin plots (B) of ligand receptors of the MIF pathway in CCA expressed in different cells. Dot 

plots (C) and violin plots (D) of ligand receptors of the MHC-I pathway in CCA expressed in different 

cells. 
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3.5. Enrichment Analysis of Telomere Activity-Related Differentially Expressed Genes 

A total of 805 differentially expressed genes (DEGs 1) were identified by taking the intersection 

of the results of the differential analysis of telomere high and low activity cells in the single-cell 

dataset (n=1674, Table S3), and the results of the differential analysis of disease vs. control (n=2225, 

Table S4), and the differences of these genes between the two groups were statistically significant (p-

value < 0.05, | Log2 fold change| > 0.25). We then compared the CCA and normal groups in the TCGA 

CCA dataset and identified a total of 3658 differentially expressed genes (Table S5), and intersected 

with telomere-associated genes (n=2089) to obtain 472 telomere-associated differentially expressed 

genes (DEGs 2), which were statistically different between the two groups (p-value < 0.05, | Log2 fold 

change| > 2). The distribution of telomere-associated differential genes was demonstrated by volcano 

plots, and the top 5 up-regulated genes (RALY, LCMT1, CD2BP2, FUS, CCDC115) and top 5 down-

regulated genes (LINC01831, C3orf85, LINC02754, AC016682.1, SLC6A13) were illustrated by heat 

maps (Figure 8A,B). The two sets of differential genes were taken to intersect to obtain 47 key genes 

(hub genes, Table S6) as shown by the Wayne diagram (Figure 8C).  

In order to investigate the biological functions associated with the differential genes, we 

analyzed the enrichment of telomere-associated differential genes for GO entries (Table S7) and 

KEGG pathway (Table S8), which are shown by lollipop diagrams. The GO results showed that these 

genes were mainly involved in “DNA replication”, “positive regulation of DNA metabolic process”, 

“regulation of DNA metabolic process”, “regulation of DNA metabolic process”, and “DNA 

metabolism”. “regulation of DNA metabolic process” and “chromosomal region” (BP). Enriched in 

biological processes such as “chromosomal region”, “chromosome, telomeric region”, “nuclear 

chromosome”, etc. (BP). Enriched in “chromosomal region”, “chromosome, telomeric region”, 

“nuclear chromosome” and other cellular components (CC). Enriched in “catalytic activity, acting on 

DNA”, “single-stranded DNA binding”, “single-stranded DNA helicase”. “single-stranded DNA 

helicase activity” were enriched in molecular functions (MF) (Figure 8D). KEGG pathway includes 

“Cell cycle”, “DNA replication”, “Cellular senescence”, etc. (Figure 8E).  

  

Figure 8. Enrichment analysis of telomere activity-related differentially expressed genes in CCA. 

(A) Volcano plot depicting genes significantly differentially expressed between CCA and normal 
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control. (B) Heatmap of the top 5 significantly differentially expressed genes in up- and down-

regulation. (C) Wayne plots of the intersection of differential genes with transcriptional differential 

genes and telomere-associated differential genes between different subgroups of cells and different 

telomere-active cells in single cells. (D) GO-enriched lollipop plot showing the top three pathways 

with the highest significance for Biological process (BP), Cellular component (CC), and Molecular 

function (MF). (E) KEGG enrichment analysis. 

3.6. Construction and Validation of Prognostic Models 

A univariate Cox analysis was used to identify key genes associated with prognosis (p < 0.05), 

and disease samples in TCGA and GEO were integrated to finally identify five genes associated with 

CCA prognosis (DDX39A, SNRPE, TMEM109, ANXA4, ATP1A1). 7/10 CCA samples (66 in total) 

were selected by random sampling as the training set (n=44) and 3/10 as the validation set (n=22). 

LASSO regression analysis was performed on the training set to remove redundant genes, and the 

random number seed was set to 17. A total of 3 genes associated with the prognosis of CCA patients 

were identified (Table S9), and the results are shown in Figure 9A,B. To determine the robustness of 

the model constructed using the 3 gene features, the samples were categorized into high-risk and 

low-risk groups based on the median risk value as a threshold. KM survival curves were constructed 

for different groups of patients in the training cohort (Figure 9C) and validation cohort (Figure 9D). 

The results showed that patients in the high-risk group had a significantly worse prognosis compared 

to patients in the low-risk group in all cohorts. ROC curves were used to determine the efficacy of 

the model in predicting patient prognosis. In the training cohort, the AUC values for 1, 3, and 5year 

survival were 0.701, 0.717, and 0.769, respectively (Figure 9E). In the validation cohort, the AUC 

values for 1, 3, and 5 year survival were 0.779, 0.720, and 0.759, respectively (Figure 9F).  

 

Figure 9. Cox and LASSO regression analysis of the bile duct cancer dataset. (A) LASSO regression 

trajectory of the independent variables, with the horizontal coordinate indicating the logarithm of the 
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lambda of the independent variables and the vertical coordinate indicating the independently 

accessible coefficients. (B) Confirmation intervals under each lambda in the LASSO regression. (C) 

Survival curves for patients in the high- and low-risk groups from the training cohort, respectively. 

(D) Survival curves for patients in the high- and low-risk groups from the validation cohort, 

respectively. The yellow color represents the high-risk group and the blue color represents the low-

risk group. (E) Time-dependent ROC curves for 1, 3, and 5 year survival for the model used for the 

training cohort. (F) Time-dependent ROC curves for 1, 3, and 5 year survival for the validation cohort 

model. 

3.7. GSEA and GSVA 

To further explore the potential mechanisms of differentially expressed genes, we performed a 

GSEA enrichment analysis. Using the pathway information in the MsigDB database as a reference, 

we selected the most significant pathways based on the normalized enrichment score (NES) (Table 

S10). The results of the GSEA analysis indicated that DRUG METABOLISM CYTOCHROME P450, 

RETINOL METABOLISM, COMPLEMENT AND COAGULATION CASCADES, TIGHT 

JUNCTION, ECM RECEPTOR INTERACTION, and FOCAL ADHESION were the most significant 

pathways. FOCAL ADHESION and other pathways and biological processes were more active in 

CCA (Figure 10A–F, P< 0.05). In addition, we performed GSVA enrichment analysis using the 

pathway information in the MsigDB database as a reference and selected the pathways with the most 

significant differences between the high- and low-risk groups to draw pathway activity maps (Figure 

10G, Table S11). 

 

Figure 10. Pathways enriched for GSEA and GSVA. (A) DRUG METABOLISM CYTOCHROME 

P450.(B) RETINOL METABOLISM.(C) COMPLEMENT AND COAGULATION CASCADES.(D) 

TIGHT JUNCTION. (E) ECM RECEPTOR INTERACTION. (F) FOCAL ADHESION.(G) GSVA 
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ENRICHMENT ANALYSIS of pathway maps differentially enriched between high and low-risk 

groups. 

3.8. Immune Infiltration Analysis 

We further investigated the level of infiltration of 28 immune cell types in the high- and low-risk 

groups using the ssGSEA method. The heat map of correlation between immune cells showed that 

most immune cells were positively correlated with each other (Figure 11A). Immune cells central 

memory CD4 T cell, Immature B cell, etc. showed significant differences between high and low-risk 

groups (P value <0.05, Figure 11B). In addition, we examined the significant correlation between 

prognostic genes and corresponding immune cells and found that ATP1A1 was positively correlated 

with Central memory CD4 T cell (R=0.327, p < 0.05) and negatively correlated with Immature B cell 

(R=-0.25, p < 0.05) (Figure 11C,D). 

 

Figure 11. Levels of immune infiltration between high and low-risk groups. (A) Heatmap of 

correlation between immune cells. (B) Box line plot of the estimated proportion of immune cells 

between high and low-risk groups. Correlation between ATP1A1 and Central memory CD4 T cell (C), 

and Immature B cell (D) immune cells. Asterisks indicate P values : ****p < 0.0001, ***p < 0.001, **p < 

0.01, *p < 0.05. 
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3.9. Construction of Nomogram Model 

In order to verify whether risk score could be used as a prognostic factor, a one-way Cox 

regression analysis was performed on the clinical characteristics of patients (e.g., age, disease stage, 

and gender). The results showed that risk score and disease stage were independent prognostic risk 

factors for patients (Figure 12A). The results of constructing a nomogram showed that risk score 

significantly predicted clinical outcomes (Figure 12B). ROC curves were used to determine the 

efficacy of the nomogram in predicting patient prognosis. The results showed that the nomogram 

model had good stability and accuracy at 1, 3, and 5 years (Figure 12C). 

 

Figure 12. Risk score as an independent prognostic factor. (A) Results of univariate Cox regression 

analysis of clinical characteristics. (B) Predictive model of the nomogram. line segments indicate the 

contribution of clinical factors to outcome events, the total score indicates the sum of the 

corresponding individual scores for all variable values, and the bottom three lines indicate the 

prognosis for 1, 3, and 5-year survival corresponding to each value point. (C) Nomogram model ROC 

curves for 1, 3, and 5 years. 

3.10. TMB and Drug Sensitivity Analysis 

We also assessed specific gene mutations in CCA and visualized the top 20 genes with the 

highest mutation frequency. PBRM1 had the highest mutation frequency in both high and low-risk 

groups and was much more frequent in the high-risk group than in the low-risk group (Figure 13A,B). 

Tumor mutational load (TMB) is a key criterion for the success of immunotherapy. Therefore, somatic 

mutations associated with CCA were analyzed, and TMB was significantly higher in the high-risk 

group than in the low-risk group (Figure 13C, P<0.05). We analyzed whether the risk score accurately 

predicted chemotherapy sensitivity in patients with CCA. The results showed that high-scoring 

patients were more sensitive to Vinblastine_1004 (Figure 13D), Vinorelbine_2048 (Figure 13E), 

Docetaxel_1007 (Figure 13F) and other drugs. 
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Figure 13. Differences in TMB and drug sensitivity between high- and low-risk groups. (A) Top 20 

genes with the highest mutation frequency in the high-risk and (B) low-risk groups. (C) TMB violin 

maps for the high and low-risk groups. (D) Differences in drug sensitivity of Vinblastine_1004 

between high and low-risk groups. (E) Drug sensitivity difference of Vinorelbine_2048 between high 

and low-risk groups. (F) The difference in drug sensitivity of Docetaxel_1007 between high and low-

risk groups. 

Discussion 

In order to prevent incomplete replication and instability that can occur at the ends of linear 

DNA, eukaryotic chromosomes end with characteristic repetitive DNA sequences within special 

structures called telomeres. Regarding the functions and roles of telomeres, which have attracted the 

attention of researchers for a long time. Earlier studies have shown a strong relationship between 

telomeres and human aging. As early as 1990, researchers found that the during aging in vitro and in 

vivo, the number and length of telomeric DNA in human fibroblasts actually does decrease with 

successive generations [34]. In 2002, it was demonstrated that aging at the clonal level occurs through 

telomere shortening (a region of DNA near the end of a chromosome) shortening. Telomere 

shortening leads to chromosome instability, breakage and mutation, which in turn leads to an 

increased rate of cancer in people of advanced age [35]. Then, with continuous research, telomeres 

have been found to play an very important role in tumorigenesis and development. About 85% of 

tumor cells maintain telomere length by activating telomerase, and about 15% of tumor cells use 

homologous recombination or other mechanisms to maintain telomere length when telomerase is 

inactivated or insufficient, which are collectively known as alternative lengthening of telomere (ALT). 

The presence of ALT enables tumor cells to maintain long telomere length and thus achieve unlimited 

proliferation [36]. This result was confirmed in different cancers, but it seems that the relationship 

between telomere length and cancer is not a simple one-dimensional relationship, and different 

directions of influence were shown between different cancers. For example. For instance, one study 

analyzed leukocyte telomere length (LTL) in relation to prostate cancer (PCa) using Mendelian 

randomization and found that longer LTL was associated with a higher risk of PCa [37]. But in 

another study it was mentioned that sustained cell proliferation or rapid cell renewal through 

hepatocellular injury leads to a multi-step hepatocellular carcinogenesis process. Therefore, 

progressive shortening of telomeres and activation of telomerase may be useful markers for early 

detection of malignant progression of liver disease [38,39]. And a recent study mentioned more 
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frequent telomerase reverse transcriptase (TERT) promoter mutations in HCC with significantly 

higher TERT expression and longer telomere length. TERT promoter mutations were associated with 

higher TERT levels and longer telomere length and were also independent predictors of poorer 

overall survival after hepatectomy [40].  

What is puzzling is that cancer cells generally possess long telomeres, which seems to go against 

conventional knowledge? The plausible answer is that cancer develops through a succession of 

mutations that bypass cell cycle checkpoints when cell replication is out of control. Thus, shorter 

telomeres may constitute a fail-safe mechanism against potentially cancerous cells. Most cancers 

show telomerase activity or employ other mechanisms (ALT pathway) to bypass the telomere barrier 

[41–43]. It follows that the relatively short telomeres in humans are likely to be an evolutionary trade-

off, with telomeres becoming shorter as we age, sacrificing the opportunity to further extend our 

lifespan in exchange for a strong resistance to cancer.  

In cholangiocarcinoma, a search of the literature revealed a recent study that investigated 

telomere length and the risk of developing cholangiocarcinoma, showing an inverse linear 

relationship. People with the shortest telomeres had a 1.86 times higher risk of developing bile duct 

cancer compared to those with the longest telomeres [44]. However, until now, no studies have been 

conducted to investigate the relationship between telomere-related genes and the pathogenesis of 

cholangiocarcinoma. In this study, we investigated the biological functions of telomere-associated 

genes in cholangiocarcinoma for the first time. 

In our study, we identified different cell types in CCA samples and annotated them by cell 

communication analysis based on public database gene sequencing as well as single-cell sequencing 

data. Then, by assessing the activity of telomere-associated genes, telomere-active cells were 

identified mainly as malignant cells, and 452 telomere-associated active cells were found. Pseudotime 

analysis was performed to reveal the transcriptional status and differentiation process of CCA cells. 

In addition, the important gene expression programs in CCA were further explored, and malignant 

cells were found to have an important role in the proliferation of CCA cells via MIF-(CD74+CXCR4), 

HLA-A-CD8A, and the ligand HLA-A was highly expressed in NK cells. The next studies targeting 

the two up-regulated pathways may bring new inspirations and ideas for further mechanistic 

elaboration and diagnosis of CCA cells. 

By taking the intersection of differentially expressed genes with telomere activity genes, 47 key 

genes related to telomere activity were identified. The enrichment analysis of GO and KEGG 

pathways for telomere-related differential genes revealed that they were mainly involved in DNA 

replication, positive regulation of DNA metabolic process, and other biological functions. They are 

also involved in important cellular metabolic pathways such as “Cell cycle”, “DNA replication” and 

“Cellular senescence”, suggesting that telomere-associated differential genes are closely related to 

the cell cycle, cell proliferation, and cellular metabolism. genes are closely related to cell cycle and 

cell proliferation. The GSEA analysis showed that drug metabolism cytochrome P450, retinol 

metabolism, complement and coagulation cascades, tight tunction, ECM receptor interaction, focal 

adhesion and other important cellular metabolic pathways are also relatively active in CCA. Studies 

targeting these pathways may shed more light on the mechanism of telomere activity genes in CCA. 

Next, three genes associated with the prognosis of CCA patients were identified using one-way 

Cox analysis and LASSO regression analysis. A prognostic model was constructed based on the 

expression levels of these three genes related to the prognosis of CCA patients and the predictive 

efficacy of the model was verified. The results showed that the prognostic model showed good 

predictive efficacy and had the potential for further clinical research. However, further clinical 

studies are needed to demonstrate this. 

Tumor immunity is always an essential topic in oncology research, and this study also addresses 

tumor immunity in CCA. In the process of exploring tumor immunity, most of the immune cells 

analyzed among immune cells were positively correlated with each other, suggesting that different 

immune cells are in a mutually reinforcing relationship. We also observed that the immune cells 

Central memory CD4 T cell and Immature B cell showed significant differences between high and 

low-risk groups. The prognostic gene ATP1A1 was positively correlated with Central memory CD4 
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T cell and Immature B cell, suggesting that the prognostic gene ATP1A1 may be closely related to 

tumor immunity in CCA. 

Finally, we found a very high mutation rate and high TMB of PBRM1 in patients with CCA, 

which may be the next therapeutic target for CCA to be further explored. The drug sensitivity 

analysis also revealed that patients in the high-risk group were more sensitive to Vinblastine_1004, 

Vinorelbine_2048, Docetaxel_1007, etc., this provides new inspiration and reference for the fine-tuned 

treatment of CCA, which is meaningful and necessary for further investigation. 

This study is comprehensive in exploring the telomere-related active genes in CCA, there are 

limitations in this study as well. Although this study was conducted as scientifically and objectively 

as possible, there are still some irresistible interfering factors, such as this study is based on data from 

public databases, and the results are affected by the original data. Secondly, the data of the study 

came from different organizations, and there are inaccuracies that have an impact on the results. 

Conclusions 

In summary, this study reveals the functional characteristics and biological mechanisms of 

telomere-related active genes in CCA through the comprehensive analysis of single-cell 

transcriptomes and TCGA databases, which provides an important reference for CCA research and 

treatment. 
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