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Abstract: Dynamic adaptive video streaming over HTTP (DASH) plays a crucial role in video transmission 

across networks. Traditional adaptive bitrate (ABR) algorithms adjust the quality of video segments based on 

network conditions and buffer occupancy. However, these algorithms rely on fixed rules within a complex 

environment, making it challenging to achieve optimal decisions considering the overall context. In this paper, 

we propose a novel Deep Reinforcement Learning-based approach for streaming DASH, focusing on 

maintaining consistent perceived video quality throughout the streaming session to enhance user experience. 

Our approach optimizes the Quality of Experience (QoE) by dynamically controlling the quality distance factor 

between consecutive video segments. We evaluate this approach through a simulation model that encompasses 

diverse wireless network environments and various video sequences. Additionally, we compare our proposed 

approach with state-of-the-art methods. The experimental results demonstrate significant improvements in 

QoE, ensuring users enjoy stable, high-quality video streaming sessions. 

Keywords: DASH; video streaming; wireless networks; QoE; deep learning; reinforcement learning 

algorithms; deep reinforcement learning; bandwidth estimation 

 

1. Introduction 

Maximizing the Quality of Experience (QoE) for users of video streaming services over wireless 

networks has become a prominent challenge for researchers and video providers. With multimedia 

content, particularly videos, occupying a substantial portion of Internet traffic [1], addressing this 

challenge is of utmost importance. 

The Dynamic Adaptive Streaming over HTTP (DASH) standard plays a vital role in selecting 

the appropriate quality of video segments based on network conditions. In order to enhance user 

QoE, service providers and academic researchers have put forth several approaches aimed at 

achieving specific objectives, such as minimizing initial delays, preventing interruptions, and 

ensuring a consistently high quality throughout streaming sessions. 

Within the DASH server, videos are divided into fixed-duration chunks or segments, typically 

ranging from 2 to 10 seconds. These segments are encoded in different qualities, and their details, 

including URLs, are stored in a Media Presentation Description (MPD) file. The DASH client is 

responsible for deciding the quality of the next segment to be downloaded, taking into consideration 

factors such as current network conditions, buffer occupancy, and device capabilities... [2]. 

Furthermore, during a streaming session, the segments can be classified into four states: played, 

in playing, in buffer, and to be downloaded. The buffer has the potential to contain segments of 

varying qualities, including low, medium, and high. 

The design of an optimal Adaptive Bitrate (ABR) algorithm for Dynamic Adaptive Streaming 

over HTTP (DASH) video streaming in highly dynamic environments presents a significant 

challenge. Fixed rule-based ABR algorithms struggle to adapt to the varying conditions encountered 

during streaming. To address this, many ABR schemes have integrated Artificial Intelligence (AI) 

technologies to enhance user Quality of Experience (QoE). However, ensuring high user QoE in 

diverse network environments and client equipment can be challenging. These ABR schemes need to 

improve perceived QoE, minimize quality switches, prevent interruptions, and reduce initial delays. 
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In this paper, we propose a novel ABR algorithm based on the Deep Reinforcement Learning 

(DRL) method for determining the quality of the next segment in DASH video streaming over 

wireless networks. Our approach takes into account three key parameters: network conditions, buffer 

state, and the distance factor. The primary objective of our proposal is to provide a highly satisfactory 

user experience. 

The main contributions of our work are as follows: 

• Formulation and design model: We introduce a new Deep Reinforcement Learning approach for 

DASH video streaming, focusing on controlling the quality distance between consecutive 

segments. By doing so, we effectively manage the perceptual quality switch. We formulate the 

DASH video streaming process within a learning model called Markov Decision Process, 

enabling the determination of optimal solutions through reinforcement learning. 

• Analysis and implementation: We classify the available qualities (bitrates) into three classes: 

Qhigh, Qmedium, and Qpoor. To evaluate our approach, we conducted experiments using the 

animation video sequence "Big Buck Bunny" in the DASH.js environment over a wireless 

network. The experiments involved playing the video sequence on different devices under 

various network conditions. We monitored the performance of the experiments throughout the 

streaming session, specifically observing the perceptible quality switch. Based on the observed 

quality switches, we classified the bitrates into three distinct classes. 

• Simulation and comparison: We simulated and compared our proposed approach with existing 

studies. The results demonstrated a significant improvement in QoE, providing highly stable 

video quality. Our scheme successfully minimized the distance factor, ensuring a smooth 

streaming session. 

The remaining sections of this study are structured as follows: Section 2 presents an overview of 

related work, examining previous research in the field. Section 3 provides a detailed description of 

our proposed solution, outlining the methodology and approach employed in developing the novel 

ABR algorithm based on Deep Reinforcement Learning. In Section 4, we present the experimental 

results obtained from evaluating our system, discussing the performance and outcomes of our 

approach. Finally, in Section 5, we conclude the paper by summarizing the key findings, highlighting 

the contributions of our work, and discussing potential avenues for future research in this area. 

2. Related Work 

In recent years, significant progress has been made in the field of adaptive video streaming, 

leading to the proposal of various approaches. These approaches can be categorized into four main 

categories based on the adaptation technology utilized: 

• Traditional ABR-based approaches: This category encompasses approaches that rely on 

bandwidth measurement, buffer occupancy, or a combination of both to make streaming 

decisions. These approaches typically employ fixed rules for adaptation during the streaming 

process. While they have been widely used and implemented, their effectiveness can be limited 

in highly dynamic and diverse network conditions. 

• Deep learning-based approaches: Deep learning techniques, specifically neural network models, 

are employed in this category. By training these models on extensive datasets, they can learn 

complex patterns and make informed decisions for adaptation. Deep learning-based approaches 

have demonstrated improved performance in adapting to diverse network conditions and user 

preferences. However, they often require large amounts of training data and computational 

resources for effective model training. 

• Reinforcement learning-based approaches: In this category, adaptation decisions are made by 

an agent in an interactive environment through trial and error, guided by rewards. 

Reinforcement learning enables the agent to learn and optimize its decisions based on the 

received rewards. These approaches have the advantage of adaptability and the ability to handle 

dynamic and uncertain network conditions. However, training reinforcement learning models 

can be time-consuming, and the performance heavily relies on the reward design and 

exploration strategy. 
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• Deep reinforcement learning-based approaches: This category combines the power of deep 

neural networks with reinforcement learning techniques. Deep reinforcement learning 

approaches use deep neural networks to approximate various components of the reinforcement 

learning process, enabling them to handle complex streaming environments and make effective 

adaptation decisions. By leveraging the representation learning capabilities of deep neural 

networks, these approaches have shown promising results in achieving high-quality video 

streaming experiences.  

2.1. Traditional ABR-based approaches 

Many ABR algorithms [2] have been proposed for DASH, including BBA [3], BOLA [4], 

ELASTIC [5], MPC [6], ABMA+ [7], Festive [8], PANDA [9], and Pensieve [10]. These ABR algorithms 

are implemented on the client-side of DASH and aim to stream the video at the highest possible 

bitrates while minimizing rebuffing. However, these ABR algorithms rely on fixed rules for bitrate 

selection and streaming orchestration in highly dynamic environments. In such conditions, 

accurately characterizing and predicting bandwidth and making decisions based on the overall 

environment becomes challenging. 

2.2. Deep learning-based approaches 

Luca et al. [11] introduced ERUDITE, a deep neural network approach for optimizing adaptive 

video streaming controllers to adapt to various parameters, such as video content and bandwidth 

traces. ERUDITE employs a deep neural network (DNN) as a supervisor to dynamically adjust the 

controller parameters based on the observed bandwidth traces and the resulting Quality of 

Experience (QoE). The experimental results demonstrated that ERUDITE achieves near-optimal 

performance. In [12], the authors proposed a deep learning approach to predict the qualities of video 

segments that will be cached, aiming to enhance the performance of DASH in an SDN domain. They 

utilized a deep recurrent neural network (LSTM) with three hidden layers to forecast future 

segments. Additionally, they leveraged SDN technology in their approach. The simulation results 

showed that their solution effectively reduces under runs on the client side. In [13], the authors 

presented a video QoE metric for DASH utilizing a combination of a 3D CNN and LSTM to extract 

deep spatial-temporal features representing the video content. They also incorporated network 

transmission factors that influence QoE, following the DASH standard. By combining the extracted 

features, they generated an input parameter vector and utilized the ridge regression method to 

establish a mapping between the input parameter vector and the Mean Opinion Score (MOS) value, 

predicting the final QoE value. 

Overall, these studies demonstrate the application of deep learning techniques, including deep 

neural networks and recurrent neural networks, in optimizing various aspects of adaptive video 

streaming for improved performance and enhanced user experience. 

2.3. Reinforcement Learning-based approaches 

Hongzi et al. [14] developed an Adaptive Bitrate Reinforcement Learning (ABRL) system for 

Facebook's web-based video platform. The ABRL system generates RL-based ABR policies and 

deploys them in the production environment. They created a simulator to train the ABR agent using 

RL techniques, and the translated ABRL policies are then deployed to the user front end. Jun et al. 

[15] proposed an improved ABR approach called 360SRL (Sequential Reinforcement Learning) to 

reduce the decision space and enhance the Quality of Experience (QoE). The 360SRL method learns 

the ABR policy by optimizing the QoE value or reward. They defined the reward function as a 

weighted sum of video quality, rebuffing, and spatial and temporal video quality variance. In their 

training process, they utilized the Deep Q-Network (DQN) method. 

These studies highlight the application of reinforcement learning techniques, such as RL and 

DQN, in designing and improving ABR systems for web-based video platforms. The focus is on 

optimizing ABR policies to enhance the user's QoE by considering factors such as video quality, 

rebuffing, and temporal/spatial video quality variance. 
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2.4. Deep Reinforcement Learning-based approaches 

In recent years, several studies have been conducted to improve the Quality of Experience (QoE) 

in video streaming through the application of Deep Reinforcement Learning (DRL) techniques. These 

works have explored various neural network architectures and reinforcement learning algorithms to 

optimize adaptive video streaming and enhance user satisfaction. This section presents a 

comprehensive overview of the relevant literature in this field. 

Anirban et al. [16] proposed the LASH model, a deep neural network-based approach that 

combines LSTM, CNN, and reinforcement learning for adaptive video streaming. Their objective was 

to maximize QoE by considering perceived video quality, buffering events, and the smoothness of 

the video. However, the specific neural network architectures and reinforcement learning algorithms 

used were not explicitly mentioned. 

Lu et al. [17] developed an end-to-end unified Deep Neural Network (DNN) architecture to 

predict the Quality of Service (QoS) and QoE values in wireless video streaming sessions. Their 

framework employed two hidden layers and utilized the Deep Q-Network (DQN) algorithm for bit 

rate adjustment. The primary focus was on deriving an optimal rate adaptation policy to maximize 

rewards during video streaming. 

Dong et al. [18] proposed an online and end-to-end DRL-based policy for power allocation in 

video streaming. They employed the Deep Deterministic Policy Gradient (DDPG) algorithm and 

integrated safety layer, post-decision state, and virtual experiences to ensure quality of service and 

enhance convergence speed. 

Matteo et al. [19] designed the D-DASH framework, which leveraged a combination of Multi-

Layer Perceptron (MLP) and LSTM neural networks within a deep Q-learning environment to 

optimize the Dynamic Adaptive Streaming over HTTP (DASH) QoE. Their reward function 

incorporated the Structural Similarity Index (SSIM) and considered video quality switches and 

rebuffering events. 

Tianchi et al. [20] proposed a video quality-aware rate control approach aiming to achieve high 

perceptual quality with low latency. Their method employed deep reinforcement learning to train a 

neural network for selecting future bitrates. The VQPN model was used for predicting the next video 

quality, and VQRL was utilized to train the neural network. 

Zhao et al. [21] introduced the Deeplive model, which utilized two neural networks to make 

decisions on bit rate, target buffer, and latency limit in live video streaming. The agent selected the 

higher reward based on a reward function that considered frame video quality, rebuffering, latency, 

frame skipping, and bit rate switches. 

Gongwei et al. [22] presented the DeepVR approach for predictive panoramic video streaming 

using DRL techniques. Their method employed LSTM to predict the users' Field of View (FoV) in 

future seconds, and the DRL agent selected the quality level based on a reward function incorporating 

FoV quality, rebuffering time, video quality change, and buffer. The Rainbow training method was 

utilized to train the DRL agent. 

Furthermore, other studies have focused on optimizing specific aspects of video streaming. For 

instance, an HTTP adaptive streaming framework with online reinforcement learning was proposed 

in [23], where the neural network was trained with the Pensieve reinforcement learning algorithm. 

The main objective was to upgrade the Adaptive Bitrate (ABR) model when QoE degradation occurs. 

Ling yun Lu et al. employed the Actor-Critic (A3C) algorithm for adaptive streaming based on 

DRL [24]. Their approach selected the optimal bitrate based on user preferences, network throughput, 

and buffer occupancy. Similarly, Omar Houidi et al. [25] adjusted the actor-critic architecture for DRL 

to consider Quality of Service (QoS) and balance network traffic, thereby maximizing QoE. 

ALVS [26] proposed a DRL framework for video live streaming, where adaptive playback speed 

and video quality level were decided for the next segment to improve QoE. Additionally, GreenABR 

[27] introduced a DRL-based ABR scheme that aimed to optimize energy consumption during a 

streaming session without degrading QoE. 

Several DRL-based approaches and frameworks are proposed in the literature, and certain of 

them use complicated neural network architectures (combined two or more neural networks). In 
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contrast of cited work, we proposed a new DRL-based approach with LSTM neural network that 

considers the overall environment for deciding the next bitrate. The DRL used deep neural networks 

to approximate the policy. To improve the QoE, we introduced the factor distance to decide the next 

bitrate. The main goal is to provide an optimal dynamic adaptation in very complex environments.  

3. Materials and methods 

3.1. Problem formulation 

The deep reinforcement learning algorithm focuses on how agents take actions to achieve a goal 

or maximize a specific dimension over multiple steps in a complex environment and gain maximum 

cumulative rewards. The DRL algorithm makes a sequential decision in a time interval that plays a 

crucial role in problem-solving. There are two essential learning models in reinforcement learning: 

the Markov decision process and Q-learning. In this paper, we formulate the streaming video DASH 

in the learning model: Markov Decision Process (MDP) for solution determination in reinforcement 

learning. RL has five components: the agent, the environment, the states, the actions, and the rewards. 

The agent takes sequential actions based on the current state of the environment. After every action, 

the environment moves to another state, and the agent receives a reward. The agent aims to maximize 

the total of received rewards in specific steps.    

The deep reinforcement learning algorithm focuses on how agents take actions to achieve a goal 

or maximize a specific dimension over multiple steps in a complex environment and gain maximum 

cumulative rewards. The DRL algorithm makes sequential decisions in time intervals that play a 

crucial role in problem-solving. There are two essential learning models in reinforcement learning: 

the Markov decision process and Q-learning. In this paper, we formulate the streaming video DASH 

learning model as a Markov Decision Process (MDP) for solution determination in reinforcement 

learning. RL has five components: the agent, the environment, the states, the actions, and the rewards. 

The agent takes sequential actions based on the current state of the environment. After every action, 

the environment transitions to another state, and the agent receives a reward. The agent aims to 

maximize the total of received rewards in specific steps. 

3.2. System model 

This section details the system model of the proposed approach. The Deep Reinforcement 

Learning environment refers to the DASH system. The DASH server provides a set of videos V {v1, 

v2 ...vN}; each video is encoded in segments of different bitrates or quality Q {q1, q2, q3 ...qM} of fixed 

duration. Additionally, each video is associated with an MPD description file containing this 

information. At the start of a video streaming session, The DASH client requests the MPD file, 

analyzes the information within it, and then initiates the streaming based on the current network and 

device conditions. We consider the client-side adaptation as an agent that determines the appropriate 

bitrate for segments using an optimal policy. After downloading the first segment, the agent observes 

the environment, including network parameters (bandwidth measurement), buffer state, and the 

quality (bitrate) of the previous segment, to decide the optimal bitrate for the next segment. The agent 

continues to take actions and receive rewards until all segments have been downloaded. 

We adopt the learning model: MDP to determine the optimal bitrate adaptation strategy based 

on distance factor between two consecutive segments. Our goal is to achieve high user satisfaction S 

= {s1, s2, s3...} in terms of avoiding playback interruptions and guaranteeing a stable high-quality video 

streaming. Here, S represents the function of playback interruption and stable high quality, denoted 

as. S = f(playback୧୬୲ୣ୰୰୳୮୲୧୭୬, stable_high_quality), (1)
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3.3. Reward function 

This work aims to provide highly stable perceptual quality and achieve high user satisfaction 

without rebuffering. Therefore, we define a reward function R = f(r, rb, q) that considers the rate of 

perceived quality change (r), rebuffering (rb), and the quality of each segment (q). 

In this subsection, we present the experimental study we have performed to classify the bitrates 

(qualities). For the experiment, we used the BigBuckBunny video sequence from the DASH dataset 

[28]. All users participated in the tests starting to play their video sequences on different devices 

under various internet conditions. The experiment was conducted during the streaming session. 

Furthermore, we programmed bitrate switches as follows: {(144p, 240p), (144p, 360p), (144p, 720p)…} 

and observed the perceived quality change. 

According to the experimental results, we classified the qualities into three classes: Qhigh, Qmedium 

and Qpoor. As shown in Figure 1. To define these classes, we establish the following quality sets: Qhigh 

= {1080p... 2160p} for high-quality, Qmedium= {360p... 720p} for medium quality, and Qpoor= {144p... 240p} 

for poor quality. The quality qt of a segment si can be categorized into the quality set Q = {Qhigh, Qmedium, 

Qpoor}, while the bandwidth can be classified into the set Bw = {Bwlow, Bwmedium, Bwhigh}. 

 

Figure 1. Classification of qualities. 

3.3.1. Perceived quality change 

In this proposal, we redefine the rate of quality change. Therefore, we consider a perceived 

quality change when the user notices a switch, meaning that a change of quality within the same set 

is not considered a change. However, we do consider a change when the quality qt is in the poor-

quality set, and qt+1 is in the high-quality set. Thus, we introduce a distance factor ∆fact that measures 

the difference between two qualities, as illustrated in Table 1. 

Table 1. The distance factor values between qualities. 

Quality High quality Medium quality Poor quality 

High quality 0 -1 -2 

Medium quality 1 0 -1 

Poor quality 2 1 0 

According to Table 1, the ∆fact୯୲୯୲ାଵ
=|1| value is |1|, given that q୲ corresponds to Medium quality and q୲ାଵcorresponds to high quality. 

3.3.2. Rebuffering 

The rebuffering Rb occurring after each downloaded segment can be measured by comparing 

the playback time of a downloaded segment sp and the time of the end of download sd. A rebuffering 

event occurs when sd is greater than sp, indicating a pause or interruption in video playback. 

Therefore, the rebuffering Rb can be defined as the total number of video interruptions. 𝑅𝑏 =  ∑ 𝑅𝑏௞ே௞ୀଵ , (2)
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3.3.3. Segment quality 

The segment quality represents the quality of each downloaded segment, denoted as qi. 

Therefore, the average quality ( Avg_q) is defined as the sum of all segment qualities (qk) divided by 

the total number of segments (N), as shown below: 𝐴𝑣𝑔_𝑞 =  ∑ ௤ೖೖಿసభே , (3)

Here, N represents the total number of segments. 

3.3.4. QoE function 

In this section, we highlight the QoE function. As described above, the QoE is based on three 

parameters: the quality of each segment, the perceptual change of quality and the rebuffering or 

playback. As we know, the agent receives a reward for every decision of quality; in this way, we 

obtain the following function:  𝑟௧ = 𝑓(𝑞௧,𝑞௧ିଵ), (4)

Thus, the QoE can be expressed as: 𝑄𝑜𝐸௠௔௫ = ∑ (𝑟௞)௄௞ୀଵ െ ∑ |μ𝑅𝑏௞|௄௞ୀଵ െ ∑ |λ(∆fact௞)|௄ିଵ௞ୀଵ , (5)

Where μ and λ represent the penalties for rebuffering and the change in quality, respectively. 

We normalize the 𝑄𝑜𝐸 ௩௔௟௨௘ to match it with the state-of-the-art. Thus, we obtain the following 

expression:  𝑄𝑜𝐸 =  ொ௢ா೘ೌೣே  ∗  100, (6)

Where N is the total number of video segments. 

3.4. Markov Decision Process (MDP)  

Client-side adaptation involves making sequential decisions over time t. To formalize this 

adaptation process, we utilize a Markov Decision Process (MDP). The MDP is defined by a tuple of 

five components: agent, environment, states, actions, and rewards, as illustrated in Figure 2. 

 

Figure 2. Reinforcement learning architecture. 

The agent represents the client-side adaptation and is responsible for selecting an action at. This 

action involves choosing an appropriate bitrate or quality qt for the next segment Si to be downloaded. 

The agent's decision is based on current bandwidth measurements Bwt, the current buffer state 

buff_statet and the quality qt-1 of the previous segment si-1. The agent receives rewards or penalties 

based on its bitrate selection (adaptation). 

In adaptive video streaming, we define the segments as a finite set of states, S = {s0,s1,… sN}. It 

should be noted that a video is divided into N segments. We define a set of actions as {at}, where t = 

{0, 1, 2 …N}, indicating the decision made at step t. The duration of each step, t, depends on the 

Streaming environnement 
 

DASH system 

Agent 

State 

Rewar

Action

Action: decide 
the optimal bit 
rate for the 
next segment. 
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download time of a segment. The action set for a given state is denoted as A(s) = {As1, As2, As3}. Here, 

As1 represents the case when qt and qt-1 are in the same quality set defined previously. As the two 

indicate, qt and qt-1 are not in the same quality set but are the closest to each other. As3 signifies that 

qt is in a lower quality set. The state transition at step is defined as st = {qt-1, qt, buff_statet, Bwt}, where 

qt-1 represents the quality of the previous segment, qt represents the quality of the downloaded 

segment, Bwt represents the current bandwidth, and buff_statet represents the current buffer state. 

To determine the quality of the next segment, the agent utilizes a policy 𝜋 as an approximation 

strategy. In this work, we integrate a deep neural network (DNN)  to approximate the policy 𝜋(𝑎|𝑠; 𝜃), which maps from the current state S to the next state S’. The agent is represented by a deep 

neural network that generates the policy for making decisions, and θ represents the weights in the 

deep neural network. 

The state transition at time t is denoted as S = (Bw, buff_statet, qt) after implementing the 

policy 𝜋(𝑎|𝑠; 𝜃), and the selected action is at = As1. The resulting state will be: 

S’ = (Bw’, buff_statet’, qt’), (7)

Where:  

qt’ = ∆qt if (qt,qt-1) ϵ the same quality set. 

Bwt’ = ∆ Bwt 

buff_statet’ = ∆ buff_statet 

A reward function Ri(St) is received after downloading each segment St: 

rt = R (St = S)= f(qt,qt-1), (8)

The following table illustrates the rewards received after each action taken by the agent:  

3.4. Deep neural network architecture 

A typical deep neural network (DNN) consists of an input layer, multiple hidden layers, and an 

output layer. Each layer is composed of neurons that are activated based on the input from the 

previous layer using an activation function. In this paper, we utilize the Long-Short Term Memory 

network (LSTM) [29]. 

LSTM is a powerful variant of recurrent neural networks (RNNs) widely used for processing 

and predicting sequence data, with a particular focus on time-series data. The LSTM unit comprises 

four essential components, as visually depicted in Figure 3. These components include a specialized 

cell designed to store and retain information over extended periods. Additionally, the cell 

incorporates three pivotal gates: the input gate, output gate, and forget gate. These gates serve as 

vital mechanisms for controlling the flow of information into and out of the cell. In our specific 

context, we train the LSTM to intelligently preserve the quality information from previous segments, 

while disregarding historical details such as bandwidth and buffer state information. 

 

Figure 3. LSTM cell architecture [30]. 
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3.4.1. Agent design 

The agent is composed of an LSTM neural network that makes decisions based on the current 

bandwidth, buffer state, and the quality of the previously downloaded segment. The LSTM takes the 

state St = (qt, Bwt, Buft) as input and selects an action that corresponds to the next state St+1= (qt+1, 

Bwt, Buft ). Subsequently, the agent receives a reward or penalty based on its chosen action. If the 

agent receives a positive reward, it proceeds to the next state and continues making decisions. 

However, if the agent receives a negative reward, it sends an alert message to the slave agent, 

allowing for potential corrective measures. The slave agent then observes the environment to 

determine if a correction can be made without adversely impacting the Quality of Experience (QoE). 

Figure 4 illustrates the Architecture of the agent, where the output at time step t-1 serves as the input 

for the subsequent decision at time step t. 

Figure 4. Agent Architecture. 

3.4.2. Agent Training   

In this section, we provide a detailed explanation of the training process for our DRL approach. 

The agent is trained in various environments using bandwidth statistics and videos encoded at 

different quality levels, as well as different numbers of segments. 

In the offline phase, we first start by the training of two twin agents alone: the main and the slave 

agent. We initiate the training by separately training two twin agents: the main agent and the slave 

agent. We utilize the rewards and penalties specified in Table 2 to train these agents. The objective is 

to minimize the (factor distance) difference between consecutive segments, prevent rebuffering 

events, and select high-quality segments for downloading. 

Table 2. Rewards defined for each state. 

St = S  R (St = S) 

(qt, qt-1) ϵ Q 

(qt) ϵ Qhigh 

(qt) ϵ Qmeduim

(qt) ϵ Qpoor 

Rbt= 0 

Rbt> 0 

(qt, qt-1) ∉ Q 

// qt and qt-1 are in the same quality set 

// qt is in the high-quality set 

// qt is in the medium-quality set 

// qt is in the poor-quality set 

// there is no rebuffering event 

// there is a rebuffering event 

// qt and qt-1 are not in the same quality set

1 

0.75 

0.50 

-1 

1 

-1 

-1 

In the second phase of training, we deploy the two agents for streaming in different 

environments. During a streaming session, the main agent makes decisions and receives rewards or 
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penalties while the slave agent remains in a passive mode. The slave agent only reacts when it 

receives an alert message from the main agent, indicating a need to correct a decision. 

In this paper, we adopts the policy gradient algorithm REINFORCE [31] to optimize the agent’s 

policy (6) and update the policy parameter θ. π஘(s, a) = P[a|s; θ] (9)

The main objective is to maximize the accumulated reward. The cumulative discounted reward, 

denoted as Rt, is computed as the sum of discounted rewards over time, with γ as the discount factor 

and t as the time step: R୲ =  ෍ γ୲ ∗  r୲୲  (10)

The gradient of the discounted reward with respect to the parameter θ, denoted as∇ఏ , can be 

expressed as: 

𝑅௧ =  ∇ఏ E ൥෍ 𝛾௧ ∗  𝑟௧௧ ൩ = E ൥෍ 𝛾௧ ∗  𝑟௧∇ఏ log 𝜋ఏ(𝑎௧|𝑠௧)୲ ൩ (11)

After each episode, the policy parameter θ is updated using the learning rate α as follows:  𝜃 ← 𝜃 +  𝛼 ෍ ∇஘୲ log(π஘ (s୲, a୲))(෍ 𝑟௧௧ ) (12)

4. Performance evaluation 

In this section, we will discuss the implementation environment, provide details about the LSTM 

neural network, describe the experiment setup, and outline the datasets used for training and testing 

the model. Subsequently, we will present the results of our approach compared to the state of the art. 

Implementation Details: The simulation is implemented in python using the Keras API [32]. 

We utilize the neural network agent architecture demonstrated in Figure 4, which consists of a single 

hidden layer. The activation function used is TanH, which maps the output values to the interval [-

1, 1]. The number of iterations corresponds to the total number of video segments. During the initial 

phase, the model takes inputs such as the quality of the first download segment (determined 

according to network parameters), the current bandwidth, and the buffer state. It then computes and 

generates the quality of the next segment based on these inputs. This process continues iteratively, 

with the previous quality influencing the decision-making process until the last video segment is 

reached. 

Table 3. Simulation parameter values. 

Simulation parameter Description Value γ Discount factor 0.99 

λ Penalty of the rebuffering -1 

μ Penalties of the change of quality -1 

Experiment setup: to evaluate the performance of our proposed approach, we conducted 

experiments using a dataset obtained from [33]. This Dataset consists of 15 ultra-high definition 

(UHD) video sequences with a resolution of 4K. Each video sequence is divided into segments, with 

each segment lasting 2 seconds. During playback, a buffer size of 30 seconds is maintained. The video 

sequences are encoded using the High-Efficiency Video Coding (HEVC) format and have a frame 

rate of 30 frames per second (fps). 

For network conditions, we utilized the Norway dataset from [34], which contains network 

traces collected from Telenor's 3G/HSDPA mobile wireless network in Norway. These traces provide 

realistic network conditions for our experiments, capturing the variations and characteristics of real-

world mobile networks. 
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In this experiment, the agent is trained in two steps. First, the agent is trained alone using Deep 

Reinforcement Learning (DRL) in offline mode. For this training phase, 70% of the video sequences 

from the dataset are used to train the agent, while the remaining 30% are held back for testing the 

model's performance. This initial training enables the agent to learn and make decisions based on the 

training data. 

In the second step, the agent is trained with the assistance of a slave agent, which helps in 

providing high-quality over-streaming sessions. The slave agent works in collaboration with the 

primary agent and corrects any incorrect decisions made by the primary agent, leading to improved 

adaptation and decision-making processes. 

By conducting experiments with this setup, we aim to evaluate the effectiveness of our proposed 

approach in handling real-world video streaming scenarios and optimizing the quality of the 

streamed content. 

Results: Firstly, we present the results of training the LSTM neural network, showcasing the 

performance and learning achieved during the training process. We analyze the network's 

convergence, loss, and other relevant metrics to assess its effectiveness in optimizing the streaming 

quality. 

Next, we compare the performance of our model with the state-of-the-art approaches. By 

conducting experiments in a simulation environment with various video sequences and different 

network traces, we evaluate the robustness and generalization capability of our proposed approach. 

We consider key performance indicators such as video quality, buffer occupancy, rebuffering events, 

and user experience to assess the effectiveness of our approach. 

To ensure comprehensive evaluation, we trained the neural agent network using 70% of the 

video sequences from the dataset. Subsequently, the remaining 30% of the dataset videos were used 

to perform the testing phase. This division allows us to gauge the model's performance on unseen 

data and assess its ability to generalize beyond the training set. 

The presented results are the average of all experiments conducted, ensuring a reliable and 

representative assessment of our approach's performance. By providing these results, we aim to 

demonstrate the effectiveness and potential advantages of our proposed approach in optimizing 

video streaming quality and enhancing user experience. 

Figure 5 illustrates the degree of performance improvement achieved using 70% of the video 

sequences from the dataset. The graph showcases the progress of performance improvement as the 

training process advances, with the x-axis representing the percentage of data utilized for training. 

Based on the graph, it can be observed that the performance improvement steadily increases as 

more training data is utilized. However, the rate of improvement starts to converge after 

approximately 60% of the data has been incorporated into the training process. 

 

Figure 5. Degree of performance improvement with 70% of Dataset. 

This graph provides insights into the effectiveness of our approach in optimizing performance 

and highlights the saturation point where further training data might not significantly contribute to 
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additional improvements. It serves as an important reference for determining the optimal utilization 

of training data for achieving the desired performance levels. 

 

Figure 6. Degree of performance improvement with a Slave agent. 

In this experiment, we trained the primary neural network agent in conjunction with a slave 

agent. The aim of this experiment was to evaluate the impact of the slave agent's intervention on 

performance improvement. Throughout the experiment, the overall system monitored the demand 

for intervention and sent alert messages to the slave agent in case of penalties or incorrect decisions. 

Figure 7 showcases the results of the performance improvement achieved with the inclusion of 

the slave agent. The graph represents the progression of performance improvement over the training 

process, with the x-axis indicating the percentage of video sequences utilized for training. 

 

Figure 7. Results of QoE metrics. 

During the experiment utilizing 70% of the dataset, we observed a notable reduction in the 

number of alert messages sent by the overall system after approximately 55% of the video sequences 

were incorporated into the training process. This indicates that the collaboration between the primary 

agent and the slave agent positively influenced the decision-making process, resulting in improved 

performance and a decreased occurrence of penalties or incorrect decisions. 

Figure 6. provides valuable insights into the effectiveness of utilizing a slave agent and 

highlights the impact of its intervention on performance improvement. It demonstrates the 
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importance of collaborative approaches in enhancing the overall system's decision-making 

capabilities and ultimately optimizing performance. 

Figure 7 presents the results of various Quality of Experience (QoE) metrics, including 

rebuffering, average segment quality, and the overall QoE value. These metrics were utilized to 

evaluate the performance of our proposed approach. 

Throughout the experiment, we placed particular emphasis on these metrics as they directly 

reflect the user's streaming experience. By analyzing rebuffering events, which represent 

interruptions in the video playback, we can assess the system's ability to maintain a smooth streaming 

experience. The average segment quality metric allows us to gauge the overall video quality delivered 

to the user, while the QoE value provides an aggregated measure of the user's satisfaction with the 

streaming service. Figure 7 provides a visual representation of the performance of our approach 

based on these QoE metrics. The graph showcases the progression of these metrics over the course of 

the experiment, allowing us to analyze and compare the performance at different stages. By 

evaluating these QoE metrics, we can gain insights into the effectiveness of our approach in 

enhancing the user experience during video streaming. These metrics provide a comprehensive 

assessment of the quality and reliability of the streaming service, enabling us to make informed 

judgments about the performance and effectiveness of our proposed approach. 

In this experiment, we compare the performance of our proposed approach with several existing 

schemes, namely Pensieve [10], DASH framework with online Reinforcement Learning [36], LBC [17], 

and Rainbow [22]. The results presented in Figure 8 represent the average outcomes obtained from 

conducting over ten experiments. 
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(d) 

Figure 8. (a) Comparison of Our Approach vs. Existing Schemes; (b) Average normalized QoE ; (c) 

Average switching quality; (d) Average rebuffering Time (s). 

The results depicted in Figure 8 clearly illustrate that our proposed approach consistently 

outperforms the existing schemes in terms of the normalized QoE value. This signifies that our 

approach offers a superior solution for delivering stable and high-quality DASH streaming sessions. 

Based on these comparative results, we can conclude that our proposed approach demonstrates 

significant performance improvements when compared to the existing schemes. The averaged results 

obtained from the experiments further validate the effectiveness of our approach and highlight its 

potential to enhance the streaming experience compared to state-of-the-art solutions. 

5. Discussion 

The discussion of the experimental results highlights several key points. Firstly, the model 

converged after approximately 60% of the dataset, indicating that the training process reached a 

stable state. Secondly, the inclusion of the slave agent in our approach led to increased performance 

improvement and reduced penalties. This collaborative interaction between agents proved effective. 

Moreover, the evaluation of QoE metrics showed that our proposed approach achieved high 

results in terms of average segment quality and QoE value, while successfully reducing rebuffering. 

These outcomes indicate that our approach offers a stable and high-quality DASH streaming session. 

Additionally, when compared to existing schemes, our proposed approach consistently 

outperformed them in terms of normalized QoE value. This reinforces the superiority of our 

approach in delivering an enhanced user experience. 

Overall, the discussion confirms that our proposed approach provides a stable and high-quality 

DASH streaming session, and its performance improvements, collaborative agent interaction, and 

superior QoE metrics demonstrate its effectiveness. These findings contribute to the advancement of 

DASH streaming research. 

6. Conclusions 

The purpose of this study was to enhance the stable quality of video streaming in the DASH 

system. To achieve this, we introduced a novel approach based on Deep Reinforcement Learning. We 

formulated the DASH video streaming as a Markov Decision Process (MDP) learning model and 

incorporated a distance factor (DF) to capture the difference between segment qualities. The LSTM 

neural network was trained using ABR algorithms and a dataset of video sequences under various 

network environments. 

Through simulations and comparisons with existing studies, we demonstrated that our 

proposed approach significantly improved the overall DASH streaming system and provided users 

with a highly stable quality during their streaming sessions. 

In future work, we aim to extend our approach to support live video streaming, further 

advancing the capabilities and performance of our proposed method. 
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Appendix A 

Table A1 summarizes the main symbols used throughout this paper. 

Table A1. Symbols table. 

Symbol Meaning 

V Video set 

Q Set of different bitrates or qualities of a given video 

S Represent the user satisfaction 

R Reward function 

Rt Reward value obtained after a decision 

Rb Rebuffering 

q The quality of a segment 

QHigh High qualities set: Set of high qualities 

QMedium Medium qualities set: Set of medium qualities 

QPoor Poor qualities set: Set of Poor qualities 

Bw Bandwidth set 

qt, Si Quality t of segment i ∆fact௤௧௤௧ାଵ The factor distance between qt and qt+1 

Sd Download time of segment 

Sp Playback time of segment 

Avg_q Average quality of total video segments 

N Total number of segments in a given video 

QoEmax The estimated QoE during a streaming session 

QoE Represents the normalized QoEmax 

Buff_statet Buffer state at time t 

π Policy 

μ Penalty of rebuferring 

λ Penalty of quality change 
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