Pre prints.org

Article Not peer-reviewed version

Deep Reinforcement Learning-
Based Approach for Video
Streaming DASH

Naima Souane ~ , Malika Bourenane : , Yassine DOUGA

Posted Date: 21 August 2023
doi: 10.20944/preprints202308.1429.v1

Keywords: DASH; video streaming; Wireless networks; QoE; Deep learning; Reinforcement Learning
algorithms; Deep reinforcement learning; Bandwidth estimation

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3101772
https://sciprofiles.com/profile/3101841

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 d0i:10.20944/preprints202308.1429.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Deep Reinforcement Learning-Based Approach for
Video Streaming DASH

Naima Souane *, Malika Bourenane ** and Yassine Douga 2

! LRIIR laboratory, Department of Computer Science, UNIVERSITE ORAN1, ORAN, ALGERIA.
2 Department of Computer Science, UNIVERSITY OF BLIDA 1, BLIDA, ALGERIA.
* Correspondence: souane.naima@edu.univ-oranl.dz (N.S.); bourenane.malika@univ-oranl.dz (M.B.)

Abstract: Dynamic adaptive video streaming over HTTP (DASH) plays a crucial role in video transmission
across networks. Traditional adaptive bitrate (ABR) algorithms adjust the quality of video segments based on
network conditions and buffer occupancy. However, these algorithms rely on fixed rules within a complex
environment, making it challenging to achieve optimal decisions considering the overall context. In this paper,
we propose a novel Deep Reinforcement Learning-based approach for streaming DASH, focusing on
maintaining consistent perceived video quality throughout the streaming session to enhance user experience.
Our approach optimizes the Quality of Experience (QoE) by dynamically controlling the quality distance factor
between consecutive video segments. We evaluate this approach through a simulation model that encompasses
diverse wireless network environments and various video sequences. Additionally, we compare our proposed
approach with state-of-the-art methods. The experimental results demonstrate significant improvements in
QOoE, ensuring users enjoy stable, high-quality video streaming sessions.

Keywords: DASH; video streaming; wireless networks; QoE; deep learning; reinforcement learning
algorithms; deep reinforcement learning; bandwidth estimation

1. Introduction

Maximizing the Quality of Experience (QoE) for users of video streaming services over wireless
networks has become a prominent challenge for researchers and video providers. With multimedia
content, particularly videos, occupying a substantial portion of Internet traffic [1], addressing this
challenge is of utmost importance.

The Dynamic Adaptive Streaming over HTTP (DASH) standard plays a vital role in selecting
the appropriate quality of video segments based on network conditions. In order to enhance user
QoE, service providers and academic researchers have put forth several approaches aimed at
achieving specific objectives, such as minimizing initial delays, preventing interruptions, and
ensuring a consistently high quality throughout streaming sessions.

Within the DASH server, videos are divided into fixed-duration chunks or segments, typically
ranging from 2 to 10 seconds. These segments are encoded in different qualities, and their details,
including URLs, are stored in a Media Presentation Description (MPD) file. The DASH client is
responsible for deciding the quality of the next segment to be downloaded, taking into consideration
factors such as current network conditions, buffer occupancy, and device capabilities... [2].

Furthermore, during a streaming session, the segments can be classified into four states: played,
in playing, in buffer, and to be downloaded. The buffer has the potential to contain segments of
varying qualities, including low, medium, and high.

The design of an optimal Adaptive Bitrate (ABR) algorithm for Dynamic Adaptive Streaming
over HTTP (DASH) video streaming in highly dynamic environments presents a significant
challenge. Fixed rule-based ABR algorithms struggle to adapt to the varying conditions encountered
during streaming. To address this, many ABR schemes have integrated Artificial Intelligence (AI)
technologies to enhance user Quality of Experience (QoE). However, ensuring high user QoE in
diverse network environments and client equipment can be challenging. These ABR schemes need to
improve perceived QoE, minimize quality switches, prevent interruptions, and reduce initial delays.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202308.1429.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 doi:10.20944/preprints202308.1429.v1

In this paper, we propose a novel ABR algorithm based on the Deep Reinforcement Learning
(DRL) method for determining the quality of the next segment in DASH video streaming over
wireless networks. Our approach takes into account three key parameters: network conditions, buffer
state, and the distance factor. The primary objective of our proposal is to provide a highly satisfactory
user experience.

The main contributions of our work are as follows:

e Formulation and design model: We introduce a new Deep Reinforcement Learning approach for
DASH video streaming, focusing on controlling the quality distance between consecutive
segments. By doing so, we effectively manage the perceptual quality switch. We formulate the
DASH video streaming process within a learning model called Markov Decision Process,
enabling the determination of optimal solutions through reinforcement learning.

e Analysis and implementation: We classify the available qualities (bitrates) into three classes:
Qhigh, Qmedium, and Qpoor. To evaluate our approach, we conducted experiments using the
animation video sequence "Big Buck Bunny" in the DASH,js environment over a wireless
network. The experiments involved playing the video sequence on different devices under
various network conditions. We monitored the performance of the experiments throughout the
streaming session, specifically observing the perceptible quality switch. Based on the observed
quality switches, we classified the bitrates into three distinct classes.

e Simulation and comparison: We simulated and compared our proposed approach with existing
studies. The results demonstrated a significant improvement in QoE, providing highly stable
video quality. Our scheme successfully minimized the distance factor, ensuring a smooth
streaming session.

The remaining sections of this study are structured as follows: Section 2 presents an overview of
related work, examining previous research in the field. Section 3 provides a detailed description of
our proposed solution, outlining the methodology and approach employed in developing the novel
ABR algorithm based on Deep Reinforcement Learning. In Section 4, we present the experimental
results obtained from evaluating our system, discussing the performance and outcomes of our
approach. Finally, in Section 5, we conclude the paper by summarizing the key findings, highlighting
the contributions of our work, and discussing potential avenues for future research in this area.

2. Related Work

In recent years, significant progress has been made in the field of adaptive video streaming,
leading to the proposal of various approaches. These approaches can be categorized into four main
categories based on the adaptation technology utilized:

e Traditional ABR-based approaches: This category encompasses approaches that rely on
bandwidth measurement, buffer occupancy, or a combination of both to make streaming
decisions. These approaches typically employ fixed rules for adaptation during the streaming
process. While they have been widely used and implemented, their effectiveness can be limited
in highly dynamic and diverse network conditions.

e Deep learning-based approaches: Deep learning techniques, specifically neural network models,
are employed in this category. By training these models on extensive datasets, they can learn
complex patterns and make informed decisions for adaptation. Deep learning-based approaches
have demonstrated improved performance in adapting to diverse network conditions and user
preferences. However, they often require large amounts of training data and computational
resources for effective model training.

¢ Reinforcement learning-based approaches: In this category, adaptation decisions are made by
an agent in an interactive environment through trial and error, guided by rewards.
Reinforcement learning enables the agent to learn and optimize its decisions based on the
received rewards. These approaches have the advantage of adaptability and the ability to handle
dynamic and uncertain network conditions. However, training reinforcement learning models
can be time-consuming, and the performance heavily relies on the reward design and
exploration strategy.

https://doi.org/10.20944/preprints202308.1429.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 doi:10.20944/preprints202308.1429.v1

3

e Deep reinforcement learning-based approaches: This category combines the power of deep
neural networks with reinforcement learning techniques. Deep reinforcement learning
approaches use deep neural networks to approximate various components of the reinforcement
learning process, enabling them to handle complex streaming environments and make effective
adaptation decisions. By leveraging the representation learning capabilities of deep neural
networks, these approaches have shown promising results in achieving high-quality video
streaming experiences.

2.1. Traditional ABR-based approaches

Many ABR algorithms [2] have been proposed for DASH, including BBA [3], BOLA [4],
ELASTIC [5], MPC [6], ABMA+ [7], Festive [8], PANDA [9], and Pensieve [10]. These ABR algorithms
are implemented on the client-side of DASH and aim to stream the video at the highest possible
bitrates while minimizing rebuffing. However, these ABR algorithms rely on fixed rules for bitrate
selection and streaming orchestration in highly dynamic environments. In such conditions,
accurately characterizing and predicting bandwidth and making decisions based on the overall
environment becomes challenging.

2.2. Deep learning-based approaches

Luca et al. [11] introduced ERUDITE, a deep neural network approach for optimizing adaptive
video streaming controllers to adapt to various parameters, such as video content and bandwidth
traces. ERUDITE employs a deep neural network (DNN) as a supervisor to dynamically adjust the
controller parameters based on the observed bandwidth traces and the resulting Quality of
Experience (QoE). The experimental results demonstrated that ERUDITE achieves near-optimal
performance. In [12], the authors proposed a deep learning approach to predict the qualities of video
segments that will be cached, aiming to enhance the performance of DASH in an SDN domain. They
utilized a deep recurrent neural network (LSTM) with three hidden layers to forecast future
segments. Additionally, they leveraged SDN technology in their approach. The simulation results
showed that their solution effectively reduces under runs on the client side. In [13], the authors
presented a video QoE metric for DASH utilizing a combination of a 3D CNN and LSTM to extract
deep spatial-temporal features representing the video content. They also incorporated network
transmission factors that influence QoE, following the DASH standard. By combining the extracted
features, they generated an input parameter vector and utilized the ridge regression method to
establish a mapping between the input parameter vector and the Mean Opinion Score (MOS) value,
predicting the final QoE value.

Overall, these studies demonstrate the application of deep learning techniques, including deep
neural networks and recurrent neural networks, in optimizing various aspects of adaptive video
streaming for improved performance and enhanced user experience.

2.3. Reinforcement Learning-based approaches

Hongzi et al. [14] developed an Adaptive Bitrate Reinforcement Learning (ABRL) system for
Facebook's web-based video platform. The ABRL system generates RL-based ABR policies and
deploys them in the production environment. They created a simulator to train the ABR agent using
RL techniques, and the translated ABRL policies are then deployed to the user front end. Jun et al.
[15] proposed an improved ABR approach called 360SRL (Sequential Reinforcement Learning) to
reduce the decision space and enhance the Quality of Experience (QoE). The 360SRL method learns
the ABR policy by optimizing the QoE value or reward. They defined the reward function as a
weighted sum of video quality, rebuffing, and spatial and temporal video quality variance. In their
training process, they utilized the Deep Q-Network (DQN) method.

These studies highlight the application of reinforcement learning techniques, such as RL and
DQN, in designing and improving ABR systems for web-based video platforms. The focus is on
optimizing ABR policies to enhance the user's QoE by considering factors such as video quality,
rebuffing, and temporal/spatial video quality variance.

https://doi.org/10.20944/preprints202308.1429.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 doi:10.20944/preprints202308.1429.v1

2.4. Deep Reinforcement Learning-based approaches

In recent years, several studies have been conducted to improve the Quality of Experience (QoE)
in video streaming through the application of Deep Reinforcement Learning (DRL) techniques. These
works have explored various neural network architectures and reinforcement learning algorithms to
optimize adaptive video streaming and enhance user satisfaction. This section presents a
comprehensive overview of the relevant literature in this field.

Anirban et al. [16] proposed the LASH model, a deep neural network-based approach that
combines LSTM, CNN, and reinforcement learning for adaptive video streaming. Their objective was
to maximize QoE by considering perceived video quality, buffering events, and the smoothness of
the video. However, the specific neural network architectures and reinforcement learning algorithms
used were not explicitly mentioned.

Lu et al. [17] developed an end-to-end unified Deep Neural Network (DNN) architecture to
predict the Quality of Service (QoS) and QoE values in wireless video streaming sessions. Their
framework employed two hidden layers and utilized the Deep Q-Network (DQN) algorithm for bit
rate adjustment. The primary focus was on deriving an optimal rate adaptation policy to maximize
rewards during video streaming.

Dong et al. [18] proposed an online and end-to-end DRL-based policy for power allocation in
video streaming. They employed the Deep Deterministic Policy Gradient (DDPG) algorithm and
integrated safety layer, post-decision state, and virtual experiences to ensure quality of service and
enhance convergence speed.

Matteo et al. [19] designed the D-DASH framework, which leveraged a combination of Multi-
Layer Perceptron (MLP) and LSTM neural networks within a deep Q-learning environment to
optimize the Dynamic Adaptive Streaming over HTTP (DASH) QoE. Their reward function
incorporated the Structural Similarity Index (SSIM) and considered video quality switches and
rebuffering events.

Tianchi et al. [20] proposed a video quality-aware rate control approach aiming to achieve high
perceptual quality with low latency. Their method employed deep reinforcement learning to train a
neural network for selecting future bitrates. The VQPN model was used for predicting the next video
quality, and VQRL was utilized to train the neural network.

Zhao et al. [21] introduced the Deeplive model, which utilized two neural networks to make
decisions on bit rate, target buffer, and latency limit in live video streaming. The agent selected the
higher reward based on a reward function that considered frame video quality, rebuffering, latency,
frame skipping, and bit rate switches.

Gongwei et al. [22] presented the DeepVR approach for predictive panoramic video streaming
using DRL techniques. Their method employed LSTM to predict the users' Field of View (FoV) in
future seconds, and the DRL agent selected the quality level based on a reward function incorporating
FoV quality, rebuffering time, video quality change, and buffer. The Rainbow training method was
utilized to train the DRL agent.

Furthermore, other studies have focused on optimizing specific aspects of video streaming. For
instance, an HTTP adaptive streaming framework with online reinforcement learning was proposed
in [23], where the neural network was trained with the Pensieve reinforcement learning algorithm.
The main objective was to upgrade the Adaptive Bitrate (ABR) model when QoE degradation occurs.

Ling yun Lu et al. employed the Actor-Critic (A3C) algorithm for adaptive streaming based on
DRL [24]. Their approach selected the optimal bitrate based on user preferences, network throughput,
and buffer occupancy. Similarly, Omar Houidi et al. [25] adjusted the actor-critic architecture for DRL
to consider Quality of Service (QoS) and balance network traffic, thereby maximizing QoE.

ALVS [26] proposed a DRL framework for video live streaming, where adaptive playback speed
and video quality level were decided for the next segment to improve QoE. Additionally, GreenABR
[27] introduced a DRL-based ABR scheme that aimed to optimize energy consumption during a
streaming session without degrading QoE.

Several DRL-based approaches and frameworks are proposed in the literature, and certain of
them use complicated neural network architectures (combined two or more neural networks). In

https://doi.org/10.20944/preprints202308.1429.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 doi:10.20944/preprints202308.1429.v1

contrast of cited work, we proposed a new DRL-based approach with LSTM neural network that
considers the overall environment for deciding the next bitrate. The DRL used deep neural networks
to approximate the policy. To improve the QoE, we introduced the factor distance to decide the next
bitrate. The main goal is to provide an optimal dynamic adaptation in very complex environments.

3. Materials and methods

3.1. Problem formulation

The deep reinforcement learning algorithm focuses on how agents take actions to achieve a goal
or maximize a specific dimension over multiple steps in a complex environment and gain maximum
cumulative rewards. The DRL algorithm makes a sequential decision in a time interval that plays a
crucial role in problem-solving. There are two essential learning models in reinforcement learning:
the Markov decision process and Q-learning. In this paper, we formulate the streaming video DASH
in the learning model: Markov Decision Process (MDP) for solution determination in reinforcement
learning. RL has five components: the agent, the environment, the states, the actions, and the rewards.
The agent takes sequential actions based on the current state of the environment. After every action,
the environment moves to another state, and the agent receives a reward. The agent aims to maximize
the total of received rewards in specific steps.

The deep reinforcement learning algorithm focuses on how agents take actions to achieve a goal
or maximize a specific dimension over multiple steps in a complex environment and gain maximum
cumulative rewards. The DRL algorithm makes sequential decisions in time intervals that play a
crucial role in problem-solving. There are two essential learning models in reinforcement learning:
the Markov decision process and Q-learning. In this paper, we formulate the streaming video DASH
learning model as a Markov Decision Process (MDP) for solution determination in reinforcement
learning. RL has five components: the agent, the environment, the states, the actions, and the rewards.
The agent takes sequential actions based on the current state of the environment. After every action,
the environment transitions to another state, and the agent receives a reward. The agent aims to
maximize the total of received rewards in specific steps.

3.2. System model

This section details the system model of the proposed approach. The Deep Reinforcement
Learning environment refers to the DASH system. The DASH server provides a set of videos V {vi,
v2 ...vn}; each video is encoded in segments of different bitrates or quality Q {qi, q2 g3 ...qu} of fixed
duration. Additionally, each video is associated with an MPD description file containing this
information. At the start of a video streaming session, The DASH client requests the MPD file,
analyzes the information within it, and then initiates the streaming based on the current network and
device conditions. We consider the client-side adaptation as an agent that determines the appropriate
bitrate for segments using an optimal policy. After downloading the first segment, the agent observes
the environment, including network parameters (bandwidth measurement), buffer state, and the
quality (bitrate) of the previous segment, to decide the optimal bitrate for the next segment. The agent
continues to take actions and receive rewards until all segments have been downloaded.

We adopt the learning model: MDP to determine the optimal bitrate adaptation strategy based
on distance factor between two consecutive segments. Our goal is to achieve high user satisfaction S
={s1, 52, s3...} in terms of avoiding playback interruptions and guaranteeing a stable high-quality video
streaming. Here, S represents the function of playback interruption and stable high quality, denoted
as.

S = f(playbackinterruption, Stable_high_quality), 1)

https://doi.org/10.20944/preprints202308.1429.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 d0i:10.20944/preprints202308.1429.v1

3.3. Reward function

This work aims to provide highly stable perceptual quality and achieve high user satisfaction
without rebuffering. Therefore, we define a reward function R = f(r,rb, q) that considers the rate of
perceived quality change (r), rebuffering (rb), and the quality of each segment (q).

In this subsection, we present the experimental study we have performed to classify the bitrates
(qualities). For the experiment, we used the BigBuckBunny video sequence from the DASH dataset
[28]. All users participated in the tests starting to play their video sequences on different devices
under various internet conditions. The experiment was conducted during the streaming session.
Furthermore, we programmed bitrate switches as follows: {(144p, 240p), (144p, 360p), (144p, 720p)...}
and observed the perceived quality change.

According to the experimental results, we classified the qualities into three classes: Qnigh, Qmedium
and Qpoor. As shown in Figure 1. To define these classes, we establish the following quality sets: Qnigh
={1080p... 2160p} for high-quality, Qmedium= {360p... 720p} for medium quality, and Qpoor={144p... 240p}
for poor quality. The quality gt of a segment si can be categorized into the quality set Q = {Qnigh, Qmedium,
Qpoor}, while the bandwidth can be classified into the set Bw = {Bwiow, BWmedium, Bwhigh}.

® L) 8 ® L .Y L] High quality
""-"'I g "-""I Iﬂ |"."'"'I ﬁ [1080p, ... 2160p]
Medium quality

I iﬁ I E I iﬁ } {360p, ..., 720p}
R — } Poor quality
i I E i‘-— ” ﬂ [144p, ..., 240p}

Figure 1. Classification of qualities.

3.3.1. Perceived quality change

In this proposal, we redefine the rate of quality change. Therefore, we consider a perceived
quality change when the user notices a switch, meaning that a change of quality within the same set
is not considered a change. However, we do consider a change when the quality g: is in the poor-
quality set, and g+ is in the high-quality set. Thus, we introduce a distance factor Afact that measures
the difference between two qualities, as illustrated in Table 1.

Table 1. The distance factor values between qualities.

Quality High quality Medium quality Poor quality
High quality 0 -1 -2
Medium quality 1 0 -1
Poor quality 2 1 0

According to Table 1, the Afactgt+1 =11 value is [1l, given that
g corresponds to Medium quality and g, corresponds to high quality.

3.3.2. Rebulffering

The rebuffering Rb occurring after each downloaded segment can be measured by comparing
the playback time of a downloaded segment sp and the time of the end of download sd. A rebuffering
event occurs when sd is greater than sp, indicating a pause or interruption in video playback.
Therefore, the rebuffering Rb can be defined as the total number of video interruptions.

Rb = YN_,Rb,, (2)

https://doi.org/10.20944/preprints202308.1429.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 d0i:10.20944/preprints202308.1429.v1

3.3.3. Segment quality

The segment quality represents the quality of each downloaded segment, denoted as qi.
Therefore, the average quality (Avg_q) is defined as the sum of all segment qualities (qx) divided by
the total number of segments (N), as shown below:

leg=1 dk
Zro ©

Avg q =

Here, N represents the total number of segments.

3.3.4. QoE function

In this section, we highlight the QoE function. As described above, the QoE is based on three
parameters: the quality of each segment, the perceptual change of quality and the rebuffering or
playback. As we know, the agent receives a reward for every decision of quality; in this way, we
obtain the following function:

e = f(qeqe-1), 4)
Thus, the QoE can be expressed as:
Q0Emay = Xie=1(Ti) = Zie=a|uRbyc| — XiZi A (Afact;)], ®)

Where u and A represent the penalties for rebuffering and the change in quality, respectively.
We normalize the QoFE 41, to match it with the state-of-the-art. Thus, we obtain the following
expression:

QoE = £mex 4 109, (6)

Where N is the total number of video segments.

3.4. Markov Decision Process (MDP)

Client-side adaptation involves making sequential decisions over time t. To formalize this
adaptation process, we utilize a Markov Decision Process (MDP). The MDP is defined by a tuple of
five components: agent, environment, states, actions, and rewards, as illustrated in Figure 2.

State
Action: decide
Streaming environnement the optimal bit
> Rewar rate for the
DASH system next segment.

~

(Agent
Action

Figure 2. Reinforcement learning architecture.

A A

The agent represents the client-side adaptation and is responsible for selecting an action at. This
action involves choosing an appropriate bitrate or quality g: for the next segment Si to be downloaded.
The agent's decision is based on current bandwidth measurements Bw:, the current buffer state
buff _state:and the quality g1 of the previous segment si1. The agent receives rewards or penalties
based on its bitrate selection (adaptation).

In adaptive video streaming, we define the segments as a finite set of states, S = {so,s1,... sn}. It
should be noted that a video is divided into N segments. We define a set of actions as {at}, where t =
{0, 1, 2 ...N}, indicating the decision made at step t. The duration of each step, t, depends on the

https://doi.org/10.20944/preprints202308.1429.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 d0i:10.20944/preprints202308.1429.v1

download time of a segment. The action set for a given state is denoted as A(s) = {As1, As2, Ass}. Here,
As represents the case when q: and qt1 are in the same quality set defined previously. As the two
indicate, q: and qt1 are not in the same quality set but are the closest to each other. As signifies that
q:is in a lower quality set. The state transition at step is defined as st = {q:1, qi, buff_state,, Bwt}, where
qw1 represents the quality of the previous segment, q: represents the quality of the downloaded
segment, Bw: represents the current bandwidth, and buff_state: represents the current buffer state.
To determine the quality of the next segment, the agent utilizes a policy m as an approximation
strategy. In this work, we integrate a deep neural network (DNN) to approximate the policy
m(als; 8), which maps from the current state S to the next state S”. The agent is represented by a deep
neural network that generates the policy for making decisions, and 8 represents the weights in the
deep neural network.

The state transition at time t is denoted as S = (Bw, buff_statey, q:) after implementing the
policy m(a|s; 8), and the selected action is ar = As1. The resulting state will be:

S’ = (Bw’, buff_statet, qr), 7)
Where:
qt = Aqtif (qyqe1) € the same quality set.
Bwt = A Bwt

buff_state’ = A buff_state:
A reward function Ri(Si) is received after downloading each segment St:

re=R (St = S)= f(quqe1),)

The following table illustrates the rewards received after each action taken by the agent:

3.4. Deep neural network architecture

A typical deep neural network (DNN) consists of an input layer, multiple hidden layers, and an
output layer. Each layer is composed of neurons that are activated based on the input from the
previous layer using an activation function. In this paper, we utilize the Long-Short Term Memory
network (LSTM) [29].

LSTM is a powerful variant of recurrent neural networks (RNNs) widely used for processing
and predicting sequence data, with a particular focus on time-series data. The LSTM unit comprises
four essential components, as visually depicted in Figure 3. These components include a specialized
cell designed to store and retain information over extended periods. Additionally, the cell
incorporates three pivotal gates: the input gate, output gate, and forget gate. These gates serve as
vital mechanisms for controlling the flow of information into and out of the cell. In our specific
context, we train the LSTM to intelligently preserve the quality information from previous segments,
while disregarding historical details such as bandwidth and buffer state information.

Y
+
J

>

-

Figure 3. LSTM cell architecture [30].

https://doi.org/10.20944/preprints202308.1429.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 doi:10.20944/preprints202308.1429.v1

3.4.1. Agent design

The agent is composed of an LSTM neural network that makes decisions based on the current
bandwidth, buffer state, and the quality of the previously downloaded segment. The LSTM takes the
state St = (qt, Bwt, Buft) as input and selects an action that corresponds to the next state St+1= (qt+1,
Bwt, Buft). Subsequently, the agent receives a reward or penalty based on its chosen action. If the
agent receives a positive reward, it proceeds to the next state and continues making decisions.
However, if the agent receives a negative reward, it sends an alert message to the slave agent,
allowing for potential corrective measures. The slave agent then observes the environment to
determine if a correction can be made without adversely impacting the Quality of Experience (QoE).
Figure 4 illustrates the Architecture of the agent, where the output at time step t-1 serves as the input
for the subsequent decision at time step t.

qt qi1 qe2 qm Output
LSTM LSTM LSTM LSTM

i Hidden

T =0 11T =111

qo Bwt Buft qt Bwu Bufu qu Bwe Bufe qN-1 Bwin Bufin Input

Figure 4. Agent Architecture.

3.4.2. Agent Training

In this section, we provide a detailed explanation of the training process for our DRL approach.
The agent is trained in various environments using bandwidth statistics and videos encoded at
different quality levels, as well as different numbers of segments.

In the offline phase, we first start by the training of two twin agents alone: the main and the slave
agent. We initiate the training by separately training two twin agents: the main agent and the slave
agent. We utilize the rewards and penalties specified in Table 2 to train these agents. The objective is
to minimize the (factor distance) difference between consecutive segments, prevent rebuffering
events, and select high-quality segments for downloading.

Table 2. Rewards defined for each state.

St=8 R (St=5)
(qt, qt-1) eQ // qt and qt-1 are in the same quality set 1
(qt) € Qhigh // qt is in the high-quality set 0.75
(qt) € Qmeduim // qt is in the medium-quality set 0.50
(qt) € Qpoor // qt is in the poor-quality set -1
Rbt=0 // there is no rebuffering event 1
Rbt>0 // there is a rebuffering event -1

(qt, qt-1) € Q // qt and qt-1 are not in the same quality set -1

In the second phase of training, we deploy the two agents for streaming in different
environments. During a streaming session, the main agent makes decisions and receives rewards or

https://doi.org/10.20944/preprints202308.1429.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 doi:10.20944/preprints202308.1429.v1

10

penalties while the slave agent remains in a passive mode. The slave agent only reacts when it
receives an alert message from the main agent, indicating a need to correct a decision.

In this paper, we adopts the policy gradient algorithm REINFORCE [31] to optimize the agent’s
policy (6) and update the policy parameter 0.

mg(s,a) = P[als; 0])

The main objective is to maximize the accumulated reward. The cumulative discounted reward,
denoted as R:, is computed as the sum of discounted rewards over time, with v as the discount factor
and t as the time step:

R = ZYt * Iy (10)
t

The gradient of the discounted reward with respect to the parameter 0, denoted asV,, can be

expressed as:
R, = VBEIZ yos nl = E[Z yox s logne(atlst)l (11)
t t

After each episode, the policy parameter 0 is updated using the learning rate ot as follows:

60+ ay Tglogmy (uad)(Y) (12)
T t

4. Performance evaluation

In this section, we will discuss the implementation environment, provide details about the LSTM
neural network, describe the experiment setup, and outline the datasets used for training and testing
the model. Subsequently, we will present the results of our approach compared to the state of the art.

Implementation Details: The simulation is implemented in python using the Keras API [32].
We utilize the neural network agent architecture demonstrated in Figure 4, which consists of a single
hidden layer. The activation function used is TanH, which maps the output values to the interval [-
1, 1]. The number of iterations corresponds to the total number of video segments. During the initial
phase, the model takes inputs such as the quality of the first download segment (determined
according to network parameters), the current bandwidth, and the buffer state. It then computes and
generates the quality of the next segment based on these inputs. This process continues iteratively,
with the previous quality influencing the decision-making process until the last video segment is
reached.

Table 3. Simulation parameter values.

Simulation parameter Description Value
Yy Discount factor 0.99
A Penalty of the rebuffering -1
u Penalties of the change of quality -1

Experiment setup: to evaluate the performance of our proposed approach, we conducted
experiments using a dataset obtained from [33]. This Dataset consists of 15 ultra-high definition
(UHD) video sequences with a resolution of 4K. Each video sequence is divided into segments, with
each segment lasting 2 seconds. During playback, a buffer size of 30 seconds is maintained. The video
sequences are encoded using the High-Efficiency Video Coding (HEVC) format and have a frame
rate of 30 frames per second (fps).

For network conditions, we utilized the Norway dataset from [34], which contains network
traces collected from Telenor's 3G/HSDPA mobile wireless network in Norway. These traces provide
realistic network conditions for our experiments, capturing the variations and characteristics of real-
world mobile networks.

https://doi.org/10.20944/preprints202308.1429.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 doi:10.20944/preprints202308.1429.v1

11

In this experiment, the agent is trained in two steps. First, the agent is trained alone using Deep
Reinforcement Learning (DRL) in offline mode. For this training phase, 70% of the video sequences
from the dataset are used to train the agent, while the remaining 30% are held back for testing the
model's performance. This initial training enables the agent to learn and make decisions based on the
training data.

In the second step, the agent is trained with the assistance of a slave agent, which helps in
providing high-quality over-streaming sessions. The slave agent works in collaboration with the
primary agent and corrects any incorrect decisions made by the primary agent, leading to improved
adaptation and decision-making processes.

By conducting experiments with this setup, we aim to evaluate the effectiveness of our proposed
approach in handling real-world video streaming scenarios and optimizing the quality of the
streamed content.

Results: Firstly, we present the results of training the LSTM neural network, showcasing the
performance and learning achieved during the training process. We analyze the network's
convergence, loss, and other relevant metrics to assess its effectiveness in optimizing the streaming
quality.

Next, we compare the performance of our model with the state-of-the-art approaches. By
conducting experiments in a simulation environment with various video sequences and different
network traces, we evaluate the robustness and generalization capability of our proposed approach.
We consider key performance indicators such as video quality, buffer occupancy, rebuffering events,
and user experience to assess the effectiveness of our approach.

To ensure comprehensive evaluation, we trained the neural agent network using 70% of the
video sequences from the dataset. Subsequently, the remaining 30% of the dataset videos were used
to perform the testing phase. This division allows us to gauge the model's performance on unseen
data and assess its ability to generalize beyond the training set.

The presented results are the average of all experiments conducted, ensuring a reliable and
representative assessment of our approach's performance. By providing these results, we aim to
demonstrate the effectiveness and potential advantages of our proposed approach in optimizing
video streaming quality and enhancing user experience.

Figure 5 illustrates the degree of performance improvement achieved using 70% of the video
sequences from the dataset. The graph showcases the progress of performance improvement as the
training process advances, with the x-axis representing the percentage of data utilized for training.

Based on the graph, it can be observed that the performance improvement steadily increases as
more training data is utilized. However, the rate of improvement starts to converge after
approximately 60% of the data has been incorporated into the training process.

Performance
AlOO
£ g0
S
c 60
©
€ 40
£
s 20
o
O B T T T T

T T T T T T
0 10 20 30 40 50 60 70 80 90 100
Amount of data (%)

Figure 5. Degree of performance improvement with 70% of Dataset.

This graph provides insights into the effectiveness of our approach in optimizing performance
and highlights the saturation point where further training data might not significantly contribute to

https://doi.org/10.20944/preprints202308.1429.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 d0i:10.20944/preprints202308.1429.v1

12

additional improvements. It serves as an important reference for determining the optimal utilization
of training data for achieving the desired performance levels.

Intervention

10

Interventions
o N D (o)} (0]

0O 10 20 30 40 50 60 70 80
Training

Figure 6. Degree of performance improvement with a Slave agent.

In this experiment, we trained the primary neural network agent in conjunction with a slave
agent. The aim of this experiment was to evaluate the impact of the slave agent's intervention on
performance improvement. Throughout the experiment, the overall system monitored the demand
for intervention and sent alert messages to the slave agent in case of penalties or incorrect decisions.

Figure 7 showcases the results of the performance improvement achieved with the inclusion of
the slave agent. The graph represents the progression of performance improvement over the training
process, with the x-axis indicating the percentage of video sequences utilized for training.

—&—rebuffering —— Average segment quality QoE value

QoE metrics
N

1 2 3 4 5 6 7 8 9 10

experiments

Figure 7. Results of QoE metrics.

During the experiment utilizing 70% of the dataset, we observed a notable reduction in the
number of alert messages sent by the overall system after approximately 55% of the video sequences
were incorporated into the training process. This indicates that the collaboration between the primary
agent and the slave agent positively influenced the decision-making process, resulting in improved
performance and a decreased occurrence of penalties or incorrect decisions.

Figure 6. provides valuable insights into the effectiveness of utilizing a slave agent and
highlights the impact of its intervention on performance improvement. It demonstrates the

https://doi.org/10.20944/preprints202308.1429.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 d0i:10.20944/preprints202308.1429.v1

13

importance of collaborative approaches in enhancing the overall system's decision-making
capabilities and ultimately optimizing performance.

Figure 7 presents the results of various Quality of Experience (QoE) metrics, including
rebuffering, average segment quality, and the overall QoE value. These metrics were utilized to
evaluate the performance of our proposed approach.

Throughout the experiment, we placed particular emphasis on these metrics as they directly
reflect the user's streaming experience. By analyzing rebuffering events, which represent
interruptions in the video playback, we can assess the system's ability to maintain a smooth streaming
experience. The average segment quality metric allows us to gauge the overall video quality delivered
to the user, while the QoE value provides an aggregated measure of the user's satisfaction with the
streaming service. Figure 7 provides a visual representation of the performance of our approach
based on these QoE metrics. The graph showcases the progression of these metrics over the course of
the experiment, allowing us to analyze and compare the performance at different stages. By
evaluating these QoE metrics, we can gain insights into the effectiveness of our approach in
enhancing the user experience during video streaming. These metrics provide a comprehensive
assessment of the quality and reliability of the streaming service, enabling us to make informed
judgments about the performance and effectiveness of our proposed approach.

In this experiment, we compare the performance of our proposed approach with several existing
schemes, namely Pensieve [10], DASH framework with online Reinforcement Learning [36], LBC [17],
and Rainbow [22]. The results presented in Figure 8 represent the average outcomes obtained from
conducting over ten experiments.

M Pensieve ® LBC m Rainbow 1 DASH framework with RL ® Proposed

1
0.8
0.6
0.4
0.2

0

Normalized QoE value

experiments

(a)

Proposed Proposed

|

DASH framework with RL | DASH framework with RL
4
|

Rainbow —‘ Rainbow ‘

L —— LBC
Pensieve — ‘ Pensieve :
T T T T T T T T
0,7 0,75 0,8 0,85 0,9 0,95 0 01 02 03 04
Average Normalized QoE value Average switching quality

(b) (¢)

https://doi.org/10.20944/preprints202308.1429.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 d0i:10.20944/preprints202308.1429.v1

14

Proposed

DASH framework with RL
Rainbow

LBC

Pensieve

0 1 2 3 4 5

Average Rebuffering Time (s)

(d)

Figure 8. (a) Comparison of Our Approach vs. Existing Schemes; (b) Average normalized QoE ; (c)
Average switching quality; (d) Average rebuffering Time (s).

The results depicted in Figure 8 clearly illustrate that our proposed approach consistently
outperforms the existing schemes in terms of the normalized QoE value. This signifies that our
approach offers a superior solution for delivering stable and high-quality DASH streaming sessions.

Based on these comparative results, we can conclude that our proposed approach demonstrates
significant performance improvements when compared to the existing schemes. The averaged results
obtained from the experiments further validate the effectiveness of our approach and highlight its
potential to enhance the streaming experience compared to state-of-the-art solutions.

5. Discussion

The discussion of the experimental results highlights several key points. Firstly, the model
converged after approximately 60% of the dataset, indicating that the training process reached a
stable state. Secondly, the inclusion of the slave agent in our approach led to increased performance
improvement and reduced penalties. This collaborative interaction between agents proved effective.

Moreover, the evaluation of QoE metrics showed that our proposed approach achieved high
results in terms of average segment quality and QoE value, while successfully reducing rebuffering.
These outcomes indicate that our approach offers a stable and high-quality DASH streaming session.

Additionally, when compared to existing schemes, our proposed approach consistently
outperformed them in terms of normalized QoE value. This reinforces the superiority of our
approach in delivering an enhanced user experience.

Overall, the discussion confirms that our proposed approach provides a stable and high-quality
DASH streaming session, and its performance improvements, collaborative agent interaction, and
superior QoE metrics demonstrate its effectiveness. These findings contribute to the advancement of
DASH streaming research.

6. Conclusions

The purpose of this study was to enhance the stable quality of video streaming in the DASH
system. To achieve this, we introduced a novel approach based on Deep Reinforcement Learning. We
formulated the DASH video streaming as a Markov Decision Process (MDP) learning model and
incorporated a distance factor (DF) to capture the difference between segment qualities. The LSTM
neural network was trained using ABR algorithms and a dataset of video sequences under various
network environments.

Through simulations and comparisons with existing studies, we demonstrated that our
proposed approach significantly improved the overall DASH streaming system and provided users
with a highly stable quality during their streaming sessions.

In future work, we aim to extend our approach to support live video streaming, further
advancing the capabilities and performance of our proposed method.

https://doi.org/10.20944/preprints202308.1429.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 d0i:10.20944/preprints202308.1429.v1

15

Acknowledgments: This work was supported in part by The General Directorate of Scientific Research and
Technological Development, Algeria (DGRSDT).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table Al summarizes the main symbols used throughout this paper.

Table Al. Symbols table.

Symbol Meaning
\Y Video set
Q Set of different bitrates or qualities of a given video
S Represent the user satisfaction
R Reward function
Rt Reward value obtained after a decision
Rb Rebuffering
q The quality of a segment
QHigh High qualities set: Set of high qualities
QMedium Medium qualities set: Set of medium qualities
QPoor Poor qualities set: Set of Poor qualities
Bw Bandwidth set
qy Si Quality t of segment i
Afactgfr1 The factor distance between qtand g+
Sd Download time of segment
Sp Playback time of segment
Avg q Average quality of total video segments
N Total number of segments in a given video
QoEmax The estimated QoE during a streaming session
QoE Represents the normalized Q0Emax
Buff_state: Buffer state at time t
s Policy
u Penalty of rebuferring
A Penalty of quality change

References

1. CISCO. "Cisco Annual Internet Report (2018-2023)." White Paper. 2020. [Online] Available:
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-
paper-c11-741490.pdf

2. Sodagar, I. The MPEG-dash standard for multimedia streaming over the internet. IEEE Multimedia, 18(4),
62-67. https://doi.org/10.1109/MMUL.2011.50

3. Huang, T. Y. Johari, R.; McKeown, N.; Trunnell, M.; Watson, M. A buffer-based approach to rate
adaptation: Evidence from a large video streaming service. In Proceedings of the 2014 ACM conference on
SIGCOMM, pp. 187-198. https://doi.org/10.1145/2619239.2626311

4. Spiteri, K.; Urgaonkar, R.; Sitaraman, R. K. BOLA: Near-optimal bitrate adaptation for online videos.
IEEE/ACM Transactions on Networking, 28(4), 1698-1711.

5. De Cicco, L.; Caldaralo, V.; Palmisano, V.; Mascolo, S. ELASTIC: A client-side controller for dynamic
adaptive streaming over HTTP (DASH). In 2013 20th International Packet Video Workshop, pp. 1-8. IEEE.

6. Yin, X, Jindal, A.; Sekar, V.; Sinopoli, B. A control-theoretic approach for dynamic adaptive video
streaming over HTTP. In Proceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication, pp. 325-338. https://doi.org/10.1145/2785956.2787485

7. Beben, A.; Wisniewski, P.; Batalla, J]. M.; Krawiec, P. ABMA+ is a lightweight and efficient algorithm for
HTTP adaptive streaming. In Proceedings of the 7th International Conference on Multimedia Systems, pp.
1-11.

https://doi.org/10.20944/preprints202308.1429.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 doi:10.20944/preprints202308.1429.v1

16

8. Jiang, J.; Sekar, V.; Zhang, H. Improving fairness, efficiency, and stability in HTTP-based adaptive video
streaming with festive. In Proceedings of the 8th international conference on Emerging networking
experiments and technologies, pp. 97-108.

9. Li, Z,; Zhu, X,; Gahm, J.; Pan, R,; Hu, H.; Begen, A. C.; Oran, D. Probe and adapt Rate adaptation for HTTP
video streaming at scale. IEEE Journal on Selected Areas in Communications, 32(4), 719-733.

10. Mao, H.; Netravali, R.; Alizadeh, M. Neural Adaptive Video Streaming with Pensieve. In Proceedings of
the Conference of the ACM Special Interest Group on Data Communication (SIGCOMM '17), Association
for Computing Machinery, New York, NY, USA, pp. 197-210. https://doi.org/10.1145/3098822.3098843

11. De Cicco, L.; Cilli, G.; Mascolo, S. Erudite: a deep neural network for optimal tuning of adaptive video
streaming controllers. In Proceedings of the 10th ACM Multimedia Systems Conference, pp. 13-24.

12. Kheibari, B.; Sayit, M. Quality estimation for DASH clients by using Deep Recurrent Neural Networks. In
2020 16th International Conference on Network and Service Management (CNSM), pp. 1-8. IEEE.

13. Du, L; Zhuo, L,; Li, J.; Zhang, J.; Li, X.; Zhang, H. Video quality of experience metric for dynamic adaptive
streaming services using DASH standard and deep spatial-temporal video representation. Applied
Sciences, 10(5), 1793.

14. Mao, H.; Chen, S.; Dimmery, D.; Singh, S.; Blaisdell, D.; Tian, Y.; Alizadeh, M.; Bakshy, E. Real-World Video
Adaptation with Reinforcement Learning. Preprints 2020, 2020080584 (doi:
10.20944/preprints202008.0584.v1).

15. Fu,J; Chen, X,; Zhang, Z.; Wu, S.; Chen, Z. 360SRL: A sequential reinforcement learning approach for ABR
tile-based 360 video streaming. In 2019 IEEE International Conference on Multimedia and Expo (ICME),
pp- 290-295. IEEE.

16. Lekharu, A.; Moulii, K. Y.; Sur, A.; Sarkar, A. Deep learning-based prediction model for adaptive video
streaming. In 2020 International Conference on COMmunication Systems & Networks (COMSNETS), pp.
152-159. IEEE.

17. Liu, L; Hu, H.; Luo, Y.; Wen, Y. When wireless video streaming meets Al: a deep learning approach. IEEE
Wireless Communications, 27(2), 127-133.

18. Liu, D.; Zhao,].; Yang, C.; Hanzo, L. Accelerating deep reinforcement learning with the partial model:
Energy-efficient predictive video streaming. IEEE Transactions on Wireless Communications, 20(6), 3734—
3748.

19. Gadaleta, M.; Chiariotti, F.; Rossi, M.; Zanella, A. D-DASH: A deep Q-learning framework for DASH video
streaming. IEEE Transactions on Cognitive Communications and Networking, 3(4), 703-718.

20. Huang, T.; Zhang, R. X.; Zhou, C.; Sun, L. QARC: Video quality aware rate control for real-time video
streaming based on deep reinforcement learning. In Proceedings of the 26th ACM international conference
on Multimedia, pp. 1208-1216.

21. Tian, Z,; Zhao, L.; Nie, L.; Chen, P.; Chen, S. Deeplive: QoE optimization for live video streaming through
deep reinforcement learning. In 2019 IEEE 25th international conference on parallel and distributed
systems (ICPADS), pp. 827-831. IEEE.

22. Xiao, G.; Wu, M,; Shi, Q.; Zhou, Z.; Chen, X. DeepVR: Deep reinforcement learning for predictive
panoramic video streaming. IEEE Transactions on Cognitive Communications and Networking, 5(4), 1167-
1177.

23. Mao, H; Netravali, R.; Alizadeh, M. Neural adaptive video streaming with pensieve. In Proceedings of the
ACM special interest group conference on data communication, pp. 197-210.

24. Lu, L; Xiao, J.; Ni, W.; Du, H.; Zhang, D. Deep-Reinforcement-Learning-based User-Preference-Aware Rate
Adaptation for Video Streaming. In 2022 IEEE 23rd International Symposium on a World of Wireless,
Mobile and Multimedia Networks (WoWMoM), pp. 416-424. IEEE.

25. O. Houidi et al. Constrained Deep Reinforcement Learning for Smart Load Balancing. 2022 IEEE 19th
Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, pp. 207-215.
[Online] Available: https://doi.org/10.1109/CCNC49033.2022.9700657

26. Ozcelik, I. M; Ersoy, C. ALVS: Adaptive Live Video Streaming using deep reinforcement learning. Journal
of Network and Computer Applications, 205, 103451.

27. Turkkan, B. O.; Dai, T.; Raman, A.; Kosar, T.; Chen, C.; Bulut, M. F.; Sow, D. GreenABR: energy-aware
adaptive bitrate streaming with deep reinforcement learning. In Proceedings of the 13th ACM Multimedia
Systems Conference, pp. 150-163. https://doi.org/10.1145/3524273.3528188

28. Big Buck Bunny Movie. Available online: http://www.bigbuckbunny.org (accessed on 6 January 2023).

https://doi.org/10.20944/preprints202308.1429.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 d0i:10.20944/preprints202308.1429.v1

17

29. Improving Long-Horizon Forecasts with Expectation-Biased LSTM Networks. (2021). [Online] Available:
https://doi.org/10.475/123_4

30. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Computation, 9(8), 1735-1780.

31. Richard S. Sutton, David McAllester, Satinder Singh, Yishay Mansour AT&T Labs - Research, 180 Park
Avenue, Florham Park, NJ 07932. Policy Gradient Methods for Reinforcement Learning with Function
Approximation.

32. Keras: Deep Learning for humans. Available online: https://keras.io/ (accessed on April 2023).

33. SJTU HDR Video Sequences. Available online:
https://medialab.sjtu.edu.cn/files/SJTU%20HDR %20Video%20Sequences/

34. Riiser, H.; Vigmostad, P.; Griwodz, C.; Halvorsen, P. Commute path bandwidth traces from 3G networks:
analysis and applications. Proceedings of the 4th ACM Multimedia Systems Conference, pp. 114-118.

35. Pensieve: Mao, H.; Netravali, R.; Alizadeh, M. Neural adaptive video streaming with pensieve. In
Proceedings of the conference of the ACM special interest group on data communication, pp. 197-210.

36. Kang, J.; Chung, K. HTTP Adaptive Streaming Framework with Online Reinforcement Learning. Appl.
Sci., 2022, 12, 7423. [Online] Available: https://doi.org/10.3390/app12157423

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

https://doi.org/10.20944/preprints202308.1429.v1

