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Abstract: Integrating large-scale wind energy in modern power systems necessitates high-efficiency 
mathematical models to address classical assumptions in power systems. In particular, two main 
assumptions for wind energy integration in power systems have not been adequately studied. First, 
nonlinear AC power flow equations have been linearized in most of the literature. Such simplifica-
tions can lead to inaccurate power flow calculations and result in technical issues. Second, wind 
power uncertainties are inevitable and have been mostly modeled using traditional uncertainty 
modeling techniques, which may not be suitable for large-scale wind power integration. In this 
study, we addressed both challenges: we developed a tight second-order conic relaxation model for 
the optimal power flow problem and implemented the novel effective budget of uncertainty ap-
proach for uncertainty modeling to determine the maximum wind power admissibility and address 
the uncertainty in the model. To the best of our knowledge, this is the first study that proposes an 
effective, robust second-order conic programming model that simultaneously addresses the issues 
of power flow linearization and wind power uncertainty with the new paradigm on the budget of 
uncertainty approach. The numerical results revealed the advantages of the proposed model over 
traditional linearized power flow equations and traditional uncertainty modeling techniques. 

Keywords: Renewable energy sources; wind uncertainty; effective budget of uncertainty; second-
order conic relaxation; AC power flow equations 
 

1. Introduction 
Due to recent advancements in optimization theory, optimization algorithms have 

been increasingly used to improve the performance of power systems and realize auto-
matic voltage regulation [1], fault diagnosis under uncertainty [2], optimal design of bat-
tery management controller [3], and robust control methods for wind energy system [4]. 
Modern power systems are shifting from fossil fuels to clean, reliable, and emission-free 
wind energy. For example, 19.8% of electricity in North America is generated from wind 
energy [5]. However, integrating wind energy into large power systems is challenging 
and can affect the reliability of power systems due to two main reasons. First, the power 
system operation is usually simplified, and the effect of various aspects, such as voltage, 
on the system is neglected. Such simplifications can result in inaccurate estimation of the 
limits of the system and lead to damage to the system [6, 7]. Second, wind energy is in-
herently uncertain and cannot be accurately predicted. Such prediction inaccuracies can 
result in various operational issues [8, 9]. 
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The optimal power flow (OPF) problem has been extensively studied and helps min-
imize the distribution cost while satisfying the power flow equations and operational con-
straints such as voltage magnitude, line flow, and generator limits [10, 11]. In OPF, the 
power flow equations are inherently nonlinear. However, most studies have linearized 
power flow equations to reduce the computational complexity; however, the effects of 
voltages, angles, and magnitudes are ignored [12–14]. Such simplifications lead to inaccu-
rate power flow calculations and may lead to problems such as overloading and power 
mismatch[15]. To overcome this problem, relaxation techniques have been proposed in 
the literature [7, 16]. In recent decades, two efficient convex relaxations for nonlinear AC 
power flow equations have been proposed: second-order cone relaxation (SOCR) [6] and 
semidefinite relaxation (SDR) [17]. Such convex relaxations provide more accurate solu-
tions for the OPF problem and consider the effects of voltages at all nodes of power sys-
tems [18]. In meshed networks, SDR is stronger than SOCR; however, SDR is more com-
putationally challenging [19]. SOCR relaxation is accurate and highly efficient for various 
classes of problems in radial networks [6]. Recent surveys on these relaxations can be 
found in the literature [7, 20, 21]. 

In recent years, various prediction methods have been proposed to increase the pre-
diction accuracy [22–25]. However, prediction errors are inevitable and can lead to severe 
problems in highly sensitive applications [26]. To overcome wind power uncertainties, 
such uncertainties must be considered in OPF so that the solution is robust under varia-
tions of wind power availability. Unlike deterministic optimization, wherein the predi-
cated data of an optimization problem is assumed to be always perfect, robust optimiza-
tion (RO) [27, 28] considers that such perfect information is not always available due to 
prediction errors [29]. In the context of wind power integration, an RO model assumes 
that wind power availability can take any value within a given uncertainty set and obtains 
the optimal solution under the possible worst-case scenario for wind availability. Various 
RO methods have been proposed in the literature. In particular, the adjustable budget of 
uncertainty method [28] adjusts the solution degree of conservatism by changing the total 
amount of uncertainty in the model, and the total amount of uncertainty is modeled using 
a parameter called the budget of uncertainty. This method has been extensively studied 
[9, 12, 23–31]. Alternatively, two-stage RO models [5, 26, 32–37] have been used in power 
systems, where the first stage decisions are made before realizing the actual wind power, 
and the second stage decisions are “wait-and-see” decisions that can be adjusted after the 
actual wind power output is known. Such two-stage RO models are computationally com-
plex and difficult to implement in large power systems. 

Recently, a new robust optimization paradigm called effective budget of uncertainty [38] 
was proposed that more effectively adjusts the solution degree of conservatism. The ro-
bust solution is not sensitive to all changes in the amount of uncertainty and, after a 
threshold, the solution is not affected by the level of uncertainty. This phenomenon was 
not considered in the traditional budget of uncertainty method; thus, such advancements 
in RO models are shifting the trend toward the implementation of the effective budget of 
uncertainty in power systems [8, 39]. 

In this study, we developed a new model for power distribution by considering the 
AC power flow equations and recent advances in robust optimization. We first identified 
an interval of available power under which the system can operate safely without any 
system limit violation. Next, given the identified interval, we implemented the robust op-
timization approach to handle the uncertainty in the system given the budget provided 
for the model. In this study, we extended the results presented in the literature [38, 39] to 
nonlinear AC power flow equations and developed a SOCR model by using the effective 
budget of uncertainty approach. To the best of our knowledge, this is the first paper that 
implements the recent advances of robust optimization in AC power flow equations [40]. 
Furthermore, we performed extensive numerical calculations to address the problems of 
estimating power flows as well as wind power uncertainties. The contributions of this 
study are presented as follows: 
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We extended the recent effective budget of uncertainty approach [38] and applied it to a 
nonlinear model with AC power flow equations. We proposed a new modeling scheme 
called effective robust second-order conic programming (ERSOCP) for power systems 
with uncertainty. We theoretically and numerically demonstrated that the proposed 
model is computationally tractable and can be solved efficiently using the MOSEK solver. 
The proposed model effectively reduces the solution conservatism and considers the ef-
fects of voltage in wind power integration. 

The proposed ERSOCP model provides a high accuracy by considering both wind 
power uncertainty and nonlinearity in power flow equations. The numerical results 
demonstrated the advantages of the proposed model in comparison with traditional 
methods. 

The rest of the paper is organized as follows. In Section 2, the OPF problem and a 
reformulation using a second-order cone (SOC) are presented. In Section 3, the steps and 
backgrounds to implement the effective budget of uncertainty approach [38] in the pro-
posed model are presented. In Section 4, the ERSOCP model is presented. Numerical re-
sults are provided in Section 5. Finally, Section 6 concludes the paper. 

2. Optimal Power Flow Problem 
The OPF problem aids in determining the best operating levels of power generators 

to minimize the operating cost and satisfy the power demand, transmission network con-
straints, ramping rates, and reserve requirements. The notations used in the proposed 
OPF model are listed as follows. 

Notations 
𝐶𝐶1/𝐶𝐶2 Per-unit cost of power generation/wind curtailment 

𝐹𝐹�𝑙𝑙/𝐹𝐹𝑙𝑙 Upper/lower power flow limit at line 𝑙𝑙 

𝑝𝑝𝑖𝑖𝐷𝐷/𝑞𝑞𝑖𝑖𝐷𝐷 Real/reactive power demand at bus 𝑖𝑖 

𝑃𝑃𝑡𝑡𝑢𝑢/𝑃𝑃𝑡𝑡𝑑𝑑  Upward/downward spinning reserve requirement of active power at time 𝑡𝑡 

𝑇𝑇/𝐿𝐿/𝑁𝑁 Set of time periods/transmission lines/buses 

𝑈𝑈�𝑙𝑙𝑃𝑃/𝑈𝑈𝑙𝑙𝑃𝑃 Upper/lower limit of real power generation at bus i 

𝑈𝑈�𝑙𝑙
𝑄𝑄/𝑈𝑈𝑙𝑙

𝑄𝑄 Upper/lower limit of real power generation at bus i 

𝑉𝑉�𝑖𝑖/𝑉𝑉𝑖𝑖  Upper/lower limit of voltage at bus 𝑖𝑖 

𝑊𝑊�𝑖𝑖,𝑡𝑡 Predicted available wind power at node i at time t 

𝒚𝒚𝐿𝐿/𝒚𝒚𝑆𝑆 Per-unit series/shunt admittance matrix  

Δ
���

𝑙𝑙/Δ𝑙𝑙
 Upper/lower limit of voltage angle at bus 𝑖𝑖 

𝜃𝜃𝐿𝐿𝐿𝐿𝐿𝐿/𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆  The angle of the 𝑖𝑖𝑗𝑗𝑡𝑡ℎ  element of the series/shunt admittance matrix 

𝑄𝑄𝑡𝑡𝑢𝑢/𝑄𝑄𝑡𝑡𝑑𝑑  Upward/downward spinning reserve requirement of reactive power at time 𝑡𝑡 

Decision variables 

𝑝𝑝𝑖𝑖𝑖𝑖 ,𝑡𝑡/𝑞𝑞𝑖𝑖𝑖𝑖,𝑡𝑡 Real/reactive power flow between bus 𝑖𝑖 and bus 𝑗𝑗 at time t 

𝑝𝑝𝑖𝑖,𝑡𝑡𝐺𝐺 /𝑞𝑞𝑖𝑖,𝑡𝑡𝐺𝐺  Real/reactive power produced by the generator located at bus i at time t 

𝑝𝑝𝑖𝑖,𝑡𝑡𝑊𝑊 Real power produced by the wind turbine at bus i at time t 

𝑟𝑟𝑖𝑖,𝑡𝑡
𝑝𝑝+/𝑟𝑟𝑖𝑖,𝑡𝑡

𝑝𝑝− Upward/downward spinning reserve of the active power of generator at bus 𝑖𝑖 at time 𝑡𝑡 

𝑟𝑟𝑖𝑖,𝑡𝑡
𝑞𝑞+/𝑟𝑟𝑖𝑖,𝑡𝑡

𝑞𝑞− Upward/downward spinning reserve of reactive power of generator at bus 𝑖𝑖 at time 𝑡𝑡 

𝑉𝑉𝑖𝑖,𝑡𝑡/𝛿𝛿𝑖𝑖,𝑡𝑡 Voltage magnitude/angle at bus 𝑖𝑖 at time t 
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The OPF can be expressed as follows: 

min
 
��𝐶𝐶1𝑝𝑝𝑔𝑔,𝑡𝑡

𝐺𝐺

𝑔𝑔∈𝐺𝐺𝑡𝑡∈𝑇𝑇

+ ��𝐶𝐶2(𝑊𝑊�𝑘𝑘,𝑡𝑡 − 𝑝𝑝𝑘𝑘,𝑡𝑡
𝑊𝑊 )

𝑘𝑘∈𝐾𝐾𝑡𝑡∈𝑇𝑇

(1) 

𝑝𝑝𝑖𝑖𝑖𝑖 ,𝑡𝑡 = 𝑉𝑉𝑖𝑖,𝑡𝑡2 𝑦𝑦𝐿𝐿𝐿𝐿𝐿𝐿cos�𝜃𝜃𝐿𝐿𝐿𝐿𝐿𝐿� − 𝑉𝑉𝑖𝑖,𝑡𝑡𝑉𝑉𝑗𝑗,𝑡𝑡𝑦𝑦𝐿𝐿𝐿𝐿𝐿𝐿 cos�𝛿𝛿𝑖𝑖,𝑡𝑡 − 𝛿𝛿𝑗𝑗,𝑡𝑡 − 𝜃𝜃𝐿𝐿𝐿𝐿𝐿𝐿� +
1
2
𝑉𝑉𝑖𝑖,𝑡𝑡2 𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆 cos�𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆� ,

∀𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁, 𝑡𝑡 ∈ 𝑇𝑇 (2)
 

𝑞𝑞𝑖𝑖𝑖𝑖,𝑡𝑡 = −𝑉𝑉𝑖𝑖,𝑡𝑡2 𝑦𝑦𝐿𝐿𝐿𝐿𝐿𝐿sin�𝜃𝜃𝐿𝐿𝐿𝐿𝐿𝐿� − 𝑉𝑉𝑖𝑖,𝑡𝑡𝑉𝑉𝑗𝑗,𝑡𝑡𝑦𝑦𝐿𝐿𝐿𝐿𝐿𝐿 sin�𝛿𝛿𝑖𝑖,𝑡𝑡 − 𝛿𝛿𝑗𝑗,𝑡𝑡 − 𝜃𝜃𝐿𝐿𝐿𝐿𝐿𝐿� −
1
2
𝑉𝑉𝑖𝑖,𝑡𝑡2 𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆 sin�𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆� ,

∀𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁, 𝑡𝑡 ∈ 𝑇𝑇 (3)
 

𝑝𝑝𝑖𝑖,𝑡𝑡𝐺𝐺 + 𝑝𝑝𝑖𝑖 ,𝑡𝑡𝑊𝑊 − 𝑝𝑝𝑖𝑖,𝑡𝑡𝐷𝐷 = �𝑝𝑝𝑖𝑖𝑖𝑖,𝑡𝑡
𝑗𝑗∈𝑁𝑁

, ∀𝑖𝑖 ∈ 𝑁𝑁, 𝑡𝑡 ∈ 𝑇𝑇 (4) 

𝑞𝑞𝑖𝑖,𝑡𝑡𝐺𝐺 − 𝑞𝑞𝑖𝑖,𝑡𝑡𝐷𝐷 = �𝑞𝑞𝑖𝑖𝑖𝑖,𝑡𝑡
𝑗𝑗∈𝑁𝑁

, ∀𝑖𝑖 ∈ 𝑁𝑁, 𝑡𝑡 ∈ 𝑇𝑇 (5) 

𝐹𝐹𝑙𝑙 ≤ 𝑝𝑝𝑖𝑖𝑖𝑖,𝑡𝑡 ≤ 𝐹𝐹�𝑙𝑙, ∀(𝑖𝑖, 𝑗𝑗): 𝑙𝑙 ∈ 𝐿𝐿, 𝑡𝑡 ∈ 𝑇𝑇 (6) 
𝑉𝑉𝑖𝑖 ≤ 𝑉𝑉𝑖𝑖,𝑡𝑡 ≤ 𝑉𝑉�𝑖𝑖 , Δ𝑖𝑖 ≤ 𝛿𝛿𝑖𝑖,𝑡𝑡 ≤ Δ�𝑖𝑖 , ∀𝑖𝑖 ∈ 𝑁𝑁, 𝑡𝑡 ∈ 𝑇𝑇 (7) 

𝑈𝑈𝑙𝑙𝑃𝑃 ≤ 𝑝𝑝𝑖𝑖,𝑡𝑡𝐺𝐺 ≤ 𝑈𝑈�𝑙𝑙𝑃𝑃 , ∀𝑖𝑖 ∈ 𝑁𝑁, 𝑡𝑡 ∈ 𝑇𝑇 (8) 
𝑈𝑈𝑙𝑙
𝑄𝑄 ≤ 𝑞𝑞𝑖𝑖,𝑡𝑡𝐺𝐺 ≤ 𝑈𝑈�𝑙𝑙

𝑄𝑄 , ∀𝑖𝑖 ∈ 𝑁𝑁, 𝑡𝑡 ∈ 𝑇𝑇 (9) 

�𝑟𝑟𝑖𝑖 ,𝑡𝑡
𝑝𝑝+

𝑖𝑖∈𝑁𝑁

≥ 𝑃𝑃𝑡𝑡𝑢𝑢 , ∀𝑡𝑡 ∈ 𝑇𝑇 (10) 

�𝑟𝑟𝑖𝑖,𝑡𝑡
𝑝𝑝−

𝑖𝑖∈𝑁𝑁

≥ 𝑃𝑃𝑡𝑡𝑑𝑑 , ∀𝑡𝑡 ∈ 𝑇𝑇 (11) 

�𝑟𝑟𝑖𝑖,𝑡𝑡
𝑞𝑞+

𝑖𝑖∈𝑁𝑁

≥ 𝑄𝑄𝑡𝑡𝑢𝑢 , ∀𝑡𝑡 ∈ 𝑇𝑇 (12) 

�𝑟𝑟𝑖𝑖,𝑡𝑡
𝑞𝑞−

𝑖𝑖∈𝑁𝑁

≥ 𝑄𝑄𝑡𝑡𝑑𝑑 , ∀𝑡𝑡 ∈ 𝑇𝑇 (13) 

0 ≤ 𝑟𝑟𝑖𝑖,𝑡𝑡
𝑝𝑝+ ≤ 𝑈𝑈�𝑙𝑙𝑃𝑃 − 𝑝𝑝𝑖𝑖,𝑡𝑡𝐺𝐺 , ∀𝑡𝑡 ∈ 𝑇𝑇 (14) 

0 ≤ 𝑟𝑟𝑖𝑖,𝑡𝑡
𝑝𝑝− ≤ 𝑝𝑝𝑖𝑖,𝑡𝑡𝐺𝐺 − 𝑈𝑈𝑙𝑙𝑃𝑃 , ∀𝑡𝑡 ∈ 𝑇𝑇 (15) 

0 ≤ 𝑟𝑟𝑖𝑖,𝑡𝑡
𝑞𝑞+ ≤ 𝑈𝑈�𝑙𝑙

𝑄𝑄 − 𝑞𝑞𝑖𝑖,𝑡𝑡𝐺𝐺 , ∀𝑡𝑡 ∈ 𝑇𝑇 (16) 
0 ≤ 𝑟𝑟𝑖𝑖,𝑡𝑡

𝑞𝑞− ≤ 𝑞𝑞𝑖𝑖,𝑡𝑡𝐺𝐺 − 𝑈𝑈𝑙𝑙
𝑄𝑄 , ∀𝑡𝑡 ∈ 𝑇𝑇 (17) 

0 ≤ 𝑝𝑝𝑖𝑖,𝑡𝑡𝑊𝑊 ≤ 𝑊𝑊�𝑖𝑖,𝑡𝑡 , ∀𝑖𝑖 ∈ 𝑁𝑁, 𝑡𝑡 ∈ 𝑇𝑇 (18) 
where objective function (1) minimizes the generation cost and wind curtailment cost 

to aid in the integration of wind power in the power system. Constraints (2) and (3) are 
the real and reactive power flow equations, respectively [41]. Constraints (4) and (5) are 
the real and reactive power balance, respectively, at each node where wind power plays 
a role in the active power balance constraints [42]. Constraint (6) limits the active power 
flow in transmission lines. Constraint (7) enforces the limits of voltage angle and magni-
tude. Constraints (8) and (9) enforce the upper limits for real and reactive power genera-
tions, respectively, at all generators. Constraints (10) and (11) ensure that the upward and 
downward spinning reserves, respectively, of active power are greater than a certain 
amount. The spinning reserve is the available capacity of generators to increase or de-
crease the power output in 10 minutes. Similarly, constraints (12) and (13) correspond to 
the spinning reserve constraints of reactive power. Constraints (14)–(17) enforce the limits 
of spinning reserves. Finally, in constraint (18), the wind power output limit is considered. 

2.1. Reformulation of Power Flow Equations 
Constraints (2) and (3) correspond to the real and reactive power equations, respec-

tively [41]. Let the admittance matrix 𝒚𝒚 be decomposed as 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝐺𝐺𝑖𝑖𝑖𝑖 + i𝐵𝐵𝑖𝑖𝑖𝑖 , where 𝐺𝐺𝑖𝑖𝑖𝑖 
and 𝐵𝐵𝑖𝑖𝑖𝑖  are, respectively the real and imaginary parts of the admittance matrix. Given the 
complex voltage, 𝑉𝑉𝑖𝑖 = |𝑉𝑉𝑖𝑖|(cos 𝜃𝜃𝑖𝑖 + isin 𝜃𝜃𝑖𝑖)  can be expressed as 𝑉𝑉𝑖𝑖 = 𝑒𝑒𝑖𝑖 + i𝑓𝑓𝑖𝑖 in the rectan-
gular form. To that end, the following substitutions can be made: 

𝑉𝑉𝑖𝑖2 = 𝑒𝑒𝑖𝑖2 + 𝑓𝑓𝑖𝑖2 
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|𝑉𝑉𝑖𝑖||𝑉𝑉𝑗𝑗| cos�𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑗𝑗� = 𝑒𝑒𝑖𝑖𝑒𝑒𝑗𝑗 + 𝑓𝑓𝑖𝑖𝑓𝑓𝑗𝑗 
|𝑉𝑉𝑖𝑖|�𝑉𝑉𝑗𝑗� sin�𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑗𝑗� = 𝑒𝑒𝑖𝑖𝑓𝑓𝑗𝑗 − 𝑒𝑒𝑗𝑗𝑓𝑓𝑖𝑖 

Thus, power flow equations (2) and (3) can be represented in the rectangular form 
[43]: 

𝑝𝑝𝑖𝑖𝑖𝑖 = 𝐺𝐺𝑖𝑖𝑖𝑖(𝑒𝑒𝑖𝑖2 + 𝑓𝑓𝑖𝑖2) + 𝐺𝐺𝑖𝑖𝑖𝑖�𝑒𝑒𝑖𝑖𝑒𝑒𝑗𝑗 + 𝑓𝑓𝑖𝑖𝑓𝑓𝑗𝑗� − 𝐵𝐵𝑖𝑖𝑖𝑖�𝑒𝑒𝑖𝑖𝑓𝑓𝑗𝑗 − 𝑒𝑒𝑗𝑗𝑓𝑓𝑖𝑖� (19) 
𝑞𝑞𝑖𝑖𝑖𝑖 = −𝐵𝐵𝑖𝑖𝑖𝑖(𝑒𝑒𝑖𝑖2 + 𝑓𝑓𝑖𝑖2) − 𝐵𝐵𝑖𝑖𝑖𝑖�𝑒𝑒𝑖𝑖𝑒𝑒𝑗𝑗 + 𝑓𝑓𝑖𝑖𝑓𝑓𝑗𝑗� − 𝐺𝐺𝑖𝑖𝑖𝑖�𝑒𝑒𝑖𝑖𝑓𝑓𝑗𝑗 − 𝑒𝑒𝑗𝑗𝑓𝑓𝑖𝑖� (20) 

The rectangular equations (19) and (20) are nonconvex quadratic functions. However, 
a SOC relaxation can be obtained by defining auxiliary variables 𝑐𝑐𝑖𝑖𝑖𝑖  for each node and by 
defining 𝑐𝑐𝑖𝑖𝑖𝑖  and 𝑠𝑠𝑖𝑖𝑖𝑖  for transmission lines so that 𝑐𝑐𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑖𝑖2 + 𝑓𝑓𝑖𝑖2, 𝑐𝑐𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑖𝑖𝑒𝑒𝑗𝑗 + 𝑓𝑓𝑖𝑖𝑓𝑓𝑗𝑗, and 𝑠𝑠𝑖𝑖𝑖𝑖 =
𝑒𝑒𝑖𝑖𝑓𝑓𝑗𝑗 − 𝑒𝑒𝑗𝑗𝑓𝑓𝑖𝑖 . Furthermore, 𝑐𝑐𝑖𝑖𝑖𝑖2 + 𝑠𝑠𝑖𝑖𝑖𝑖2 = 𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑗𝑗𝑗𝑗 . Because 𝑐𝑐𝑖𝑖𝑖𝑖   and 𝑠𝑠𝑖𝑖𝑖𝑖   correspond to each line 
and capture some components of the flow, it is interpreted that 𝑐𝑐𝑖𝑖𝑖𝑖 = −𝑐𝑐𝑗𝑗𝑗𝑗 and 𝑠𝑠𝑖𝑖𝑖𝑖 = −𝑠𝑠𝑗𝑗𝑗𝑗 . 
Therefore, the power flow equations can be reformulated as follows (for all 𝑖𝑖 and 𝑗𝑗): 

𝑝𝑝𝑖𝑖𝑖𝑖 = 𝐺𝐺𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖 + 𝐺𝐺𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖 − 𝐵𝐵𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖 (21) 
𝑞𝑞𝑖𝑖𝑖𝑖 = −𝐵𝐵𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖 − 𝐵𝐵𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖 − 𝐺𝐺𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖 (22) 

𝑐𝑐𝑖𝑖𝑖𝑖2 + 𝑠𝑠𝑖𝑖𝑖𝑖2 = 𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑗𝑗𝑗𝑗 (23) 
𝑐𝑐𝑖𝑖𝑖𝑖 = −𝑐𝑐𝑗𝑗𝑗𝑗 , 𝑠𝑠𝑖𝑖𝑖𝑖 = −𝑠𝑠𝑗𝑗𝑗𝑗 (24) 

2.2. Second-Order Conic Relaxation of Power Flow Equations 
Here we present a relaxation for the power flow equations that can be represented 

using SOCs. 
Definition 1: 𝑄𝑄𝑛𝑛 is an n-dimensional SOC if  

𝑄𝑄 = �𝑥𝑥 ∈ ℝ𝑛𝑛: 𝑥𝑥1 ≥ (𝑥𝑥22 + 𝑥𝑥32 + ⋯+ 𝑥𝑥𝑛𝑛2)
1
2�. 

SOCs are convex and can be efficiently solved using the MOSEK solver. Another var-
iant of SOC is the rotated SOC, which can be defined as follows: 

Definition 2: 𝑄𝑄𝑟𝑟𝑛𝑛 is an n-dimensional rotated SOC if  
𝑄𝑄 = {𝑥𝑥 ∈ ℝ𝑛𝑛: 2𝑥𝑥1𝑥𝑥2 ≥ 𝑥𝑥32 + ⋯+ 𝑥𝑥𝑛𝑛2, 𝑥𝑥1, 𝑥𝑥2 ≥ 0}. 
𝑄𝑄𝑛𝑛 and 𝑄𝑄𝑟𝑟𝑛𝑛 are equivalent [44]. 
In the rectangular power flow equations (21)–(24), constraint (23) is a quadratic con-

straint, and the rest of the constraints are linear. By converting the equality constraint (23) 
into an inequality constraint, we can relax (23) and rewrite it as follows 

𝑐𝑐𝑖𝑖𝑖𝑖2 + 𝑠𝑠𝑖𝑖𝑖𝑖2 ≤ 𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑗𝑗𝑗𝑗 , ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁 (25) 
The relaxed constraint (25) can be represented using a rotated SOC. If the relaxed 

constraint (25) becomes binding at optimality, then the proposed SOC relaxation is exact 
and constraint (25) is equivalent to the original power flow constraint (23) [43]. We further 
investigated the exactness of the proposed SOC relaxation through numerical calcula-
tions. 

3. Effective Budget of Uncertainty in Power Systems 
We modeled the wind power uncertainty by using the new RO paradigm of the ef-

fective budget of uncertainty. 
In competitive electricity markets, wind power availability is predicted and priced in 

a day-ahead manner, and predictions are employed in power distribution planning [45–
47]. However, in real-time operation, the actual wind power might differ from the pre-
dicted wind power; this may lead to the violation of the operational requirements and 
limits of the power system if such deficiencies are not considered in advance [9]. RO con-
siders such differences in wind power availability by using an uncertainty set, which in-
cludes all possible scenarios of actual wind power. Let 𝑊𝑊𝑘𝑘,𝑡𝑡

𝑎𝑎𝑎𝑎𝑎𝑎  be the actual wind power of 
wind turbine 𝑘𝑘 at time 𝑡𝑡; 𝑊𝑊�𝑘𝑘,𝑡𝑡 and 𝑊𝑊𝑘𝑘,𝑡𝑡 be the upper and lower limit of the actual wind 
power, respectively; and 𝑊𝑊�𝑘𝑘,𝑡𝑡 be the predicted wind power. Let parameter 𝑊𝑊�𝑘𝑘,𝑡𝑡 repre-
sent the uncertain wind power that can take any value in [𝑊𝑊𝑘𝑘,𝑡𝑡 ,𝑊𝑊�𝑘𝑘,𝑡𝑡]. In the traditional 
budget of uncertainty method, the uncertainty set is represented as follows (constraints 
(26a), (26b), and (26d) are written for all time periods 𝑡𝑡 ∈ 𝑇𝑇 and all wind turbines 𝑘𝑘 ∈ 𝐾𝐾): 

𝑊𝑊�𝑘𝑘,𝑡𝑡 = 𝑊𝑊�𝑘𝑘,𝑡𝑡 + 𝑧𝑧𝑘𝑘,𝑡𝑡
+ (𝑊𝑊�𝑘𝑘,𝑡𝑡 − 𝑊𝑊�𝑘𝑘,𝑡𝑡) + 𝑧𝑧𝑘𝑘,𝑡𝑡

− (𝑊𝑊𝑘𝑘,𝑡𝑡 −𝑊𝑊�𝑘𝑘,𝑡𝑡) (26a) 
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0 ≤ 𝑧𝑧𝑘𝑘,𝑡𝑡
+ , 𝑧𝑧𝑘𝑘,𝑡𝑡

− ≤ 1 (26b) 

� (𝑧𝑧𝑘𝑘,𝑡𝑡
+

𝑡𝑡∈𝑇𝑇
+ 𝑧𝑧𝑘𝑘,𝑡𝑡

− ) ≤ Γ𝑡𝑡 (26c) 

𝑝𝑝𝑘𝑘,𝑡𝑡
𝑊𝑊 ≤ 𝑊𝑊�𝑘𝑘,𝑡𝑡 (26d) 

where constraint (26a) represents all possibilities for wind power, constraint (26b) 
defines the limits for the deviation variables, and constraint (26c) limits all possible devi-
ations by a parameter called the budget of uncertainty [28, 39]. Finally, constraint (26d) 
considers the generated wind power that is limited by the available wind power output 
(i.e., 𝑊𝑊�𝑘𝑘,𝑡𝑡) that is uncertain. Constraints (26a)–(26c) allow users to select the level of un-
certainty at each time period (Γ𝑡𝑡) and then yields a set of acceptable values for the budget 
of uncertainty parameter. Γ𝑡𝑡 also controls the degree of conservatism of the solution. For 
instance, Γ𝑡𝑡 =  0 indicates that no uncertainty is considered in the system; thus, in con-
straints (26a)–(26c), we set 𝑊𝑊�𝑘𝑘,𝑡𝑡 = 𝑊𝑊�𝑘𝑘,𝑡𝑡, meaning that the uncertain parameters are equiv-
alent to the predicted values because it is assumed that there is no uncertainty. Thus, con-
straint (26d) reduces to constraint (18). However, Γ𝑡𝑡 = |𝐾𝐾|, where |𝐾𝐾| is the number of 
wind turbines, means that the outputs of all wind turbines are uncertain and their inputs 
may deviate from the predicted values and can even take either their lower or upper 
bound values (i. e. ,𝑊𝑊�𝑘𝑘,𝑡𝑡 and 𝑊𝑊𝑘𝑘,𝑡𝑡). Further details can be found in the literature [16]. 

The main disadvantage of uncertainty set (26a)–(26c) is that, depending on the sys-
tem worst-case scenario, it allows 𝑊𝑊�𝑘𝑘,𝑡𝑡  to take the upper bound or lower bound of 
[𝑊𝑊𝑘𝑘,𝑡𝑡 ,𝑊𝑊�𝑘𝑘,𝑡𝑡], restricted by parameter Γ𝑡𝑡. However, as demonstrated in previous studies [38, 
39], the uncertain wind power output of wind turbines depends on two factors: (i) the 
budget of uncertainty, which directly affects the uncertain wind power output ((26a)–
(26c)); and (ii) the operational limits and capabilities of the system to handle wind power. 
For example, assume that the budget of uncertainty is Γ𝑡𝑡 = |𝐾𝐾|, meaning that the output 
of all wind turbines can have maximum deviations from the predicted values and take 
their upper bounds, that is, 𝑊𝑊�𝑘𝑘,𝑡𝑡 = 𝑊𝑊�𝑘𝑘,𝑡𝑡. Thus, appropriate measures can be planned for 
this scenario, known as the worst-case scenario, to mitigate the risk of having issues in the 
system in case of unforeseen events [16]. However, planning under this scenario may con-
flict with the operational limits of the system. In particular, if the limits of the system are 
not sufficient to handle 𝑊𝑊�𝑘𝑘,𝑡𝑡 amount of power, then it is obvious that there are other fac-
tors limiting the amount of wind power output rather than merely the uncertainty budget. 
This phenomenon [38–40] can cause various issues, such as overprotection against uncer-
tainty, and would result in higher operational costs. 

Therefore, in RO models, first, the maximum admissibility of wind power, which is 
the threshold beyond which the uncertainty has no effect on the system, must be deter-
mined. If the wind uncertainty is more than the threshold, the system reaches its limits, 
and the solution is determined by the system limits, not the budget of uncertainty [8, 39]. 
Therefore, the uncertainty set must be modified based on the wind power admissibility 
before incorporating the budget of uncertainty in the model. By doing so, the ineffective 
part of the uncertainty set that does not affect the solution can be removed, and the effec-
tive budget of uncertainty can be obtained [25, 38] to include in the model. 

Let 𝑠̅𝑠𝑘𝑘,𝑡𝑡 be the maximum wind power admissibility in the system after determining 
the limits of the system. In other words, 𝑠̅𝑠𝑘𝑘,𝑡𝑡 indicates the maximum amount of power 
that can be handled by the system. Assuming that 𝑠̅𝑠𝑘𝑘,𝑡𝑡 has been obtained, the uncertainty 
set (26a)–(26c) can be modified as follows (constraints (27a), (27b), and (27d) are written 
for all time periods 𝑡𝑡 ∈ 𝑇𝑇 and all wind turbines 𝑘𝑘 ∈ 𝐾𝐾): 

𝑊𝑊�𝑘𝑘,𝑡𝑡
𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑊𝑊�𝑘𝑘,𝑡𝑡 + 𝑧𝑧𝑘𝑘,𝑡𝑡

𝑛𝑛𝑛𝑛𝑛𝑛+(𝑠̅𝑠𝑘𝑘,𝑡𝑡 − 𝑊𝑊�𝑘𝑘,𝑡𝑡) + 𝑧𝑧𝑘𝑘,𝑡𝑡
𝑛𝑛𝑛𝑛𝑛𝑛−(𝑊𝑊𝑘𝑘,𝑡𝑡 − 𝑊𝑊�𝑘𝑘,𝑡𝑡) (27a) 

0 ≤ 𝑧𝑧𝑘𝑘,𝑡𝑡
𝑛𝑛𝑛𝑛𝑛𝑛+, 𝑧𝑧𝑘𝑘,𝑡𝑡

𝑛𝑛𝑛𝑛𝑛𝑛− ≤ 1 (27b) 

� (𝑧𝑧𝑘𝑘,𝑡𝑡
𝑛𝑛𝑛𝑛𝑛𝑛+

𝑡𝑡∈𝑇𝑇
+ 𝑧𝑧𝑘𝑘,𝑡𝑡

𝑛𝑛𝑛𝑛𝑛𝑛−) ≤ Γ𝑡𝑡 (27c) 

𝑝𝑝𝑘𝑘,𝑡𝑡
𝑊𝑊 ≤ 𝑊𝑊�𝑘𝑘,𝑡𝑡

𝑛𝑛𝑛𝑛𝑛𝑛 (27d) 
The scaled deviation variables 𝑧𝑧𝑘𝑘,𝑡𝑡

𝑛𝑛𝑛𝑛𝑛𝑛+ are scaled differently so that one unit of 𝑧𝑧𝑘𝑘,𝑡𝑡
𝑛𝑛𝑛𝑛𝑛𝑛+ 

is equivalent to (𝑠̅𝑠𝑘𝑘,𝑡𝑡 −𝑊𝑊�𝑘𝑘,𝑡𝑡) amount of deviation from the predicted wind power output 
𝑊𝑊�𝑘𝑘,𝑡𝑡. In contrast, in the traditional uncertainty set (26a)–(26c), one unit of scaled deviation 
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𝑧𝑧𝑘𝑘,𝑡𝑡
+  corresponds to (𝑊𝑊�𝑘𝑘,𝑡𝑡 − 𝑊𝑊�𝑘𝑘,𝑡𝑡) amount of deviation. As a result, in constraint (26), the 

budget of uncertainty Γ𝑡𝑡 controls the total amount of deviations over all wind turbines, 
whereas in constraint (27), the budget of uncertainty Γ𝑡𝑡 controls only the effective devia-
tions and is denoted as an effective budget of uncertainty [38]. 

𝑠̅𝑠𝑘𝑘,𝑡𝑡 is not known in the system. Thus, the maximum wind power admissibility 𝑠̅𝑠𝑘𝑘,𝑡𝑡 
must be determined by analyzing the system requirements. 𝑠̅𝑠𝑘𝑘,𝑡𝑡  determines the maxi-
mum value of wind power that can be handled by the system without resulting in any 
operational issues. Thus, we considered the worst-case scenarios of constraints (10) and 
(11) because the spinning reserve of active power is a function of wind power output. 
Thus, by ensuring that the worst-case scenarios of these constraints are met, the maximum 
wind power admissibility can be determined. For each wind turbine 𝑘𝑘 and time period 
𝑡𝑡, problem (28) can be solved to determine 𝑠̅𝑠𝑘𝑘,𝑡𝑡 as follows [39]: 

min
ℂ1
�𝑊𝑊�𝑘𝑘,𝑡𝑡 − 𝑠̅𝑠𝑘𝑘,𝑡𝑡� (28a) 

𝑠𝑠. 𝑡𝑡.         min
𝑠̅𝑠𝑘𝑘,𝑡𝑡

�(𝑝𝑝𝑖𝑖 ,𝑡𝑡𝐺𝐺 + 𝑟𝑟𝑖𝑖 ,𝑡𝑡
𝑝𝑝+ + 𝑠̅𝑠𝑘𝑘,𝑡𝑡 − 𝑝𝑝𝑖𝑖,𝑡𝑡𝐷𝐷 )

𝑖𝑖∈𝑁𝑁

≥ 𝑃𝑃𝑡𝑡𝑢𝑢 (28b) 

min
𝑠̅𝑠𝑘𝑘,𝑡𝑡

�(−𝑝𝑝𝑖𝑖 ,𝑡𝑡𝐺𝐺 + 𝑟𝑟𝑖𝑖,𝑡𝑡
𝑝𝑝− − 𝑠̅𝑠𝑘𝑘,𝑡𝑡 + 𝑝𝑝𝑖𝑖 ,𝑡𝑡𝐷𝐷 )

𝑖𝑖∈𝑁𝑁

≥ 𝑃𝑃𝑡𝑡𝑑𝑑 (28c) 

where set ℂ1 = {𝑝𝑝𝑖𝑖 ,𝑡𝑡𝐺𝐺 , 𝑟𝑟𝑖𝑖 ,𝑡𝑡
𝑝𝑝+, 𝑟𝑟𝑖𝑖 ,𝑡𝑡

𝑝𝑝−, 𝑠̅𝑠𝑘𝑘,𝑡𝑡} is the set of decision variables that are optimized. 
Constraints (28b) and (28c) aim to ensure that the upward and downward active power 
reserve constraints are met, respectively, under the worst-case scenario of 𝑠̅𝑠𝑘𝑘,𝑡𝑡. In (28a), 
the objective function aims to increase the wind power admissibility of unit 𝑘𝑘 at time 𝑡𝑡 
so that more wind power can be utilized as long as the worst-case scenarios of reserve 
constraints are met. 

Problem (28) is a two-stage problem and can be solved using the strong duality the-
orem [28]. Thus, by introducing dual variables 𝛼𝛼𝑘𝑘,𝑡𝑡 and 𝛽𝛽𝑘𝑘,𝑡𝑡, problem (28) can be trans-
formed into an equivalent problem as follows: 

min
ℂ2

(𝑊𝑊�𝑘𝑘,𝑡𝑡 − 𝑠̅𝑠𝑘𝑘,𝑡𝑡) (29a) 

𝑠𝑠. 𝑡𝑡.       �(𝑝𝑝𝑖𝑖,𝑡𝑡𝐺𝐺 + 𝑟𝑟𝑖𝑖,𝑡𝑡
𝑝𝑝+ − 𝑝𝑝𝑖𝑖,𝑡𝑡𝐷𝐷 − 𝛼𝛼𝑘𝑘,𝑡𝑡)

𝑖𝑖∈𝑁𝑁

≥ 𝑃𝑃𝑡𝑡𝑢𝑢 (29b) 

𝛼𝛼𝑘𝑘,𝑡𝑡 ≥ −𝑠̅𝑠𝑘𝑘,𝑡𝑡 (29c) 

�(𝑝𝑝𝑖𝑖 ,𝑡𝑡𝐺𝐺 − 𝑟𝑟𝑖𝑖,𝑡𝑡
𝑝𝑝− − 𝑝𝑝𝑖𝑖,𝑡𝑡𝐷𝐷 + 𝛽𝛽𝑘𝑘,𝑡𝑡)

𝑖𝑖∈𝑁𝑁

≤ 𝑃𝑃𝑡𝑡𝑑𝑑 (29d) 

𝛽𝛽𝑘𝑘,𝑡𝑡 ≥ 𝑠̅𝑠𝑘𝑘,𝑡𝑡 (29e) 
where set ℂ2 = {𝑝𝑝𝑖𝑖,𝑡𝑡𝐺𝐺 , 𝑟𝑟𝑖𝑖,𝑡𝑡

𝑝𝑝+, 𝑟𝑟𝑖𝑖,𝑡𝑡
𝑝𝑝−, 𝑠̅𝑠𝑘𝑘,𝑡𝑡 ,𝛼𝛼𝑘𝑘,𝑡𝑡 ,𝛽𝛽𝑘𝑘,𝑡𝑡} is the set of decision variables. 

Once 𝑠̅𝑠𝑘𝑘,𝑡𝑡  is obtained for all wind turbines, the effective uncertainty set (27a)–(27c) 
can be used. Next, a robust solution is determined under the worst-case wind power sce-
nario to ensure a stable system under all scenarios. However, the robust solution may be 
overconservative because it protects against the absolute worst-case scenario, which may 
not happen. 

Most RO models rely only on the budget of uncertainty to adjust the solution’s level 
of conservatism and do not consider the maximum admissible wind power. However, in 
this study, we demonstrated that the budget of uncertainty and the wind power admissi-
bility level should be simultaneously considered in the optimization problem to accu-
rately control the solution’s degree of conservatism. In the following subsections, we de-
scribe how the proposed RO model determines the maximum admissibility of wind 
power and modifies the uncertainty set based on wind power admissibility before incor-
porating the budget of uncertainty in the model. 

4. Effective Robust Second-Order Conic Programming Model 
Here we present the ERSOCP model for the OPF problem with wind power integra-

tion. The proposed model considers the effect of voltage on the system by considering a 
relaxation for AC power flow equations and effectively tackles wind power uncertainty 
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by implementing the effective budget of uncertainty approach. The complete ERSOCP 
model is presented as follows: 

ERSOCP Model 

Objective function: Eq. (1) 

(30) 
s.t.  

SOCR of power flow equations: Eqs. (21), (22), (24), (25)  

Operational constraints:  Eqs. (4)–(17) 
Effective budget of uncertainty:  Eqs. (27a) –(27d) 

To obtain the ERSCOP model (30), problem (29) must be solved to obtain the maxi-
mum wind power admissibility 𝑠̅𝑠𝑘𝑘,𝑡𝑡. 

5. Numerical Results 
To demonstrate the merits of the proposed ERSCOP model, we performed numerical 

analysis on three test systems, namely IEEE 14, IEEE 118, and reliability test system (RTS) 
96, which were modified by adding a number of wind farms to the systems. In IEEE 14, 
we added one wind farm (capacity: 300 MW) to bus #9. In IEEE 118, we added wind farms 
to bus #1 (capacity: 500 MW), bus #9 (capacity: 500 MW), and bus #26 (capacity: 800 MW). 
In RTS 96, we added five wind farms to the system and reconstructed the system, as ex-
plained in a previous study [39]. In the IEEE 14 and IEEE 118 test systems, the wind power 
forecast errors were derived from the real wind sampling data from hourly wind power 
measurements [48] and as described in the literature [49]. However, in the RTS 96 test 
system, we obtained the data from another study [39] to make a comparison. All parame-
ters for the lower and upper bounds of the available wind power were obtained from the 
historical data of recent years. 

We considered four models: 
i. Linear model [39]: The linear model [39] is considered where power flow equation (2) 

is linearized and reactive power and voltage are neglected. However, this model con-
siders the effective budget of uncertainty [38]. 

ii. SOCP model [49]: The SOCP OPF model employs the traditional budget of uncer-
tainty approach. 

iii. ERSOCP model: The proposed ERSOCP model combines SOCP relaxation and effec-
tive budget of uncertainty.  

iv. LINDOGLOBAL: The solution of ACOPF from the LINDOGLOBAL solver is ob-
tained as the benchmark. The LINDOGLOBAL solver employs branch-and-cut meth-
ods to obtain the global optimal solution of ACOPF for relatively simple problems. 
In this study, all the models were implemented in GAMS, and the global optimal 

solution was obtained using MOSEK on a computer with a 2.4-GHz CPU and 8-GB RAM. 
In Table 1, the objective function values (total operating cost) for various budgets of 

uncertainty are presented for all the models. The quality of the SOCP and ERSOCP relax-
ations impact the solve time. The violation of equality constraint (23) provides a measure 
to the relaxation quality for the AC power flow equations, and is represented in Table 1. 

Table 1 Comparison of the objective function value and solution accuracy. 

  
Linear 

Model [39] 
SOCP Model [49] 

Proposed ERSOCP 
Model 

LINDOGLOB
AL 

System Budget 
Objective 
Value ($) 

Objective 
Value ($) 

Eq (23) 
violation 

Objective 
Value ($) 

Eq (23) 
violation 

Objective Value 
($) 
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IEEE 14 
Γ𝑡𝑡 =  0.5 8,339.12 8,348.89 0.0120 8,351.54 0.0037 8,354.41 

Γ𝑡𝑡 =  1.0 8,291.34 8,402.01 0.0383 8,351.54 0.0061 8,405.19 

IEEE 118 

Γ𝑡𝑡 =  0.0 129,190.50 129,339.60 0.0447 129541.54 0.0193 129,660.54 

Γ𝑡𝑡 =  1.0 130,056.12 129,615.73 0.0711 129,794.12 0.0507 130,189.91 

Γ𝑡𝑡 =  2.0 129,562.02 129,894.83 0.0632 129,983.45 0.0596 130.221.34 

Γ𝑡𝑡 =  3.0 129,941.88 131,713.02 0.0398 131,972.31 0.0164 131,962.11 

RTS 96 

Γ𝑡𝑡 =  0.0 36,717.23 36,521.23 0.0562 36,702.23 0.0134 36,756.23 

Γ𝑡𝑡 =  1.5 37,189.67 37,061.67 0.0491 37,291.88 0.0256 37,386.90 

Γ𝑡𝑡 =  3.5 38,622.91 38.561.12 0.0560 39,029.32 0.0322 39,165.33 

Γ𝑡𝑡 =  5.0 40,192.54 39,894.19 0.0598 40,239.34 0.0301 40,359.12 

Eq (23) violation.: ∑ |𝑐𝑐𝑖𝑖𝑖𝑖2 + 𝑠𝑠𝑖𝑖𝑖𝑖2 − 𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑗𝑗𝑗𝑗|𝑖𝑖,𝑗𝑗   

Table 2 Comparison of the average computation CPU time (in seconds). 

System Budget 
Linear Model 
[39] 

SOCP Model 
[49] 

Proposed 
ERSOCP Model 

LINDOGLOBAL 

IEEE 14 
Γ𝑡𝑡 =  0.5 0.078 0.113 0.199 2.42 
Γ𝑡𝑡 =  1.0 0.081 0.122 0.212 2.48 

IEEE 118 

Γ𝑡𝑡 =  0.0 0.091 1.721 1.931 29.78 
Γ𝑡𝑡 =  1.0 0.090 1.680 1.768 30.21 
Γ𝑡𝑡 =  2.0 0.089 1.634 1.762 30.72 
Γ𝑡𝑡 =  3.0 0.091 1.611 1.771 30.89 

RTS 96 

Γ𝑡𝑡 =  0.0 0.104 1.801 1.912 42.13 
Γ𝑡𝑡 =  1.5 0.997 1.825 1.891 45.72 
Γ𝑡𝑡 =  3.5 0.104 1.801 1.912 42.41 
Γ𝑡𝑡 =  5.0 0.993 1.604 1.939 41.02 

The last column in Table 1 provides the global solution LINDOGLOBAL as a refer-
ence to evaluate the solution accuracy of each model. As can be observed, in most cases, 
the proposed ERSOCP model yielded a more accurate solution that was closer to the so-
lution of LINDOGLOBAL compared to other alternatives. In addition, the proposed ER-
SOCP model outperformed the SOCP model with the traditional budget of uncertainty 
approach. In particular, the quality of the SCOP relaxation depends on the violations of 
equation (23). If the optimal solution satisfies the relaxed constraint (25) at equality, it 
means constraint (23) is satisfied with no violation, and thus the SOCP relaxation is exact. 
The proposed ERSOCP model corresponded to smaller violations in constraint (23), as 
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clearly observed from the higher degree of accuracy achieved by the proposed model. 
Furthermore, as the budget of uncertainty increased, the objective function value in-
creased as more budget corresponded to more uncertainty in the system, which in turn 
increased the operational cost. As this budget increased, the system produced a more ro-
bust solution because more budget was allowed for immunization against uncertainty. 
These observations are consistent with the literature [28, 38, 39]. 

The computation times of all four models are presented in Table 2; for each row, we 
solved problems three times and reported the average times. The linear model [39] exhib-
ited the lowest computation time because it linearizes all nonlinear equations and pro-
vides a simplified version of the OPF problem. The LINDOGLOBAL approach required 
the maximum computational time. The proposed ERSOCP model exhibited a slightly 
higher computational time compared to the SOCP model [31] because, in the proposed 
model, a linear problem must be solved first (29), and by obtaining the values of maximum 
wind power admissibility, the ERSCOP model can be established. However, the addi-
tional time required by the proposed model over the SOCP model is not significant. For 
instance, in the IEEE 118 test system, for Γ𝑡𝑡 =  3, the computational time of the proposed 
model was only 9% higher than that of the SOCP model [31].  

A comparison of solution accuracy and computational time for different models can 
be made in Tables 1 and 2. Such comparison allows users to select the most appropriate 
model based on their requirements for accuracy and computational time. As can be seen 
from Tables 1 and 2, the proposed model is highly efficient in terms of accuracy and com-
putational time, thus, providing a promising choice for use in real-world problems. 

The proposed model is beneficial for large systems with high amounts of wind power 
integration. In particular, for high uncertainty and large power systems, the challenges 
associated with handling wind power uncertainty make commercial solvers such as LIN-
DOGLOBAL computationally impractical (Table 2). In contrast, the proposed model is 
highly efficient and practical even for large power systems because it is tractable and scal-
able. From the managerial point of view, the proposed model aids in identifying the exact 
trade-off between robustness and cost to tackle wind power uncertainty within a budget. 

6. Conclusions 
To overcome the limitations of traditional methods, in this study, we proposed a ro-

bust OPF model considering wind power uncertainty. We considered the wind power 
uncertainties by adopting the recent advancements in uncertainty theory, that is, the ef-
fective budget of uncertainty method and the nonlinearities of power flow equations were 
considered using a tight SOCR. We demonstrated that the proposed ERSOCP model could 
accurately consider the effects of voltage on the power flow and effectively model uncer-
tainties given the physical limits of the system. The numerical results demonstrated the 
merits of the ERSOCP model. The ERSOCP model can obtain a more accurate solution in 
a reasonably short computational time. 

In future research, the proposed model can be employed for different problems, such 
as the unit commitment problem. Furthermore, the possibility of a new conic relaxation 
for nonlinear AC power flow equations can be explored using exponential conic program-
ming models, power conic programming models, or a combination of both. 
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