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Abstract: In this paper, the trajectory tracking control problem of an autonomous underwater vehicle (AUV) 

based on a stochastic uncertain nonlinear system is studied. We investigate the time-varying gain adaptive 

control method to find possible approaches to reduce the excessive computational burden. Under nonlinear 

growth, conditions satisfy polynomial growth conditions. These two problems are resolved the fast response 

time and good path tracking, respectively. Enhanced adaptive algorithms are devised by leveraging the 

dynamic characteristics of AUV motion. By transforming the original controller design problems into 

parameter selection problems and subsequently solving them using a functional time-varying observer 

technical theorem, we can achieve optimal control performance. In order to deal with the issue of station error 

in systems that converge to arbitrarily small domains with stochastic uncertain disturbances. A coordinate 

transformation is proposed for all system states to meet boundedness. We demonstrate that the convergence 

of the AUV trajectory errors can be certified by contraction restrictions that are suggested in the stability 

analysis, closed-loop stability is certified, and the system is asymptotically probabilistic in the global scope. 

They are utilizing the guaranteed stability. A large number of simulation studies on underwater vehicle model 

have proved the effectiveness and robustness of the proposed approach. A real-time time-varying gain 

constructive control strategy is further developed for the Hardware-in-the-loop simulation; the effectiveness of 

the controller design is verified by introducing the controller design results into the AUV actuator model. 

Keywords: trajectory tracking; AUV adaptive control; stochastic uncertain nonlinear system; dynamic and 

static gain 

 

1. Introduction 

An Autonomous Underwater Vehicle (AUV) is widely used in underwater exploration and 

scientific research. In AUV research, the control system of underwater thrusters can be said to be its 

neural center and the most complex technology, so the control of underwater thrusters is one of the 

most challenging problems in the field of control. Due to the crucial role played by AUVs in deep-sea 

environmental resource exploration. In recent decades, tracking control, the state maintenance, and 

path planning of AUVs have received attention from researchers, leading to an urgent need to 

develop new control theories in the theoretical and engineering fields of AUV output feedback 

control, making them fit for complex systems affected by various factors such as randomness, 

nonlinearity, and time delay. In addition, the control theory system built under the framework of 

certainly systems is no longer applicable to stochastic nonlinear systems [1–11]. Therefore, it is a great 

challenge to solve the output feedback control problem of stochastic nonlinear systems by using 

stochastic control theory and related mathematical tools. In engineering practice, there is a high 

probability that the input and output of a controlled system are random signals. Therefore, the 

stochastic nonlinear system that combine the nonlinear and stochastic characteristics are a research 

area of considerable interest in the control theory community. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.
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The application of trajectory tracking control is essential for autonomous underwater robots. 

However, due to the complex system, uncertain working environment, and highly coupled nonlinear 

characteristics of underwater robots [1,2], the controller design of AUV becomes very challenging. In 

the past decades, the design of trajectory tracking controller [3] for underwater vehicles has been a 

problem worthy of attention. Traditional PID, LQR, and Kalman filtering [4] can also control the 

trajectory of the underwater robot. In addition, nonlinear PID also has good performance in control. 

However, when the target trajectory being tracked is nonlinearity, the nonlinearity of the curved 

trajectory makes nonlinear PID no longer applicable in vehicle driving and class linear control 

techniques. Feedback linearization [5] presents a powerful tool for dealing with nonlinear 

characteristics. However, applying feedback linearization to the AUV requires a system model with 

highly accurate hydraulic dynamic coefficients [6]. In this context, the adaptive [7–9] Lyapunov 

method has become the mainstream method for AUV trajectory control. In Article [10], the dynamic 

controller is used for the first time in the backstepping control technique. AUV output backstep 

control can be found in Article [11,12]; another popular AUV trajectory tracking control method is 

sliding mode control. It is well known that this method has an excellent robust effect when the 

parameters are uncertain, but the sliding effect of sliding mode control tends to appear discrete. In 

order to reduce this phenomenon, sliding mode control is often used in combination with control 

methods such as robust control, adaptive control, and PID [13–15]. 

Nonetheless, the above control methods have a general deficiency the inability to deal with the 

stochastic characteristics and uncertain disturbances of the system. For AUVs, stochastic and 

uncertain are very common [16,17], which the actuator must suffer in the working environment or 

the system’s characteristics. Adaptive control is featured in dealing with this randomness and 

uncertainties [18], which proposes a robust control structure in the face of this wide range of control 

problems. In addition, adaptive control can solve complex nonlinear problems for solving the control 

problems of AUV dynamic systems. So far, we do not have a very effective control method for 

trajectory tracking control problems. In article [19], a self-correcting adaptive method is proposed, a 

complete method to solve the problem that its dynamic parameters and even the model structure 

often change. The trajectory tracking control algorithm for AUV stochastic uncertain nonlinear 

system is proposed. In paper [20], where the concept of stochastic and uncertain is creatively 

introduced. In article [21,22], a comprehensive trajectory tracking control and path planning problem 

is researched. A unified optimization framework [23] is developed for the problem of AUVs 

combined motion control. 

Although an adaptive control based on an integral high-order sliding mode concept provides a 

good algorithm for nonlinear systems with random and uncertain disturbances [13], when solving, 

this method heavily burdens the computational bottleneck. In theoretical research, the computational 

time is often ignored, but in practice, the computational difficulty increases exponentially with the 

increase of stochastic and uncertain interference problems. Due to the short sampling period, many 

strategies such as iterative methods, precomputation, and numerical continuation [24] have been 

proposed to decrease the computational complexity and reduce the computational time. By exploring 

the motion characteristics of underwater robots, a dynamic-static combined with a high-gain observer 

is successfully applied to the output feedback adaptive control algorithm. However, the stability 

proof of the closed-loop system in paper [25] is not provided. Since the dynamic gain control, 

algorithm solves the trajectory tracking control problem of the underwater robots. The implicit 

coupling of the system state and the control signal complicates the stability analysis of the closed-

loop system. It is urgent to find a better stability analysis method. 

This paper hope to provide a method to eliminate the influence of random and uncertain 

disturbances on AUV trajectory tracking and simultaneously ensure the closed-loop system stability. 

Here, the reference augmentation technique is applied to modeling the AUV system so that the 

coupled motion between the systems is weakened [26]. Then the dynamic gain method is studied to 

reduce the computational stress of stochastic uncertain nonlinear systems. Since the novel dynamic 

gain, adaptive control algorithm was proposed, the complex control problem has been changed into 

a parameter selection and construction problem through dynamic gain. The computational 

complexity is significantly reduced and the computation time is significantly reduced. The 

contributions of this article are as follows:  
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1. Aiming at the problem of AUV trajectory tracking control, a well-known stochastic uncertain 

nonlinear dynamic adaptive control algorithm is provided to study the AUV motion’s dynamic 

characteristics.  

2. A novel dynamic-static combination of high-gain observers is proposed, which dramatically 

reduces the computational complexity of the control algorithm and transforms the controller design 

problem into a parameter calculation and selection problem.  

3. Investigate fundamental properties of closed-loop systems. The control time and control error 

of AUV trajectory tracking is remarkably reduced, the control effect is incredibly optimized, and the 

sensitivity is improved.  

4. Numerical simulations and additional experiments reveal that the proposed dynamic-static 

high-gain adaptive control algorithm has excellent robust performance against stochastic and 

uncertain disturbances. 

The rest of this paper is organized as follows: The second section describes the AUV motion 

model. The third section is the dynamic and static high-gain adaptive control algorithm. Section 4 

presents simulation studies and additional experiments. The fifth section is the conclusion and 

prospects. 

2. Description of Dynamic Modelling of Robot 

In this section, the dynamics analysis of the AUV is carried out. According to the analysis of the 

power, resistance, and inertial force when moving underwater, we can obtain the general dynamic 

equation. Considering the complexity and uncertainty of the underwater environment [2,27], a 

stochastic process was added to the model. Based on the established underactuated underwater robot 

model, as shown in Figure 1. 

 

Figure 1. Hardware-in-the-loop simulation device with underwater robot. 

The 6-DOF dynamic model of the AUV can be expressed as follows:  𝑀𝑣ሶ + 𝐶(𝓋)𝑣 + 𝐷(𝓋)𝑣 + 𝑔(𝜖) = 𝐹 (1)

where 𝑀 = 𝑀஺ + 𝑀ோ஻ is the inertia mass matrix, which contains AUV additional quality. 𝐶(𝓋) 

are Coriolis force matrix of the underwater vehicles. 𝐷(𝓋) is for underwater vehicle fluid damping 

matrix. 𝑔(𝜖) stands for the gravity of the underwater vehicle in operation and the restoring force 

(moment) matrix generated by the buoyancy. 𝐹 = [𝐹௫ , 𝐹௬, 𝐹௭, 𝐹௞, 𝐹௠, 𝐹௡]் stands for the resultant forces 

and moments. 𝑣ሶ = [𝑢ሶ , 𝓋ሶ , 𝜔ሶ , 𝑝ሶ , 𝑞ሶ , 𝑟ሶ ]் are the linear and angular accelerations of the body (moving) 

frame in the direction of pitch, roll and heave, 𝑣 = [𝑢, 𝓋, 𝜔, 𝑝, 𝑞, 𝑟]் stands for the linear and angular 

velocity with respect to body (moving) frame, 𝑢  - surge velocity, 𝓋  - sway velocity, 𝜔  - heave 

velocity, 𝑝  - roll rate, 𝑞  - pitch rate, 𝑟  - yaw rate. ϵ = [𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝛾]்  are the position and 

orientation in inertial(fixed) frame, 𝑥 - surge position, 𝑦 - sway position, 𝑧 - heave position, 𝛼 - 
roll angle, 𝛽 - pitch angle, 𝛾 - yaw angle. 

According to the above, the six-degree-of-freedom (6-DOF) model of the underwater robot has 

complex nonlinearity and state coupling. If the paper wants to design a controller with six degrees of 

freedom, it will pose a great challenge to the controller design and physical characteristics. Here, we 

decompose the 6-DOF motion model into two kinematic models, which is linear velocity variables 𝑣ଵ = [𝑢, 𝓋, 𝜔]் and angular velocity variables 𝑣ଶ = [𝑝, 𝑞, 𝑟]். In the earth-fixed frame, the velocity 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 August 2023                   doi:10.20944/preprints202308.0425.v1

https://doi.org/10.20944/preprints202308.0425.v1


 4 

 

can generally be decomposed into two kinematic models, underwater robot position 𝜖ଵ = [𝑥, 𝑦, 𝑧]் 

and underwater robot orientation 𝜖ଶ = [𝛼, 𝛽, 𝛾]், which can highly simplify the AUV model. In this 

paper, we only consider the velocity variables 𝑣ଵ = [𝑢, 𝑣, 𝜔]் and linear motion 𝜖ଵ = [𝑥, 𝑦, 𝑧]் of the 

AUV underwater. 

The relationship between the fixed frame and body frame in linear velocity is as follows: 𝜖ሶଵ = 𝐽(𝜖)𝑣ଵ (2)

Where 𝐽(𝜖) is the kinematic transformation matrix of the following form: 

𝐽(𝜖) = ൭𝑐𝛾𝑐𝛽 −𝑠𝛾𝑐𝛼 + 𝑐𝛾𝑠𝛽𝑠𝛼 𝑠𝛾𝑠𝛼 + 𝑐𝛾𝑐𝛽𝑠𝛼𝑠𝛾𝑐𝛽 𝑐𝛾𝑐𝛼 + 𝑠𝛾𝑠𝛽𝑠𝛼 −𝑐𝛾𝑠𝛼 + 𝑠𝛾𝑠𝛽𝑐𝛼−𝑠𝛽 𝑐𝛽𝑠𝛼 𝑐𝛽𝑐𝛼 ൱ 

Where, 𝑠 = sin , 𝑐 = cos  and 𝜖ଶ = [𝛼, 𝛽, 𝛾]்  is the angle between the surge, sway and heave 

direction and the earth frame, respectively. When β = ±90°, this transformation is undefined and the 

quaternion method has to be considered. While, most robots are designed to operate at pitch angles 

below ±90°; Thus, this restriction is of no great significance here. In order to better understand and 

analyze the motion state, we will study the AUV system based on the earth reference frame. In order 

to unify the signal states, using Eq. (2) for coordinate transformation (𝜖ଵ, 𝑣ଵ) ఓ→ (𝜖ଵ, 𝜖ሶଵ), we obtain: ቀ𝜖ଵ𝜖ሶଵቁ = ൤𝐼 00 𝐽(𝜖)൨ ቀ𝜖ଵ𝑣ଵቁ 

The coordinate transformation is a global diffeomorphism analogous to a similarity 

transformation in the linear system. The dynamic underwater vehicle model with the earth fixed 

reference frame is as follows: 

where 𝑀ఢభ = 𝐽(𝜖)ି்𝑀𝐽(𝜖)ିଵ𝐶ఢభ = 𝐽(𝜖)ି்൫𝐶(𝜈) − 𝑀𝐽(𝜖)ିଵ𝐽ሶ(𝜖)൯𝐽(𝜖)ିଵ𝐷ఢభ = 𝐽(𝜖)ି்𝐷(𝜈)𝐽(𝜖)ିଵ𝑔ఢభ = 𝐽(𝜖)ି்𝑔(𝜖)𝐹ఢభ = 𝐽(𝜖)ି்𝐹
 (4)

We need some assumptions as follows. 
Assumption 1. In this paper, only the velocity between the self-position and the fixed frame is 

considered, the velocity is 𝑙ሶ = (𝑥ሶ ଶ + 𝑦ሶ ଶ + 𝑧ሶଶ)భమ. Suppose the origin state 𝜖ଵ(0) = [0 0 0] and 𝜖ሶଵ(0) =[0 0 0]. 
Assumption 2. In this paper, the velocity 𝜖ଵ = [𝑥 𝑦 𝑧] and the angle 𝜖ଶ = [α β γ ] are known 

using the sensors. 

In this paper, we focus on the problem of trajectory tracking control for a class of stochastic 

uncertain nonlinear systems. For the trajectory tracking control problem of the underwater robot 

under nonlinear dynamics, to better design the control algorithm, we convert the dynamic model of 

the system into a broad numerical model as follows. d𝑙ଵ = 𝑙ଶ𝑑𝑡 + 𝜑ଵ(𝑡, 𝑙(𝑡), 𝑢)𝑑𝜔d𝑙ଶ = 𝑢𝑑𝑡 + 𝜑ଶ(𝑡, 𝑙(𝑡), 𝑢)𝑑𝜔           𝑦 = 𝑙ଵ − 𝑦௥                                         (5)

In the stochastic nonlinear systems 𝑙 = (𝑙ଵ, 𝑙ଶ)் ∈ 𝑅ଶ , 𝑢 ∈ R , 𝑦 ∈ R  are the states, input and 

output of system, respectively; y௥ is the target trajectory to be tracked. Where state 𝑙ଶ and 𝑦௥ are 

unmeasurable. The stochastic process of the system is introduced in this paper: ω  is an m - 

dimensional standard Wiener process defined on the complete probability space (Ω, Γ, P ), where Ω 

is the sample space, Γ  is the filter, and P  is the probability measure. Nonlinear term 𝜑௜: ℝା × ℝ × ℝଶ, 𝑖 = 1,2 is satisfied continuous polynomial growth conditions and local Lipschitz. 

𝑀ఢభ𝜖ሷଵ + 𝐶ఢభ𝜖ሶଵ + 𝐷ఢభ𝜖ሶଵ + 𝑔ఢభ = 𝐹ఢభ (3)
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In this paper, we assume that system (5) satisfies the following assumptions and implements 

output feedback tracking control. 

Assumption 3. There exists a positive constant c଴ ≥ 0 and a known integer q ≥ 1  such that 

the following inequality holds  |𝜑௜(𝑡, 𝑙, 𝑢)| ≤ 𝑐଴(1 + |𝑙ଵ|௤)(|𝑙ଵ| + |𝑙௜|) + 𝑐଴, 𝑖 = 1,2 (6)

This assumption shows that the output polynomial growth rate governed this system (5). 

Assumption 4. The target trajectory max(|y௥(t)|, |𝑦ሶ௥(t)|) ≤ cଵ , cଵ  is known constants. 

According to the description of the above system, this section’s goal is to design a time-varying gain 

constructive control algorithm: for any given in advance tolerance δ > 0. In the closed-loop system, 

all the states are well-defined and globally bounded on [0, +∞) in finite time Tஔ > 0, for instance |y(t)| = |𝑙ଵ(t) − 𝑦௥(t)| ≤ δ, ∀t ≥ Tஔ. 

Remark 1. It should be pointed out that the output feedback tracking control problems studied 

in previous literatures [28,29] are mainly aimed at nonlinear systems or nonlinear systems with 

parameter uncertainty and unknown control direction. The system (5) studied in this paper is a 

stochastic uncertain nonlinear system after introducing random factors. At the same time, system (5) 

is observable by Assumption 3, which depends on the unmeasurable state and nonlinear growth 

conditions satisfying the polynomial growth condition, according to Assumption 4. It can be seen 

that for the reference trajectory y௥, its upper bound value and the upper bound value of the derivative 

are given, which means that it is not necessary to give a specific description function or give more 

information to the reference trajectory y௥. 

Based on this assumption 3, 4 and (5), for the 𝑙ଵ = y + 𝑦௥  , i = 1, 2. We have: |𝜑௜(𝑡, 𝑙, 𝑢)| ≤ 𝑐଴(1 + |𝑦 + 𝑦௥|௤)(|𝑙ଵ| + |𝑙ଶ| + ⋯ + |𝑙௜|) + 𝑐଴≤ 𝑐(1 + |𝑦|௤)(|𝑙ଵ| + |𝑙ଶ| + ⋯ + |𝑙௜|) + 𝑐  (7)

where c = c଴max{1 + 2௤ିଵcଵ௤,  2௤ିଵ} is a known constant. 

3. Dynamic and Static High Gain Adaptive Control Algorithm 

In this section, we propose a dynamic gain observer strategy to achieve dynamic adaptive 

tracking control, so that the complexity can be greatly reduced, which will study the stochastic 

uncertain nonlinear underwater robot system in two steps. The first step is the dynamic gain observer 

and controller design of the AUV system; the second step is stability analysis and implementation of 

the AUV system. 

3.1. Dynamic Gain Observer and Controller Design 

First step, this section is to introduce the following state transformation: 𝑧ଵ = 𝑦 = 𝑙ଵ − 𝑦௥𝑧ଶ = 𝑙ଶ         (8)

So, we can get the system (9). 𝑧ሶଵ = 𝑧ଶ + 𝑓ଵ(𝑡, 𝑧, 𝑢)𝜔ሶ𝑧ሶଶ = 𝑢 + 𝑓ଶ(𝑡, 𝑧, 𝑢)𝜔ሶ𝑦 = 𝑧ଵ            (9)

where 𝑓ଵ(𝑡, 𝑧, 𝑢) = 𝜑ଵ(𝑡, 𝑧ଵ + 𝑦௥ , 𝑧ଶ, 𝑢) − 𝑑𝑦௥𝑑𝜔𝑓ଶ(𝑡, 𝑧, 𝑢) = 𝜑ଶ(𝑡, 𝑧ଵ + 𝑦௥ , 𝑧ଶ, 𝑢)       (10)

Since the states of the stochastic system are unmeasurable except for lଵ, which is a measurable 

state, the time-varying observers are first constructed: 𝑧̂ሶଵ = zଶ + 𝐾ଵℎଵ(𝑧ଵ − 𝑧̂ଵ),𝑧̂ሶଶ = 𝑢 + 𝐾ଶℎଶ(𝑧ଵ − 𝑧̂ଵ),  (11)
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Meantime, we choose design parameters h୧, i = 1, 2 , are constants and satisfying Hurwitz 

condition and sଶ + hଵs + hଶ. The 𝐾 = 𝐴𝐵(t) is a dynamic gain parameter, which 𝐴 > 1 is a constant 

and 𝐵(t) is a time-varying function updated by 𝐵ሶ (𝑡) = −𝜇ଵ𝐵ଶ + 𝜇ଶ(1 + |𝑦|௤)ଶ𝐵𝐵(0) = 1                                             (12)

Theorem 1. So far, we can conclude that all closed-loop system states are bounded on [0, T), 

then T must be infinite. Otherwise, at least one state will escape at T, contradicts the continuity of 

the closed-loop system. For a class stochastic uncertain nonlinear system (5), y = lଵ − y୰ is the output, 

and the nonlinear term of the system meets Assumptions 3 and 4. According to choose the suitable 

parameters K୧ , g୧ , i = 1, 2, A, μଵ and μଶ and based on observer (11), the output feedback controller is 

designed as follows: u = −(Kଶaଵzොଵ + Kaଶzොଶ) (13)

where the parameter a = [aଵ, aଶ]୘  is a constant vector and satisfying Hurwitz condition and h୧ = aଷି୧ . Next, we will to prove that practical global tracking can be achieved when A  is large 

enough. Furthermore, practical path tracking can be achieved. For any δ > 0, there exists a finite time Tஔ, such that  |y(t)| ≤ δ, ∀t ≥ Tஔ. 

Remark 2. Through equation (8), we can turn complex systems into simple ones. According to the 

unmeasurable state of the system, we introduce a dynamic gain observer (11) to construct the 

observation time of the system state. Unlike the previous observers, the observer gain in this paper is 

an observer combined with dynamic B(t) and static A gain parameters. The observed effect is closer 

to the actual value of the system, which provides a good condition for the following controller to 

control the error variable. On account of the insufficient information on the system and the tracking 

signal and the system’s instability after introducing random factors, the common tracking control 

methods, such as the MPC method, can no longer solve the problems in this chapter. For these 

challenging problems, this article will pay close attention to stochastic nonlinear systems satisfying 

assumptions 3 and 4 by constructing an output feedback dynamic adaptive tracking controller 

ground on the combination of the static and dynamic gain observer to achieve the original system (5) 

the actual tracking control target. 

3.2. Stability Analysis and Implementation 

In this subsection, the main results of the paper are presented and harshly proved. For the 

stability analysis, we need the following scaling transformation for the closed-loop system. 

The state estimation error is defined as e୧ = z୧ − zො୧ , (i = 1, 2). Then the dynamics of e୧ satisfy:  eሶଵ = eଶ − Kଵhଵeଵ + fଵ(t, z, u)ωሶeሶ ଶ = −Kଶhଶeଵ + fଶ(t, z, u)ωሶ     (14)

To facilitate the design of the controller, we need to transform the estimated state zො୧ and the 

error state e୧ as follows: ε୧ = e୧Kୠା୧ିଵ (i = 1,2)τ୧ = zො୧Kୠା୧ିଵ (i = 1,2) (15)

where 0 < b < ଵସ୯  is a known constant, ε = (εଵ, εଶ)୘, τ = (τଵ, τଶ)୘, h = (hଵ, hଶ)୘ . According to 

(15), stochastic nonlinear systems (9) and (11) can be converted as follows: 

Meantime, G(z, K) = ቂ ୤భ୏ౘ , ୤మ୏ౘశభቃ୘ , H = ൬−hଵ 1−hଶ 0൰ , Hୠ = ൬ 0 1−hଵ −hଶ൰ , Cୠ = ቀb 00 b + 1ቁ. 

εሶ = KHε − KሶK Cୠε + G(a, K)ωሶτሶ = KHୠτ − Khεଵ + hሶh Cୠτ    (16)
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Then, we discuss the gain B and the boundedness of the states ε and τ. Above all, choose the 

proper parameters rଵ, rଶ, rଷ, rସ , so that the relationship between the positive definite matrices P, Q 

and the matrix H, Hୠ, Cୠ satisfies: H୘P + PAH ≤ −Iଶ rଵIଶ ≤ CୠP + PCୠ ≤ rଶIଶHୠ୘Q + QHୠ୘ ≤ −2Iଶ rଷIଶ ≤ CୠQ + QCୠ ≤ rସIଶ (17)

Let V(ε(t), τ(t)) = ε୘(t)P ε(t) + τ୘Qτ(t)  be the Lyapunov function candidate. Then along the 

trajectories of (16), the time derivative of V on [0, T) satisfies the following inequality: LV = +2ε୘GP − |ε|ଶK − 2ε୘ KሶK (CୠP + PCୠ)ε + 2Kτ୘εଵh − 2K|τ|ଶ − Tr(G୘(P + Q)G)− KሶK τ୘(CୠP + PCୠ)τ 

(18)

From Remark 2, we can know h > 1, and from (12), 
୦ሶ୦ = ୈሶୈ = −μଵD + μଶ(1 + |y|୍)ଶ.  

− KሶK ε୘(CୠP + PCୠ)ε ≤ rଶμଵB|ε|ଶ − rଵμଶ(1 + |y|୯)ଶ|ε|ଶ
− KሶK τ୘(CୠQ + QCୠ)τ ≤ rସμଵB|τ|ଶ − rଷμଶ(1 + |y|୯)ଶ|τ|ଶ (19)

Then, from this and (17), we have 

By Assumption 4, (7), (8), (15) and the fact h > 1, we have 

Where |Gଵ| ≤ c[(1 + |y|୯)(|ε| + |τ| + cଵ) + 1] + cଵ         |Gଶ| ≤ c[(1 + |y|୯)൫√2(|ε| + |τ|) + cଵ൯ + 1] + cଵ (21)

Split and enlarge the terms in formula (18), and we can get 2Gε୘P ≤ 2‖ε‖‖P‖ ቀc(1 + |y|୯) ൬cଵ + ቀ√2(|ε| + |τ|)ቁ൰ + cଵ + cቁ              ≤ ‖P‖c(1 + cଵ)(|ε|ଶ + |τ|ଶ)(1 + |y|୯)ଶ + ‖P‖(5c + cଵ)|ε|ଶ + ‖P‖(ccଵ + c + cଵ)2Kεଵhτ୘ ≤ K(|τ|ଶ + |ε|ଶ|h|ଶ)                                                                                                (22)

Therefore, combining equations (18)-(22), the system Ito differential equation can be obtained as: LV ≤ −K|ε|ଶ + c‖P‖(1 + cଵ)(1 + |y|୯)ଶ(|ε|ଶ + |τ|ଶ) + ‖P‖(5c + cଵ)|ε|ଶ + ‖P‖(ccଵ + c + cଵ)+αଵB(rଶ|ε|ଶ + rସ|τ|ଶ) − αଶ(1 + |y|୯)ଶ(rଵ|ε|ଶ + rଷ|τ|ଶ) − 2K(|τ|ଶ + τ୘εଵh) + Tr(G୘(P + Q)G)≤ −K|ε|ଶ + c‖P‖(1 + cଵ)(1 + |y|୯)ଶ(|ε|ଶ + |τ|ଶ) + ‖P‖(5c + cଵ)|ε|ଶ + ‖P‖(ccଵ + c + cଵ)+rଶαଵB|ε|ଶ − αଶ(1 + |y|୯)ଶ(rଵ|ε|ଶ + |τ|ଶ) − 2K|τ|ଶ + rସαଵB|τ|ଶ + K(|τ|ଶ + |h|ଶ|ε|ଶ)−(‖P‖ + ‖G‖)൫c(1 + |y|୯)൫√2(|ε| + |τ|) + cଵ൯ + c + cଵ൯ଶ
 (23)

Where the last term of formula (23) can be enlarged as: (‖G‖ + ‖P‖)൫c(1 + |y|୯)൫√2(|ε| + |τ|) + cଵ൯ + c + cଵ൯ଶ≤ 2(‖P‖ + ‖G‖) ቀcଶ(1 + |y|୯)ଶ൫√2(|ε| + |τ|) + cଵ൯ଶ + (c + cଵ)ଶቁ≤ 2(‖P‖ + ‖G‖)(2cଶ(1 + |y|୯)ଶ(2(|ε| + |τ|)ଶ + cଵଶ) + (c + cଵ)ଶ)≤ 2(‖P‖ + ‖G‖)(2cଶ(1 + |y|୯)ଶ(4(|ε|ଶ + |τ|ଶ) + cଵଶ) + (c + cଵ)ଶ)= (‖P‖ + ‖G‖)(16cଶ(1 + |y|୯)ଶ(|ε|ଶ + |τ|ଶ) + 4cଶ(1 + |y|୯)ଶcଵଶ + 2(c + cଵ)ଶ)
(24)

After finishing, we obtain LV ≤ −(K(1 − |h|ଶ) − (5c + cଵ)‖P‖ − rଶBμଶ)|ε|ଶ − (|y|୯ + 1)ଶ൫rଵμଶ − ‖P‖c(cଵ + 1) − 16(‖Q‖ + ‖P‖)൯|ε|ଶ+(rସμଵB − K)|τ|ଶ − (|y|୯ + 1)ଶ൫rଷμଶ − c‖P‖(1 + cଵ) − 16cଶ(‖Q‖ + ‖P‖)൯|ε|ଶ+‖P‖(ccଵ + c + cଵ) + (4cଶ(1 + |y|୯)ଶcଵଶ + 2(c + cଵ)ଶ)(‖P‖ + ‖Q‖)  (25) 

|G| = (|Gଵ|ଶ + |Gଶ|ଶ)ଵଶ = ቆ൬ fଵKୠ൰ଶ + ൬ fଶKୠାଵ൰ଶቇଵଶ
 (20)
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According to formula (25), selection μଶ satisfies: 

According to B > 1 , choose A to satisfy: A ≥ ‖P‖(5c + cଵ) + rଶμଵ1 − |h|ଶA ≥ rସμଵ                  A ≥ 1                      (27)

According to the above selection of parameters, the formula (25) can be transformed into: LV ≤ −K(|τ|ଶ+|ε|ଶ) + ‖P‖(ccଵ + cଵ + c) + (‖P‖ + ‖Q‖)(4cଵଶcଶ(1 + |y|୯)ଶ + 2(c + cଵ)ଶ)≤ − AVmax(λ୫ୟ୶(P) + λ୫ୟ୶(Q)) + (ccଵ + cଵ + c)‖P‖ + (‖P‖ + ‖Q‖)(4cଶcଵଶ(1 + |y|୯)ଶ + 2(c + cଵ)ଶ) (28)

The relevant parameters are defined as follows: Eଵ = Amax(λ୫ୟ୶(P) + λ୫ୟ୶(Q))                                                                  Eଶ = ‖P‖(ccଵ + c + cଵ) + (4cଶ(1 + |y|୯)ଶcଵଶ + 2(c + cଵ)ଶ)(‖P‖ + ‖Q‖) (29)

As previously mentioned, the closed-loop system has a unique solution on the maximal time 

interval [0, 𝑇), where 0 < 𝑇 ≤ +∞. V൫ε(t), τ(t)൯ ≤ V൫ε(0), τ(0)൯eି୉భ୅ ୲ + EଶEଵ , t ∈ [0, T) (30)

which shows that 𝜏 are bounded on [0, 𝑇). 

Then prove the boundedness of 𝐵  on [0, T)  because 𝜀 𝑎𝑛𝑑 𝜏  in [0, T)  on the bounded, and 𝜀ଵ + 𝜏ଵ = ௭భ௄್ = ௬௄್, we get |𝑦| ≤ (AB)௕𝐸ଷ. Then from this, (12) and 0 < 𝑏 < ଵସ௤, it is easily to get that Bሶ = −μଵBଶ + μଶ(1 + |y|୯)ଶB≤ −μଵBଶ + μଶ൫1 + ൫(AB)ୠEଷ൯୯൯ଶB≤ −μଵBଶ + 2μଶ ቀ1 + ൫(AB)ୠEଷ൯ଶ୯ቁ B≤ −μଵBଶ + 2μଶB ൬1 + (AB)ଵଶEଷଶ୯൰  (31)

It means that 

B(t) ≤ 4μଶଶ൫1 + Eଷଶ୯√A൯ଶμଵଶ , ∀t ∈ [0, T) (32)

And hence B is boundedn on [0, T). 

Proof 1 It is easy to verify that the resulting closed-loop system is locally Lipschitz in the open 

neighborhood of the initial conditions of (x, xො, A). Therefore, the closed-loop system has a unique 

solution on a small interval [0, t). Let [0, T) be the largest interval for which a unique solution exists, 

where 0 < T ≤ +∞. As stated in Lemma 1, where T = +∞, the closed-loop system states are defined 

on [0, +∞). V൫ε(0), τ(0)൯eି୉భ୅ ୲ ≤ EଶEଵ (33)

Next step we can get 

μଶ ≥ c(1 + cଵ)‖P‖ − 16cଶ(‖Q‖ + ‖P‖)rଵμଶ ≥ c(1 + cଵ)‖P‖ − 16cଶ(‖Q‖ + ‖P‖)rଷμଶ ≥ μଵ > 0  (26)
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V൫ε(t), τ(t)൯ ≤ EଶEଵ , ∀t > T (34)

It is important to point out here that Eଵ contains parameter A. From this, it is evident that λ୫୧୬(P)|ε|ଶ + λ୫୧୬(Q)|τ|ଶ ≤ V൫ε(t), τ(t)൯ (35)

Then we have 

Combining (34), (36) and |y(t)| ≤ (AB)ୠEଷ, we can get: 

|y(t)| ≤ AୠBୠ(|εଵ(t)|, |τଵ(t)|) ≤ ට2൫εଵଶ(t) + τଵଶ(t)൯ ≤ ඨ2EସA , ∀t > T (37)

Then, we know that for all ∀t ∈ [T, +∞), 

Combining (37) and in turn 

yଶ(t) = ൫AୠBୠ൯ଶ(|εଵ(t)|, |τଵ(t)|)ଶ ≤ 2AଶୠBଶୠ൫εଵଶ(t) + τଵଶ(t)൯ ≤ 2 16ୠμଶସୠEସμଵସୠAଵିଶୠ ቆ1 + 2୯Eସ୯A୯ିଵଶቇଶୠ
 (39)

From this and 1 − 2b > 1 − ଵଶ୯ > 0(since 0 < b < ଵସ୯), when t > T, by choosing A big enough to 

make any small |y(t)|, so as to realize the actual path tracking. 

Remark 3. By analyzing the dynamic gain parameter B(t) of the dynamic observer, we can see 

that this method turns the control problem into a parameter selection problem through analysis, 

which can be found that as long as the more prominent the parameter B(t) selection area is, the better 

the control effect will be. A dynamic high-gain state observer is constructed. With the help of Ito 

stochastic calculus theory, the output feedback actual tracking controller is obtained. By selecting 

appropriate design parameters, the state and high gain parameters of the closed-loop stochastic 

nonlinear system are guaranteed to be bounded, and the system tracking error can be converge to 

zero within a small neighborhood. The study of output feedback tracking control for nonlinear 

systems is extended to stochastic systems. The practical tracking of output feedback for a class of 

stochastic nonlinear systems satisfying the growth condition of the output polynomial function is 

studied for the first time. 

4. Underwater Robot Transportation Model Example 

In this literature, we will simulate and verify the proposed stochastic uncertain dynamic gain 

adaptive control algorithm through specific numerical simulation. The dynamic model is converted 

into a specific mathematical model according to the dynamic characteristics of the underwater 

vehicle. Consider the following stochastic nonlinear system: lሶଵ = lଶ + sinlଵωሶ        lሶଶ = u + lଶln൫ଵା୪భమ൯ωሶy = lଵ − y୰                (40)

In this section, we apply Theorem 1, Assumptions 3 and 4, and Lemma 1 to specify the 

underwater robot path tracking control system described in Figure 1 with c଴ = 0.21, I = 2, and cଵ =1 . Therefore, an adaptive output feedback controller can be designed using Remark. The related 

control laws are implemented in the following from u = −Kଶaଵzොଵ + Kaଶzොଶ. As well-known in Section 

2, zොଵ  and zොଶ  are the estimations of y  and lଶ , respectively. These parameters are selected as b =0.1, h = [0.5,1]୘, h = [1,0.5]୘, μଵ = 7.2, μଶ = 9.8 and N = 117. 

εଵଶ(t) + τଵଶ(t) ≤ EସA  (36)

B(t) ≤ 4μଶଶμଵଶ ቆ1 + ൬2EସA ൰୯ √Aቇଶ
 (38)
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According the initial stations l଴ = [1, −0.5]୘  and zො଴ = 0  the simulation results are shown in 

Figures 2–8. These figure show l, zො, D and Dሶ  are all bounded, which have to verify the effectiveness 

of the path tracking controller. Besides, the tracking error |lଵ − y୰| ≤ 0.001 after 0.04s. 

 

Figure 2. The trajectory of Output. 

 

Figure 3. The trajectory of Station lଵ. 

 

Figure 4. The trajectory of Station lଶ. 
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(a) (b) 

Figure 5. The trajectory of Observers lመଵ and lመଶ. 

 

(a) (b) 

Figure 6. The trajectory of Errors lଵ and lଶ. 

 

Figure 7. The trajectory of Controller u. 
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(a) (b) 

Figure 8. The trajectory of D and Dሶ . 
5. Concluding and Future Prospects 

In this paper, we have studied the application of this dynamic adaptive control to AUV trajectory 

tracking. The nonlinear characteristics of underwater robot motion are studied, and a novel dynamic-

static gain observer strategy is proposed to reduce the computational burden. Numerical simulations 

and additional experiments validate the efficiency and robustness of the proposed strategy and 

highlight the advantages of dynamic-static high-gain adaptive control algorithms. It can reduce not 

only the reaction time of the controlled system and the error of the control state but also has an 

excellent inhibitory effect on stochastic and uncertain interference. 

We discovered a class of nonlinear systems with piecewise linearization in practical engineering 

and research. Piecewise linearization decomposes a nonlinear system into a combination of finite or 

infinite linear subsystems. This combination can approximate nonlinear systems. In the control 

process, piecewise linearization has the same characteristics as nonlinear and simplifies the control 

process and method. According to the known situation, this method has been applied in many 

practical projects and has achieved a perfect control effect. However, the current application scope of 

this method is still minimal and has special conditions for nonlinear systems. The following work 

will expand the application range of piecewise linearization of nonlinear systems, which will be the 

next hotspot of nonlinear control research. 

6. Acknowledgments 

This work was supported by the Stable Supporting Fund of Science and Technology on Underwater Vehicle 

Technology (JCKYS2022SXJQR-01). 

Funding: This work was supported by the Stable Supporting Fund of Science and Technology on Underwater 

Vehicle Technology (JCKYS2022SXJQR-01). 

Data Availability Statement: All data generated or analyzed during this research are included in this paper. 

Conflicts of Interest: The author declares that there is no conflict of interest regarding the publication of this 

paper. 

References 

1. Zhang Y.; Liu X.; Luo M.; Yang C. MPC-based 3-D trajectory tracking for an autonomous underwater 

vehicle with constraints in complex ocean environments. Ocean Eng 2019; 189: 106309. 

2. Bi F.; Wei Y.; Zhang Z J.; Cao W. Position-tracking control of underactuated autonomous underwater 

vehicles in the presence of unknown ocean currents. Iet Control Theory and Applications 2010; 4: 2369-2380. 

3. Yuh J. Design and Control of Autonomous Underwater Robots: A Survey. Autonomous Robots 2000; 8(1): 7–

24. 

4. Haj-Ali A.; Ying H. Structural analysis of fuzzy controllers with nonlinear input fuzzy sets in relation to 

nonlinear PID control with variable gains. Automatica 2004; 40(9): 1551–1559. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 August 2023                   doi:10.20944/preprints202308.0425.v1

https://doi.org/10.20944/preprints202308.0425.v1


 13 

 

5. Krstic M. Feedback Linearizability and Explicit Integrator Forwarding Controllers for Classes of 

Feedforward Systems. IEEE Transactions on Automatic Control 2004; 49(10): 1668–1682. 

6. Tsai WC.; Wu CH.; Cheng MY. Tracking Accuracy Improvement Based on Adaptive Nonlinear Sliding 

Mode Control. IEEE/ASME Transactions on Mechatronics 2021; 26(1): 179–190. 

7. Zhu C.; Huang B.; Zhou B.; Su Y.; Zhang E. Adaptive model-parameter-free fault-tolerant trajectory 

tracking control for autonomous underwater vehicles. ISA Transactions 2021; 114: 57–71. 

8. Wadi A.; Mukhopadhyay S.; Lee JH. Adaptive observer design for wave PDEs with nonlinear dynamics 

and parameter uncertainty. Automatica 2021; 123: 109295. 

9. Wen L.; Tao G.; Song G. Higher-order tracking properties of nonlinear adaptive control systems. Systems & 

Control Letters 2020; 145: 104781. 

10. Zhang X.; Baron L.; Liu Q.; Boukas EK. Design of Stabilizing Controllers With a Dynamic Gain for 

Feedforward Nonlinear Time-Delay Systems. IEEE Transactions on Automatic Control 2011; 56(3): 692–697. 

11. Elmokadem, T.; Zribi, M.; Youcef-Toumi, K. Terminal sliding mode control for the trajectory tracking of 

underactuated Autonomous Underwater Vehicles. Ocean Eng 2017; 129: 613–625. 

12. Wang Y.; Pu H.; Shi P.; Ahn CK.; Luo J. Sliding mode control for singularly perturbed Markov jump 

descriptor systems with nonlinear perturbation. Automatica 2021; 127: 109515. 

13. Taleb M.; Plestan F.; Bououlid B. An adaptive solution for robust control based on integral high-order 

sliding mode concept. International Journal of Robust and Nonlinear Control 2015; 25(8): 1201–1213. 

14. Liu K.; Liu K.; Wang Y.; Ji H.; Wang S. Adaptive saturated tracking control for spacecraft proximity 

operations via integral terminal sliding mode technique. International Journal of Robust and Nonlinear Control 

2021; 31(18): 9372-9396. 

15. Khan S.; Guivant J.; Li X. Design and experimental validation of a robust model predictive control for the 

optimal trajectory tracking of a small-scale autonomous bulldozer. Robotics and Autonomous Systems 2022; 

147: 103903. 

16. Hyun-Wook.; Jo, Jong-Tae.; Lim.; Ho-Lim.; Choi. Observer based output feedback regulation of a class of 

feedforward nonlinear systems with uncertain input and state delays using adaptive gain. Systems and 

Control Letters 2014; 71: 45–53. 

17. Chen X.; Zhang X.; Liu Q. Prescribed-time decentralized regulation of uncertain nonlinear multi-agent 

systems via output feedback. Systems & Control Letters 2020; 137: 104640. 

18. Krishnamurthy P.; Khorrami F. Feedforward Systems with ISS Appended Dynamics: Adaptive Output-

Feedback Stabilization and Disturbance Attenuation. IEEE Transactions on Automatic Control 2008; 53(1): 

405–412. 

19. Machado JE.; Ortega R.; Astolfi A.; Jos. An Adaptive Observer-Based Controller Design for Active Damping 

of a DC Network with a Constant Power Load. IEEE Transactions on Control Systems Technology 2021; 29: 

2312–2324. 

20. Chaudhari S.; Shendge PD.; Phadke SB. Disturbance Observer Based Controller Under Noisy Measurement 

for Tracking of n DOF Uncertain Mismatched Nonlinear Interconnected Systems. IEEE/ASME Transactions 

on Mechatronics 2020; 25(3): 1600–1611. 

21. Liu S.; Wang D.; Poh E. Output feedback control design for station keeping of AUVs under shallow water 

wave disturbances. International Journal of Robust & Nonlinear Control 2010; 19(13): 1447-1470. 

22. Negahdaripour S.; Xu X.; Khamene A.; Awan Z. 3-D motion and depth estimation from sea-floor images 

for mosaic-based station-keeping and navigation of ROVs/AUVs and high-resolution sea-floor mapping. 

IEEE Proceedings of the 1998 Workshop on Autonomous Underwater Vehicles 1998; PP:191-200. 

23. Zhuan X.; Xia X. Optimal Scheduling and Control of Heavy Haul Trains Equipped With Electronically 

Controlled Pneumatic Braking Systems. IEEE Transactions on Control Systems Technology 2007; 15(6): 1159-

1166. 

24. Du T.; Hughes J.; Wah S.; Matusik W.; Rus D. Underwater Soft Robot Modeling and Control with 

Differentiable Simulation. IEEE Robotics and Automation Letters 2021; PP(99): 1-1. 

25. Chen YL.; Ma XW.; Bai GQ.; Sha Y.; Liu J. Multi-autonomous underwater vehicle formation control and 

cluster search using a fusion control strategy at complex underwater environment. Ocean Eng 2020; 216(7): 

108048. 

26. Hu C.; Fu L.; Yang Y. Cooperative navigation and control for surface-underwater autonomous marine 

vehicles. IEEE 2018. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 August 2023                   doi:10.20944/preprints202308.0425.v1

https://doi.org/10.20944/preprints202308.0425.v1


 14 

 

27. Liang Z.; Liu Q. Design of stabilizing controllers of upper triangular nonlinear time-delay systems. Systems 

& Control Letters 2015; 75: 1–7. 

28. Li DJ. Adaptive output feedback control of uncertain nonlinear chaotic systems based on dynamic surface 

control technique. Nonlinear Dynamics 2012; 68(1-2): 235–243. 

29. Huang Y.; Meng Z. Global finite-time distributed attitude synchronization and tracking control of multiple 

rigid bodies without velocity measurements. Automatica 2021; 132: 109796. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 

products referred to in the content. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 August 2023                   doi:10.20944/preprints202308.0425.v1

https://doi.org/10.20944/preprints202308.0425.v1

