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Abstract: In this paper, the trajectory tracking control problem of an autonomous underwater vehicle (AUV)
based on a stochastic uncertain nonlinear system is studied. We investigate the time-varying gain adaptive
control method to find possible approaches to reduce the excessive computational burden. Under nonlinear
growth, conditions satisfy polynomial growth conditions. These two problems are resolved the fast response
time and good path tracking, respectively. Enhanced adaptive algorithms are devised by leveraging the
dynamic characteristics of AUV motion. By transforming the original controller design problems into
parameter selection problems and subsequently solving them using a functional time-varying observer
technical theorem, we can achieve optimal control performance. In order to deal with the issue of station error
in systems that converge to arbitrarily small domains with stochastic uncertain disturbances. A coordinate
transformation is proposed for all system states to meet boundedness. We demonstrate that the convergence
of the AUV trajectory errors can be certified by contraction restrictions that are suggested in the stability
analysis, closed-loop stability is certified, and the system is asymptotically probabilistic in the global scope.
They are utilizing the guaranteed stability. A large number of simulation studies on underwater vehicle model
have proved the effectiveness and robustness of the proposed approach. A real-time time-varying gain
constructive control strategy is further developed for the Hardware-in-the-loop simulation; the effectiveness of
the controller design is verified by introducing the controller design results into the AUV actuator model.

Keywords: trajectory tracking; AUV adaptive control; stochastic uncertain nonlinear system; dynamic and
static gain

1. Introduction

An Autonomous Underwater Vehicle (AUV) is widely used in underwater exploration and
scientific research. In AUV research, the control system of underwater thrusters can be said to be its
neural center and the most complex technology, so the control of underwater thrusters is one of the
most challenging problems in the field of control. Due to the crucial role played by AUVs in deep-sea
environmental resource exploration. In recent decades, tracking control, the state maintenance, and
path planning of AUVs have received attention from researchers, leading to an urgent need to
develop new control theories in the theoretical and engineering fields of AUV output feedback
control, making them fit for complex systems affected by various factors such as randomness,
nonlinearity, and time delay. In addition, the control theory system built under the framework of
certainly systems is no longer applicable to stochastic nonlinear systems [1-11]. Therefore, it is a great
challenge to solve the output feedback control problem of stochastic nonlinear systems by using
stochastic control theory and related mathematical tools. In engineering practice, there is a high
probability that the input and output of a controlled system are random signals. Therefore, the
stochastic nonlinear system that combine the nonlinear and stochastic characteristics are a research
area of considerable interest in the control theory community.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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The application of trajectory tracking control is essential for autonomous underwater robots.
However, due to the complex system, uncertain working environment, and highly coupled nonlinear
characteristics of underwater robots [1,2], the controller design of AUV becomes very challenging. In
the past decades, the design of trajectory tracking controller [3] for underwater vehicles has been a
problem worthy of attention. Traditional PID, LQR, and Kalman filtering [4] can also control the
trajectory of the underwater robot. In addition, nonlinear PID also has good performance in control.
However, when the target trajectory being tracked is nonlinearity, the nonlinearity of the curved
trajectory makes nonlinear PID no longer applicable in vehicle driving and class linear control
techniques. Feedback linearization [5] presents a powerful tool for dealing with nonlinear
characteristics. However, applying feedback linearization to the AUV requires a system model with
highly accurate hydraulic dynamic coefficients [6]. In this context, the adaptive [7-9] Lyapunov
method has become the mainstream method for AUV trajectory control. In Article [10], the dynamic
controller is used for the first time in the backstepping control technique. AUV output backstep
control can be found in Article [11,12]; another popular AUV trajectory tracking control method is
sliding mode control. It is well known that this method has an excellent robust effect when the
parameters are uncertain, but the sliding effect of sliding mode control tends to appear discrete. In
order to reduce this phenomenon, sliding mode control is often used in combination with control
methods such as robust control, adaptive control, and PID [13-15].

Nonetheless, the above control methods have a general deficiency the inability to deal with the
stochastic characteristics and uncertain disturbances of the system. For AUVs, stochastic and
uncertain are very common [16,17], which the actuator must suffer in the working environment or
the system’s characteristics. Adaptive control is featured in dealing with this randomness and
uncertainties [18], which proposes a robust control structure in the face of this wide range of control
problems. In addition, adaptive control can solve complex nonlinear problems for solving the control
problems of AUV dynamic systems. So far, we do not have a very effective control method for
trajectory tracking control problems. In article [19], a self-correcting adaptive method is proposed, a
complete method to solve the problem that its dynamic parameters and even the model structure
often change. The trajectory tracking control algorithm for AUV stochastic uncertain nonlinear
system is proposed. In paper [20], where the concept of stochastic and uncertain is creatively
introduced. In article [21,22], a comprehensive trajectory tracking control and path planning problem
is researched. A unified optimization framework [23] is developed for the problem of AUVs
combined motion control.

Although an adaptive control based on an integral high-order sliding mode concept provides a
good algorithm for nonlinear systems with random and uncertain disturbances [13], when solving,
this method heavily burdens the computational bottleneck. In theoretical research, the computational
time is often ignored, but in practice, the computational difficulty increases exponentially with the
increase of stochastic and uncertain interference problems. Due to the short sampling period, many
strategies such as iterative methods, precomputation, and numerical continuation [24] have been
proposed to decrease the computational complexity and reduce the computational time. By exploring
the motion characteristics of underwater robots, a dynamic-static combined with a high-gain observer
is successfully applied to the output feedback adaptive control algorithm. However, the stability
proof of the closed-loop system in paper [25] is not provided. Since the dynamic gain control,
algorithm solves the trajectory tracking control problem of the underwater robots. The implicit
coupling of the system state and the control signal complicates the stability analysis of the closed-
loop system. It is urgent to find a better stability analysis method.

This paper hope to provide a method to eliminate the influence of random and uncertain
disturbances on AUV trajectory tracking and simultaneously ensure the closed-loop system stability.
Here, the reference augmentation technique is applied to modeling the AUV system so that the
coupled motion between the systems is weakened [26]. Then the dynamic gain method is studied to
reduce the computational stress of stochastic uncertain nonlinear systems. Since the novel dynamic
gain, adaptive control algorithm was proposed, the complex control problem has been changed into
a parameter selection and construction problem through dynamic gain. The computational
complexity is significantly reduced and the computation time is significantly reduced. The
contributions of this article are as follows:
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1. Aiming at the problem of AUV trajectory tracking control, a well-known stochastic uncertain
nonlinear dynamic adaptive control algorithm is provided to study the AUV motion’s dynamic
characteristics.

2. A novel dynamic-static combination of high-gain observers is proposed, which dramatically
reduces the computational complexity of the control algorithm and transforms the controller design
problem into a parameter calculation and selection problem.

3. Investigate fundamental properties of closed-loop systems. The control time and control error
of AUV trajectory tracking is remarkably reduced, the control effect is incredibly optimized, and the
sensitivity is improved.

4. Numerical simulations and additional experiments reveal that the proposed dynamic-static
high-gain adaptive control algorithm has excellent robust performance against stochastic and
uncertain disturbances.

The rest of this paper is organized as follows: The second section describes the AUV motion
model. The third section is the dynamic and static high-gain adaptive control algorithm. Section 4
presents simulation studies and additional experiments. The fifth section is the conclusion and
prospects.

2. Description of Dynamic Modelling of Robot

In this section, the dynamics analysis of the AUV is carried out. According to the analysis of the
power, resistance, and inertial force when moving underwater, we can obtain the general dynamic
equation. Considering the complexity and uncertainty of the underwater environment [2,27], a
stochastic process was added to the model. Based on the established underactuated underwater robot
model, as shown in Figure 1.
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Figure 1. Hardware-in-the-loop simulation device with underwater robot.
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The 6-DOF dynamic model of the AUV can be expressed as follows:
Mv+C()v+Dw)v+gle)=F (1)

where M = M, + Mgy is the inertia mass matrix, which contains AUV additional quality. C(v)
are Coriolis force matrix of the underwater vehicles. D(v) is for underwater vehicle fluid damping
matrix. g(e) stands for the gravity of the underwater vehicle in operation and the restoring force
(moment) matrix generated by the buoyancy. F = [F, F,, F,, Fy, F,, F,]" stands for the resultant forces
and moments. ¥ = [, %, ®,p,q,7]7 are the linear and angular accelerations of the body (moving)
frame in the direction of pitch, roll and heave, v = [u, v, w,p,q,r]" stands for the linear and angular
velocity with respect to body (moving) frame, u - surge velocity, v - sway velocity, w - heave
velocity, p - roll rate, q - pitch rate, r - yaw rate. €= [x,y,z a,B,y]" are the position and
orientation in inertial(fixed) frame, x - surge position, y - sway position, z - heave position, a -
roll angle, f - pitch angle, y - yaw angle.

According to the above, the six-degree-of-freedom (6-DOF) model of the underwater robot has
complex nonlinearity and state coupling. If the paper wants to design a controller with six degrees of
freedom, it will pose a great challenge to the controller design and physical characteristics. Here, we
decompose the 6-DOF motion model into two kinematic models, which is linear velocity variables
v; = [u,v,w]"T and angular velocity variables v, = [p,q,7]". In the earth-fixed frame, the velocity
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can generally be decomposed into two kinematic models, underwater robot position €, = [x,y,z]"
and underwater robot orientation €, = [a, 8,y]", which can highly simplify the AUV model. In this
paper, we only consider the velocity variables v; = [u, v, w]” and linear motion €; = [x,y,z]" of the
AUV underwater.

The relationship between the fixed frame and body frame in linear velocity is as follows:

€ =J(e)v, (2)

Where J(€) is the kinematic transformation matrix of the following form:

cycf —syca+ cysfisa  sysa + cycfsa
J(e) = (syc/)’ cyca + sysfisa —cysa + sysﬁca)
—sf cfsa cfca

Where, s =sin, ¢ =cos and €, = [a,,y]" is the angle between the surge, sway and heave
direction and the earth frame, respectively. When B = +90°, this transformation is undefined and the
quaternion method has to be considered. While, most robots are designed to operate at pitch angles
below +90°; Thus, this restriction is of no great significance here. In order to better understand and
analyze the motion state, we will study the AUV system based on the earth reference frame. In order

to unify the signal states, using Eq. (2) for coordinate transformation (&, v;) 5 (€1,€1), we obtain:
€ _[I 0 7/&
(&)=lo sl

The coordinate transformation is a global diffeomorphism analogous to a similarity
transformation in the linear system. The dynamic underwater vehicle model with the earth fixed

M & + Cc €1+ D €1 + g, = 3)

reference frame is as follows:
where

Me, =J(e)"M](e)~
Ce, =J()T(CW) =M ()Y () ()

D., =J(e)T"DW)J(e)~! 4)
9e, =J(€)7Tg(e)
F, =]()F

We need some assumptions as follows.
Assumption 1. In this paper, only the velocity between the self-position and the fixed frame is

considered, the velocity is | = (x? + y% + 22)%. Suppose the origin state €,(0) = [000] and & (0) =
[000].

Assumption 2. In this paper, the velocity €; = [x y z] and the angle €, = [a Y] are known
using the sensors.

In this paper, we focus on the problem of trajectory tracking control for a class of stochastic
uncertain nonlinear systems. For the trajectory tracking control problem of the underwater robot
under nonlinear dynamics, to better design the control algorithm, we convert the dynamic model of
the system into a broad numerical model as follows.

dl; = Ldt + @,(t,1(t), wdw
dl, = udt + @, (t, 1(t), u)dw (5)
y= L= Vr
In the stochastic nonlinear systems [ = (l;,[;)T € R?, u € R, y € R are the states, input and
output of system, respectively; y, is the target trajectory to be tracked. Where state [, and y, are
unmeasurable. The stochastic process of the system is introduced in this paper: w is an m -
dimensional standard Wiener process defined on the complete probability space (©,T,P ), where Q
is the sample space, I' is the filter, and P is the probability measure. Nonlinear term
@ R* X Rx R?i=1,2 is satisfied continuous polynomial growth conditions and local Lipschitz.
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In this paper, we assume that system (5) satisfies the following assumptions and implements
output feedback tracking control.

Assumption 3. There exists a positive constant ¢, > 0 and a known integer q =1 such that
the following inequality holds

lo: (8, Ll < co(X+ [LID AL+ LD +co, i = 1,2 (6)

This assumption shows that the output polynomial growth rate governed this system (5).

Assumption 4. The target trajectory max(ly,(O)|, [¥-(t)]) <c;, c¢; is known constants.
According to the description of the above system, this section’s goal is to design a time-varying gain
constructive control algorithm: for any given in advance tolerance § > 0. In the closed-loop system,
all the states are well-defined and globally bounded on [0, +0) in finite time Ts > 0, for instance
ly®1 = 1L® - »®O] <8Vt = Ts.

Remark 1. It should be pointed out that the output feedback tracking control problems studied
in previous literatures [28,29] are mainly aimed at nonlinear systems or nonlinear systems with
parameter uncertainty and unknown control direction. The system (5) studied in this paper is a
stochastic uncertain nonlinear system after introducing random factors. At the same time, system (5)
is observable by Assumption 3, which depends on the unmeasurable state and nonlinear growth
conditions satisfying the polynomial growth condition, according to Assumption 4. It can be seen
that for the reference trajectory y,, its upper bound value and the upper bound value of the derivative
are given, which means that it is not necessary to give a specific description function or give more
information to the reference trajectory y;.

Based on this assumption 3, 4 and (5), for the |, =y + y,,i = 1,2. We have:

loi(t, Lw)] < co(1 + |y + DL+ || + -+ LD + ¢ %
<c@+ DAL+ I+ + LD +c

where ¢ = comax{1 + 29 1c, 297} is a known constant.

3. Dynamic and Static High Gain Adaptive Control Algorithm

In this section, we propose a dynamic gain observer strategy to achieve dynamic adaptive
tracking control, so that the complexity can be greatly reduced, which will study the stochastic
uncertain nonlinear underwater robot system in two steps. The first step is the dynamic gain observer
and controller design of the AUV system; the second step is stability analysis and implementation of
the AUV system.

3.1. Dynamic Gain Observer and Controller Design

First step, this section is to introduce the following state transformation:

zZn=y=L -y

Z2 = l2 (8)
So, we can get the system (9).
Zl = Zy +f1(t,Z,u)(b
Z.Z =u+f2(t,Z,u)d) (9)
y=2z
where
dy,
fl(tl z, u) = q)l(tl Z + Yr Z21u) - dw (10)

f2(tz,u) = @, (t, 21 + Y, Z5,u)

Since the states of the stochastic system are unmeasurable except for l;, which is a measurable
state, the time-varying observers are first constructed:

él =17y + thl(zl - 2),

. 11
ZAZ =u+K2h2(Z1 _ZAl), ( )
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Meantime, we choose design parameters h;,i = 1,2, are constants and satisfying Hurwitz
condition and s? + hys + h,. The K = AB(t) is a dynamic gain parameter, which A > 1 is a constant
and B(t) is a time-varying function updated by

B(t) = = B? + u,(1 + |y|9)*B

B(0)=1 (12)

Theorem 1. So far, we can conclude that all closed-loop system states are bounded on [0, T),
then T must be infinite. Otherwise, at least one state will escape at T, contradicts the continuity of
the closed-loop system. For a class stochastic uncertain nonlinear system (5), y = 1; — y, is the output,
and the nonlinear term of the system meets Assumptions 3 and 4. According to choose the suitable
parameters K;,g;,i=1,2,A,1; and p, and based on observer (11), the output feedback controller is
designed as follows:

u= _(Kzalil + Kaz,Z\z) (13)

where the parameter a = [a;,a,]7 is a constant vector and satisfying Hurwitz condition and
h; = az_;. Next, we will to prove that practical global tracking can be achieved when A is large
enough. Furthermore, practical path tracking can be achieved. For any & > 0, there exists a finite time
Ts, such that |y(t)] < §,Vt = Ts.

Remark 2. Through equation (8), we can turn complex systems into simple ones. According to the
unmeasurable state of the system, we introduce a dynamic gain observer (11) to construct the
observation time of the system state. Unlike the previous observers, the observer gain in this paper is
an observer combined with dynamic B(t) and static A gain parameters. The observed effect is closer
to the actual value of the system, which provides a good condition for the following controller to
control the error variable. On account of the insufficient information on the system and the tracking
signal and the system’s instability after introducing random factors, the common tracking control
methods, such as the MPC method, can no longer solve the problems in this chapter. For these
challenging problems, this article will pay close attention to stochastic nonlinear systems satisfying
assumptions 3 and 4 by constructing an output feedback dynamic adaptive tracking controller
ground on the combination of the static and dynamic gain observer to achieve the original system (5)
the actual tracking control target.

3.2. Stability Analysis and Implementation

In this subsection, the main results of the paper are presented and harshly proved. For the
stability analysis, we need the following scaling transformation for the closed-loop system.

The state estimation error is defined as e; = z; — Z;, (i = 1, 2). Then the dynamics of e; satisfy:
él =€ — thlel + fl(t, Z, u)d) (14)
éz = —K2h261 + fz(t, Z, u)(i)

To facilitate the design of the controller, we need to transform the estimated state Z; and the
error state e; as follows:

g = KTli_l (i=12)
W as)
= Kb+i-1 (i=12)

where 0<b < i is a known constant, € = (g,&,)7,t = (15,72)", h = (hy, h;)T. According to

(15), stochastic nonlinear systems (9) and (11) can be converted as follows:

K
¢ = KHe — chs + G, K)o

0 (16)
© = KHpt — Khey + HCb‘t
. £, £ 1T —h; 1 0 1 b 0
Meantime, G(z,K) = [K—leb—z_H] JH = (—h; 0)'Hb = (—h1 —hz)’cb = (0 b+ 1)'
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Then, we discuss the gain B and the boundedness of the states € and t. Above all, choose the
proper parameters ry,T,,I'3,Iy, so that the relationship between the positive definite matrices P,Q
and the matrix H, Hy, C,, satisfies:

HTP + PAH S _12 I'112 S CbP + PCb S I'212

T T _ 17)

Let V(e(t), (1)) = eT(HP &(t) + t7Qr(t) be the Lyapunov function candidate. Then along the
trajectories of (16), the time derivative of V on [0, T) satisfies the following inequality:

K
LV = +2¢TGP — |¢]*K — ZSTE(CbP + PCy)e + 2KtTe;h — 2K|t|? — Tr(GT(P + Q)G)

K 18)
- ﬁTT(CbP + PCb)T
From Remark 2, we can know h > 1, and from (12), % = % = —u; D+ (1 + |y|H2.
K T 2 2|02
g & (P +PCy)e < rppy Blel® —ripp (1 + [y[9)% el
(19)

K
_ETT(CbQ +QCy)T < l"4111]3|T|2 — 13 (1 + |Y|q)2|T|2

Then, from this and (17), we have
By Assumption 4, (7), (8), (15) and the fact h > 1, we have

1

1G] = (G2 + [G,[2)% = ((%)2 . (Kf;)z)z 0)

Where
[Gi| < c[(X+ |ylD(el + [Tl + )+ 1] + ¢4

21
1Gal < cl(L+ Iy I (VEUel + e + 1) + 1] + ¢, e
Split and enlarge the terms in formula (18), and we can get
26e™P < 20lellIPI (c(1 + y1%) (c1 + (V2Qel + D)) + ¢, + <)
(22)

< |IPllc(1 + c) (el + [T + [yID? + 1PN (Sc + cp)lel? + [Pl (cey + ¢+ ¢q)
2Ke;htT < K(|t|? + |/?|h|?)
Therefore, combining equations (18)-(22), the system Ito differential equation can be obtained as:
LV < —Klel* + cllPI(1 + ¢ ) (X + y|D? (el + [TI*) + IPI(Sc + c)el? + [Pl (cey + ¢+ ¢1)
+ay B(ralel? + raltl?) — ap (1 + ly|D?(ry[e]? + r3]t]?) — 2K(It|* + t7e1h) + Tr(GT(P + QG)
< —Klel? + cllPI( + c) (X + lyID2(el® + It1?) + PN (5¢ + cp)lel* + [Pl (cey + ¢ + ;) (23)
+ry0Blel? — oy (1 + |y D2 (rylel® + It1?) — 2KIt|? + ryq Blt]? + K(IT|? + [h[?[e]?)

~(lIPIl + G (cCL + IO (VZ(el + 1t +¢;) +c +¢p)’

Where the last term of formula (23) can be enlarged as:

QIGH + IPID(cCL + I (V2(lel + It +¢;) + ¢ +¢;)°
< 2(1IPI+ 161D (<21 + 192 (VZ(el + [t + )" + (e + ¢,)?)

< 2PN+ IGID 22 + [ylD> (el + [TD?* + %) + (¢ + ¢1)?)
< 2(IIPI + IGID 22 + [ylD2(4el® + [TI?) + 12 + (c + ¢1)?)
= (IPIl + IIGID(@6c2(1 + [yID2(lel* + |t]?) + 4c*(1 + |y|D3cZ + 2(c + ¢;)?)

(24)

After finishing, we obtain

LV < =(K(1 = [h|*) = (5¢ + c)IIPIl = r2Byp) el = (Iyl® + D*(ryp, — IPllc(e; + 1) — 16(lIQI + IIPID) el
+(ray B = K)|tl® = (Iy19 + 1)?(rapz — clIPI(1 + ;) — 16¢*(lIQIl + [IPI])) el (25)
+IPll(cey + ¢+ ¢) + (42 + lylD?ef + 2(c + c)DIPI + lIQID
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According to formula (25), selection p, satisfies:
o @+ cIlIPIl = 16c*(lIQll + IIPID
U2 =2 T
o c@ +clIPIl = 16c*(lIQll + 1IPID (26)
M2 = rs
Hy =1y >0
According to B> 1, choose A to satisfy:
P
AS IPI|(5¢ + ¢1) + ropy
1 — |h?
A=y (27)
A=1

According to the above selection of parameters, the formula (25) can be transformed into:

LV < —K(el+el?) + IPlICecs + ¢, +) + I+ IQID(ACEE(L + Iy[)? + 2(c + ¢)?)
AV 28
S e Ty (€ O+ AP+ QDG (1 -+ 192 + 26e+ 1))

The relevant parameters are defined as follows:
A

B X G () T Aman (D) (29)
E, = [IPll(ccy +c + ¢1) + (4c2(L + ly|2e2 + 2(c + c)D) I + QD

As previously mentioned, the closed-loop system has a unique solution on the maximal time
interval [0,T), where 0 < T < 400,

V(e(®),T®) < V(s(O),r(O))e_%t + % t€ [0,T) (30)

which shows that 7 are bounded on [0, T).
Then prove the boundedness of B on [0,T) because € and t in [0,T) on the bounded, and

& +T = % = %, we get |y| < (AB)PE;. Then from this, (12) and 0 < b < ﬁ, it is easily to get that

B = —u,B? + 1, (1 + |y|9)?B
<~ B? + 1, (1 + ((AB)PE,)*)’B
< -1, B? + 2, (1 + ((AB)"E;)™") B (1)

1
< —m, B2 + 21,B (1 + (AB)Equ)

It means that

ap3(1 + E29A)’
2

1

B(t) < ,Vt € [0,T) (32)

And hence B is boundedn on [0, T).

Proof 1 It is easy to verify that the resulting closed-loop system is locally Lipschitz in the open
neighborhood of the initial conditions of (x,&, A). Therefore, the closed-loop system has a unique
solution on a small interval [0,t). Let [0,T) be the largest interval for which a unique solution exists,
where 0 < T < +oo. As stated in Lemma 1, where T = +oo, the closed-loop system states are defined
on [0, +c0).

V(s(O),r(O))e_%t < % (33)
1

Next step we can get
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Ep
V(e(®),T®) < 5o ve>T (34)
1
It is important to point out here that E; contains parameter A. From this, it is evident that
Amin (Pl + Amin (1T < V(e(®), 1(®)) (35)
Then we have
2 2 E4
a®+u® =<+ (36)

Combining (34), (36) and |y(t)| < (AB)PE;, we can get:

ly(®] < A’BP(Je; (O, [, (D) < /2(8%(0 +(D) < /%,VWT (37)

Then, we know that for all Vt € [T, +),
442 2E\T —\
B(t) < -2 <1 + (—‘*) ﬂ) (38)
My A

Combining (37) and in turn

b
2 16PpiPE 20g9\?
y*(© = (A°B") (Ie: (O I (9D? < 2B () +110) < 2 ip | 1+ Aq_; (39)
1 2

From thisand 1 —2b > 1 —— > 0(since 0 < b < =), when t> T, by choosing A big enough to
2q 4q

make any small |y(t)], so as to realize the actual path tracking.

Remark 3. By analyzing the dynamic gain parameter B(t) of the dynamic observer, we can see
that this method turns the control problem into a parameter selection problem through analysis,
which can be found that as long as the more prominent the parameter B(t) selection area is, the better
the control effect will be. A dynamic high-gain state observer is constructed. With the help of Ito
stochastic calculus theory, the output feedback actual tracking controller is obtained. By selecting
appropriate design parameters, the state and high gain parameters of the closed-loop stochastic
nonlinear system are guaranteed to be bounded, and the system tracking error can be converge to
zero within a small neighborhood. The study of output feedback tracking control for nonlinear
systems is extended to stochastic systems. The practical tracking of output feedback for a class of
stochastic nonlinear systems satisfying the growth condition of the output polynomial function is
studied for the first time.

4. Underwater Robot Transportation Model Example

In this literature, we will simulate and verify the proposed stochastic uncertain dynamic gain
adaptive control algorithm through specific numerical simulation. The dynamic model is converted
into a specific mathematical model according to the dynamic characteristics of the underwater
vehicle. Consider the following stochastic nonlinear system:

I, =1, +sinl®
I, = u+ LIn(t+)g (40)
y=h -y
In this section, we apply Theorem 1, Assumptions 3 and 4, and Lemma 1 to specify the
underwater robot path tracking control system described in Figure 1 with ¢y = 0.21,1 =2, and ¢; =
1. Therefore, an adaptive output feedback controller can be designed using Remark. The related
control laws are implemented in the following from u = —K?a,%; + Ka,Z,. As well-known in Section

2, Z; and Z, are the estimations of y and I,, respectively. These parameters are selected as b =
0.1,h = [0.5,1]T,h = [1,0.5]T, b, = 7.2, 1, = 9.8 and N = 117.
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According the initial stations 1, = [1,—0.5]T and 2, = 0 the simulation results are shown in
Figures 2-8. These figure show 1,2,D and D are all bounded, which have to verify the effectiveness
of the path tracking controller. Besides, the tracking error |l; —y,| < 0.001 after 0.04s.

output y

— stochastic disturbance
0.5 1

Trajectories
o
T

-0.5 a
A+ —
1 1 L 1 1 1 L 1 L
0 0.01 0.02 0.03 0.04 0.05 0.08 0.07 0.08 0.09 0.1
Time (seconds)
Figure 2. The trajectory of Output.
T T T
2l 4
15— =

1

c
8
®
n

A |

1 1 1 L L 1 1
0 0.5 1 15 2 25 3 3.5 4
Offset=0 Time (seconds)
Figure 3. The trajectory of Station ;.
T T

-
c g
2
5
(]

! | I | 1 | 1 ! I
0 0.01 0.02 0.03 0.04 0.06 0.06 0.07 0.08 0.09 0.1
Time (seconds)

Figure 4. The trajectory of Station I,.
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Figure 5. The trajectory of Observers 1; and 1.
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Figure 6. The trajectory of Errors 1; and I,.
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Figure 7. The trajectory of Controller u.
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Figure 8. The trajectory of D and D.

5. Concluding and Future Prospects

In this paper, we have studied the application of this dynamic adaptive control to AUV trajectory
tracking. The nonlinear characteristics of underwater robot motion are studied, and a novel dynamic-
static gain observer strategy is proposed to reduce the computational burden. Numerical simulations
and additional experiments validate the efficiency and robustness of the proposed strategy and
highlight the advantages of dynamic-static high-gain adaptive control algorithms. It can reduce not
only the reaction time of the controlled system and the error of the control state but also has an
excellent inhibitory effect on stochastic and uncertain interference.

We discovered a class of nonlinear systems with piecewise linearization in practical engineering
and research. Piecewise linearization decomposes a nonlinear system into a combination of finite or
infinite linear subsystems. This combination can approximate nonlinear systems. In the control
process, piecewise linearization has the same characteristics as nonlinear and simplifies the control
process and method. According to the known situation, this method has been applied in many
practical projects and has achieved a perfect control effect. However, the current application scope of
this method is still minimal and has special conditions for nonlinear systems. The following work
will expand the application range of piecewise linearization of nonlinear systems, which will be the
next hotspot of nonlinear control research.
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