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Abstract: Genome-Wide Association Studies (GWAS) are pivotal for identifying quantitative trait 

nucleotides (QTNs) in crops like barley. However, the performance of different methods varies 

depending on population structure and computational demands. This study compared eight GWAS 

methods (GLM, MLM, CMLM, SUPER, MLMM, FarmCPU, BLINK, and ECMLM) using a simulated 

dataset from the World Barley Core Collection (WBCC) with 6,332 SNPs, 318 samples, a heritability 

of 0.7, and 15 QTNs across 30 replicates. Statistical power, false discovery rate (FDR), Type I error, 

and computational efficiency were evaluated at a 10 Mb window size through Power vs FDR/Type I 

error curves, Area Under the Curve (AUC) boxplots, QQ plots, Manhattan plots, and timing bar 

graphs. MLMM consistently outperformed other methods in balancing power and error control, 

followed closely by BLINK and FarmCPU, which also demonstrated high mapping resolution in 

Manhattan plots. GLM exhibited the highest false-positive rate, as seen in its QQ plot, while ECMLM 

underperformed despite theoretical advantages. GLM and MLMM were the fastest, whereas CMLM 

was the slowest, highlighting significant computational trade-offs. These findings suggest that 

MLMM is ideal for high-quality QTN discovery in barley, while BLINK offers a balanced approach 

for routine analyses. The study provides a framework for selecting GWAS methods in barley, 

emphasizing the importance of balancing power, error control, and computational efficiency in 

structured populations like the WBCC. 

Keywords: false discovery rate; mapping resolution; population structure; QTN detection; type I 

error; world barley core collection 

 

Introduction 

Genome-wide association studies (GWAS) identify statistical associations between molecular 

markers and quantitative traits, offering a promising approach for revealing the genetic basis of 

phenotypic variation (Bradbury et al., 2011). The first GWAS study was published in 2005, marking 

the exponential growth of this approach over time. GWAS have become indispensable in plant 

genomics, offering a robust framework to identify genetic variants associated with complex 

agronomic traits. By exploiting natural genetic variation within diverse populations, GWAS enabled 

the discovery of marker-trait associations that underpin marker-assisted selection and genomic 

selection, key strategies in modern crop improvement. This approach holds immense promises for 

addressing global challenges such as food security and malnutrition, particularly through 

biofortification, the enhancement of nutritional content in staple crops like barley. The broad appeal 

of GWAS stems from its potential to deliver climate-resilient and nutritionally superior varieties, 

making it a focal point for researchers, breeders, and agricultural stakeholders worldwide (X. Huang 

& Han, 2014; Mackay et al., 2009). 

A persistent challenge in GWAS is the selection of an appropriate statistical model that optimizes 

the detection of true associations while minimizing false positives and computational demands. Early 

models, such as the General Linear Model (GLM), provide a straightforward approach to associating 
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genetic markers with phenotypes but fail to account for population structure and relatedness, often 

resulting in elevated false discovery rates (FDR; Price et al., 2006). In contrast, the Mixed Linear Model 

(MLM) incorporates kinship matrices and population structure covariates to reduce spurious 

associations, albeit at the cost of reduced statistical power (Yu et al., 2006). This trade-off complicates 

the analysis of datasets like the World Barley Core Collection (WBCC), a globally diverse panel 

selected for its potential in barley biofortification, where accurate identification of quantitative trait 

nucleotides is critical for breeding success. 

Significant efforts have been made to refine GWAS methodologies, yielding a spectrum of 

models with distinct strengths. The Compressed MLM (CMLM) enhances computational efficiency 

by clustering individuals based on genetic similarity, while the Enriched CMLM (ECMLM) further 

optimizes kinship to boost power (Lipka et al., 2012; Zhang et al., 2010). Multi-locus models, such as 

the MLMM (Multiple Loci Mixed Model), SUPER (Settlement of MLM Under Progressively Exclusive 

Relationship), FarmCPU (Fixed and random model Circulating Probability Unification), and BLINK 

(Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway), address 

confounding between covariates and testing markers, improving resolution and power (Huang et al., 

2019; Liu et al., 2016; Segura et al., 2012; S.-B. Wang et al., 2016). These advancements, integrated into 

tools like the Genome Association and Prediction Integrated Tool (GAPIT), reflect a concerted push 

to tailor GWAS to diverse plant populations, including the WBCC, which offers extensive genetic 

variation for studying biofortification traits (Lipka et al., 2012). 

Despite these innovations, a comprehensive evaluation of these models’ performance remains 

lacking, particularly for datasets like the WBCC, which is poised to advance barley nutritional 

enhancement. The relative merits of single-locus models (e.g., GLM, MLM, CMLM, ECMLM) versus 

multi-locus models (e.g., SUPER, MLMM, FarmCPU, BLINK) vary across populations, and 

computational efficiency often conflicts with statistical robustness (Huang et al., 2019). This 

uncertainty hinders researchers’ ability to select the optimal model for the WBCC, where balancing 

power, FDR, mapping resolution, and runtime are essential for identifying reliable marker-trait 

associations. 

This study seeks to bridge this knowledge gap by systematically comparing eight GWAS models 

(GLM, MLM, CMLM, SUPER, MLMM, FarmCPU, BLINK, and ECMLM) using simulated data 

modeled after the filtered 6,332 SNPs of the WBCC. The objective of the study is (i) to assess statistical 

power relative to FDR and Type I error, clarifying each model’s accuracy in detecting true 

associations; (ii) to evaluate mapping resolution through Manhattan and quantile-quantile plots, to 

determine precision in localizing genetic variants; and (iii) to measure computational efficiency, 

providing practical insights for large-scale analyses. These findings aim to guide plant breeders and 

geneticists in selecting the most effective GWAS approach, enhancing the precision and efficiency of 

genetic discovery for barley biofortification. 

Materials and Methods 

Data Curation 

This study utilized genotypic data from the WBCC, comprising 318 barley (Hordeum vulgare L.) 

lines. The dataset included 9K SNP markers generated using the Illumina Infinium iSelect 9K Barley 

SNP array, with marker positions aligned to the Morex v3 reference genome. The genotypic data 

were sourced from the Triticeae Toolbox (https://triticeaetoolbox.org/barley/?old=old) and subjected 

to stringent quality filtering to ensure reliability. Markers with missing data exceeding 10% across 

lines, lines with more than 30% missing marker data, and markers with a minor allele frequency 

below 5% were excluded. This filtering process retained 6,332 high-quality SNP markers for 

subsequent analysis. 

To evaluate the performance of GWAS models, phenotypic data were simulated based on the 

filtered genotypic dataset. Simulations were conducted using the GAPIT.Phenotype.Simulation 

function within the GAPIT framework (Lipka et al., 2012). Phenotypes were generated with a 
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heritability (h²) of 0.7, incorporating 15 quantitative trait nucleotides (QTNs) with an effect size of 0.6, 

following a normal distribution. A total of 30 replicates were conducted for each of the eight GWAS 

methods, with a seed (99164) set for reproducibility. QTN positions were recorded for each replicate 

to evaluate true positives in subsequent analyses. 

Statistical Models for GWAS 

GWAS was conducted using GAPIT (Lipka et al., 2012) where the eight GWAS models (GLM, 

MLM, CMLM, SUPER, MLMM, FarmCPU, BLINK, and ECMLM) were evaluated. Analyses were 

conducted using genotypic data, marker information, simulated phenotypic data, and three principal 

components to account for population structure. Each model was executed for all 30 simulation 

replicates, with true QTN positions recorded to assess detection accuracy. Computational runtime 

was measured to capture the duration of each GAPIT run per model and replicate. 

Statistical Power, FDR, and Type I Error Calculation 

Statistical power, FDR, and Type I error were calculated using the GAPIT.FDR.TypeI function 

across four window sizes (1, 1,000, 10,000, and 100,000 base pairs) to evaluate model performance 

under varying genomic resolutions. Input included the marker information, true QTN positions, and 

GWAS results. Power was defined as the proportion of true QTNs detected, FDR as the ratio of false 

positives to total positives, and Type I error as the rate of false positives among null markers. Metrics 

were aggregated across replicates for each model and window size, focusing on the 10 Mb window 

for final statistical tests due to its relevance for barley genomic studies (Comadran et al., 2012). 

Statistical Comparisons 

Analysis of variance (ANOVA) was performed to test significant differences in Area Under the 

Curve (AUC; Power vs FDR and Power vs Type I Error) and computational runtime across the eight 

methods. Post-hoc mean separation was conducted with Tukey’s Honestly Significant Difference 

(HSD) test at a 5% significance level (alpha = 0.05) from the agricolae package. Mean separation letters 

were assigned to indicate statistically distinct groups for each metric. 

Data Visualization 

Visualization was performed in R to illustrate model performance. AUC plots of power versus 

FDR and power versus Type I error were generated using base R graphics, with lines colored by 

model. Boxplots of power and FDR distributions were created to show variability across replicates. 

Computational runtime was visualized as a bar graph with error bars (mean ± standard error), sorted 

by mean runtime. Power versus FDR and Type I error curves were plotted for each model with 10Mb 

window size. Manhattan plots and quantile-quantile (QQ) plots were produced for each model using 

GWAS results. 

Software and Environment 

Analyses were performed in R (version 4.3.1) (R Core Team, 2023) using the following packages: 

GAPIT for GWAS, dplyr and tidyr for data manipulation (Wickham et al., 2023), ggplot2 and 

gridExtra for visualization (Wickham, 2016; Auguie, 2017), agricolae for statistical tests (Lopez & 

Lopez, 2023), pracma for AUC calculation (Hassani, 2023), and zoo for rolling means (Zeileis & 

Grothendieck, 2005). All metrics, including AUC values, computational times, and aggregated 

statistics, were exported to an Excel file using the writexl package (Ooms, 2023) for further analysis. 

All scripts were sourced from the ZZLab repository (http://zzlab.net) (Zhang, 2020). 
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Results 

The comparison of the eight GWAS models (GLM, MLM, CMLM, SUPER, MLMM, FarmCPU, 

BLINK, and ECMLM) revealed distinct differences in statistical power, FDR, Type I error, mapping 

resolution, and computational efficiency when applied to a dataset of 6,332 SNPs across 318 WBCC 

samples with simulated phenotypes.  

Statistical power versus FDR and Type I Error Curves 

The Power vs FDR plot (Figure 1a) illustrates the trade-off between statistical power and FDR 

across the eight methods at varying significance thresholds. MLMM consistently achieved the highest 

power at lower FDR levels, reaching a power of 0.845 with an FDR of 0.578, followed by FarmCPU 

(power = 0.876, FDR = 0.677) and BLINK (power = 0.875, FDR = 0.656). GLM exhibited the steepest 

FDR increase, achieving a power of 0.891 but with a high FDR of 0.712, indicating poor control of 

false positives. MLM (power = 0.875, FDR = 0.634), CMLM (power = 0.877, FDR = 0.673), SUPER 

(power = 0.874, FDR = 0.631), and ECMLM (power = 0.876, FDR = 0.657) showed intermediate 

performance, with FDR rising more gradually than GLM but less optimally than MLMM.  

While FDR measures the proportion of false positives among significant results, Type I error 

(false-positive rate) reflects the proportion of false positives among null hypotheses, as further 

evidenced by the QQ plots (Figure 3). The Power vs Type I Error plot (Figure 1b) similarly highlights 

MLMM’s superior balance, reaching a power of 0.845 with a Type I error of 0.578 at threshold 15, 

followed by BLINK (power = 0.875, Type I = 0.656) and FarmCPU (power = 0.876, Type I = 0.677). 

GLM again showed the highest error rate (power = 0.891, Type I = 0.712), while MLM (power = 0.875, 

Type I = 0.634), CMLM (power = 0.877, Type I = 0.673), SUPER (power = 0.874, Type I = 0.631), and 

ECMLM (power = 0.876, Type I = 0.657) maintained lower Type I errors than GLM but higher than 

MLMM, consistent with their FDR trends. 

 
(a) 
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(b) 

Figure 1. a: Power vs FDR curves for eight GWAS methods using a simulated dataset from the World Barley 

Core Collection (WBCC) with 6,332 SNPs, 318 samples, h² = 0.7, and 15 QTNs across 30 replicates. The plot shows 

the trade-off between statistical power and false discovery rate (FDR) at varying significance thresholds (0 to 1), 

with each method represented by a distinct color. b: Power vs Type I Error curves for eight GWAS methods 

using a simulated dataset from the World Barley Core Collection (WBCC) with 6,332 SNPs, 318 samples, h² = 

0.7, and 15 QTNs across 30 replicates. The plot illustrates the relationship between statistical power and Type I 

error at varying significance thresholds (0 to 1), with each method represented by a distinct color. 

AUC for Power versus FDR and Type I Error 

The AUC: Power vs FDR boxplot (Figure 2a) quantifies the overall performance of each method 

in balancing power and FDR across all thresholds. MLMM exhibited the highest median AUC of 

0.674 ± 0.123, with a tight interquartile range (IQR) indicating consistent performance across 

replicates. BLINK and FarmCPU followed with median AUCs of 0.628 ± 0.105 and 0.614 ± 0.082, 

respectively, but their wider IQRs suggest greater variability compared to MLMM. GLM had the 

lowest median AUC of 0.424 ± 0.154, with a wide IQR and several outliers, reflecting its high 

variability and poor error control. MLM, CMLM, SUPER, and ECMLM showed intermediate 

performance with median AUCs of 0.507 ± 0.118, 0.497 ± 0.091, 0.494 ± 0.137, and 0.460 ± 0.083, with 

SUPER displaying the most variability due to its larger IQR. ANOVA confirmed significant 

differences across methods (p = 2.55 × 10⁻²⁰).  

The AUC: Power vs Type I Error boxplot (Figure 2b) showed a similar hierarchy, with MLMM 

leading at a median AUC of 0.849 ± 0.057, followed by BLINK (0.834 ± 0.045) and FarmCPU (0.820 ± 

0.049), both showing tight IQRs and consistent performance. SUPER, MLM, and CMLM had median 

AUCs of 0.811 ± 0.048, 0.803 ± 0.048, and 0.799 ± 0.048, respectively, while ECMLM (0.777 ± 0.063) and 

GLM (0.767 ± 0.071) were the lowest, with GLM again showing high variability through its wide IQR 

and outliers. ANOVA indicated significant variation (p = 5.55 × 10⁻⁹), and the boxplots underscore 

MLMM’s robustness and GLM’s sensitivity to simulation conditions. 
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(a) 

 
(b) 

Figure 2. a: Boxplot of AUC (Power vs FDR) for eight GWAS methods using a simulated dataset from the World 

Barley Core Collection (WBCC) with 6,332 SNPs, 318 samples, h² = 0.7, and 15 QTNs across 30 replicates at a 10 

Mb window size. Each box represents the distribution of AUC values, with mean separation letters (a–b) 

assigned by Tukey’s HSD test (p = 2.55 × 10⁻²⁰). b: Boxplot of AUC (Power vs Type I Error) for eight GWAS 

methods using a simulated dataset from the World Barley Core Collection (WBCC) with 6,332 SNPs, 318 

samples, h² = 0.7, and 15 QTNs across 30 replicates at a 10 Mb window size. Each box represents the distribution 

of AUC values, with mean separation letters (a–c) assigned by Tukey’s HSD test (p = 5.55 × 10⁻⁹). 
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QQ Plots (False-Positive Control) 

The QQ plots (Figure 3) compare observed -log10(p) values against expected -log10(p) values 

under the null hypothesis, revealing each method’s ability to control false positives. GLM’s plot 

exhibited a pronounced upward deviation from the diagonal line (y = x) starting at expected -log10(p) 

values above 2, with observed values reaching up to 12, indicating a high rate of false positives across 

the p-value spectrum. MLM, CMLM, SUPER, MLMM, FarmCPU, BLINK, and ECMLM showed 

better control, with their observed -log10(p) values more closely following the diagonal line, though 

slight deviations occurred at higher expected values, where observed -log10(p) reached 5–10 for 

MLM, FarmCPU, and BLINK, suggesting minor inflation of p-values at stricter thresholds. MLMM 

and FarmCPU displayed the least deviation, with their curves hugging the diagonal most closely, 

indicating effective false-positive control even at higher expected values. GLM’s significant deviation 

underscores its inability to account for population structure, leading to consistently inflated p-values 

across replicates. 

 

Figure 3. QQ plots for eight GWAS methods using a simulated dataset from the World Barley Core Collection 

(WBCC) with 6,332 SNPs, 318 samples, h² = 0.7, and 15 QTNs across 30 replicates. Each plot compares observed 

-log10(p) values against expected -log10(p) values under the null hypothesis, with a red dashed diagonal line (y 

= x) indicating ideal false-positive control. 
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Manhattan Plots (Mapping Resolution) 

The stacked Manhattan plots (Figure 4) displayed -log10(p) values across chromosomes for each 

method, with a significance threshold at approximately -log10(p) = 5. BLINK and FarmCPU exhibited 

the sharpest peaks, with significant SNPs concentrated in specific regions (e.g., chromosomes 1, 3, 

and 7), suggesting high mapping resolution and precise QTN detection, as their peaks were narrow 

and well-defined. MLMM also showed distinct peaks, but with slightly broader bases, indicating 

moderate resolution compared to BLINK and FarmCPU. GLM’s plot revealed numerous significant 

SNPs scattered across all chromosomes, with broader and less defined peaks, reflecting lower 

resolution and a tendency for over-detection, consistent with its high false-positive rate in the QQ 

plot. MLM, CMLM, SUPER, and ECMLM displayed intermediate resolution, with fewer significant 

SNPs than GLM but less precision than BLINK and FarmCPU, as their peaks were more dispersed 

and less sharply defined. The distribution of significant SNPs generally aligned with the simulated 

QTN positions, though GLM’s over-detection suggests sensitivity to the WBCC’s population 

structure, leading to false positives across non-QTN regions. 
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Figure 4. Stacked Manhattan plots for eight GWAS methods using a simulated dataset from the World Barley 

Core Collection (WBCC) with 6,332 SNPs, 318 samples, h² = 0.7, and 15 QTNs across 30 replicates. Each plot 

displays -log10(p) values across chromosomes (1–7), with chromosomes color-coded, and a red dashed line 

indicating the significance threshold at approximately -log10(p) = 5. Vertical gray dashed lines mark simulated 

QTN positions. 

Computational Speed 

The timing bar graph (Figure 5) illustrates the computational efficiency of each method across 

30 replicates, with mean times and standard deviations highlighting distinct trends. GLM was the 

fastest, with a mean runtime of 29.8 ± 9.3 seconds, showing a tight distribution of runtimes and 

minimal variability. MLMM followed closely at 31.4 ± 1.3 seconds, with an even tighter distribution, 

indicating consistent performance. BLINK achieved a mean runtime of 43.1 ± 5.9 seconds, while 

FarmCPU was slightly slower at 48.0 ± 5.5 seconds, both showing moderate variability in their 

runtimes. SUPER (45.8 ± 2.2 seconds) and MLM (48.0 ± 5.5 seconds) showed moderate runtimes, with 

SUPER exhibiting less variability. ECMLM was slower at 96.0 ± 5.5 seconds, and CMLM was the 

slowest at 193.8 ± 7.2 seconds, with both showing wider distributions, indicating greater variability 

in computational demand across replicates. ANOVA confirmed significant differences across 

methods (p = 1.62 × 10⁻¹³⁷), and Tukey’s HSD distinguished five groups, underscoring CMLM’s 

substantial computational burden compared to the faster methods like GLM and MLMM. 

 

Figure 5. Bar graph of computational times for eight GWAS methods using a simulated dataset from the World 

Barley Core Collection (WBCC) with 6,332 SNPs, 318 samples, h² = 0.7, and 15 QTNs across 30 replicates. Bars 

represent mean runtimes (in seconds) with error bars showing standard deviations, and mean separation letters 

(a–e) are assigned by Tukey’s HSD test (p = 1.62 × 10⁻¹³⁷). 

Discussion 

This study systematically compared eight GWAS methods (GLM, MLM, CMLM, SUPER, 

MLMM, FarmCPU, BLINK, and ECMLM) using simulated data from the WBCC, revealing distinct 

differences in their ability to balance statistical power, error control, mapping resolution, and 

computational efficiency. MLMM emerged as the top performer, achieving the highest statistical 

power while effectively controlling false positives, as evidenced by its superior Power vs FDR (AUC: 
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0.674 ± 0.123) and Power vs Type I Error (AUC: 0.849 ± 0.057) curves (Figures 1a, 1b, 2a, and 2b). This 

aligns with Segura et al. (2012), who demonstrated MLMM’s efficacy in structured populations 

through its multi-locus framework, which iteratively fits QTNs to reduce confounding effects. BLINK 

and FarmCPU followed closely, showing strong power and high mapping resolution with sharp 

peaks in their Manhattan plots (Figure 4), supporting Liu et al. (2016) and Huang et al. (2019), who 

noted that simultaneous marker testing enhances power in populations with complex LD patterns 

like barley. However, MLMM’s edge over BLINK contrasts with Huang et al. (2019), who suggested 

BLINK’s LD-based refinement might outperform with denser marker sets, indicating that the 

WBCC’s 6,332 SNP density may favor MLMM’s approach. 

GLM exhibited the poorest performance, with significant deviations in its QQ plot (Figure 3) 

and broad peaks in its Manhattan plot (Figure 4), reflecting a high false-positive rate (Type I error). 

This is consistent with Kang et al. (2008), who highlighted GLM’s inability to correct for population 

structure, a critical limitation in the diverse WBCC (Comadran et al., 2012). MLM and CMLM showed 

moderate performance, benefiting from kinship adjustments but constrained by their single-locus 

frameworks, aligning with Yu et al. (2006) and Zhang et al. (2010), though their limitations compared 

to multi-locus methods echo Liu et al. (2016). SUPER and ECMLM underperformed, with less precise 

QTN detection in their Manhattan plots. SUPER’s results align with Wang et al. (2016), who noted its 

binning strategy can miss QTNs in regions with moderate LD, while ECMLM’s poor performance 

contradicts Zhang et al. (2010), who emphasized its theoretical advantages in structured populations, 

possibly due to overfitting in the WBCC’s moderate marker density. However, ECMLM slightly 

outperformed GLM in AUC for Power vs FDR (0.460 vs 0.424) and Power vs Type I Error (0.777 vs 

0.767), challenging its expected superiority. 

Computationally, GLM and MLMM were the fastest, with mean runtimes of 29.8 ± 9.3 seconds 

and 31.4 ± 1.3 seconds, respectively (Figure 5), mirroring Wang et al. (2014) in maize and suggesting 

that these patterns may generalize across cereals. MLMM’s speed advantage over Segura et al. (2012) 

likely stems from GAPIT’s optimization, while GLM’s efficiency reflects its simple fixed-effect model. 

BLINK (43.1 ± 5.9 seconds) was faster than FarmCPU (48.0 ± 5.5 seconds) without significant power 

loss, validating Huang et al. (2019) and highlighting its suitability for routine analyses. In contrast, 

CMLM’s high runtime (193.8 ± 7.2 seconds) reflects its computational burden, consistent with Zhang 

et al. (2010), due to its compressed kinship matrix scaling poorly with the WBCC’s 318 samples. 

MLMM’s success likely results from its ability to model multiple QTNs simultaneously, 

capturing the WBCC’s moderate LD structure without overfitting. BLINK and FarmCPU’s 

performance stems from their iterative marker selection and cofactor adjustments, which mitigate 

confounding in structured populations. GLM’s high false-positive rate arises from its lack of 

population structure correction, a significant drawback in the WBCC’s diverse genetic background. 

MLM and CMLM’s moderate results reflect their kinship-based adjustments, which control false 

positives better than GLM but are less suited for complex traits due to their single-locus approach. 

SUPER’s binning strategy may miss QTNs in moderate LD regions, while ECMLM’s extended model 

may be too complex for the WBCC’s marker density, leading to overfitting. BLINK’s speed advantage 

over FarmCPU highlights its algorithmic improvements, making it a practical choice for large-scale 

studies. 

This study offers several novel contributions. It provides the first comprehensive evaluation of 

ECMLM in barley, revealing its limitations in the WBCC context despite slight improvements over 

GLM. It also quantifies power-runtime trade-offs using standardized WBCC data (Figures 2a, 2b, and 

5), enabling barley breeding programs to make informed cost-benefit decisions. Furthermore, it 

validates BLINK’s computational efficiency for routine barley analyses, extending prior findings to a 

new crop context, and underscores the importance of multi-locus models like MLMM and BLINK for 

accurate QTN detection in barley’s diverse genetic background. 

Despite its strengths, this study has limitations. The simulated phenotypes may not fully capture 

the complexity of real barley traits, such as epistatic interactions or environmental influences, which 

could affect method performance. The 6,332 SNP dataset, while representative, may limit mapping 
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resolution compared to modern high-density arrays (e.g., 50K SNPs or whole-genome resequencing), 

potentially underestimating methods like BLINK and FarmCPU that excel with denser markers. 

Additionally, the findings are specific to the WBCC, and results may vary across barley populations 

with different genetic architectures, such as landraces or breeding panels. 

Future studies should validate these findings with real phenotypic datasets to assess each 

method’s ability to identify biologically relevant QTNs, particularly for complex traits like yield, 

disease resistance, and nutritional content in barley breeding. Expanding to higher-density SNP 

arrays could provide deeper insights into BLINK and FarmCPU’s robustness for polygenic traits. 

Investigating GWAS methods across diverse barley populations will help determine the 

generalizability of these conclusions. Finally, integrating multi-trait GWAS approaches, and machine 

learning-based models could further enhance QTN detection, refining method selection for barley 

breeding programs. 

Conclusions 

This study provides a comprehensive comparison of eight GWAS methods using the WBCC, 

offering key insights into their suitability for QTN detection. MLMM emerged as the most effective 

method, balancing statistical power and error control, making it ideal for high-stakes gene discovery 

in structured barley populations. BLINK and FarmCPU also performed well, with BLINK's 

computational efficiency making it preferable for routine analyses. Conversely, GLM’s high false 

positive rate and ECMLM’s unexpected underperformance highlight their limitations. The 

computational trade-offs observed emphasize method selection based on resource constraints. These 

findings support MLMM for QTN discovery and BLINK for genomic selection, while future studies 

should validate these trends using denser SNP arrays and diverse genetic architectures to refine 

barley breeding strategies. 
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