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Abstract: Online reinforcement learning (RL) algorithms are increasingly used to personalize digital
interventions in the fields of mobile health and online education. Common challenges in designing
and testing an RL algorithm in these settings include ensuring the RL algorithm can learn and run
stably under real-time constraints, and accounting for the complexity of the environment, e.g., a lack
of accurate mechanistic models for the user dynamics. To guide how one can tackle these challenges,
we extend the PCS (Predictability, Computability, Stability) framework, a data science framework
that incorporates best practices from machine learning and statistics in supervised learning [1], to
the design of RL algorithms for the digital interventions setting. Further, we provide guidelines on
how to design simulation environments, a crucial tool for evaluating RL candidate algorithms using
the PCS framework. We illustrate the use of the PCS framework for designing an RL algorithm for
Oralytics, a mobile health study aiming to improve users’ tooth-brushing behaviors through the
personalized delivery of intervention messages. Oralytics will go into the field in late 2022.

Keywords: reinforcement learning (RL); online learning; mobile health; algorithm design; algorithm
evaluation; decision support systems

1. Introduction

There is growing interest in using online Reinforcement Learning (RL) to optimize the
delivery of messages or other forms of prompts in digital interventions. In mobile health,
RL algorithms have been used to increase the effectiveness of the content and timing of
intervention messages designed to promote physical activity [2-4] or to manage weight
loss [5]. In other areas including the social sciences and education, RL algorithms are used
to provide pre-trial nudges to encourage court hearing attendance [6], to personalize math
explanations [7] or quiz questions during lecture videos [8]. Unlike areas such as games
and some subareas of robotics, it can be extremely costly to run a digital intervention
study. Further, when the study is a pre-registered clinical trial, once initiated, the trial
protocol (including any online algorithms) cannot be altered, without jeopardizing trial
validity. Thus design decisions are a "one-way door" [9]; namely, once we commit to a set of
design decisions, they are irreversible for the duration of the trial. To prevent poor design
decisions that could be detrimental to the effectiveness and the validity of study results, RL
algorithms must undergo a thorough design and testing process before deployment.

The development of an RL algorithm in digital interventions requires a multitude of
design decisions. These decisions include how best to accommodate the lack of mechanistic
models for dynamic human responses to digital interventions and how to ensure robust-
ness of the algorithm to potentially non-stationary/non-Markovian outcome distributions.
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Figure 1. Decision times and actions for the RL algorithm in the Oralytics study. For each day 4,
there is a morning decision time and an evening decision time for user i. At every decision time ¢,
the RL algorithm selects action A;; given the current state S; ;. After an action is taken, we observe
reward R;; from the user.

Further, one must not only ensure that the RL algorithm learns and quickly optimizes inter- s
ventions, but also ensure that the algorithm runs stably and autonomously online within s
constrained amounts of time. These include decisions to ensure that the RL algorithm e
can obtain data in a timely manner. Time and budgetary considerations may restrict the 7
ability to implement more complex RL algorithms. Further, it is important to ensure the s
data collected by the RL algorithm can be used to inform future studies and address scien- 3o
tific, causal inference questions. Addressing these challenges in a reproducible, replicable 40
manner is critical if RL algorithms are to play a role in optimizing digital interventions. 4
Therefore we need a framework for making design decisions for RL algorithms intended to a2
optimize digital interventions. a3

44

The primary contributions of this work are two-fold: a5

1. Framework for Guiding Design Decisions in RL Algorithms for Digital Interven- 4
tions: We provide a framework for evaluating the design of an online RL algorithm to increase a7
confidence that the inclusion of an online RL algorithm as part of the digital intervention will s
improve the effectiveness and maintain reproducibility and replicability of the intervention, in  ae
real-life implementation. Specifically, we extend the PCS (Predictability, Computabil- so
ity, Stability) data science framework of Yu [1] to address the specific challenges in s
the development and evaluation of an online RL algorithm for personalizing digital s
interventions. 53

2. Case Study: This case study concerns the development of an RL algorithm for Oralyt- sa
ics, a mobile health intervention study designed to encourage oral self-care behaviors. s
The study is planned to go into the field in late 2022. This case study provides a concrete  se
implementation of the PCS framework in informing the design of an online RL algorithm. s
One tool is the development of multiple simulation test-bed environments and the s
use of these environments along with PCS principles to evaluate the candidate RL s
algorithms. 60

2. Review of Online Reinforcement Learning Algorithms 61

Reinforcement learning (RL) [10,11] is the area of machine learning which is concerned =
with learning how to best make a sequence of decisions. In digital intervention settings, the s
sequence of decisions concerns which treatment (e.g., motivational messages, reminders, s
types of feedback, etc.) to provide given the user’s current state and history. Definitions of s
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decision times, state, action, reward, and update times are provided below. The decision s
times and actions for the RL algorithm for Oralytics are provided in Figure 1. 67

2.1. Decision Times 68

These are the times, indexed by t at which the RL algorithm may deliver a treatment o
(via a smart device such as a desktop computer, smartwatch, smartphone, smart speaker, 7o
wearable, etc.). The cadence of the decision times (minute level, hourly, daily, etc.) depends =
on the type of digital intervention. For example in Oralytics, we have two decision times 72
per day, namely, one hour prior to the set morning and evening brushing windows specified 7
by the user. 7a

2.2. State 75

Si+ € RY represents the ith user’s state at time ¢. d is the number of features describing 7
the user’s state (e.g. current location, recent adherence to medication, current social setting, 77
recent engagement with the intervention application, etc.). See Section 5.2 for the state 7
definition for Oralytics. 70

2.3. Action 80

A;; € Arepresents the decision made by the RL algorithm for the ith user at decision e
time t. Treatment actions in digital interventions frequently include the action of not s
delivering any treatment at time ¢. For Oralytics, the action space is A := {0,1}, where s
A;j; = 1represents sending the user an engagement message and A;; = 0 represents not  ss
sending an engagement message. See Section 5.1 for descriptions of the types of messages s
that could be sent in Oralytics. e

2.4. Reward 87

R;; € Ris the reward for the ith user at decision time ¢, recorded after taking action s
Aj ;. The definition of the reward depends on the type of digital intervention. Examples s
include successful completion of a math problem, taking a medication, level of physical o
activity, etc. The reward function is the mean of R;; conditional on the current state S;; and
action A; ;. In Oralytics the reward is the subsequent brushing duration; see Section 5.2 for e
further discussion of the reward in Oralytics. 03

2.5. Update Times 0a

These are the times at which the RL algorithm is updated, which typically includes s
updating a model of the user (e.g., a model of the user’s reward function). The RL algorithm o6
updates using user i’s current history of past states, actions, and rewards up to time #, o7
denoted H; ;1 = {S;s, Ais, Ris }i;i Also, if the algorithm pools data across users, then the o
history of other users in the study, H;; 1 for i # j, are used to update the model for useri. oo
For Oralytics, the update cadence is once a week. 100

Generally, online RL algorithms are composed of two parts: (a) fitting a model of 102
the user and (b) an action selection strategy. The simplest type of user model is a model  10s
for the reward function, E[R;;|S;;, A;|. In more general cases, a model for the sum of 10
future rewards, conditional on current state, S; ; and action, A;; is also learned. The action 105
selection strategy of the RL algorithm uses the user’s current state S;;, along with the 106
learned user model, and outputs the treatment action A;; at each decision time t. The user o7
model is periodically updated using newly collected data H;;_;; these updates can occur 108
after each decision time or at longer time scales. For example in [2], the decision times are 5 100
times per day, but the update times are only nightly. 110

An online RL algorithm should quickly learn which action to deliver in which states 111
for each user. One of the most widely used and simplest RL algorithms is a contextual 112
bandit algorithm [12-14]. A contextual bandit algorithm, incrementally, as data accrues, 11
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learns the action that will lead to maximal reward in each state. The online algorithm 11
sequentially updates an estimate of the reward function (mean of the reward conditional on 15
state and action) and selects actions. The performance of the algorithm is often measured 116
by the sum of rewards; the faster the algorithm learns the higher the sum. 117

3. PCS Framework For Designing RL Algorithms for Digital Intervention Development 1.

The PCS Framework [1] incorporates best practices from machine learning and applied 110
statistics to provide a set of guidelines for assessing the quality of a prediction algorithm 120
when used to address problems in real life. The goal is to enhance the trust of the scientific = 12
community in the application of the prediction algorithm in terms of predictability of results, 122
computability in the implementation of the algorithm, and stability in the performance 12s
results of the learning algorithm across perturbations. PCS has been adopted and extended 124
to other domains; see Section 4 for a further discussion. 125

Similar to the prediction setting, there are a variety of design decisions one needs to 126
make before deploying an RL algorithm, e.g., choosing the model class to use to approxi- 127
mate the reward function. While many of the original PCS principles can be used in the 12s
development and evaluation of RL algorithms, RL algorithm development also introduces  12o
new challenges for the PCS framework, particularly in the online digital intervention 130
setting. First, the main task is not prediction, but rather in RL, the main goal is to select 13
intervention actions so that average rewards across time are maximized for each user. We = 1s:
call this the goal of Personalization [15]. We generalize the PCS framework to include 133
an evaluation of the ability of an online RL algorithm to personalize. Second, in digital 13s
intervention settings, it is important to evaluate the ability of the online RL algorithm to  1ss
maximize rewards under real-world constraints. For example, there are often time con- 136
straints on computations, budgetary constraints on software engineering development, and a7
constraints on the algorithm in terms of obtaining data in real-time. Further, the algorithm  1se
must run stably online without constant human monitoring and adjustment. The current 130
PCS framework does not provide evaluation tools that deal with the above needs. We 140
extend the PCS framework to the context of designing and evaluating online RL algorithms. 1
This framework focuses on providing confidence that the online RL algorithm will lead to 142
greater effectiveness under real-world constraints and with stability. 143

3.1. Personalization (P) 142

The PCS Framework uses (P) for predictability with the goal of ensuring that models  1as
used in data science have good predictive accuracy on both seen and unseen data. Predictive 146
accuracy is a simple, commonly used metric for evaluating the model, but in some cases, 147
multiple evaluation metrics or domain-specific metrics are appropriate. In our setting, the 14s
main task is Personalization. Namely, the online RL algorithm should learn to select actions 14
to maximize each user’s average rewards. Instead of defining a predictive accuracy metric, 1so
we want a metric to validate the extent of personalization. For example, when choosing a  1s:
metric to evaluate RL algorithms for multiple users, one may be interested in not just the sz
average over the users’ sums of rewards, but other metrics that capture the variation in the 1ss
sum of rewards across users. Let N be the total number of users with T total decision times. 1ss
We suggest the following metrics: 155

* Average of Users’ Average (Across Time) Rewards: First average users’ rewards 1se
across time, and then average across users. This metric is defined as % Zfil (% Zthl Ri,t) . 157
The metric serves as a global measure of the RL algorithm’s performance. 158
e The 25th Percentile of Users” Average (Across Time) Rewards: The metric shows 1se
how well an RL algorithm performs for users that don’t benefit as much, namely users 1eo
in the lower quartile of average rewards across time. 161
*  Average Reward For Multiple Time-Points: Average users’ rewards across time for e
multiple time-points ty) = 1,2, ..., T. Then average across users. This metric is defined 16
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N yfo g
as % The metric assesses the speed at which the RL algorithm learns across ies
weeks in the trial. 165
3.2. Computability (C) 106

Computability focuses on the efficiency and scalability of algorithms, decisions, and ez
processes. While the original PCS framework focused on the computability of training e
and evaluating models, we also consider the ability to implement the algorithm within the 160
constraints of the study. In the online RL setting, computability encompasses all issues 170
related to ensuring that the RL algorithm can select actions and update in a timely manner in
while running online. The performance of the online RL algorithm must be evaluated 172
under the constraints of the study; key RL design constraints that could arise include: 173

e Timely Access to Reward and State Information: Since RL algorithms for digital 17
interventions must make decisions in an online fashion, the development team must 175
ensure that the state feature data is available at each decision time and that both the 17
reward and state feature data is available to the algorithm at the update times. For 17
example, due to delays in communication between sensors, the digital application, 17e
and the cloud storage, the algorithm may not have timely access to the investigators’ 17
first choice of reward, necessitating the use of an alternate. 180

* Engineering Budget: One should consider the engineering budget, supporting e
software needed, and time available to deliver a production-ready algorithm. In this 1e
case, a simpler algorithm may be preferred over a sophisticated one because it is easier 1es
to implement, test, and set up monitoring systems for. 184

¢ Off-Policy Evaluation and Causal Inference Considerations: The investigative team 1ss
often not only cares about the RL algorithm’s ability to learn but also the ability to use 1ss
the data collected by the RL algorithm to answer scientific questions after the study e
is over. These scientific questions can include topics such as off-policy evaluation 1ss
[16,17] and causal inference [18,19]. Thus, the algorithm may be constrained to select 1eo
actions probabilistically with probabilities that are bounded away from zero and one. 100
This enhances the ability of investigators to use the resulting data to address scientific 101
questions with sufficient power [20]. 192

3.3. Stﬂblllty (S) 103

Stability measures how the results change with minor perturbations and also empha- 104
sizes the need for documentation and reproducibility of results. In online RL, stability plays 1es
two roles. First, the RL algorithm must run stably and automatically without the need for s
constant human monitoring and adjustment. This is particularly critical as users abandon  1e7
digital interventions that have inconsistent functionality (unstable RL algorithm) [21,22]. 108
Second, the RL algorithm should perform well across a variety of potential real-world 190
environments. A critical tool in assessing stability to perturbations of the environment is the 200
use of simulation test-beds. Test-beds include a variety of plausible environmental variants, zo:
each of which encodes different concerns of the investigative team. Often important state  zo2
features of the user’s environment are not observed and we lack an accurate mechanistic 2o
model of user behavior. The following challenges in digital intervention problems are 2o
concerns that one could design testbeds for: 205

*  User Heterogeneity: There is likely some amount of user heterogeneity in response to o6
actions, even when users are in the same context. User heterogeneity can be partially  zor
due to unobserved user traits (e.g. factors that are stable or change very slowly zos
over time like family composition or personality type). The amount of between user  zoo
heterogeneity impacts whether an RL algorithm that pools data (partially or using =0
clusters) across users to select actions will lead to improved rewards. 211

*  Non-Stationarity: Unobserved factors common to all users such as societal changes 212
(e.g. new wave of the pandemic), and time-varying unobserved treatment burden (e.g. =213
user’s response to intervention may depend on how many days they have experienced 21
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the digital intervention) may make the distribution of the reward appear to vary with = 2s
time, i.e., non-stationary. 216
¢ High Noise Environments Digital interventions typically deliver treatments to users 2ir
in highly noisy environments. This is in part because digital interventions deliver 2
treatments to users in daily life, where many unobserved factors (e.g. social context, =
mood, or stress) can affect a user’s responsiveness to an intervention. If unobserved, 2z
these factors produce noise. Moreover, the effect of digital prompts on a near-term 22
reward tends to be small due to the nature of the intervention. Therefore it is important 2z
to evaluate the algorithm’s ability to personalize even in highly noisy, low signal-to- 22s
noise ratio environments. 224

3.4. Simulation Environments for PCS Evaluation 225

To utilize the PCS framework, we advocate using a simulation environment for de- 226
signing and evaluating RL algorithms. We aim to compare RL algorithm candidates under 227
real-world constraints (Computability). Thus, we build multiple variants of the simulation  zzs
environment, each reflecting plausible user dynamics (i.e. state transitions and reward =2z
distributions) (Stability). This is followed by simulating a digital intervention study for =so
each simulation environment variant and RL algorithm candidate pairing. Finally, we use 2
multiple metrics to evaluate the performance of the RL algorithm candidates (Personaliza- =232
tiOI’l). 233

In the case of digital interventions, there is often no mechanistic model or physical pro- =2:s
cess for user behavioral dynamics, which makes it difficult to accurately model transitions 235
(e.g. modeling a user’s future level of physical activity as a function of their past physical =236
activity, location, local weather). Note that the goal of developing the simulators is not to 237
conduct model-based RL [23]. Rather, here the simulators represent a variety of plausible  23s
environments to facilitate the evaluation of the performance of potential RL algorithms in 230
terms of Personalization, Computability, and Stability across these environments. Existing 240
data and domain expertise is most naturally used to construct the simulation environments. 24
However, as is the case for Oralytics, the previously collected data may be scarce, i.e., we 242
have very few data points per user. Moreover, the data may only be partially informative, zas
e.g., the data was collected under only a subset of the actions. Next, we provide guidelines 24
for how to build an environment simulator in such challenging settings. 245

Base Environment Simulator: In order to have the best chance possible of accurately 46
evaluating how well different RL candidates will perform, we recommend first building a 247
base environment simulator that mimics the existing data to the greatest extent possible. 24s
This involves carefully choosing the set of time-varying features and reward generating zas
model class that will be expressive enough to model the true reward distribution well. To 250
check how well simulated data generated by the model of the environment mimics the 2s:
observed data, we recommend a variety of ways to compare distributions. This includes s
visual comparisons such as plotting histograms, comparing moments such as mean reward, zss
between user variance, and within user variance, of the real data with the simulated data, =sa
and measuring how well the base model captured the variance in the data. Examples of 2ss
these checks done for Oralytics are in Appendix A.4. 256

Variant Environment Simulators: We recommend considering many variants or per- zsz
turbed simulation environments to evaluate the stability of RL algorithms across multiple 2ss
plausible environments. These variants can be used to evaluate the concerns of the inves- 2so
tigative team. For example, if the base simulator generates stationary rewards and the ze0
investigative team is concerned that the real reward distribution could not be stationary, a 26
variant could incorporate non-stationarity into the environment dynamics. 262

In the case that the previously collected data does not include particular actions, as was  zes
the case for Oralytics, we recommend consulting domain experts to recommend a range of 264
potential realistic effect sizes (differences in mean reward under the new action versusa zes
baseline action). For example, in Oralytics we only have data under no intervention and  zes
did not have data on rewards under the intervention. Thus, using the input of the domain 26~
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experts on the team, we imputed several plausible treatment effects (varying by certain  zes

state features and the amount of heterogeneity in treatment effects across users). 260
4. Related Works 270
4.1. Digital Intervention Case Studies am

Liao [2] describe the development of an online RL algorithm for HeartSteps V2, a phys- 272
ical activity mobile health application. They highlight how their design decisions address =27
specific challenges in designing RL algorithms, such as adjusting for longer-term effects of 274
the current action and accommodating noisy data. However, they do not provide general 275
guidelines for how to make design decisions for RL algorithms in digital intervention 27
development. 277

Another related work is that of Figueroa [24] who provide an in-depth case study of 2=
the design decisions, and the associated challenges and considerations, for an RL algorithm 27
for text messaging in a physical activity mobile application serving patients with diabetes  zs0
and depression. Through this case study, they provide guidelines to others developing RL 261
algorithms for mobile health applications. Specifically, they first categorize the challenges  2e2
they faced into 3 major themes: 1) choosing a model for decision making, 2) data handling, =zs:
and 3) weighing algorithm performance versus effectiveness in the real world. Then zss
for each of these challenges, they describe how they dealt with the challenges in the s
design process for their physical activity intervention. In contrast, by expanding the PCS  2e6
framework, this work introduces general guidelines for comprehensively evaluating RL  ze
algorithms. Moreover, we make recommendations for how to design a variety of simulation  2es
testbeds even using only sparse and partially informative existing data in service of PCS. 260
The generality of the PCS framework allows it to be more widely applicable. For example, 200
Figueroa [24] have an existing dataset for all actions, which makes their recommendations ze:
less applicable to those designing algorithms with existing data only under a subset of  ze2
actions. The PCS framework provides more holistic guidelines for facing challenges in 203
developing simulation environments and evaluating algorithms, beyond those faced in any 204
particular case study. 205

4.2. Simulation Environments in Reinforcement Learning 206

In RL, simulators (generative models) may be used to derive a policy from the genera- 207
tive model underlying the simulator (model-based learning). Agarwal [23] use simulation =zes
as an intermediate step to learn personalized policies in a data-sparse regime with het- 200
erogeneous users, where they only observe a single trajectory per user. Wei [25] propose 300
a framework for simulating in a data-sparse setting by using imitation learning to better o
interpolate traffic trajectories in an autonomous driving setting. In contrast, in PCS, the 302
simulator is used as a crucial tool for using the framework to design, compare, and evaluate o3
RL algorithm candidates for use in a particular problem setting. 308

There exist many resources aimed at improving the design and evaluation of RL  sos
algorithms through simulation; however, in constrast to this work, they do not provide sos
guidelines for designing plausible simulation environments using existing data. RecSim o7
[26] gives a general framework but does not advise on the quality of the environment nor sos
how to make critical design decisions such as reward construction, defining the state space, 00
simulating unobserved actions, etc. MARS-Gym [27] provides a full end-to-end pipeline 310
process (data processing, model design, optimization, evaluation) and open-source code s
for a simulation environment for marketplace recommender systems. OpenAl Gym [28] is =12
a collection of benchmark environments in classical control, games, and robotics where the = 13
public can run and compare the performance of RL algorithms. a14

There are also a handful of papers that build simulation environment testbeds using = s1s
real data. Wang [29] evaluate their algorithm for promoting running activity with a simula- 316
tion environment built using two datasets. Singh [30] develop a simulation environment 17
using movie recommendations to evaluate their safe RL approach. Korzepa [31] use a 1.
simulation environment to guide the design of personalized algorithms that optimize s
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hearing aid settings. Hassouni [32,33] fit a realistic simulation environment using the US 320
timekeeping research project data. Their simulation environment creates daily schedules 32
of activities for each user (i.e. sleep, work, workout, etc.) where each user is one of many sz
different user profiles (i.e. workaholic, athlete, retiree) for the task of improving physical s2s
activity. 324

4.3. PCS Framework Extensions 325

The PCS framework has been extended to other learning domains such as causal sz
inference [34], network analysis [35], and evaluating the interpretability of algorithms sz-
[36]. Despite the variety of these tasks, they can all be framed as supervised learning sz
problems in batch data settings that can be evaluated in terms of prediction accuracy on sz
a hold-out dataset. PCS has not been extended to provide guidelines for developing an 330
online decision-making algorithm. This extension is needed because of the additional 33
considerations, as discussed above, present in a real-world RL setting. Additionally, while 32
these papers focus on evaluating how well a model accurately predicts the outcome on  ss:
training and hold-out datasets, our extension includes Personalization for evaluating how s
well an algorithm personalizes to each user. Dwivedi and Ward [34,35] implement the s
original Computability principle by considering algorithm and process efficiency and s3s
scalability. Margot [36] provides a new principle Simplicity which is based on the sum 337
of the lengths of generated rules. In our case, we extend Computability to include the s
constraints of the study. Finally, these papers consider the stability of results across different s3e
changes to the data (e.g. bootstrapping or cross-validation) or design decisions (e.g. choice 340
of representation space or the embedding dimension). Our framework focuses on how s
stable an algorithm is in plausible real world environments which could be complex (e.g. a2
user-heterogeneity, non-stationary, high noise). 343

5. Case Study: Oral Health E

In this case study, we illustrate the use of PCS principles in designing an RL algorithm 45
for Oralytics. Two main challenges are 1) we do not have timely access to a lot of features sas
and the reward is relatively noisy and 2) we have sparse, partially informative data to sar
inform the construction of our simulation environment testbed. In addition, there are a  s4s

number of study constraints. 340
1. Once the study is initiated, the trial protocol and algorithm cannot be altered without sso
jeopardizing trial validity. 351
2. Weare using an online algorithm so we may not have timely access to certain desirable s
state features or rewards. 353
3. We have a limited engineering budget. 354
4. We must answer post-study scientific questions that require causal inference or off- sss
policy evaluation. 356

We highlight how we handle these challenges by using the PCS framework, despite ss
being in a highly constrained setting. The case study is organized as follows. In Section 5.1  3ss
we give background context and motivation for the Oralytics study. In Section 5.2, we 150
explain the Oralytics sequential decision-making problem such as defining the state and  eo
reward. In Section 5.3 we describe our process for designing RL algorithm candidates that e
can stably learn despite having a severely constrained features space and noisy rewards. e
Finally, in Section 5.4, we describe how we designed the simulation environment variants ses
to evaluate the RL algorithm candidates; furthermore, we offer recommendations for ses
designing realistic environment variants and for constructing such environments using  ses
data for only a subset of actions. 366

5.1. Oralytics 367

Oralytics is a digital intervention for improving oral health. Each user is provided e
a commercially-available electric toothbrush with integrated sensors and Bluetooth con- ses
nectivity as well as the Oralytics mobile application for their smartphone. There are two 37
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decision times per day (prior to the user’s morning and evening brushing windows) when sn
a message may or may not be delivered to the user via their smartphone. The types of mes- 72
sages focus on winning a gift for oneself, winning a gift for one’s favorite charity, feedback 7
on prior brushing, and educational information. Also, once a message is delivered to the 7
user, the app records the messages so that a user is highly unlikely to ever receive the same 75
message twice. Oralytics will be implemented with approximately 70 users in a clinical 7
trial where the participant duration is 10 weeks; this means each user has T = 140 decision 37z
times. The study duration is 2 years and the expected weekly incremental recruitment rate  s7s
is around 4 users. The Oralytics mobile app will use an online RL algorithm to optimize 7
message delivery (i.e. treatment actions) to maximize an oral health-related reward (see s0
below). To inform the RL algorithm design, we have access to data from a prior oral health s
study, ROBAS 2 [37], and input from experts in oral and behavioral health. The ROBAS 2 e
study used earlier versions of both the electric toothbrush and the Oralytics application  ses
to track the brushing behaviors of 32 users over 28 days. Importantly, in ROBAS 2, no s
intervention messages were sent to the users. 385

5.2. The Oralytics Sequential Decision Making Problem 386

We now discuss how we designed the state space and rewards for our RL problem ez
in collaboration with domain experts and the software team while considering various sss
constraints. These decisions must be communicated and agreed upon with the software s
development team because they provide the RL algorithm with the necessary data at e
decision and update times, and execute actions selected by the RL algorithm. 301

1. Choice of Decision Times: We chose the decision times to be prior to each user’s o2
specified morning and evening brushing windows, as the scientific team thought this ses
would be the best time to influence users’ brushing behavior. 308

2. Choice of Reward: The research team’s first choice of reward was a measure of e
brushing quality derived from the toothbrush sensor data from each brushing episode. 06
However, the brushing quality outcome is often not reliably obtainable because it requires o7
(1) that the toothbrush dock is plugged in and (2) that the user is standing within a few 30
feet of the toothbrush dock when brushing their teeth. Users could fail to meet these 100
two requirements for a variety of reasons, e.g., the user brushes their teeth in a shared 00
bathroom where they are unable to conveniently leave the dock plugged in. Thus, we 40
selected brushing duration in seconds as the reward (Personalization) since 120 seconds is 402
the dentist-recommended brushing duration and brushing duration is a necessary factor aos
in calculating the brushing quality score. Additionally, brushing duration is expected to 404
be reliably obtainable even when the user is far from the toothbrush dock when brushing 4os
(Computability). Note that in Figure 2, a small number of user-brushing episodes have 406
durations over the recommended 120 seconds. Hence we truncate the brushing time to 407
avoid optimizing for over-brushing. Let D;; denote the user’s brushing duration. The 08
reward is defined as R;; := min(D;, 180). 400

3. Choice of State Features At Decision Time: To provide the best personalization, it 410
is ideal that an RL algorithm has as many relevant state features as possible to make a 411
decision, e.g., recent brushing, location, user’s schedule, etc. However, our choice of the a2
state space is constrained by the need to get features reliably before decision and update a1
times, as well as our limited engineering budget. For example, we originally wanted a a1
feature for the evening decision time to be the morning’s brushing outcome, however, this 415
feature may not be accessible in a timely manner. This is because in order for the algorithm 416
to receive the morning brushing data the Oralytics smartphone app requires the user to a7
open the app and we do not expect most users to reliably open the app after every morning s
brush time before the evening brushing window. A further discussion of our choice of 410
decision time state features can be found in Appendix B.1. a20

4. Choice of Algorithm Update Times In our simulations, we update the algorithm s
weekly. In terms of speed of learning (at least in idealized settings), it is best to update the 22
algorithm after each decision time. However, due to Computability considerations, we 23
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chose a slower update cadence. Specifically, for the Oralytics app, the consideration was «2a
due to the fact that we are only able to update the policy used to select actions when the 425
user opens the app. This means that if the user does not open the app for many days, even 26
if we try to update the app after each decision time, we would be unable to do so. Since we 427
believe that it could be common that users could fail to open the app for a few days ata sz
time, we chose weekly updates. In the future, we will explore other update cadences as 420
well, e.g., once a day. 430

5.3. Designing the RL Algorithm Candidates 31

Here we discuss our use of the PCS framework to guide and evaluate the following a2
design decisions for the RL algorithm candidates. There are some decisions that we've 33
already made and other decisions that we encode as axes for our algorithm candidates to  a3s
test in the simulation environment. See Appendix B for further details regarding the RL 435
algorithm candidates. a36

1. Choice of using a Contextual Bandit Algorithm Framework We understand that 4
actions will likely affect a user’s future states and rewards, e.g., sending an intervention s
message the previous day may affect how receptive a user is to an intervention message 439
today. This suggests that an RL algorithm that models a full Markov-Decision process 4o
(MDP) may be more suitable than a contextual bandit algorithm. However, the highly noisy s
environment and the limited data to learn from (140 decision times per user total), makes 4a=
it difficult for the RL algorithm to accurately model state transitions. Due to errors in the 443
state transition model, the estimates of the delayed effects of actions used in MDP-based RL 444
algorithms can often be highly noisy or inaccurate. This issue is exacerbated by our severely ass
constrained state space (i.e. we have few features and the features we get are relatively ass
noisy). As a result, an RL algorithm that fits a full MDP model may not learn very much 447
during the study, which could compromise Personalization and offer a poor user experience. s
To mitigate these issues, we use contextual bandit algorithms, which fit a simpler model 44
of the environment. Using a lower discount factor (a form of regularization) has been so
shown to lead to learning a better policy than using the true discount factor, especially s
in data-scarce settings [38]. Thus, a contextual bandit algorithm can be interpreted as an s
extreme form of this regularization where the discount factor is zero. Finally, contextual ass
bandits are the simplest algorithm for sequential decision making (Computability) and 4sa
have been used to personalize digital interventions in a variety of areas [2,3,7,24,39]. 455

2. Choice of a Bayesian Framework: We consider contextual bandit algorithms that ase
use a Bayesian framework, specifically Posterior (Thompson) Sampling algorithms [40]. as7
Posterior Sampling involves placing a prior on the parameters of the reward approximating 4ss
function and updating the posterior distribution of the reward function parameters at each  4so
algorithm update time. This allows us to incorporate prior data and domain expertise into  sso
the initialization of the algorithm parameters. However, these naturally lead to stochastic 4e:
algorithms (action selections are a not deterministic function of the data), which better e
facilitates causal inference analyses later on using the data collected in the study. 163

3. Choice of Constrained Action Selection Probabilities: We constrain the action selec- es
tion probabilities to be bounded away from zero and one, in order to facilitate off-policy 4es
and causal inference analyses once the study is over (Computability). With help from the aes
domain experts, we decided to constrain the action selection probabilities of the algorithm 467
to be in the interval [0.35,0.75]. a6

The following are decisions we will test using the simulation environment. 470

4. Choice of the Reward Approximating Function: An important decision in design- 47
ing the contextual bandit algorithm is how to approximate the reward function. We consider 7
two types of approximations, a Bayesian linear regression model (BLR) and a Bayesian 47s
zero-inflated Poisson regression model (ZIP) which are both relatively simple, well-studied, a7
and well-understood. Formal specifications for BLR and ZIP as reward functions can be a7
found in Appendix B.2. We consider the ZIP because of the zero-inflated nature of brushing 47
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Figure 2. Histogram of brushing durations in seconds for all user brushing sessions (twice a day) in
ROBAS 2.

durations on our existing dataset ROBAS 2; see Figure 2. We expected the ZIP to provide a 477
better fit to the reward function by the contextual bandit and thus lead to increased average avs
rewards. Moreover, the linear model for the reward function is easily interpretable by 47
domain experts and allows them to critique and inform the model. To perform posterior aso
sampling, both models are Bayesian with uninformative priors to both models. We discuss e
using informative priors further in Section 6. From the perspective of Computability and  4s:
Stability, the posterior for the BLR is of closed-form, which makes it easier to write software sss
leading to efficient and stable updates than the case for the ZIP (the posterior distribution aes
must be approximated and the posterior approximation scheme is another axis to algorithm  sss
design that the scientific team needs to consider); see Appendix C for further discussion ass
on how to update the RL algorithm candidates. We design both types of algorithms with ser
weekly updates to the posterior; this decision will be re-examined in the future. 288

5. Choice of Cluster Size: We consider clustering users with cluster sizes K =1 (no  aeo
pooling), K = 4 (partial pooling), and K = N (full pooling) to determine whether clustering aso
in our setting will lead to higher sums of rewards (Personalization). Clustering-based 4o
algorithms pool data from multiple users to learn an algorithm per cluster (i.e. at update as2
times, the algorithm uses H;;_; for all users i in the same cluster, and at decision times, 403
the same algorithm is used to select actions for all users in the cluster). Clustering-based as.
algorithms have been empirically shown to perform well when users within a cluster s
are similar [41,42]. In addition, we believe that clustering will facilitate learning within e
environments that have noisy within user rewards [43,44]. There is a trade-off between no  4e7
pooling and full pooling. No pooling may learn a policy more specific to the user later on  4os
in the study, but may not learn as well earlier in the study when there is not a lot of data for e
that user. Full pooling may learn well earlier in the study because it can take advantage of  seo
all users’ data, but may not personalize as well as a no pooling algorithm, especially if users s
are very heterogeneous. In addition, we chose K = 4 because that is the expected weekly  so
recruitment rate for the study and the update cadence is also weekly. We consider the two  sos
extremes and partial pooling as a way to explore this trade-off. A further discussion on sos
choices of cluster size can be found in Appendix B.3. 505

5.4. Designing the Simulation Environment s06

We build a simulator that considers multiple variants for the environment, each sor
encoding a concern by the research team, and allows us to evaluate the stability of results sos
for each RL algorithm across the environmental variants (Stability). 500

Fitting Base Models: Recall that the ROBAS 2 study did not involve intervention s
messages. However, we are still able to use the ROBAS 2 dataset to fit the base model for s
the simulation environment, i.e., a model for the reward (brushing duration in seconds) s
under no action. Two main approaches for fitting zero-inflated data are the zero-inflated s
model and the hurdle model [45]. Throughout the model fitting process, we performed s
various checks on the quality of the model to determine whether the fitted model was sis
sufficient (Appendix A .4). This included checks regarding whether the percentage number =6
of zero brush times simulated by our model was comparable to that of the original ROBAS = s:7



https://doi.org/10.20944/preprints202206.0028.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2022 d0i:10.20944/preprints202206.0028.v1

12 of 28

2 dataset. Additionally, we checked whether the model accurately captured the mean and s
variance of the brushing durations for non-zero brush durations across users. 510

The first approach we took was to choose one model class (zero-inflated Poisson) szo
and fit a single population-level model for all users in the ROBAS 2 study. However, a 2
single population-level model was insufficient for fitting all users due to the high level of s22
user heterogeneity (i.e. the between and within user variance of the simulated brushing sz
durations from the fitted model was smaller than the between user and within user variance szs
of brushing durations in the ROBAS 2 data). Thus, next, we decided to maintain one model szs
class, but fit one model per user for all users. However, when we fit a zero-inflated Poisson  sze
to each user, we noticed that the model provided an adequate fit for some users, but -
other users exhibited more variability in their brushing durations. Namely, the within sz
user variance simulated rewards from the model fit on those users was still lower than sz
the within user variance of the ROBAS 2 user data used to fit the model. Therefore, we ss0
considered a hurdle model [45] because it is more flexible than the zero-inflated Poisson. ss:
For Poisson distributions, the mean and variance are equal, whereas in the hurdle model ss:
the mean and variance are not conflated. 533

Ultimately, for each user we considered three model classes: 1) a zero-inflated Poisson, ssa
2) a hurdle model with a square root transform, and 3) a hurdle model with a log transform, sss
and chose one out of these three model classes for each user (Appendix A.2). Specifically, sss
to select the model class for user 7, we fit all three model classes using each user’s data from ss
ROBAS 2. Then we then chose the model class that had the lowest root mean squared error sss
(Appendix A.3). Additionally, along with the base model that generates stationary rewards, sse
we include an environmental variant with a non-stationary reward function; here day in s
study is used as a feature in the environment’s reward generating model (Appendix A.1). s

Imputing Treatment Effect Sizes: To construct a model of rewards for when an inter- s
vention message is sent (for which we have no data on), we impute potential treatment sas
effects with the interdisciplinary team and modify the fitted base model with these effects. saa
Specifically, we impute treatment effects on both the user’s intent to brush, as well as  sss
treatment effects on the brushing duration when the user intends to brush. We impute sas
both types of treatment effects because the investigative team’s intervention messages sz
were developed to both encourage users to brush more frequently and to brush for the sas
recommended duration. Further, because the research team believes that the users may s
respond differently to the engagement messages depending on the context and depending  sso
on the user, we included context-aware, population-level, and user-heterogeneous effects s
of the engagement messages as environmental variants (Appendix A.5). 552

We use the following guidelines to guide the design of the effect sizes: 553

1. In general for mobile health digital interventions, we expect the effect (magnitude of sss
weight) of actions to be smaller than (or on the order of) the effect for baseline features, sss
which include time of day and the user’s previous day brushing duration (all features sse
are specified in Appendix A.1). 557

2. The variance in treatment effects (weights representing the effect of actions) across sss
users should be on the order of the variance in the effect of features across users, i.e., sso
looking at variance in parameters of fitted user-specific models. 560

In accordance with guideline 1 above, to set the population level effect size, we take se
the absolute value of the weights (excluding that for the intercept term) of the base models  se
fitted for each ROBAS 2 user and the average across users and features (e.g., the average ses
absolute value of weight for time of day and previous day brushing duration). For the ses
heterogeneous (user-specific) effect sizes, for each user, we draw a value from a normal ses
centered at the population effect sizes. In accordance with guideline 2, the variance of the ses
normal distributions is found by again taking the absolute value of the weights of the base se
models fitted for each user, averaging the weights across features, and taking the empirical ses
variance across users. In total there are eight environment variants as summarized in ses
Table 1. See Appendix A for further details regarding the development of the simulation sz
environments. s71
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S_Pop: Stationary Base Model, Popula-
tion Effect Size

S_Het: Stationary Base Model, Heteroge-
neous Effect Size

NS_Pop: Non-Stationary Base Model,
Population Effect Sizes

NS_Het: Non-Stationary Base Model,
Heterogeneous Effect Sizes

Table 1. Four Environment Variants We consider 2 environment base models (stationary and non-
stationary) and 2 effect sizes (population effect size, heterogeneous effect size).

] RL Algorithm Candidates \

Average Rewards
RL Algorithm S_Het NS_Het S_Pop NS_Pop
ZIPk=1 100.462 (0.789) | 103.072 (0.751) | 107.745 (0.854) | 109.892 (0.764)
ZIPk =4 101.096 (0.776) | 103.665 (0.781) | 108.975 (0.819) | 110.921 (0.783)
ZIPk=N 101.373 (0.799) | 104.042 (0.769) | 109.137 (0.822) | 111.295 (0.778)
BLRk =1 97.910 (0.779) 100.187 (0.750) | 104.279 (0.815) | 106.109 (0.752)
BLRk =4 100.376 (0.764) | 102.868 (0.761) | 108.313 (0.837) | 110.100 (0.732)
BLRk =N 101.837 (0.806) | 104.655 (0.775) | 109.730 (0.829) | 112.033 (0.755)
25th Percentile Rewards

RL Algorithm || S_Het NS_Het S_Pop NS_Pop
ZIPk=1 69.790 (1.293) 74.240 (0.510) 76.809 (1.193) 79.311 (0.725)
ZIPk = 4 70.470 (1.151) | 74.199 (0.616) | 77.642 (1.415) | 81.491 (0.801)
ZIPk=N 71.688 (1.291) 75.218 (0.648) 78.916 (1.323) 81.194 (0.865)
BLRk =1 67.975 (1.348) 71.263 (0.680) 73.413 (1.105) 75.517 (0.804)
BLRk =4 69.954 (1.226) 73.871 (0.597) 78.316 (1.326) 80.975 (0.755)
BLRk =N 71.656 (1.276) 75.479 (0.520) 79.509 (1.332) 82.732 (0.732)

Table 2. Average and 25th Percentile Rewards. Average and 25th percentile rewards are defined
in Section 3.1. The naming convention for environment variants is found in Table 1. "BLR" denotes
a Bayesian Linear Regression reward approximating function and "ZIP" denotes a Bayesian Zero-
Inflated Poisson reward approximating function. "k" refers to the cluster size. Average rewards are
averaged across time, users, and 50 trials. For the 25th percentile rewards, we average rewards across
time, find the lower 25th percentile across users, and then averaged that across 50 trials. The value
in the parenthesis is the standard error of the mean. Best performing algorithm candidates in each
environment variant are bolded.

6. Experiment and Results s72

We evaluate RL candidates in each of the environment variants (Stability). Following sz
Personalization, we compare the RL candidates by their average sum of rewards, by the sz
25th percentile reward across all users and trials, and by their across time average reward. sz
For each trial, we redraw 72 simulated users (approximately the expected sample size for sz
the Oralytics study) with replacement in groups of 4. To simulate incremental recruitment s
of 4 users per week, the order in which we randomly select these groups of 4 is their s
simulated entry date. Every week in a trial, we check whether a group has completed the sz
10-week study duration and whether we should add another group of 4 users into the study. seo
We cluster users by the day they enter the study (e.g. for cluster size 4 the first four users se:
are in the first cluster and the next four users are in the second cluster, etc). We have one RL  ss2
algorithm instantiation per cluster (no data shared across clusters) and the RL algorithm  ses
has a weekly update cadence with the first update starting after one week (at time t = 14). sss

We then run 50 trials for each environmental variant and algorithm candidate pairing. ses
The results are shown in Table 2. Notice that the average rewards in Table 2 are lower sss
than the 120 seconds of dentist-recommended brushing duration. This is because of the s
zero-inflated nature of our setting (i.e. the user does not brush). We see in the table that sss
BLR and ZIP with cluster size k = N perform better than other RL algorithm candidates seo
in all environments for average reward and lower 25th percentile reward. This indicates  seo
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Figure 3. Average User Reward. For each time step fy € [20,40, 60, 80,100, 120, 140] figure shows
the mean and 1.96 * SE of average user reward (% Y, % 220:1 R;;) on average across trials. For

(a) Stationary Base Model and Heterogeneous Effect Size, (b) Non-Stationary Base Model and
Heterogeneous Effect Size, (c) Stationary Base Model and Population Effect Size, (d) Non-Stationary
Base Model and Population Effect Size

that even though the users are heterogeneous, the heterogeneity is not so large that pooling  se:
users’ data is ever detrimental. 502

Next, consider Figure 3. Again, BLR and ZIP with cluster size k = N perform ses
better than other RL algorithm candidates in all environments across all time steps. We  ses
expected algorithms’ average reward to increase and then decrease for non-stationary ses
environments. This is because the RL algorithms do not incorporate non-stationarity in the ses
reward approximating function and the modeled reward functions become increasingly ser
biased with large time-steps t0. However, it seems that the effect size we considered was  ses
large enough to overcome this non-stationarity. 599

From Table 2 and Figure 3, BLR with cluster sizes k = 4, N is comparable to ZIP. Our oo
hypothesis was that ZIP would perform better than BLR because ZIP has more complexity oz
than BLR. However, there is a bias-variance tradeoff between ZIP and BLR. Although ZIP  ec2
has more complexity than BLR, ZIP needs to fit more parameters and therefore requires sos
more data to learn effectively; but we are in a data-sparse setting. In addition, ZIP is eccs
constrained by the performance of the approximate posterior sampling scheme, which  eos
may be unstable and difficult to debug. On the other hand, BLR has a stable closed-form  eos
posterior update and BLR with action centering specifically does not require the knowledge o
of the baseline features at decision time (See Appendix C.1.1). This means that baseline eos
features only need to be available at update time and we can incorporate more features that eos
were not available in real-time at decision time. Also, BLR with action centering is very o
robust, namely, it is guaranteed to be unbiased even when the baseline reward model is &1
incorrect [2]. 612

We highlight the following takeaways from our experiments: 613

1.  BLR vs ZIP: We prefer BLR over ZIP. BLR with pooling performs similarly or better e
than ZIP and is more reliable/computable. 615
2. Cluster Size: Large cluster sizes perform better especially when there are population e
treatment effects. They also perform well not only for the average user but also for e
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users who do not benefit as much. This performance could be due to faster learning e
because these algorithms can leverage other users’ data to make decisions. Even e
under heterogeneous treatment effects, the benefit of reducing variance by learning ezo
across users is not outweighed by user heterogeneity. 621

There are other limitations to these experiments. 622

Fixed Noise Variance for BLR: The experiments were run using a fixed noise variance e2s
term fit using the ROBAS 2 data set. Assuming a fixed noise variance is unrealistic; we 624
plan to learn the noise variance along with other parameters in the real study. The fixed 25
noise variance term could be a reason that BLR performed comparably to ZIP. 626

More Distinct and Complex Simulation Environments: We may not be looking widely 27
enough across variants to find settings where these algorithms perform differently. With  e2s
sufficient data per user in a highly heterogeneous user environment, then we expect cluster 2o
size k = 1 to do the best. In future work, we aim to add in simulation environments with 30
greater heterogeneity and less noise to see if large cluster sizes still perform well, and we 631
aim to create more complex simulation environment variants that are more distinct (e.g. 32
environments where users may differ by heterogeneous demographic features like age and  ess
gender). Also, we want to impute state features of interest in the real study that were not s
present in the data set, such as phone engagement. 635

Additional RL Algorithm Candidate Considerations. We also aim to consider other e:s
axes for algorithm candidates such as algorithms with other update cadences (e.g. every sz
night or biweekly) and algorithms with an informative prior. In initial simulations using ess
algorithms with informative priors, we found that since the same (limited amount) of s
ROBAS 2 data was used to build both the simulation environment and the prior, the 40
algorithms did not need to learn much to perform well. An open question is how to s
develop both simulation environments and informative priors in a realistic way using a  ss2
very limited amount of data. Finally, we will also explore additional design decisions such eas
as how to carefully design the baseline and advantage feature spaces for the RL algorithm. ess

These investigations will determine the final algorithm that will go into the actual ess
study. 646

7. Discussion and Future Work 647

In this paper, we present the first extension of the PCS framework for designing RL  ess
algorithms in digital intervention settings. The case study demonstrates how to use the s
PCS framework to make design decisions and only highlights of our ongoing work in  eso
designing the Oralytics RL algorithm. Our illustration helps fellow researchers balance and s
understand the benefits and drawbacks of certain aspects of their RL algorithm for their es2
digital intervention study. 053
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The following abbreviations are used in this manuscript: 670

680
RL Reinforcement Learning

BLR Bayesian Linear Regression
ZIP Zero-Inflated Poisson
MDP  Markov-Decision Process

681

Appendix A discusses the development of the simulation environments. o83
Appendix B discusses the RL algorithm candidates. o8a
Appendix C discusses RL algorithm posterior updates and action selection via posterior ess
sampling. 086
Appendix A. Simulation Environments 687
Appendix A.1. Baseline Feature Space of the Environment Base Models 088

The ROBAS 2 dataset has a variety of features that we anticipate to be associated eeo
with brushing duration. These include the time of day (morning vs evening), weekday e
vs weekend, and summaries of the user’s past brushing behavior. Together with domain e
experts in behavioral health and dentistry, we chose the following features to use to fita ee:
model of the reward. Recall that the ROBAS 2 dataset only includes data under no brushing, ees
so for now we are only fitting a model for the baseline reward model (i.e., the brushing ees
duration under action A; ;). In Appendix A.5 we discuss how to model brushing duration ees

under action 1. 696
1. Bias/Intercept Term € R 607
2. Time of Day (Morning/Evening) € {0,1} 698
3. Prior Day Total Brushing Duration (Normalized) € R 699
4. Weekend Indicator (Weekday/Weekend) € {0,1} 700
5. Proportion of Non-zero Brushing Sessions Over Past 7 Days € [0, 1] 701
6. Day in Study (Normalized) € [—1,1] 702

We use these features to generate two types of base reward environments (Stationary and  7os
Non-Stationary). The Stationary model of the base environment uses the state function zes
¢(Sit) € R’ that only includes the first five features above. The Non-Stationary model of the 7os
base environment uses state g(S; ;) € R® that corresponds to all of the above features. 706

Normalization of State Features 707

We normalize features to ensure that state features are all in a similar range. The Prior
Day Total Brushing Duration feature is normalized using z-score normalization (subtract
mean and divide by standard deviation) and the Day in Study feature (originally in the
range [1 : 28] since the study length of ROBAS 2 is 28) is normalized to be between [—1,1].
Note that when generating rewards, Day in Study was normalized based on Oralytic’s
anticipated 10 week study length (range is still [—1, 1]).

Normalized Total Brushing Duration in Seconds = (Brushing Duration — 172) /118


https://github.com/ROBAS-UCLA/ROBAS.2/blob/master/inst/extdata/robas_2_data.csv
https://github.com/ROBAS-UCLA/ROBAS.2/blob/master/inst/extdata/robas_2_data.csv
https://github.com/ROBAS-UCLA/ROBAS.2/blob/master/inst/extdata/robas_2_data.csv
https://github.com/StatisticalReinforcementLearningLab/pcs-for-rl
https://github.com/StatisticalReinforcementLearningLab/pcs-for-rl
https://github.com/StatisticalReinforcementLearningLab/pcs-for-rl
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Normalized Day in Study When Fitting Model = (Day — 14.5) /13.5
Normalized Day in Study When Generating Rewards = (Day — 35.5) /34.5

Appendix A.2. Environment Base Model

We consider three model classes: 1) a zero-inflated Poisson, 2) hurdle model with

a square root transform, and 3) hurdle model with a log transform, and choose one out

of these three model classes for each user. We define these three model classes below.

Additionally, below g(S) is the baseline feature vector of the current state defined in Ap-

pendix A.1, w; p, Wi p, Wiy are user-specific weight vectors, Ul-Z’u is the user specific variance
1

for the normal component, and sigmoid(x) = 170 is the sigmoid function.

1) Zero-Inflated Poisson Model for Brushing Duration
Z~ Bernoulli(l - sigmoid(g(S)Twi/b))

Y ~ Poisson (eXP (8 (S )Twirl’) )

Brushing Duration in Seconds : D = ZY

2) Hurdle Model with Square Root Transform for Brushing Duration
Z~ Bernoulli(l — sigmoid (g(S)Twi,b))

Y ~ N(g(S)Twi,y,Ui%u)
Brushing Duration : D = ZY?

Note that the non-zero component of this model, Y?, can also be represented as a constant
times a non-central chi-squared, where the non-centrality parameter is the square of the
mean of the normal distribution.

3) Hurdle Model with Log Transform for Brushing Duration
Z ~ Bernoulli(l - a(g(S)Twl-’b))

Y ~ Lognormal (g(S)Twi,y, Ufu)
Brushing Duration : D = ZY

Since we want to simulate brushing duration in seconds, we also round outputs of the
hurdle models to the nearest whole integer. Notice that the zero-inflated Poisson model is a
mixture model with a latent state. The Bernoulli draw Z is latent and represents the user’s
intention to brush, and the Poisson models the user’s brushing duration when they intend
to brush (this is because the brush time can still be zero when the user intends to brush).
On the other hand, the hurdle model provides a model for brushing duration conditional
on whether the user brushed or not. The Bernoulli draw Z in the hurdle model is observed.

Note that the Hurdle model is used for the simulation environment only and not
the RL algorithm. The Hurdle model conditions on a collider (e.g. whether the person
brushes their teeth), thus potentially leading to causal bias [46,47]. For example, consider
an unobserved cause U, intervention A, whether the user brushed or not Z, brushing
duration D, and a directed acyclic graph with A — Z,U — Z,U — D, and Z — D. Then
conditioning on collider Z of treatment opens a pathway from A to D through U [48].
Suppose in reality A only impacts whether the user brushes their teeth but not the duration.
Then if we condition on Z to evaluate the impact of A on D, we may erroneously learn that
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A impacts the duration of brushing. This makes the Hurdle unsuitable as a model for an 736
RL algorithm that aims to learn causal effects. 737

Appendix A.3. Fitting the Environment Base Models 738

We use ROBAS 2 data to fit the brushing duration model under action 0 (no message). 7so
For all model classes, we fit one model per user. All models were fit using MAP witha 70
PTiOr Wj j, Wi p, Wiy ~ N (0, I) as a form of regularization because we have sparse data for 7a
each user. Weights were chosen by running random restarts and selecting the weights with 7.2
the highest log posterior density. 743

Fitting Hurdle Models: For fitting hurdle models for user i, we fit the Bernoulli com- 74
ponent and the non-zero brushing duration component separately. We use D; ; to denote s
the ith ROBAS 2 user’s brushing duration in seconds at the t time point. Set Z; ; = 1if the 746
original observation D;; > 0 and 0 otherwise. We fit a model for this Bernoulli compo- 747
nent. We then fit a model for the normal component to either the square root transform  7ss
Yy = \/m or to inverse-log transform Y; ; = exp(D; ) of the ith user’s non-zero brushing  7s
duration. 750

Fitting Zero-Inflated Poisson Models: For the zero-inflated Poisson model, we jointly  zs
fit parameters for both the Bernoulli and the Poisson components. Since the brushing s
durations in the ROBAS 2 data were integer values, we did not have to transform the s
observation to fit the zero-inflated Poisson model. 754

Selecting the Model Class For Each User 785

To select the model class for user i, we fit all three model classes using user i’s data se
from ROBAS 2. We then chose the model class that had the lowest root mean squared error s

(RMSE). Namely, we choose the model class with the lowest L;, where: 758
T A
Li:= | Y (Diy — E[D;4]S;s])?
t=1

Recall that D;, is the brush time in seconds for user i at decision time f. Definitions of 7se

[B[D; 4|S; ;] for each model class are specified below in Table Al. 760
Model Class E[D;|S; 4]
Zero-Inflated Poisson [1 — sigmoid (g(S;¢) Twip)] - exp(g(Si) Twi,)

Hurdle (Square Root) | [1 — sigmoid(g(S;¢)Tw;;)] - [‘Tiz,u + (8(Sip) Twiy)?
2
Hurdle (Log) [1— sigmoid(g(S;¢)Tw;p)] - exp (g(Si,t)Twi,y + %

Table Al. Definitions of IAE[Di/t|S,-,t] for each model class. E[Di/t\si,t] is the mean of user model i
fitted using data {(S;;, D; )},

After the procedure was run, we obtained the following number of model classes for ze

all users in the ROBAS 2 study in Table A3. 762
Appendix A.4. Checking the Quality of the Simulation Environment Base Model 763
Checking Moments 764

Using the chosen user-specific models, we simulate 100 “trials”. In each trial, for 7es
each of users in ROBAS 2, we use their respective model to generate a data trajectory zes
(Sit, Ri,t)?il (note that the ROBAS 2 study had 2 brushing windows per day for 28 days for 7er
a total of 56 brushing windows). We then compute the following metrics for each of the 7es
trials and averaged across trials: 769
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Model Class E[D;|Sit, Di > 0]
Hurdle (Square Root) (Tizu + (8(Si) Tw;, y)z
’ 2

Hurdle (Log) exp(g(Si ) Twiy + 5)

exp(8(Sit) " wip) exp(exp(g(Si) Twip))
exp(exp(g(Sis)Twiyp))—1
Var[D;;|S;, Di; > 0]
Hurdle (Square Root) g(Si,t)Tw;%y + SUgu + 6(71.2,” (g(Si,t)Twi,y)z —E[R zt|Sl tRip > 0]?
Hurdle (Log) (exp(a7,) — 1) - exp(28(Siy ) Tw, Tt )
Zero-Inflated Poisson | E[D;|S;;, D;; > 0] - (1 + exp(g(Sis)Twip) — E[D; it >0])
Table A2. Definitions of I@[D,-ASZ-J, D;y > 0] and \//a\r[Di/t\S,-,t, D;; > 0] for each model class.
E[Di,t IS+, Di > 0] and \//EH"[D,-J |S;t, Dit > 0] is the mean and variance of the non-zero component of
user model i fitted using data {(S;, D;;)}_;.

Zero-Inflated Poisson

itr

Model Class Stationary | Non-Stationary
Hurdle with Square Root Transform 9 7
Hurdle with Log Transform 9 8
Zero-Inflated Poisson 14 17

Table A3. Number of selected model classes for the Stationary and Non-Stationary environments.

1.  Proportion of Missed Brushing Windows:

1 1 &
N - fZH[thI

t=1

™M=

I
—

2. Average Non-Zero Brushing Duration:
T

1% Y 1[D;; > 0]D

11Et1[ it > 0] =

3. Variance of Non-Zero Brushing Durations: Let @({Xk},{(:l) represent the empirical
variance of Xi, X», ..., Xk.

Var({D;;:t € [1: T], Dy > 0} )

4. Variance of Average User Brushing Durations: This metric measures the degree of
between user variance in average brushing.

/(1T N
Var({T t; Di,t}i_l)

5. Average of Variances of Within User Brushing Durations: This metric measures the
average amount of within user variance.

1

N ar({Di,t}thl)

i Mz

The base models slightly overestimate the proportion of missed brushing windows in 77
the ROBAS 2 data set. Our base models also slightly underestimate the average brushing 7z
duration. Our base models also for the most part slightly overestimate the between-user 72
and within-user variance of rewards. 773
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Metrics | ROBAS?2 | Stationary | Non-Stationary
Proportion of Missed Brushing Windows 0.376674 0.403114 0.397812
Average Non-Zero BDs 137.768129 | 131.308445 134.676955
Variance of Non-Zero BDs 2326.518304 | 2392.955018 2253.177853
Variance of Average User BDs 1415.920148 | 1699.126897 1399.615330
Average of Variances of Within User BDs | 1160.723506 | 1405.944459 1473.239769

Table A4. Comparing Moments Between Base Models and ROBAS 2 Data set. Above we use BDs
to abbreviate Brushing Durations. Values for the Stationary and Non-Stationary base models are
averaged across 100 trials.

Measuring If A Base Model Captures the Variance in the Data 774

We measure how well the fitted base models captured (1) whether or not the user
brushed, and (2) the variance of the brush time when the users did brush. To measure point
(1), for each user model i, we calculate the statistic:

_1 D;; > 0] — E[I[D;; > 0]/S;,]\?
Z( VarllDy, > 015, ) (A

-~

where E[I[D;; > 0]|S;;] = 1 — sigmoid(S] }iip) and Var[[[D;; > 0]|S;;] = E[I[D;; > s

O]lSi,t] SlngId(S twlb) 776
To measure point (2), for each user model i, we calculate the statistic:
a Di; — E[Diy[Siz, Dig > 0]\
U; = —z > 0)( Pz BB Du = 0 (A2)
Y 1[Diy > 0] = Var([D;;|S;, D > 0]

Definitions of IAE[DM |Sit,Diy > 0] and @[Di,t|5i¢, D;; > 0] for the non-zero compo- 777
nent of each model class are specified in Table A2. For a user model to capture the variance 7=
in the data, U; should be close to 1. We calculate the empirical mean U = % Zfi 1 Ui 7o
and standard deviation o = std(U;), and the approximate 95% confidence interval is e

U u
U :l: 196 * \/ﬁ 781
Metric | Stationary | Non-Stationary
Eqn (A1) T 0.811 0.792
Eqn (A1) g 0.146 0.150
Eqn (A1) Confidence Interval | (0.760, 0.861) (0.739, 0.844)
Eqn (A2) U 3.579 3.493
Eqn (A2) o 4.861 4876
Eqn (A2) Confidence Interval | (1.895, 5.263) (1.803, 5.182)

Table A5. Statistic U; for Capturing Variance in the Data. Values are rounded to the nearest 3
decimal places.

Results are in Table A5. We can see that after computing the statistic for each user, 7
the confidence interval is close to 1. We understand that the confidence intervals do not  7s:
contain 1 which implies that we are overestimating the amount of variance in I[D > 0], and  7sa
underestimating the amount of variance in D|D > 0. In the future, we hope to improve s
upon this statistic by considering non-linear components in our base models. 786

Appendix A.5. Imputing Treatment Effect Sizes for Simulation Environments 787

Recall the ROBAS 2 dataset does not have any data under action 1 (send a message). 7es
Thus to model the reward under action 1 we must impute. 789
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Treatment Effect Feature Space 700

The following choice of the treatment effect (advantage) feature space was made after 7o
discussion with domain experts on which features are most likely to interact with the e
intervention (action). The Stationary model uses state i(S) € R* corresponding to the 7es

following features: 708
1.  Bias/Intercept Term € R 795
2. Time of Day (Morning/Evening) € {0,1} 796
3.  Prior Day Total Brushing Duration (Normalized) € R 707
4.  Weekend Indicator (Weekday/Weekend) € {0,1} 708
The Non-Stationary model uses state (S) € R> corresponding to all of the above features 7o
as well as the following: 800
5. Day in Study (Normalized) € R s01
Imputation Approach 802

For the Zero-Inflated Poisson model, we impute treatment effects on both the user’s  eos
intent to brush (Bernoulli component) and the user’s brushing duration when they intend  sos
to brush (Poisson component). Similarly, for the Hurdle models, we impute treatment eos
effects on both whether the user’s brushing duration is zero (Bernoulli component) and the  sos
user’s brushing duration when the duration is nonzero. s07

After incorporating effect sizes, brushing duration under action A in state S is D
where:

Z ~ Bernoulli(1 — sigmoid(g(S)Tw;, + A* h(S)TA;))

ZY2Y ~ N (g(x) wiy, + Axh(x)TAj N, 0F) for Hurdle square root model
D= Zexp(Y),Y ~N(g(x)Tw;, + Axh(x)TA;n, ‘Tiz,u) for Hurdle log normal model
ZY,Y ~ Poisson(exp(g(x)Tw;, + Axh(x)TA;N)) for Zero-Inflated Poisson model

A; g, A; N are user-specific effect sizes; we will also consider population-level effect sizes  sos
(same across all users) which we denote as Ag, Ay. g(S) is the baseline feature vector as  sos
described in Appendix A.1, and h(S) is the feature vector that interacts with the effect size s10
as specified above. s11

812

Heterogeneous versus Population-Level Effect Size 813

We consider realistic heterogeneous effect sizes (each user has a unique effect size) e
and a realistic population-level effect size (all users who share the same base model class a5
also share the same effect size). 816

817

Population Level Effect Sizes: Recall that for the stationary base model we fit models =

ey
©

for Y and Z, and get user-specific parameters w; ;, w; , € R® (Zero-Inflated Poisson model) s
and parameters w;p, w;, € R> (Hurdle models). We use these parameters to form the sz

population effect sizes as follows: o21

Zero-Inflated Models Effect Sizes: " 823

b Ap = HB,avg where HB,avg = %Zdep: 5] % Zfil |wi,b | 824
d

e Ayx= HNavg where HNavg = %Zde[Z: 5] % Zil\il |w§,p)|, 825

Hurdle Models Effect Sizes: 826

d

L4 AB = ﬂB,an where }lB’an = %Zde[Z: 5] % Z{il |w£b) | 827
d

° AN = HN,avg where HN,avg = % Zde[Z: 5] % Zzlil |w1§,]4) | 828

Heterogeneous Effect Sizes: To calculate the heterogeneous effect sizes, we again
group users by their chosen base model (Zero-Inflated, Hurdle Square-Root, Hurdle Log).
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We then draw effect sizes for each user from a normal distribution specific to their base
model:
2
Aig ~ N (g, o)

Bip ~ N (un, of)

up, U are set to the population level effect sizes for that base model class as described eze

above. To set (Tl%, 012\,, we do the following: 830
831

Zero-Inflated Models 832
e  0p is the empirical standard deviation over {y; g}, where y;p = }Izde[2: 5] |wfi) . ea
We use w%) to denote the dh dimension of the vector w; p; we take the minimum over = sss

all dimensions excluding 4 = 1 which represents the weight for the bias/intercept ess
term. 836

e oy is the empirical standard deviation over {y; v}, where p; y = § Yaep: 5) |w§? | s
Hurdle Models: a3
0pis the empirical standard deviation over {y; s}, where yi; 5 = } Yae2: 5] |w§'i) [—

e oy is the empirical standard deviation over {y; y }N, where ;v = § Ydep: 5] |w§i) |. s

Histograms of A; g, A; y and values of up, un for each base model class are specified in s

Figure Al. 842
Ag of Hurdle Model Ay of Hurdle (Square Root) Model Ay of Hurdle (Log) Model
25% effect sizes effect sizes effect sizes
e g =-0.473 18% o M= 1.020 ey =0.193
25%
20% 15%
20%
12%
&15% & &
§ § 10% § 15%
& & &
10% 8%
10%
5%
5% 5%
2%
0% 0% 0%
-0.8 -0.6 -0.4 -0.2 0.0 0.0 0.5 1.0 15 2.0 -0.2 0.0 0.2 0.4 0.6
(a) Effect Sizes (b) Effect Sizes (C) Effect Sizes
Ag of ZIP Model Ay of ZIP Model
25% effect sizes effect sizes
e g =-0.473 ey = 0.166
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20%
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&15% &
H § 15%
g g
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(d) Effect Sizes (e) Effect Sizes

Figure Al. A;p’s, A; N's, 1, N for each base model class. For (a) Effect Sizes for Bernoulli Com-
ponent of the Hurdle Models, (b) Effect Sizes for Non-Zero Component of Hurdle (Square Root)
Model, (c) Effect Sizes for Non-Zero Component of Hurdle (Log) Model, (d) Effect Sizes for Bernoulli
Component of the ZIP Model, (e) Effect Sizes for Poisson Component of the ZIP Model

Appendix B. Reinforcement Learning Algorithm Candidates sa3
Appendix B.1. Feature Space for the RL Algorithm Candidates sas
Advantage Feature Space 845

We use f(S) € R? to denote the feature space used by our RL algorithm candidates to  sss
predict the advantage, i.e., the immediate treatment effect, is the following;: 8a7
1.  Bias/Intercept Term € R sas

2. Time of Day (Morning/Evening) € {0,1} 84
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3.  Prior Day Total Brushing Duration (Normalized) ¢ R 850
The normalization procedure for Prior Day Brushing Duration is the same as described in  ss:
Appendix A.1.0.1. s52
Baseline Feature Space 853

We use m(S) € R* to denote the feature space used by the RL algorithm candidates to sss
approximate the baseline reward function containing all the above covariates as well as the ess
following: ss6

4.  Weekend Indicator (Weekday/Weekend) € {0,1} ss7

Note, the feature space used by the RL algorithm candidates is different than the feature ese
space used to model the reward in the simulation environments, specified in Appendix A.1 and  sse
Appendix A.5; this means that the RL algorithms will have a misspecified reward model. seo
Namely, the baseline feature space for the simulation environment has an additional Pro- se:
portion of Non-zero Brushing Sessions Over Past 7 Days feature and the non-stationary se:
variant has the Day in Study (Normalized) feature. The treatment effect feature space for e
the simulation environment has an additional Weekend Indicator (Weekday/Weekend) sse
and the non-stationary variant has the Day in Study (Normalized) feature. 865

The rationale for not including the Day in Study (Normalized) feature is although ess
we wanted to capture potential non-stationarity in brushing outcomes in order to create se-
a realistic simulation environment, our RL algorithm candidates do not have reward ees
functions that vary arbitrarily over time. We do not include Proportion of Non-zero ses
Brushing Sessions Over Past 7 Days and Weekend Indicator (Weekday/Weekend) to s7o
detect the robustness of RL algorithm candidates to a misspecified reward model. o71

Appendix B.2. Decision 1: Reward Approximating Function a72

The first decision in designing the RL algorithm is the choice between using a linear &7
model or a 0-Inflated Poisson model as the reward approximating function used by the 7
posterior sampler (note this is separate from the reward model used to generate the en- a5
vironment). More information on how the posterior sampling algorithm performs action ez
selection can be found in Appendix C.2, and how the algorithm updates at update times e
can be found in Appendix C.1. We describe the two candidates below. 878

Note that the function m for the RL algorithm’s baseline reward model is only used s
at update times. The function f for the RL algorithm’s advantage model is used at both s
decision and update times. s81

Appendix B.2.1. Bayesian Linear Regression Model as2

The first candidate is to use the following reward generating model with action
centering used in [2] for the posterior sampler:

Rip=m(Sis)Taio+ 7 f(Sie)Toin + (Aip — 7i) f(Si) T Bi + €i (A3)

where a; € R* and a;1,Bi € R3. 7 + is the probability that action A;; = 1is selected by the  sss
RL algorithm for user i in state S; ;; we discuss how to compute these in Appendix C.2. The sss
RL algorithm models €; ; as being drawn from (0, 72) (the choice of ;2 is informed by the  sss
ROBAS 2 dataset). Additionally, we put uninformative normal priors on the parameters: sss
&jo ~ N(Or Uprior14)r i1~ N(O, Uprior13)/ Bi ~ N(O/ UpriorIS)/ where Oprior = 5. 887
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Appendix B.2.2. Zero-Inflated Poisson Regression Model sss

The second candidate is to use the zero-inflated reward generating model for the
posterior sampler:

Zip~ Bernoulli(l - sigmoid(m(Si,t)Toci,p + Ay -f(Si,t)T,Bi,b))

Y;+ ~ Poisson (exp (m(Si,t)Ttxi,p + A -f(SZ-,t)T,Bi,p>> (Ad)
Riy=ZisYiy

The above model closely resembles the zero-inflated Poisson model class used to develop  sss
the simulation environment in Appendix A.2; however, recall that the feature space used s
by the RL algorithm and the model to generate the environment are different. Additionally, se:
here we model the reward directly, rather than the raw brushing duration. 802

Additionally, the posterior sampling algorithm will put the following uninformative ses
normal priors on the parameters: a;y, a;, ~ N(0,0priorls) and Biy, Bip ~ N (0, 0prior13), s0s
where 0y = 5. 805

Appendix B.3. Decision 2: Cluster Size 896

Clustering involves grouping k users together and pooling all of their data together e
for the RL algorithm. This means that we have one RL algorithm instantiation per cluster ees
(no data shared across clusters). For our experiments, we draw 72 simulated users (the oo
expected sample size for the Oralytics study) with replacement and cluster these users at  soo
random (every possible cluster is equally likely). We then keep these cluster assignments oo
fixed across the trials. %02

For simplicity in running our experiments, we consider randomly formed clusters, o3
but we are thinking of clustering by entry date in the real study. We cannot predict how s0a
many users who share the same baseline feature will join within a relatively short period of sos
time (e.g. we cannot depend on there being 4 females within the first two weeks). Entry sos
date is reasonable because we are guaranteed to form a cluster for those users and the o7
domain experts believe that users who enter the study around the same time will be similar. sos
Users who enter near the end of the study may be very different from users who enter oo
near the beginning because of societal factors (e.g. pandemic restrictions being lifted), 10
seasonal influences (e.g. changes in user’s mood in spring versus mid-winter), and fidelity o1
(e.g. quality of on-boarding procedures and staff experience may improve over time). One o1
natural approach is to cluster by baseline features, however, that is not feasible for a study o1
where the recruitment rate is slow such as in Oralytics. 914

Appendix C. RL Algorithm Posterior Updates and Posterior Sampling Action Selection 15
Appendix C.1. Posterior Updates to the RL Algorithm at Update Time 016

During the update step, the reward approximating function will update the posterior o7
with newly collected data. Also, we make M draws of the parameters from the updated o1s

posterior and use them for all decision times until the next update time. Here are the o1
procedures for how the posterior updates for the Bayesian Linear Regression model and  s20

the 0-Inflated Poisson model. 921
Appendix C.1.1. Bayesian Linear Regression Model 022

Suppose we are selecting actions for decision time t. Let ¢(S;;, Ai) = [m(Sit), o=
it f(Sit), (Air — mit)f(Sit)] be the joint feature vector and 6; = [w;, @;1, ;] be the ozs
joint weight vector. Notice that Equation A3 can be vectorized of the form: R;; = oz

¢(Sit, Ait)T0; + €. Now let ®; 11 be the matrix of all stacked vectors {¢(S;;, A; ) é;%, 026
and R; 1,1 be a vector of stacked rewards {Ri,s}é;%r where we have batch data of the t — 1 o027
decision times before the current update time. 928
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Recall we have Normal priors on 6; where 6; ~ N/( Hpriors Zprior), where piprior =

3+3+4 Y 2 2 2
0 c R and Xprior = dlag(apriorlg, ‘Tprior13f 7,

weights given current history H,;_1, p(6;|H;;—1) is conjugate and is also normal.

vior14)- The posterior distribution of the

posterior  posterior
Oil Hipo1 ~ N(piy 200 )

prior

-1
1 1
Zf-’,fitf”o’ = (172q>?1:t1q)i,1:t1 +x1 )

posterior Z‘posterior 1

T . -1 )
Hir1 it—1 <;7Zq>',12t1R1/1:t1 + Zprioryp"m’>

Note, we fit % to the ROBAS 2 dataset and fixed it for all of our experiments. In the
real study, we want to consider assigning a conjugate prior on 1% and updating it at update
times.

Appendix C.1.2. Zero-Inflated Poisson Regression Model

For the 0-Inflated Poisson regression model, the posterior distribution of the weights
0; = {aip, Bip, aip, Bip} given data H;; 1, p(6;|H; 1), does not have a closed form. There-
fore we use Metropolis Hastings (MH) with a normal proposal distribution as an approxi-
mate posterior sampling method.

Posterior Density
The log-likelihood of the 0-Inflated Poisson Regression Model is:

log f(Ri¢[Sit, Ait; 6;) = {log((l pItpep(-A) -~ R=0
logp — A+ RlogA —logR! R=1,2,3,..
where p = 1 — sigmoid (m(S; ;) Ta;, + Ai¢ - f(Si¢)TBip), is the probability of the user in-
tending to brush, and A = exp(m(S;;)Ta;, + Ais - f(Sit)TBip) is the expected Poisson
count.
Therefore the log posterior density is:

N
log p(6i|His—1) o Y _ log f(R;¢|Sit, A 6;) + log p(6;)
n=

1
Proposal Distribution

We choose a Normal distribution for our proposal distribution. At each step of MH,
we propose a new sample given the old sample, ef,mp ~N (9(’§l & 7°1), where 6% denotes the
kth value of 6.

Metropolis Hastings Acceptance Ratio

The Metropolis Hastings acceptance ratio given a proposed sample 0pr0p and an old
sample 6,4 is defined as:

p(eprop) /q(gprop |601d) )
P(Bo1a) /9 (0old |9prop)

Since our proposal distribution is symmetric, the log acceptance ratio becomes:

&(Bprop, Bold) := min (1,

log &(Oprop, Oo1a) := min(0,log p(Bprop) —log p(fola))
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Appendix C.2. Action Selection at Decision Time
Appendix C.2.1. Posterior Sampling

Our action selection scheme at decision time selects action 1 according to the posterior
probability that that arm is optimal. We define these as 77; ; below.

Bayesian Linear Regression Model Based on the Bayesian Linear Regression model of the
reward, specified by Equation (A3):

7-[1,13 = Pr5~/\/( post Zfwsi‘ ){f(Sj,t)T,B > 0’51‘,,3, Hi,tfl}‘

Hir1%i-1

Note that the randomness in the probability above is only over the draw of j from the
posterior distribution.

Zero-Inflated Poisson Model Based on the Zero-Inflated Poisson model of the reward,
specified by Equation (A4):

i = Pr&i’b,ai,p,ﬁi,b,ﬁi,p{Zi,tYi,t >0|S;:, Hit—1}
where Z;; ~ Bernoulli(1 — sigmoid (m(S; ;) &, + Ais - f(Sit)"Bip)) and
Y;; ~ Poisson(exp(m(S;;) @;, + Ais- f(Sit)TBip)). Note that the randomness in the

probability above is only over the draw of (&;, &; 5, Bib, Bi,p) from the posterior distribu-
tion.

Appendix C.2.2. Clipping to form Action Selection Probabilities

Since we want to facilitate after study analyses, we clip action selection probabilities
using action clipping function for some chosen values of 7in, Tmax Where 0 < 7Tin <
Timax < 1 chosen by the scientific team:

clip(71) = min(7tmax, Max (7T, Tmin)) € [Tmin, Tmax] (A5)

This means that
Tt = Chp(ﬁz‘,t)
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