
Article

Designing Reinforcement Learning Algorithms for Digital
Interventions: Pre-implementation Guidelines
Anna L. Trella 1,∗ , Kelly W. Zhang 1, Inbal Nahum-Shani2 , Vivek Shetty3 , Finale Doshi-Velez1 , and Susan A.
Murphy 1

1 School of Engineering and Applied Sciences, Harvard University, 02420 Massachusetts, USA;
kellywzhang@seas.harvard.edu (K.W.Z.); finale@seas.harvard.edu (F.D.-V.); samurphy@fas.harvard.edu
(S.A.M.)

2 Institute for Social Research, University of Michigan, 48109 Michigan, USA; inbal@umich.edu
3 Schools of Dentistry & Engineering, University of California, Los Angeles, 90095 California, USA;

vshetty@ucla.edu
* Correspondence: annatrella@g.harvard.edu

Abstract: Online reinforcement learning (RL) algorithms are increasingly used to personalize digital 1

interventions in the fields of mobile health and online education. Common challenges in designing 2

and testing an RL algorithm in these settings include ensuring the RL algorithm can learn and run 3

stably under real-time constraints, and accounting for the complexity of the environment, e.g., a lack 4

of accurate mechanistic models for the user dynamics. To guide how one can tackle these challenges, 5

we extend the PCS (Predictability, Computability, Stability) framework, a data science framework 6

that incorporates best practices from machine learning and statistics in supervised learning [1], to 7

the design of RL algorithms for the digital interventions setting. Further, we provide guidelines on 8

how to design simulation environments, a crucial tool for evaluating RL candidate algorithms using 9

the PCS framework. We illustrate the use of the PCS framework for designing an RL algorithm for 10

Oralytics, a mobile health study aiming to improve users’ tooth-brushing behaviors through the 11

personalized delivery of intervention messages. Oralytics will go into the field in late 2022. 12

Keywords: reinforcement learning (RL); online learning; mobile health; algorithm design; algorithm 13

evaluation; decision support systems 14

1. Introduction 15

There is growing interest in using online Reinforcement Learning (RL) to optimize the 16

delivery of messages or other forms of prompts in digital interventions. In mobile health, 17

RL algorithms have been used to increase the effectiveness of the content and timing of 18

intervention messages designed to promote physical activity [2–4] or to manage weight 19

loss [5]. In other areas including the social sciences and education, RL algorithms are used 20

to provide pre-trial nudges to encourage court hearing attendance [6], to personalize math 21

explanations [7] or quiz questions during lecture videos [8]. Unlike areas such as games 22

and some subareas of robotics, it can be extremely costly to run a digital intervention 23

study. Further, when the study is a pre-registered clinical trial, once initiated, the trial 24

protocol (including any online algorithms) cannot be altered, without jeopardizing trial 25

validity. Thus design decisions are a "one-way door" [9]; namely, once we commit to a set of 26

design decisions, they are irreversible for the duration of the trial. To prevent poor design 27

decisions that could be detrimental to the effectiveness and the validity of study results, RL 28

algorithms must undergo a thorough design and testing process before deployment. 29

The development of an RL algorithm in digital interventions requires a multitude of 30

design decisions. These decisions include how best to accommodate the lack of mechanistic 31

models for dynamic human responses to digital interventions and how to ensure robust- 32

ness of the algorithm to potentially non-stationary/non-Markovian outcome distributions. 33

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2022 doi:10.20944/preprints202206.0028.v1

© 2022 by the author(s). Distributed under a Creative Commons CC BY license.

https://www.mdpi.com
https://orcid.org/0000-0003-4779-9115
https://orcid.org/0000-0001-6138-9089
https://orcid.org/0000-0002-3167-3318
https://orcid.org/0000-0003-2886-3898
https://orcid.org/0000-0002-2032-4286
https://doi.org/10.20944/preprints202206.0028.v1
http://creativecommons.org/licenses/by/4.0/

2 of 28

Si,t+1
Current State

Si,t
Current State

Day : Morning

Before morning

brushing window

d Day : Evening

Before evening

brushing window

d Day : Morning

Before morning

brushing window

d + 1

RL
Reward

Do not send

engagement

 message

Send

engagement

 message

Ai,t−1 = 1 |Si,t−1

Si,t−1
Current State

Ri,t−1

Ai,t−1 = 0 |Si,t−1

Decision Time t − 1

RL
Reward

Do not send

engagement

 message

Send

engagement

 message

Ri,t

Ai,t = 0 |Si,t

Decision Time t

RL
Reward

Do not send

engagement

 message

Send

engagement

 message

Ai,t+1 = 1 |Si,t+1

Ri,t+1

Decision Time t + 1

Ai,t = 1 |Si,t

Ai,t+1 = 0 |Si,t+1

Figure 1. Decision times and actions for the RL algorithm in the Oralytics study. For each day d,
there is a morning decision time and an evening decision time for user i. At every decision time t,
the RL algorithm selects action Ai,t given the current state Si,t. After an action is taken, we observe
reward Ri,t from the user.

Further, one must not only ensure that the RL algorithm learns and quickly optimizes inter- 34

ventions, but also ensure that the algorithm runs stably and autonomously online within 35

constrained amounts of time. These include decisions to ensure that the RL algorithm 36

can obtain data in a timely manner. Time and budgetary considerations may restrict the 37

ability to implement more complex RL algorithms. Further, it is important to ensure the 38

data collected by the RL algorithm can be used to inform future studies and address scien- 39

tific, causal inference questions. Addressing these challenges in a reproducible, replicable 40

manner is critical if RL algorithms are to play a role in optimizing digital interventions. 41

Therefore we need a framework for making design decisions for RL algorithms intended to 42

optimize digital interventions. 43

44

The primary contributions of this work are two-fold: 45

1. Framework for Guiding Design Decisions in RL Algorithms for Digital Interven- 46

tions: We provide a framework for evaluating the design of an online RL algorithm to increase 47

confidence that the inclusion of an online RL algorithm as part of the digital intervention will 48

improve the effectiveness and maintain reproducibility and replicability of the intervention, in 49

real-life implementation. Specifically, we extend the PCS (Predictability, Computabil- 50

ity, Stability) data science framework of Yu [1] to address the specific challenges in 51

the development and evaluation of an online RL algorithm for personalizing digital 52

interventions. 53

2. Case Study: This case study concerns the development of an RL algorithm for Oralyt- 54

ics, a mobile health intervention study designed to encourage oral self-care behaviors. 55

The study is planned to go into the field in late 2022. This case study provides a concrete 56

implementation of the PCS framework in informing the design of an online RL algorithm. 57

One tool is the development of multiple simulation test-bed environments and the 58

use of these environments along with PCS principles to evaluate the candidate RL 59

algorithms. 60

2. Review of Online Reinforcement Learning Algorithms 61

Reinforcement learning (RL) [10,11] is the area of machine learning which is concerned 62

with learning how to best make a sequence of decisions. In digital intervention settings, the 63

sequence of decisions concerns which treatment (e.g., motivational messages, reminders, 64

types of feedback, etc.) to provide given the user’s current state and history. Definitions of 65

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2022 doi:10.20944/preprints202206.0028.v1

https://doi.org/10.20944/preprints202206.0028.v1

3 of 28

decision times, state, action, reward, and update times are provided below. The decision 66

times and actions for the RL algorithm for Oralytics are provided in Figure 1. 67

2.1. Decision Times 68

These are the times, indexed by t at which the RL algorithm may deliver a treatment 69

(via a smart device such as a desktop computer, smartwatch, smartphone, smart speaker, 70

wearable, etc.). The cadence of the decision times (minute level, hourly, daily, etc.) depends 71

on the type of digital intervention. For example in Oralytics, we have two decision times 72

per day, namely, one hour prior to the set morning and evening brushing windows specified 73

by the user. 74

2.2. State 75

Si,t ∈ Rd represents the ith user’s state at time t. d is the number of features describing 76

the user’s state (e.g. current location, recent adherence to medication, current social setting, 77

recent engagement with the intervention application, etc.). See Section 5.2 for the state 78

definition for Oralytics. 79

2.3. Action 80

Ai,t ∈ A represents the decision made by the RL algorithm for the ith user at decision 81

time t. Treatment actions in digital interventions frequently include the action of not 82

delivering any treatment at time t. For Oralytics, the action space is A := {0, 1}, where 83

Ai,t = 1 represents sending the user an engagement message and Ai,t = 0 represents not 84

sending an engagement message. See Section 5.1 for descriptions of the types of messages 85

that could be sent in Oralytics. 86

2.4. Reward 87

Ri,t ∈ R is the reward for the ith user at decision time t, recorded after taking action 88

Ai,t. The definition of the reward depends on the type of digital intervention. Examples 89

include successful completion of a math problem, taking a medication, level of physical 90

activity, etc. The reward function is the mean of Ri,t conditional on the current state Si,t and 91

action Ai,t. In Oralytics the reward is the subsequent brushing duration; see Section 5.2 for 92

further discussion of the reward in Oralytics. 93

2.5. Update Times 94

These are the times at which the RL algorithm is updated, which typically includes 95

updating a model of the user (e.g., a model of the user’s reward function). The RL algorithm 96

updates using user i’s current history of past states, actions, and rewards up to time t, 97

denoted Hi,t−1 = {Si,s, Ai,s, Ri,s}t−1
s=1. Also, if the algorithm pools data across users, then the 98

history of other users in the study, Hj,t−1 for i ̸= j, are used to update the model for user i. 99

For Oralytics, the update cadence is once a week. 100

101

Generally, online RL algorithms are composed of two parts: (a) fitting a model of 102

the user and (b) an action selection strategy. The simplest type of user model is a model 103

for the reward function, E[Ri,t|Si,t, Ai,t]. In more general cases, a model for the sum of 104

future rewards, conditional on current state, Si,t and action, Ai,t is also learned. The action 105

selection strategy of the RL algorithm uses the user’s current state Si,t, along with the 106

learned user model, and outputs the treatment action Ai,t at each decision time t. The user 107

model is periodically updated using newly collected data Hi,t−1; these updates can occur 108

after each decision time or at longer time scales. For example in [2], the decision times are 5 109

times per day, but the update times are only nightly. 110

An online RL algorithm should quickly learn which action to deliver in which states 111

for each user. One of the most widely used and simplest RL algorithms is a contextual 112

bandit algorithm [12–14]. A contextual bandit algorithm, incrementally, as data accrues, 113

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2022 doi:10.20944/preprints202206.0028.v1

https://doi.org/10.20944/preprints202206.0028.v1

4 of 28

learns the action that will lead to maximal reward in each state. The online algorithm 114

sequentially updates an estimate of the reward function (mean of the reward conditional on 115

state and action) and selects actions. The performance of the algorithm is often measured 116

by the sum of rewards; the faster the algorithm learns the higher the sum. 117

3. PCS Framework For Designing RL Algorithms for Digital Intervention Development 118

The PCS Framework [1] incorporates best practices from machine learning and applied 119

statistics to provide a set of guidelines for assessing the quality of a prediction algorithm 120

when used to address problems in real life. The goal is to enhance the trust of the scientific 121

community in the application of the prediction algorithm in terms of predictability of results, 122

computability in the implementation of the algorithm, and stability in the performance 123

results of the learning algorithm across perturbations. PCS has been adopted and extended 124

to other domains; see Section 4 for a further discussion. 125

Similar to the prediction setting, there are a variety of design decisions one needs to 126

make before deploying an RL algorithm, e.g., choosing the model class to use to approxi- 127

mate the reward function. While many of the original PCS principles can be used in the 128

development and evaluation of RL algorithms, RL algorithm development also introduces 129

new challenges for the PCS framework, particularly in the online digital intervention 130

setting. First, the main task is not prediction, but rather in RL, the main goal is to select 131

intervention actions so that average rewards across time are maximized for each user. We 132

call this the goal of Personalization [15]. We generalize the PCS framework to include 133

an evaluation of the ability of an online RL algorithm to personalize. Second, in digital 134

intervention settings, it is important to evaluate the ability of the online RL algorithm to 135

maximize rewards under real-world constraints. For example, there are often time con- 136

straints on computations, budgetary constraints on software engineering development, and 137

constraints on the algorithm in terms of obtaining data in real-time. Further, the algorithm 138

must run stably online without constant human monitoring and adjustment. The current 139

PCS framework does not provide evaluation tools that deal with the above needs. We 140

extend the PCS framework to the context of designing and evaluating online RL algorithms. 141

This framework focuses on providing confidence that the online RL algorithm will lead to 142

greater effectiveness under real-world constraints and with stability. 143

3.1. Personalization (P) 144

The PCS Framework uses (P) for predictability with the goal of ensuring that models 145

used in data science have good predictive accuracy on both seen and unseen data. Predictive 146

accuracy is a simple, commonly used metric for evaluating the model, but in some cases, 147

multiple evaluation metrics or domain-specific metrics are appropriate. In our setting, the 148

main task is Personalization. Namely, the online RL algorithm should learn to select actions 149

to maximize each user’s average rewards. Instead of defining a predictive accuracy metric, 150

we want a metric to validate the extent of personalization. For example, when choosing a 151

metric to evaluate RL algorithms for multiple users, one may be interested in not just the 152

average over the users’ sums of rewards, but other metrics that capture the variation in the 153

sum of rewards across users. Let N be the total number of users with T total decision times. 154

We suggest the following metrics: 155

• Average of Users’ Average (Across Time) Rewards: First average users’ rewards 156

across time, and then average across users. This metric is defined as 1
N ∑N

i=1
(1

T ∑T
t=1 Ri,t

)
. 157

The metric serves as a global measure of the RL algorithm’s performance. 158

• The 25th Percentile of Users’ Average (Across Time) Rewards: The metric shows 159

how well an RL algorithm performs for users that don’t benefit as much, namely users 160

in the lower quartile of average rewards across time. 161

• Average Reward For Multiple Time-Points: Average users’ rewards across time for 162

multiple time-points t0 = 1, 2, ..., T. Then average across users. This metric is defined 163

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2022 doi:10.20944/preprints202206.0028.v1

https://doi.org/10.20944/preprints202206.0028.v1

5 of 28

as ∑N
i=1 ∑

t0
t=1 Ri,t

N·t0
. The metric assesses the speed at which the RL algorithm learns across 164

weeks in the trial. 165

3.2. Computability (C) 166

Computability focuses on the efficiency and scalability of algorithms, decisions, and 167

processes. While the original PCS framework focused on the computability of training 168

and evaluating models, we also consider the ability to implement the algorithm within the 169

constraints of the study. In the online RL setting, computability encompasses all issues 170

related to ensuring that the RL algorithm can select actions and update in a timely manner 171

while running online. The performance of the online RL algorithm must be evaluated 172

under the constraints of the study; key RL design constraints that could arise include: 173

• Timely Access to Reward and State Information: Since RL algorithms for digital 174

interventions must make decisions in an online fashion, the development team must 175

ensure that the state feature data is available at each decision time and that both the 176

reward and state feature data is available to the algorithm at the update times. For 177

example, due to delays in communication between sensors, the digital application, 178

and the cloud storage, the algorithm may not have timely access to the investigators’ 179

first choice of reward, necessitating the use of an alternate. 180

• Engineering Budget: One should consider the engineering budget, supporting 181

software needed, and time available to deliver a production-ready algorithm. In this 182

case, a simpler algorithm may be preferred over a sophisticated one because it is easier 183

to implement, test, and set up monitoring systems for. 184

• Off-Policy Evaluation and Causal Inference Considerations: The investigative team 185

often not only cares about the RL algorithm’s ability to learn but also the ability to use 186

the data collected by the RL algorithm to answer scientific questions after the study 187

is over. These scientific questions can include topics such as off-policy evaluation 188

[16,17] and causal inference [18,19]. Thus, the algorithm may be constrained to select 189

actions probabilistically with probabilities that are bounded away from zero and one. 190

This enhances the ability of investigators to use the resulting data to address scientific 191

questions with sufficient power [20]. 192

3.3. Stability (S) 193

Stability measures how the results change with minor perturbations and also empha- 194

sizes the need for documentation and reproducibility of results. In online RL, stability plays 195

two roles. First, the RL algorithm must run stably and automatically without the need for 196

constant human monitoring and adjustment. This is particularly critical as users abandon 197

digital interventions that have inconsistent functionality (unstable RL algorithm) [21,22]. 198

Second, the RL algorithm should perform well across a variety of potential real-world 199

environments. A critical tool in assessing stability to perturbations of the environment is the 200

use of simulation test-beds. Test-beds include a variety of plausible environmental variants, 201

each of which encodes different concerns of the investigative team. Often important state 202

features of the user’s environment are not observed and we lack an accurate mechanistic 203

model of user behavior. The following challenges in digital intervention problems are 204

concerns that one could design testbeds for: 205

• User Heterogeneity: There is likely some amount of user heterogeneity in response to 206

actions, even when users are in the same context. User heterogeneity can be partially 207

due to unobserved user traits (e.g. factors that are stable or change very slowly 208

over time like family composition or personality type). The amount of between user 209

heterogeneity impacts whether an RL algorithm that pools data (partially or using 210

clusters) across users to select actions will lead to improved rewards. 211

• Non-Stationarity: Unobserved factors common to all users such as societal changes 212

(e.g. new wave of the pandemic), and time-varying unobserved treatment burden (e.g. 213

user’s response to intervention may depend on how many days they have experienced 214

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2022 doi:10.20944/preprints202206.0028.v1

https://doi.org/10.20944/preprints202206.0028.v1

6 of 28

the digital intervention) may make the distribution of the reward appear to vary with 215

time, i.e., non-stationary. 216

• High Noise Environments Digital interventions typically deliver treatments to users 217

in highly noisy environments. This is in part because digital interventions deliver 218

treatments to users in daily life, where many unobserved factors (e.g. social context, 219

mood, or stress) can affect a user’s responsiveness to an intervention. If unobserved, 220

these factors produce noise. Moreover, the effect of digital prompts on a near-term 221

reward tends to be small due to the nature of the intervention. Therefore it is important 222

to evaluate the algorithm’s ability to personalize even in highly noisy, low signal-to- 223

noise ratio environments. 224

3.4. Simulation Environments for PCS Evaluation 225

To utilize the PCS framework, we advocate using a simulation environment for de- 226

signing and evaluating RL algorithms. We aim to compare RL algorithm candidates under 227

real-world constraints (Computability). Thus, we build multiple variants of the simulation 228

environment, each reflecting plausible user dynamics (i.e. state transitions and reward 229

distributions) (Stability). This is followed by simulating a digital intervention study for 230

each simulation environment variant and RL algorithm candidate pairing. Finally, we use 231

multiple metrics to evaluate the performance of the RL algorithm candidates (Personaliza- 232

tion). 233

In the case of digital interventions, there is often no mechanistic model or physical pro- 234

cess for user behavioral dynamics, which makes it difficult to accurately model transitions 235

(e.g. modeling a user’s future level of physical activity as a function of their past physical 236

activity, location, local weather). Note that the goal of developing the simulators is not to 237

conduct model-based RL [23]. Rather, here the simulators represent a variety of plausible 238

environments to facilitate the evaluation of the performance of potential RL algorithms in 239

terms of Personalization, Computability, and Stability across these environments. Existing 240

data and domain expertise is most naturally used to construct the simulation environments. 241

However, as is the case for Oralytics, the previously collected data may be scarce, i.e., we 242

have very few data points per user. Moreover, the data may only be partially informative, 243

e.g., the data was collected under only a subset of the actions. Next, we provide guidelines 244

for how to build an environment simulator in such challenging settings. 245

Base Environment Simulator: In order to have the best chance possible of accurately 246

evaluating how well different RL candidates will perform, we recommend first building a 247

base environment simulator that mimics the existing data to the greatest extent possible. 248

This involves carefully choosing the set of time-varying features and reward generating 249

model class that will be expressive enough to model the true reward distribution well. To 250

check how well simulated data generated by the model of the environment mimics the 251

observed data, we recommend a variety of ways to compare distributions. This includes 252

visual comparisons such as plotting histograms, comparing moments such as mean reward, 253

between user variance, and within user variance, of the real data with the simulated data, 254

and measuring how well the base model captured the variance in the data. Examples of 255

these checks done for Oralytics are in Appendix A.4. 256

Variant Environment Simulators: We recommend considering many variants or per- 257

turbed simulation environments to evaluate the stability of RL algorithms across multiple 258

plausible environments. These variants can be used to evaluate the concerns of the inves- 259

tigative team. For example, if the base simulator generates stationary rewards and the 260

investigative team is concerned that the real reward distribution could not be stationary, a 261

variant could incorporate non-stationarity into the environment dynamics. 262

In the case that the previously collected data does not include particular actions, as was 263

the case for Oralytics, we recommend consulting domain experts to recommend a range of 264

potential realistic effect sizes (differences in mean reward under the new action versus a 265

baseline action). For example, in Oralytics we only have data under no intervention and 266

did not have data on rewards under the intervention. Thus, using the input of the domain 267

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2022 doi:10.20944/preprints202206.0028.v1

https://doi.org/10.20944/preprints202206.0028.v1

7 of 28

experts on the team, we imputed several plausible treatment effects (varying by certain 268

state features and the amount of heterogeneity in treatment effects across users). 269

4. Related Works 270

4.1. Digital Intervention Case Studies 271

Liao [2] describe the development of an online RL algorithm for HeartSteps V2, a phys- 272

ical activity mobile health application. They highlight how their design decisions address 273

specific challenges in designing RL algorithms, such as adjusting for longer-term effects of 274

the current action and accommodating noisy data. However, they do not provide general 275

guidelines for how to make design decisions for RL algorithms in digital intervention 276

development. 277

Another related work is that of Figueroa [24] who provide an in-depth case study of 278

the design decisions, and the associated challenges and considerations, for an RL algorithm 279

for text messaging in a physical activity mobile application serving patients with diabetes 280

and depression. Through this case study, they provide guidelines to others developing RL 281

algorithms for mobile health applications. Specifically, they first categorize the challenges 282

they faced into 3 major themes: 1) choosing a model for decision making, 2) data handling, 283

and 3) weighing algorithm performance versus effectiveness in the real world. Then 284

for each of these challenges, they describe how they dealt with the challenges in the 285

design process for their physical activity intervention. In contrast, by expanding the PCS 286

framework, this work introduces general guidelines for comprehensively evaluating RL 287

algorithms. Moreover, we make recommendations for how to design a variety of simulation 288

testbeds even using only sparse and partially informative existing data in service of PCS. 289

The generality of the PCS framework allows it to be more widely applicable. For example, 290

Figueroa [24] have an existing dataset for all actions, which makes their recommendations 291

less applicable to those designing algorithms with existing data only under a subset of 292

actions. The PCS framework provides more holistic guidelines for facing challenges in 293

developing simulation environments and evaluating algorithms, beyond those faced in any 294

particular case study. 295

4.2. Simulation Environments in Reinforcement Learning 296

In RL, simulators (generative models) may be used to derive a policy from the genera- 297

tive model underlying the simulator (model-based learning). Agarwal [23] use simulation 298

as an intermediate step to learn personalized policies in a data-sparse regime with het- 299

erogeneous users, where they only observe a single trajectory per user. Wei [25] propose 300

a framework for simulating in a data-sparse setting by using imitation learning to better 301

interpolate traffic trajectories in an autonomous driving setting. In contrast, in PCS, the 302

simulator is used as a crucial tool for using the framework to design, compare, and evaluate 303

RL algorithm candidates for use in a particular problem setting. 304

There exist many resources aimed at improving the design and evaluation of RL 305

algorithms through simulation; however, in constrast to this work, they do not provide 306

guidelines for designing plausible simulation environments using existing data. RecSim 307

[26] gives a general framework but does not advise on the quality of the environment nor 308

how to make critical design decisions such as reward construction, defining the state space, 309

simulating unobserved actions, etc. MARS-Gym [27] provides a full end-to-end pipeline 310

process (data processing, model design, optimization, evaluation) and open-source code 311

for a simulation environment for marketplace recommender systems. OpenAI Gym [28] is 312

a collection of benchmark environments in classical control, games, and robotics where the 313

public can run and compare the performance of RL algorithms. 314

There are also a handful of papers that build simulation environment testbeds using 315

real data. Wang [29] evaluate their algorithm for promoting running activity with a simula- 316

tion environment built using two datasets. Singh [30] develop a simulation environment 317

using movie recommendations to evaluate their safe RL approach. Korzepa [31] use a 318

simulation environment to guide the design of personalized algorithms that optimize 319

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2022 doi:10.20944/preprints202206.0028.v1

https://doi.org/10.20944/preprints202206.0028.v1

8 of 28

hearing aid settings. Hassouni [32,33] fit a realistic simulation environment using the US 320

timekeeping research project data. Their simulation environment creates daily schedules 321

of activities for each user (i.e. sleep, work, workout, etc.) where each user is one of many 322

different user profiles (i.e. workaholic, athlete, retiree) for the task of improving physical 323

activity. 324

4.3. PCS Framework Extensions 325

The PCS framework has been extended to other learning domains such as causal 326

inference [34], network analysis [35], and evaluating the interpretability of algorithms 327

[36]. Despite the variety of these tasks, they can all be framed as supervised learning 328

problems in batch data settings that can be evaluated in terms of prediction accuracy on 329

a hold-out dataset. PCS has not been extended to provide guidelines for developing an 330

online decision-making algorithm. This extension is needed because of the additional 331

considerations, as discussed above, present in a real-world RL setting. Additionally, while 332

these papers focus on evaluating how well a model accurately predicts the outcome on 333

training and hold-out datasets, our extension includes Personalization for evaluating how 334

well an algorithm personalizes to each user. Dwivedi and Ward [34,35] implement the 335

original Computability principle by considering algorithm and process efficiency and 336

scalability. Margot [36] provides a new principle Simplicity which is based on the sum 337

of the lengths of generated rules. In our case, we extend Computability to include the 338

constraints of the study. Finally, these papers consider the stability of results across different 339

changes to the data (e.g. bootstrapping or cross-validation) or design decisions (e.g. choice 340

of representation space or the embedding dimension). Our framework focuses on how 341

stable an algorithm is in plausible real world environments which could be complex (e.g. 342

user-heterogeneity, non-stationary, high noise). 343

5. Case Study: Oral Health 344

In this case study, we illustrate the use of PCS principles in designing an RL algorithm 345

for Oralytics. Two main challenges are 1) we do not have timely access to a lot of features 346

and the reward is relatively noisy and 2) we have sparse, partially informative data to 347

inform the construction of our simulation environment testbed. In addition, there are a 348

number of study constraints. 349

1. Once the study is initiated, the trial protocol and algorithm cannot be altered without 350

jeopardizing trial validity. 351

2. We are using an online algorithm so we may not have timely access to certain desirable 352

state features or rewards. 353

3. We have a limited engineering budget. 354

4. We must answer post-study scientific questions that require causal inference or off- 355

policy evaluation. 356

We highlight how we handle these challenges by using the PCS framework, despite 357

being in a highly constrained setting. The case study is organized as follows. In Section 5.1 358

we give background context and motivation for the Oralytics study. In Section 5.2, we 359

explain the Oralytics sequential decision-making problem such as defining the state and 360

reward. In Section 5.3 we describe our process for designing RL algorithm candidates that 361

can stably learn despite having a severely constrained features space and noisy rewards. 362

Finally, in Section 5.4, we describe how we designed the simulation environment variants 363

to evaluate the RL algorithm candidates; furthermore, we offer recommendations for 364

designing realistic environment variants and for constructing such environments using 365

data for only a subset of actions. 366

5.1. Oralytics 367

Oralytics is a digital intervention for improving oral health. Each user is provided 368

a commercially-available electric toothbrush with integrated sensors and Bluetooth con- 369

nectivity as well as the Oralytics mobile application for their smartphone. There are two 370

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2022 doi:10.20944/preprints202206.0028.v1

https://doi.org/10.20944/preprints202206.0028.v1

9 of 28

decision times per day (prior to the user’s morning and evening brushing windows) when 371

a message may or may not be delivered to the user via their smartphone. The types of mes- 372

sages focus on winning a gift for oneself, winning a gift for one’s favorite charity, feedback 373

on prior brushing, and educational information. Also, once a message is delivered to the 374

user, the app records the messages so that a user is highly unlikely to ever receive the same 375

message twice. Oralytics will be implemented with approximately 70 users in a clinical 376

trial where the participant duration is 10 weeks; this means each user has T = 140 decision 377

times. The study duration is 2 years and the expected weekly incremental recruitment rate 378

is around 4 users. The Oralytics mobile app will use an online RL algorithm to optimize 379

message delivery (i.e. treatment actions) to maximize an oral health-related reward (see 380

below). To inform the RL algorithm design, we have access to data from a prior oral health 381

study, ROBAS 2 [37], and input from experts in oral and behavioral health. The ROBAS 2 382

study used earlier versions of both the electric toothbrush and the Oralytics application 383

to track the brushing behaviors of 32 users over 28 days. Importantly, in ROBAS 2, no 384

intervention messages were sent to the users. 385

5.2. The Oralytics Sequential Decision Making Problem 386

We now discuss how we designed the state space and rewards for our RL problem 387

in collaboration with domain experts and the software team while considering various 388

constraints. These decisions must be communicated and agreed upon with the software 389

development team because they provide the RL algorithm with the necessary data at 390

decision and update times, and execute actions selected by the RL algorithm. 391

1. Choice of Decision Times: We chose the decision times to be prior to each user’s 392

specified morning and evening brushing windows, as the scientific team thought this 393

would be the best time to influence users’ brushing behavior. 394

2. Choice of Reward: The research team’s first choice of reward was a measure of 395

brushing quality derived from the toothbrush sensor data from each brushing episode. 396

However, the brushing quality outcome is often not reliably obtainable because it requires 397

(1) that the toothbrush dock is plugged in and (2) that the user is standing within a few 398

feet of the toothbrush dock when brushing their teeth. Users could fail to meet these 399

two requirements for a variety of reasons, e.g., the user brushes their teeth in a shared 400

bathroom where they are unable to conveniently leave the dock plugged in. Thus, we 401

selected brushing duration in seconds as the reward (Personalization) since 120 seconds is 402

the dentist-recommended brushing duration and brushing duration is a necessary factor 403

in calculating the brushing quality score. Additionally, brushing duration is expected to 404

be reliably obtainable even when the user is far from the toothbrush dock when brushing 405

(Computability). Note that in Figure 2, a small number of user-brushing episodes have 406

durations over the recommended 120 seconds. Hence we truncate the brushing time to 407

avoid optimizing for over-brushing. Let Di,t denote the user’s brushing duration. The 408

reward is defined as Ri,t := min(Di,t, 180). 409

3. Choice of State Features At Decision Time: To provide the best personalization, it 410

is ideal that an RL algorithm has as many relevant state features as possible to make a 411

decision, e.g., recent brushing, location, user’s schedule, etc. However, our choice of the 412

state space is constrained by the need to get features reliably before decision and update 413

times, as well as our limited engineering budget. For example, we originally wanted a 414

feature for the evening decision time to be the morning’s brushing outcome, however, this 415

feature may not be accessible in a timely manner. This is because in order for the algorithm 416

to receive the morning brushing data the Oralytics smartphone app requires the user to 417

open the app and we do not expect most users to reliably open the app after every morning 418

brush time before the evening brushing window. A further discussion of our choice of 419

decision time state features can be found in Appendix B.1. 420

4. Choice of Algorithm Update Times In our simulations, we update the algorithm 421

weekly. In terms of speed of learning (at least in idealized settings), it is best to update the 422

algorithm after each decision time. However, due to Computability considerations, we 423

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2022 doi:10.20944/preprints202206.0028.v1

https://doi.org/10.20944/preprints202206.0028.v1

10 of 28

chose a slower update cadence. Specifically, for the Oralytics app, the consideration was 424

due to the fact that we are only able to update the policy used to select actions when the 425

user opens the app. This means that if the user does not open the app for many days, even 426

if we try to update the app after each decision time, we would be unable to do so. Since we 427

believe that it could be common that users could fail to open the app for a few days at a 428

time, we chose weekly updates. In the future, we will explore other update cadences as 429

well, e.g., once a day. 430

5.3. Designing the RL Algorithm Candidates 431

Here we discuss our use of the PCS framework to guide and evaluate the following 432

design decisions for the RL algorithm candidates. There are some decisions that we’ve 433

already made and other decisions that we encode as axes for our algorithm candidates to 434

test in the simulation environment. See Appendix B for further details regarding the RL 435

algorithm candidates. 436

1. Choice of using a Contextual Bandit Algorithm Framework We understand that 437

actions will likely affect a user’s future states and rewards, e.g., sending an intervention 438

message the previous day may affect how receptive a user is to an intervention message 439

today. This suggests that an RL algorithm that models a full Markov-Decision process 440

(MDP) may be more suitable than a contextual bandit algorithm. However, the highly noisy 441

environment and the limited data to learn from (140 decision times per user total), makes 442

it difficult for the RL algorithm to accurately model state transitions. Due to errors in the 443

state transition model, the estimates of the delayed effects of actions used in MDP-based RL 444

algorithms can often be highly noisy or inaccurate. This issue is exacerbated by our severely 445

constrained state space (i.e. we have few features and the features we get are relatively 446

noisy). As a result, an RL algorithm that fits a full MDP model may not learn very much 447

during the study, which could compromise Personalization and offer a poor user experience. 448

To mitigate these issues, we use contextual bandit algorithms, which fit a simpler model 449

of the environment. Using a lower discount factor (a form of regularization) has been 450

shown to lead to learning a better policy than using the true discount factor, especially 451

in data-scarce settings [38]. Thus, a contextual bandit algorithm can be interpreted as an 452

extreme form of this regularization where the discount factor is zero. Finally, contextual 453

bandits are the simplest algorithm for sequential decision making (Computability) and 454

have been used to personalize digital interventions in a variety of areas [2,3,7,24,39]. 455

2. Choice of a Bayesian Framework: We consider contextual bandit algorithms that 456

use a Bayesian framework, specifically Posterior (Thompson) Sampling algorithms [40]. 457

Posterior Sampling involves placing a prior on the parameters of the reward approximating 458

function and updating the posterior distribution of the reward function parameters at each 459

algorithm update time. This allows us to incorporate prior data and domain expertise into 460

the initialization of the algorithm parameters. However, these naturally lead to stochastic 461

algorithms (action selections are a not deterministic function of the data), which better 462

facilitates causal inference analyses later on using the data collected in the study. 463

3. Choice of Constrained Action Selection Probabilities: We constrain the action selec- 464

tion probabilities to be bounded away from zero and one, in order to facilitate off-policy 465

and causal inference analyses once the study is over (Computability). With help from the 466

domain experts, we decided to constrain the action selection probabilities of the algorithm 467

to be in the interval [0.35, 0.75]. 468

469

The following are decisions we will test using the simulation environment. 470

4. Choice of the Reward Approximating Function: An important decision in design- 471

ing the contextual bandit algorithm is how to approximate the reward function. We consider 472

two types of approximations, a Bayesian linear regression model (BLR) and a Bayesian 473

zero-inflated Poisson regression model (ZIP) which are both relatively simple, well-studied, 474

and well-understood. Formal specifications for BLR and ZIP as reward functions can be 475

found in Appendix B.2. We consider the ZIP because of the zero-inflated nature of brushing 476

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2022 doi:10.20944/preprints202206.0028.v1

https://doi.org/10.20944/preprints202206.0028.v1

11 of 28

0 50 100 150 200 250 300 350
Brushing Duration in Seconds

0%

5%

10%

15%

20%

25%

30%

35%

40%

Pe
rc

en
ta

ge

Figure 2. Histogram of brushing durations in seconds for all user brushing sessions (twice a day) in
ROBAS 2.

durations on our existing dataset ROBAS 2; see Figure 2. We expected the ZIP to provide a 477

better fit to the reward function by the contextual bandit and thus lead to increased average 478

rewards. Moreover, the linear model for the reward function is easily interpretable by 479

domain experts and allows them to critique and inform the model. To perform posterior 480

sampling, both models are Bayesian with uninformative priors to both models. We discuss 481

using informative priors further in Section 6. From the perspective of Computability and 482

Stability, the posterior for the BLR is of closed-form, which makes it easier to write software 483

leading to efficient and stable updates than the case for the ZIP (the posterior distribution 484

must be approximated and the posterior approximation scheme is another axis to algorithm 485

design that the scientific team needs to consider); see Appendix C for further discussion 486

on how to update the RL algorithm candidates. We design both types of algorithms with 487

weekly updates to the posterior; this decision will be re-examined in the future. 488

5. Choice of Cluster Size: We consider clustering users with cluster sizes K = 1 (no 489

pooling), K = 4 (partial pooling), and K = N (full pooling) to determine whether clustering 490

in our setting will lead to higher sums of rewards (Personalization). Clustering-based 491

algorithms pool data from multiple users to learn an algorithm per cluster (i.e. at update 492

times, the algorithm uses Hi,t−1 for all users i in the same cluster, and at decision times, 493

the same algorithm is used to select actions for all users in the cluster). Clustering-based 494

algorithms have been empirically shown to perform well when users within a cluster 495

are similar [41,42]. In addition, we believe that clustering will facilitate learning within 496

environments that have noisy within user rewards [43,44]. There is a trade-off between no 497

pooling and full pooling. No pooling may learn a policy more specific to the user later on 498

in the study, but may not learn as well earlier in the study when there is not a lot of data for 499

that user. Full pooling may learn well earlier in the study because it can take advantage of 500

all users’ data, but may not personalize as well as a no pooling algorithm, especially if users 501

are very heterogeneous. In addition, we chose K = 4 because that is the expected weekly 502

recruitment rate for the study and the update cadence is also weekly. We consider the two 503

extremes and partial pooling as a way to explore this trade-off. A further discussion on 504

choices of cluster size can be found in Appendix B.3. 505

5.4. Designing the Simulation Environment 506

We build a simulator that considers multiple variants for the environment, each 507

encoding a concern by the research team, and allows us to evaluate the stability of results 508

for each RL algorithm across the environmental variants (Stability). 509

Fitting Base Models: Recall that the ROBAS 2 study did not involve intervention 510

messages. However, we are still able to use the ROBAS 2 dataset to fit the base model for 511

the simulation environment, i.e., a model for the reward (brushing duration in seconds) 512

under no action. Two main approaches for fitting zero-inflated data are the zero-inflated 513

model and the hurdle model [45]. Throughout the model fitting process, we performed 514

various checks on the quality of the model to determine whether the fitted model was 515

sufficient (Appendix A.4). This included checks regarding whether the percentage number 516

of zero brush times simulated by our model was comparable to that of the original ROBAS 517

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2022 doi:10.20944/preprints202206.0028.v1

https://doi.org/10.20944/preprints202206.0028.v1

12 of 28

2 dataset. Additionally, we checked whether the model accurately captured the mean and 518

variance of the brushing durations for non-zero brush durations across users. 519

The first approach we took was to choose one model class (zero-inflated Poisson) 520

and fit a single population-level model for all users in the ROBAS 2 study. However, a 521

single population-level model was insufficient for fitting all users due to the high level of 522

user heterogeneity (i.e. the between and within user variance of the simulated brushing 523

durations from the fitted model was smaller than the between user and within user variance 524

of brushing durations in the ROBAS 2 data). Thus, next, we decided to maintain one model 525

class, but fit one model per user for all users. However, when we fit a zero-inflated Poisson 526

to each user, we noticed that the model provided an adequate fit for some users, but 527

other users exhibited more variability in their brushing durations. Namely, the within 528

user variance simulated rewards from the model fit on those users was still lower than 529

the within user variance of the ROBAS 2 user data used to fit the model. Therefore, we 530

considered a hurdle model [45] because it is more flexible than the zero-inflated Poisson. 531

For Poisson distributions, the mean and variance are equal, whereas in the hurdle model 532

the mean and variance are not conflated. 533

Ultimately, for each user we considered three model classes: 1) a zero-inflated Poisson, 534

2) a hurdle model with a square root transform, and 3) a hurdle model with a log transform, 535

and chose one out of these three model classes for each user (Appendix A.2). Specifically, 536

to select the model class for user i, we fit all three model classes using each user’s data from 537

ROBAS 2. Then we then chose the model class that had the lowest root mean squared error 538

(Appendix A.3). Additionally, along with the base model that generates stationary rewards, 539

we include an environmental variant with a non-stationary reward function; here day in 540

study is used as a feature in the environment’s reward generating model (Appendix A.1). 541

Imputing Treatment Effect Sizes: To construct a model of rewards for when an inter- 542

vention message is sent (for which we have no data on), we impute potential treatment 543

effects with the interdisciplinary team and modify the fitted base model with these effects. 544

Specifically, we impute treatment effects on both the user’s intent to brush, as well as 545

treatment effects on the brushing duration when the user intends to brush. We impute 546

both types of treatment effects because the investigative team’s intervention messages 547

were developed to both encourage users to brush more frequently and to brush for the 548

recommended duration. Further, because the research team believes that the users may 549

respond differently to the engagement messages depending on the context and depending 550

on the user, we included context-aware, population-level, and user-heterogeneous effects 551

of the engagement messages as environmental variants (Appendix A.5). 552

We use the following guidelines to guide the design of the effect sizes: 553

1. In general for mobile health digital interventions, we expect the effect (magnitude of 554

weight) of actions to be smaller than (or on the order of) the effect for baseline features, 555

which include time of day and the user’s previous day brushing duration (all features 556

are specified in Appendix A.1). 557

2. The variance in treatment effects (weights representing the effect of actions) across 558

users should be on the order of the variance in the effect of features across users, i.e., 559

looking at variance in parameters of fitted user-specific models. 560

In accordance with guideline 1 above, to set the population level effect size, we take 561

the absolute value of the weights (excluding that for the intercept term) of the base models 562

fitted for each ROBAS 2 user and the average across users and features (e.g., the average 563

absolute value of weight for time of day and previous day brushing duration). For the 564

heterogeneous (user-specific) effect sizes, for each user, we draw a value from a normal 565

centered at the population effect sizes. In accordance with guideline 2, the variance of the 566

normal distributions is found by again taking the absolute value of the weights of the base 567

models fitted for each user, averaging the weights across features, and taking the empirical 568

variance across users. In total there are eight environment variants as summarized in 569

Table 1. See Appendix A for further details regarding the development of the simulation 570

environments. 571

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2022 doi:10.20944/preprints202206.0028.v1

https://doi.org/10.20944/preprints202206.0028.v1

13 of 28

S_Pop: Stationary Base Model, Popula-
tion Effect Size

NS_Pop: Non-Stationary Base Model,
Population Effect Sizes

S_Het: Stationary Base Model, Heteroge-
neous Effect Size

NS_Het: Non-Stationary Base Model,
Heterogeneous Effect Sizes

Table 1. Four Environment Variants We consider 2 environment base models (stationary and non-
stationary) and 2 effect sizes (population effect size, heterogeneous effect size).

RL Algorithm Candidates
Average Rewards

RL Algorithm S_Het NS_Het S_Pop NS_Pop
ZIP k = 1 100.462 (0.789) 103.072 (0.751) 107.745 (0.854) 109.892 (0.764)
ZIP k = 4 101.096 (0.776) 103.665 (0.781) 108.975 (0.819) 110.921 (0.783)
ZIP k = N 101.373 (0.799) 104.042 (0.769) 109.137 (0.822) 111.295 (0.778)
BLR k = 1 97.910 (0.779) 100.187 (0.750) 104.279 (0.815) 106.109 (0.752)
BLR k = 4 100.376 (0.764) 102.868 (0.761) 108.313 (0.837) 110.100 (0.732)
BLR k = N 101.837 (0.806) 104.655 (0.775) 109.730 (0.829) 112.033 (0.755)

25th Percentile Rewards
RL Algorithm S_Het NS_Het S_Pop NS_Pop
ZIP k = 1 69.790 (1.293) 74.240 (0.510) 76.809 (1.193) 79.311 (0.725)
ZIP k = 4 70.470 (1.151) 74.199 (0.616) 77.642 (1.415) 81.491 (0.801)
ZIP k = N 71.688 (1.291) 75.218 (0.648) 78.916 (1.323) 81.194 (0.865)
BLR k = 1 67.975 (1.348) 71.263 (0.680) 73.413 (1.105) 75.517 (0.804)
BLR k = 4 69.954 (1.226) 73.871 (0.597) 78.316 (1.326) 80.975 (0.755)
BLR k = N 71.656 (1.276) 75.479 (0.520) 79.509 (1.332) 82.732 (0.732)

Table 2. Average and 25th Percentile Rewards. Average and 25th percentile rewards are defined
in Section 3.1. The naming convention for environment variants is found in Table 1. "BLR" denotes
a Bayesian Linear Regression reward approximating function and "ZIP" denotes a Bayesian Zero-
Inflated Poisson reward approximating function. "k" refers to the cluster size. Average rewards are
averaged across time, users, and 50 trials. For the 25th percentile rewards, we average rewards across
time, find the lower 25th percentile across users, and then averaged that across 50 trials. The value
in the parenthesis is the standard error of the mean. Best performing algorithm candidates in each
environment variant are bolded.

6. Experiment and Results 572

We evaluate RL candidates in each of the environment variants (Stability). Following 573

Personalization, we compare the RL candidates by their average sum of rewards, by the 574

25th percentile reward across all users and trials, and by their across time average reward. 575

For each trial, we redraw 72 simulated users (approximately the expected sample size for 576

the Oralytics study) with replacement in groups of 4. To simulate incremental recruitment 577

of 4 users per week, the order in which we randomly select these groups of 4 is their 578

simulated entry date. Every week in a trial, we check whether a group has completed the 579

10-week study duration and whether we should add another group of 4 users into the study. 580

We cluster users by the day they enter the study (e.g. for cluster size 4 the first four users 581

are in the first cluster and the next four users are in the second cluster, etc). We have one RL 582

algorithm instantiation per cluster (no data shared across clusters) and the RL algorithm 583

has a weekly update cadence with the first update starting after one week (at time t = 14). 584

We then run 50 trials for each environmental variant and algorithm candidate pairing. 585

The results are shown in Table 2. Notice that the average rewards in Table 2 are lower 586

than the 120 seconds of dentist-recommended brushing duration. This is because of the 587

zero-inflated nature of our setting (i.e. the user does not brush). We see in the table that 588

BLR and ZIP with cluster size k = N perform better than other RL algorithm candidates 589

in all environments for average reward and lower 25th percentile reward. This indicates 590

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2022 doi:10.20944/preprints202206.0028.v1

https://doi.org/10.20944/preprints202206.0028.v1

14 of 28

(a)
20 40 60 80 100 120 140

Time Steps

90

92

94

96

98

100

102

104

Av
er

ag
e

Re
wa

rd

zip_k_1
zip_k_4
zip_k_full
blr_k_1
blr_k_4
blr_k_full

(b)
20 40 60 80 100 120 140

Time Steps

94

96

98

100

102

104

106

Av
er

ag
e

Re
wa

rd

zip_k_1
zip_k_4
zip_k_full
blr_k_1
blr_k_4
blr_k_full

(c)
20 40 60 80 100 120 140

Time Steps

96

98

100

102

104

106

108

110

112

Av
er

ag
e

Re
wa

rd

zip_k_1
zip_k_4
zip_k_full
blr_k_1
blr_k_4
blr_k_full

(d)
20 40 60 80 100 120 140

Time Steps

97.5

100.0

102.5

105.0

107.5

110.0

112.5

Av
er

ag
e

Re
wa

rd

zip_k_1
zip_k_4
zip_k_full
blr_k_1
blr_k_4
blr_k_full

Figure 3. Average User Reward. For each time step t0 ∈ [20, 40, 60, 80, 100, 120, 140] figure shows
the mean and 1.96 * SE of average user reward (1

n ∑n
i=1

1
t0

∑t0
s=1 Ri,s) on average across trials. For

(a) Stationary Base Model and Heterogeneous Effect Size, (b) Non-Stationary Base Model and
Heterogeneous Effect Size, (c) Stationary Base Model and Population Effect Size, (d) Non-Stationary
Base Model and Population Effect Size

that even though the users are heterogeneous, the heterogeneity is not so large that pooling 591

users’ data is ever detrimental. 592

Next, consider Figure 3. Again, BLR and ZIP with cluster size k = N perform 593

better than other RL algorithm candidates in all environments across all time steps. We 594

expected algorithms’ average reward to increase and then decrease for non-stationary 595

environments. This is because the RL algorithms do not incorporate non-stationarity in the 596

reward approximating function and the modeled reward functions become increasingly 597

biased with large time-steps t0. However, it seems that the effect size we considered was 598

large enough to overcome this non-stationarity. 599

From Table 2 and Figure 3, BLR with cluster sizes k = 4, N is comparable to ZIP. Our 600

hypothesis was that ZIP would perform better than BLR because ZIP has more complexity 601

than BLR. However, there is a bias-variance tradeoff between ZIP and BLR. Although ZIP 602

has more complexity than BLR, ZIP needs to fit more parameters and therefore requires 603

more data to learn effectively; but we are in a data-sparse setting. In addition, ZIP is 604

constrained by the performance of the approximate posterior sampling scheme, which 605

may be unstable and difficult to debug. On the other hand, BLR has a stable closed-form 606

posterior update and BLR with action centering specifically does not require the knowledge 607

of the baseline features at decision time (See Appendix C.1.1). This means that baseline 608

features only need to be available at update time and we can incorporate more features that 609

were not available in real-time at decision time. Also, BLR with action centering is very 610

robust, namely, it is guaranteed to be unbiased even when the baseline reward model is 611

incorrect [2]. 612

We highlight the following takeaways from our experiments: 613

1. BLR vs ZIP: We prefer BLR over ZIP. BLR with pooling performs similarly or better 614

than ZIP and is more reliable/computable. 615

2. Cluster Size: Large cluster sizes perform better especially when there are population 616

treatment effects. They also perform well not only for the average user but also for 617

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2022 doi:10.20944/preprints202206.0028.v1

https://doi.org/10.20944/preprints202206.0028.v1

15 of 28

users who do not benefit as much. This performance could be due to faster learning 618

because these algorithms can leverage other users’ data to make decisions. Even 619

under heterogeneous treatment effects, the benefit of reducing variance by learning 620

across users is not outweighed by user heterogeneity. 621

There are other limitations to these experiments. 622

Fixed Noise Variance for BLR: The experiments were run using a fixed noise variance 623

term fit using the ROBAS 2 data set. Assuming a fixed noise variance is unrealistic; we 624

plan to learn the noise variance along with other parameters in the real study. The fixed 625

noise variance term could be a reason that BLR performed comparably to ZIP. 626

More Distinct and Complex Simulation Environments: We may not be looking widely 627

enough across variants to find settings where these algorithms perform differently. With 628

sufficient data per user in a highly heterogeneous user environment, then we expect cluster 629

size k = 1 to do the best. In future work, we aim to add in simulation environments with 630

greater heterogeneity and less noise to see if large cluster sizes still perform well, and we 631

aim to create more complex simulation environment variants that are more distinct (e.g. 632

environments where users may differ by heterogeneous demographic features like age and 633

gender). Also, we want to impute state features of interest in the real study that were not 634

present in the data set, such as phone engagement. 635

Additional RL Algorithm Candidate Considerations. We also aim to consider other 636

axes for algorithm candidates such as algorithms with other update cadences (e.g. every 637

night or biweekly) and algorithms with an informative prior. In initial simulations using 638

algorithms with informative priors, we found that since the same (limited amount) of 639

ROBAS 2 data was used to build both the simulation environment and the prior, the 640

algorithms did not need to learn much to perform well. An open question is how to 641

develop both simulation environments and informative priors in a realistic way using a 642

very limited amount of data. Finally, we will also explore additional design decisions such 643

as how to carefully design the baseline and advantage feature spaces for the RL algorithm. 644

These investigations will determine the final algorithm that will go into the actual 645

study. 646

7. Discussion and Future Work 647

In this paper, we present the first extension of the PCS framework for designing RL 648

algorithms in digital intervention settings. The case study demonstrates how to use the 649

PCS framework to make design decisions and only highlights of our ongoing work in 650

designing the Oralytics RL algorithm. Our illustration helps fellow researchers balance and 651

understand the benefits and drawbacks of certain aspects of their RL algorithm for their 652

digital intervention study. 653

Author Contributions: Conceptualization, A.L.T. and K.W.Z.; Methodology, A.L.T., K.W.Z., and 654

S.A.M.; Software, A.L.T.; Validation, A.L.T., K.W.Z., I.N.-S., V.S., F.D.-V., S.A.M.; Formal Analysis, 655

A.L.T. and K.W.Z.; Investigation, A.L.T.; Resources A.L.T., K.W.Z., I.N.-S., V.S., F.D.-V., S.A.M.; Data 656

Curation, A.L.T. and K.W.Z; Writing—Original Draft Preparation, A.L.T., K.W.Z.; Writing—Review 657

and Editing, A.L.T., K.W.Z., I.N.-S., V.S., F.D.-V., S.A.M.; Visualization, A.L.T.; Supervision, F.D.-V., 658

S.A.M.; Project Administration I.N.-S., V.S., S.A.M.; Funding Acquisition I.N.-S., V.S., F.D.-V., S.A.M. 659

All authors have read and agreed to the submitted version of the manuscript. 660

Funding: This research was funded by NIH grants IUG3DE028723, P50DA054039, P41EB028242, 661

and R01MH123804. KWZ is also supported by the National Science Foundation grant number NSF 662

CBET–2112085 and by the National Science Foundation Graduate Research Fellowship Program 663

under Grant No. DGE1745303. Any opinions, findings, and conclusions or recommendations 664

expressed in this material are those of the author(s) and do not necessarily reflect the views of the 665

National Science Foundation. 666

Institutional Review Board Statement: Not applicable. 667

Informed Consent Statement: Not applicable. Data is de-identified. 668

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2022 doi:10.20944/preprints202206.0028.v1

https://doi.org/10.20944/preprints202206.0028.v1

16 of 28

Data Availability Statement: The ROBAS 2 training data is available online at https://github.com/ 669

ROBAS-UCLA/ROBAS.2/blob/master/inst/extdata/robas_2_data.csv (accessed on 31 May 2022). 670

The source code and all other supplementary resources are available online at https://github.com/ 671

StatisticalReinforcementLearningLab/pcs-for-rl. 672

Acknowledgments: We are grateful for the guidance and support of Dr. Wei Wei Pan, Jiayu Yao, and 673

Doug Ezra Morrison throughout this project. 674

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design 675

of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or 676

in the decision to publish the results. 677

Abbreviations 678

The following abbreviations are used in this manuscript: 679

680

RL Reinforcement Learning
BLR Bayesian Linear Regression
ZIP Zero-Inflated Poisson
MDP Markov-Decision Process

681

682

Appendix A discusses the development of the simulation environments. 683

Appendix B discusses the RL algorithm candidates. 684

Appendix C discusses RL algorithm posterior updates and action selection via posterior 685

sampling. 686

Appendix A. Simulation Environments 687

Appendix A.1. Baseline Feature Space of the Environment Base Models 688

The ROBAS 2 dataset has a variety of features that we anticipate to be associated 689

with brushing duration. These include the time of day (morning vs evening), weekday 690

vs weekend, and summaries of the user’s past brushing behavior. Together with domain 691

experts in behavioral health and dentistry, we chose the following features to use to fit a 692

model of the reward. Recall that the ROBAS 2 dataset only includes data under no brushing, 693

so for now we are only fitting a model for the baseline reward model (i.e., the brushing 694

duration under action Ai,t). In Appendix A.5 we discuss how to model brushing duration 695

under action 1. 696

1. Bias / Intercept Term ∈ R 697

2. Time of Day (Morning/Evening) ∈ {0, 1} 698

3. Prior Day Total Brushing Duration (Normalized) ∈ R 699

4. Weekend Indicator (Weekday/Weekend) ∈ {0, 1} 700

5. Proportion of Non-zero Brushing Sessions Over Past 7 Days ∈ [0, 1] 701

6. Day in Study (Normalized) ∈ [−1, 1] 702

We use these features to generate two types of base reward environments (Stationary and 703

Non-Stationary). The Stationary model of the base environment uses the state function 704

g(Si,t) ∈ R5 that only includes the first five features above. The Non-Stationary model of the 705

base environment uses state g(Si,t) ∈ R6 that corresponds to all of the above features. 706

Normalization of State Features 707

We normalize features to ensure that state features are all in a similar range. The Prior
Day Total Brushing Duration feature is normalized using z-score normalization (subtract
mean and divide by standard deviation) and the Day in Study feature (originally in the
range [1 : 28] since the study length of ROBAS 2 is 28) is normalized to be between [−1, 1].
Note that when generating rewards, Day in Study was normalized based on Oralytic’s
anticipated 10 week study length (range is still [−1, 1]).

Normalized Total Brushing Duration in Seconds = (Brushing Duration − 172)/118

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2022 doi:10.20944/preprints202206.0028.v1

https://github.com/ROBAS-UCLA/ROBAS.2/blob/master/inst/extdata/robas_2_data.csv
https://github.com/ROBAS-UCLA/ROBAS.2/blob/master/inst/extdata/robas_2_data.csv
https://github.com/ROBAS-UCLA/ROBAS.2/blob/master/inst/extdata/robas_2_data.csv
https://github.com/StatisticalReinforcementLearningLab/pcs-for-rl
https://github.com/StatisticalReinforcementLearningLab/pcs-for-rl
https://github.com/StatisticalReinforcementLearningLab/pcs-for-rl
https://doi.org/10.20944/preprints202206.0028.v1

17 of 28

Normalized Day in Study When Fitting Model = (Day − 14.5)/13.5

Normalized Day in Study When Generating Rewards = (Day − 35.5)/34.5

Appendix A.2. Environment Base Model 708

We consider three model classes: 1) a zero-inflated Poisson, 2) hurdle model with 709

a square root transform, and 3) hurdle model with a log transform, and choose one out 710

of these three model classes for each user. We define these three model classes below. 711

Additionally, below g(S) is the baseline feature vector of the current state defined in Ap- 712

pendix A.1, wi,b, wi,p, wi,µ are user-specific weight vectors, σ2
i,u is the user specific variance 713

for the normal component, and sigmoid(x) = 1
1+e−x is the sigmoid function. 714

1) Zero-Inflated Poisson Model for Brushing Duration 715

Z ∼ Bernoulli
(

1 − sigmoid(g(S)Twi,b)
)

Y ∼ Poisson
(

exp
(

g(S)Twi,p

))
Brushing Duration in Seconds : D = ZY

2) Hurdle Model with Square Root Transform for Brushing Duration 716

Z ∼ Bernoulli
(

1 − sigmoid
(

g(S)Twi,b

))
Y ∼ N

(
g(S)Twi,µ, σ2

i,u

)
Brushing Duration : D = ZY2

Note that the non-zero component of this model, Y2, can also be represented as a constant 717

times a non-central chi-squared, where the non-centrality parameter is the square of the 718

mean of the normal distribution. 719

3) Hurdle Model with Log Transform for Brushing Duration 720

Z ∼ Bernoulli
(

1 − σ
(

g(S)Twi,b

))
Y ∼ Lognormal

(
g(S)Twi,µ, σ2

i,u

)
Brushing Duration : D = ZY

Since we want to simulate brushing duration in seconds, we also round outputs of the 721

hurdle models to the nearest whole integer. Notice that the zero-inflated Poisson model is a 722

mixture model with a latent state. The Bernoulli draw Z is latent and represents the user’s 723

intention to brush, and the Poisson models the user’s brushing duration when they intend 724

to brush (this is because the brush time can still be zero when the user intends to brush). 725

On the other hand, the hurdle model provides a model for brushing duration conditional 726

on whether the user brushed or not. The Bernoulli draw Z in the hurdle model is observed. 727

Note that the Hurdle model is used for the simulation environment only and not 728

the RL algorithm. The Hurdle model conditions on a collider (e.g. whether the person 729

brushes their teeth), thus potentially leading to causal bias [46,47]. For example, consider 730

an unobserved cause U, intervention A, whether the user brushed or not Z, brushing 731

duration D, and a directed acyclic graph with A → Z, U → Z, U → D, and Z → D. Then 732

conditioning on collider Z of treatment opens a pathway from A to D through U [48]. 733

Suppose in reality A only impacts whether the user brushes their teeth but not the duration. 734

Then if we condition on Z to evaluate the impact of A on D, we may erroneously learn that 735

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2022 doi:10.20944/preprints202206.0028.v1

https://doi.org/10.20944/preprints202206.0028.v1

18 of 28

A impacts the duration of brushing. This makes the Hurdle unsuitable as a model for an 736

RL algorithm that aims to learn causal effects. 737

Appendix A.3. Fitting the Environment Base Models 738

We use ROBAS 2 data to fit the brushing duration model under action 0 (no message). 739

For all model classes, we fit one model per user. All models were fit using MAP with a 740

prior wi,b, wi,p, wi,µ ∼ N (0, I) as a form of regularization because we have sparse data for 741

each user. Weights were chosen by running random restarts and selecting the weights with 742

the highest log posterior density. 743

Fitting Hurdle Models: For fitting hurdle models for user i, we fit the Bernoulli com- 744

ponent and the non-zero brushing duration component separately. We use Di,t to denote 745

the ith ROBAS 2 user’s brushing duration in seconds at the t time point. Set Zi,t = 1 if the 746

original observation Di,t > 0 and 0 otherwise. We fit a model for this Bernoulli compo- 747

nent. We then fit a model for the normal component to either the square root transform 748

Yi,t =
√

Di,t or to inverse-log transform Yi,t = exp(Di,t) of the ith user’s non-zero brushing 749

duration. 750

Fitting Zero-Inflated Poisson Models: For the zero-inflated Poisson model, we jointly 751

fit parameters for both the Bernoulli and the Poisson components. Since the brushing 752

durations in the ROBAS 2 data were integer values, we did not have to transform the 753

observation to fit the zero-inflated Poisson model. 754

Selecting the Model Class For Each User 755

To select the model class for user i, we fit all three model classes using user i’s data 756

from ROBAS 2. We then chose the model class that had the lowest root mean squared error 757

(RMSE). Namely, we choose the model class with the lowest Li, where: 758

Li :=

√√√√ T

∑
t=1

(Di,t − Ê[Di,t|Si,t])2

Recall that Di,t is the brush time in seconds for user i at decision time t. Definitions of 759

Ê[Di,t|Si,t] for each model class are specified below in Table A1. 760

Model Class Ê[Di,t|Si,t]
Zero-Inflated Poisson

[
1 − sigmoid

(
g(Si,t)

Twi,b
)]

· exp
(

g(Si,t)
Twi,p

)
Hurdle (Square Root)

[
1 − sigmoid

(
g(Si,t)

Twi,b
)]

·
[
σ2

i,u + (g(Si,t)
Twi,µ)

2
]

Hurdle (Log)
[
1 − sigmoid(g(Si,t)

Twi,b)
]
· exp

(
g(Si,t)

Twi,µ +
σ2

i,u
2

)
Table A1. Definitions of Ê[Di,t|Si,t] for each model class. Ê[Di,t|Si,t] is the mean of user model i
fitted using data {(Si,t, Di,t)}T

t=1.

After the procedure was run, we obtained the following number of model classes for 761

all users in the ROBAS 2 study in Table A3. 762

Appendix A.4. Checking the Quality of the Simulation Environment Base Model 763

Checking Moments 764

Using the chosen user-specific models, we simulate 100 “trials”. In each trial, for 765

each of users in ROBAS 2, we use their respective model to generate a data trajectory 766

(Si,t, Ri,t)
56
t=1 (note that the ROBAS 2 study had 2 brushing windows per day for 28 days for 767

a total of 56 brushing windows). We then compute the following metrics for each of the 768

trials and averaged across trials: 769

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2022 doi:10.20944/preprints202206.0028.v1

https://doi.org/10.20944/preprints202206.0028.v1

19 of 28

Model Class Ê[Di,t|Si,t, Di,t > 0]
Hurdle (Square Root) σ2

i,u + (g(Si,t)
Twi,µ)

2

Hurdle (Log) exp(g(Si,t)
Twi,µ +

σ2
i,u
2)

Zero-Inflated Poisson
exp(g(Si,t)

Twi,p) exp(exp(g(Si,t)
Twi,p))

exp(exp(g(Si,t)Twi,p))−1

V̂ar[Di,t|Si,t, Di,t > 0]
Hurdle (Square Root) g(Si,t)

Tw4
i,µ + 3σ4

i,u + 6σ2
i,u(g(Si,t)

Twi,µ)
2 − Ê[Ri,t|Si,t, Ri,t > 0]2

Hurdle (Log) (exp(σ2
i,u)− 1) · exp(2g(Si,t)

Twi,µ + σ2
i,u)

Zero-Inflated Poisson Ê[Di,t|Si,t, Di,t > 0] · (1 + exp(g(Si,t)
Twi,p)− Ê[Di,t|Si,t, Di,t > 0])

Table A2. Definitions of Ê[Di,t|Si,t, Di,t > 0] and V̂ar[Di,t|Si,t, Di,t > 0] for each model class.
Ê[Di,t|Si,t, Di,t > 0] and V̂ar[Di,t|Si,t, Di,t > 0] is the mean and variance of the non-zero component of
user model i fitted using data {(Si,t, Di,t)}T

t=1.

Model Class Stationary Non-Stationary
Hurdle with Square Root Transform 9 7

Hurdle with Log Transform 9 8
Zero-Inflated Poisson 14 17

Table A3. Number of selected model classes for the Stationary and Non-Stationary environments.

1. Proportion of Missed Brushing Windows:

1
N

N

∑
i=1

1
T

T

∑
t=1

I[Di,t = 0]

2. Average Non-Zero Brushing Duration:

1
N

N

∑
i=1

1

∑T
t=1 I[Di,t > 0]

T

∑
t=1

I[Di,t > 0]Di,t

3. Variance of Non-Zero Brushing Durations: Let V̂ar({Xk}K
k=1) represent the empirical

variance of X1, X2, ..., XK.

V̂ar
({

Di,t : t ∈ [1 : T], Di,t > 0
}N

i=1

)
4. Variance of Average User Brushing Durations: This metric measures the degree of

between user variance in average brushing.

V̂ar
({

1
T

T

∑
t=1

Di,t

}N

i=1

)
5. Average of Variances of Within User Brushing Durations: This metric measures the

average amount of within user variance.

1
N

N

∑
i=1

V̂ar
(
{Di,t}T

t=1
)

The base models slightly overestimate the proportion of missed brushing windows in 770

the ROBAS 2 data set. Our base models also slightly underestimate the average brushing 771

duration. Our base models also for the most part slightly overestimate the between-user 772

and within-user variance of rewards. 773

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2022 doi:10.20944/preprints202206.0028.v1

https://doi.org/10.20944/preprints202206.0028.v1

20 of 28

Metrics ROBAS 2 Stationary Non-Stationary

Proportion of Missed Brushing Windows 0.376674 0.403114 0.397812
Average Non-Zero BDs 137.768129 131.308445 134.676955
Variance of Non-Zero BDs 2326.518304 2392.955018 2253.177853
Variance of Average User BDs 1415.920148 1699.126897 1399.615330
Average of Variances of Within User BDs 1160.723506 1405.944459 1473.239769

Table A4. Comparing Moments Between Base Models and ROBAS 2 Data set. Above we use BDs
to abbreviate Brushing Durations. Values for the Stationary and Non-Stationary base models are
averaged across 100 trials.

Measuring If A Base Model Captures the Variance in the Data 774

We measure how well the fitted base models captured (1) whether or not the user
brushed, and (2) the variance of the brush time when the users did brush. To measure point
(1), for each user model i, we calculate the statistic:

Ui :=
1
T

T

∑
t=1

(
I[Di,t > 0]− Ê[I[Di,t > 0]|Si,t]

V̂ar[I[Di,t > 0]|Si,t]

)2

(A1)

where Ê[I[Di,t > 0]|Si,t] = 1 − sigmoid(ST
i,twi,b) and V̂ar[I[Di,t > 0]|Si,t] = Ê[I[Di,t > 775

0]|Si,t] · sigmoid(ST
i,twi,b). 776

To measure point (2), for each user model i, we calculate the statistic:

Ui :=
1

∑T
t=1 I[Di,t > 0]

T

∑
t=1

I[Di,t > 0]
(

Di,t − Ê[Di,t|Si,t, Di,t > 0]

V̂ar[Di,t|Si,t, Di,t > 0]

)2

(A2)

Definitions of Ê[Di,t|Si,t, Di,t > 0] and V̂ar[Di,t|Si,t, Di,t > 0] for the non-zero compo- 777

nent of each model class are specified in Table A2. For a user model to capture the variance 778

in the data, Ui should be close to 1. We calculate the empirical mean U = 1
N ∑N

i=1 Ui 779

and standard deviation σU = std(Ui), and the approximate 95% confidence interval is 780

U ± 1.96 ∗ σU√
N

. 781

Metric Stationary Non-Stationary

Eqn (A1) U 0.811 0.792
Eqn (A1) σU 0.146 0.150
Eqn (A1) Confidence Interval (0.760, 0.861) (0.739, 0.844)
Eqn (A2) U 3.579 3.493
Eqn (A2) σU 4.861 4.876
Eqn (A2) Confidence Interval (1.895, 5.263) (1.803, 5.182)

Table A5. Statistic Ui for Capturing Variance in the Data. Values are rounded to the nearest 3
decimal places.

Results are in Table A5. We can see that after computing the statistic for each user, 782

the confidence interval is close to 1. We understand that the confidence intervals do not 783

contain 1 which implies that we are overestimating the amount of variance in I[D > 0], and 784

underestimating the amount of variance in D|D > 0. In the future, we hope to improve 785

upon this statistic by considering non-linear components in our base models. 786

Appendix A.5. Imputing Treatment Effect Sizes for Simulation Environments 787

Recall the ROBAS 2 dataset does not have any data under action 1 (send a message). 788

Thus to model the reward under action 1 we must impute. 789

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2022 doi:10.20944/preprints202206.0028.v1

https://doi.org/10.20944/preprints202206.0028.v1

21 of 28

Treatment Effect Feature Space 790

The following choice of the treatment effect (advantage) feature space was made after 791

discussion with domain experts on which features are most likely to interact with the 792

intervention (action). The Stationary model uses state h(S) ∈ R4 corresponding to the 793

following features: 794

1. Bias / Intercept Term ∈ R 795

2. Time of Day (Morning/Evening) ∈ {0, 1} 796

3. Prior Day Total Brushing Duration (Normalized) ∈ R 797

4. Weekend Indicator (Weekday/Weekend) ∈ {0, 1} 798

The Non-Stationary model uses state h(S) ∈ R5 corresponding to all of the above features 799

as well as the following: 800

5. Day in Study (Normalized) ∈ R 801

Imputation Approach 802

For the Zero-Inflated Poisson model, we impute treatment effects on both the user’s 803

intent to brush (Bernoulli component) and the user’s brushing duration when they intend 804

to brush (Poisson component). Similarly, for the Hurdle models, we impute treatment 805

effects on both whether the user’s brushing duration is zero (Bernoulli component) and the 806

user’s brushing duration when the duration is nonzero. 807

After incorporating effect sizes, brushing duration under action A in state S is D
where:

Z ∼ Bernoulli(1 − sigmoid(g(S)Twi,b + A ∗ h(S)T∆i,B))

D =


ZY2, Y ∼ N (g(x)Twi,µ + A ∗ h(x)T∆i,N , σ2

u) for Hurdle square root model
Z exp(Y), Y ∼ N (g(x)Twi,µ + A ∗ h(x)T∆i,N , σ2

i,u) for Hurdle log normal model
ZY, Y ∼ Poisson(exp(g(x)Twi,p + A ∗ h(x)T∆i,N)) for Zero-Inflated Poisson model

∆i,B, ∆i,N are user-specific effect sizes; we will also consider population-level effect sizes 808

(same across all users) which we denote as ∆B, ∆N . g(S) is the baseline feature vector as 809

described in Appendix A.1, and h(S) is the feature vector that interacts with the effect size 810

as specified above. 811

812

Heterogeneous versus Population-Level Effect Size 813

We consider realistic heterogeneous effect sizes (each user has a unique effect size) 814

and a realistic population-level effect size (all users who share the same base model class 815

also share the same effect size). 816

817

Population Level Effect Sizes: Recall that for the stationary base model we fit models 818

for Y and Z, and get user-specific parameters wi,b, wi,p ∈ R5 (Zero-Inflated Poisson model) 819

and parameters wi,b, wi,µ ∈ R5 (Hurdle models). We use these parameters to form the 820

population effect sizes as follows: 821

822

Zero-Inflated Models Effect Sizes: 823

• ∆B = µB,avg where µB,avg = 1
4 ∑d∈[2 : 5]

1
N ∑N

i=1 |w
(d)
i,b |. 824

• ∆N = µN,avg where µN,avg = 1
4 ∑d∈[2 : 5]

1
N ∑N

i=1 |w
(d)
i,p |. 825

Hurdle Models Effect Sizes: 826

• ∆B = µB,avg where µB,avg = 1
4 ∑d∈[2 : 5]

1
N ∑N

i=1 |w
(d)
i,b |. 827

• ∆N = µN,avg where µN,avg = 1
4 ∑d∈[2 : 5]

1
N ∑N

i=1 |w
(d)
i,µ |. 828

Heterogeneous Effect Sizes: To calculate the heterogeneous effect sizes, we again
group users by their chosen base model (Zero-Inflated, Hurdle Square-Root, Hurdle Log).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2022 doi:10.20944/preprints202206.0028.v1

https://doi.org/10.20944/preprints202206.0028.v1

22 of 28

We then draw effect sizes for each user from a normal distribution specific to their base
model:

∆i,B ∼ N (µB, σ2
B)

∆i,B ∼ N (µN , σ2
N)

µB, µN are set to the population level effect sizes for that base model class as described 829

above. To set σ2
B, σ2

N , we do the following: 830

831

Zero-Inflated Models 832

• σB is the empirical standard deviation over {µi,B}N
i=1 where µi,B = 1

4 ∑d∈[2 : 5] |w
(d)
i,b |. 833

We use w(d)
i,b to denote the dth dimension of the vector wi,b; we take the minimum over 834

all dimensions excluding d = 1 which represents the weight for the bias/intercept 835

term. 836

• σN is the empirical standard deviation over {µi,N}N
i=1 where µi,N = 1

4 ∑d∈[2 : 5] |w
(d)
i,p |. 837

Hurdle Models: 838

• σB is the empirical standard deviation over {µi,B}N
i=1 where µi,B = 1

4 ∑d∈[2 : 5] |w
(d)
i,b |. 839

• σN is the empirical standard deviation over {µi,N}N
i=1 where µi,N = 1

4 ∑d∈[2 : 5] |w
(d)
i,µ |. 840

Histograms of ∆i,B, ∆i,N and values of µB, µN for each base model class are specified in 841

Figure A1. 842

(a)
0.8 0.6 0.4 0.2 0.0

Effect Sizes

0%

5%

10%

15%

20%

25%

Pe
rc

en
ta

ge

B of Hurdle Model
effect sizes

B = -0.473

(b)
0.0 0.5 1.0 1.5 2.0

Effect Sizes

0%

2%

5%

8%

10%

12%

15%

18%

Pe
rc

en
ta

ge

N of Hurdle (Square Root) Model
effect sizes

N = 1.020

(c)
0.2 0.0 0.2 0.4 0.6

Effect Sizes

0%

5%

10%

15%

20%

25%

Pe
rc

en
ta

ge

N of Hurdle (Log) Model
effect sizes

N = 0.193

(d)
0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Effect Sizes

0%

5%

10%

15%

20%

25%

Pe
rc

en
ta

ge

B of ZIP Model
effect sizes

B = -0.473

(e)
0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

Effect Sizes

0%

5%

10%

15%

20%

25%

Pe
rc

en
ta

ge

N of ZIP Model
effect sizes

N = 0.166

Figure A1. ∆i,B’s, ∆i,N ’s, µB, µN for each base model class. For (a) Effect Sizes for Bernoulli Com-
ponent of the Hurdle Models, (b) Effect Sizes for Non-Zero Component of Hurdle (Square Root)
Model, (c) Effect Sizes for Non-Zero Component of Hurdle (Log) Model, (d) Effect Sizes for Bernoulli
Component of the ZIP Model, (e) Effect Sizes for Poisson Component of the ZIP Model

Appendix B. Reinforcement Learning Algorithm Candidates 843

Appendix B.1. Feature Space for the RL Algorithm Candidates 844

Advantage Feature Space 845

We use f (S) ∈ R3 to denote the feature space used by our RL algorithm candidates to 846

predict the advantage, i.e., the immediate treatment effect, is the following: 847

1. Bias / Intercept Term ∈ R 848

2. Time of Day (Morning/Evening) ∈ {0, 1} 849

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2022 doi:10.20944/preprints202206.0028.v1

https://doi.org/10.20944/preprints202206.0028.v1

23 of 28

3. Prior Day Total Brushing Duration (Normalized) ∈ R 850

The normalization procedure for Prior Day Brushing Duration is the same as described in 851

Appendix A.1.0.1. 852

Baseline Feature Space 853

We use m(S) ∈ R4 to denote the feature space used by the RL algorithm candidates to 854

approximate the baseline reward function containing all the above covariates as well as the 855

following: 856

4. Weekend Indicator (Weekday/Weekend) ∈ {0, 1} 857

Note, the feature space used by the RL algorithm candidates is different than the feature 858

space used to model the reward in the simulation environments, specified in Appendix A.1 and 859

Appendix A.5; this means that the RL algorithms will have a misspecified reward model. 860

Namely, the baseline feature space for the simulation environment has an additional Pro- 861

portion of Non-zero Brushing Sessions Over Past 7 Days feature and the non-stationary 862

variant has the Day in Study (Normalized) feature. The treatment effect feature space for 863

the simulation environment has an additional Weekend Indicator (Weekday/Weekend) 864

and the non-stationary variant has the Day in Study (Normalized) feature. 865

The rationale for not including the Day in Study (Normalized) feature is although 866

we wanted to capture potential non-stationarity in brushing outcomes in order to create 867

a realistic simulation environment, our RL algorithm candidates do not have reward 868

functions that vary arbitrarily over time. We do not include Proportion of Non-zero 869

Brushing Sessions Over Past 7 Days and Weekend Indicator (Weekday/Weekend) to 870

detect the robustness of RL algorithm candidates to a misspecified reward model. 871

Appendix B.2. Decision 1: Reward Approximating Function 872

The first decision in designing the RL algorithm is the choice between using a linear 873

model or a 0-Inflated Poisson model as the reward approximating function used by the 874

posterior sampler (note this is separate from the reward model used to generate the en- 875

vironment). More information on how the posterior sampling algorithm performs action 876

selection can be found in Appendix C.2, and how the algorithm updates at update times 877

can be found in Appendix C.1. We describe the two candidates below. 878

Note that the function m for the RL algorithm’s baseline reward model is only used 879

at update times. The function f for the RL algorithm’s advantage model is used at both 880

decision and update times. 881

Appendix B.2.1. Bayesian Linear Regression Model 882

The first candidate is to use the following reward generating model with action
centering used in [2] for the posterior sampler:

Ri,t = m(Si,t)
Tαi,0 + πi,t f (Si,t)

Tαi,1 + (Ai,t − πi,t) f (Si,t)
T βi + ϵi,t (A3)

where αi,0 ∈ R4 and αi,1, βi ∈ R3. πi,t is the probability that action Ai,t = 1 is selected by the 883

RL algorithm for user i in state Si,t; we discuss how to compute these in Appendix C.2. The 884

RL algorithm models ϵi,t as being drawn from N (0, η2) (the choice of η2 is informed by the 885

ROBAS 2 dataset). Additionally, we put uninformative normal priors on the parameters: 886

αi,0 ∼ N (0, σprior I4), αi,1 ∼ N (0, σprior I3), βi ∼ N (0, σprior I3), where σprior = 5. 887

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2022 doi:10.20944/preprints202206.0028.v1

https://doi.org/10.20944/preprints202206.0028.v1

24 of 28

Appendix B.2.2. Zero-Inflated Poisson Regression Model 888

The second candidate is to use the zero-inflated reward generating model for the
posterior sampler:

Zi,t ∼ Bernoulli
(

1 − sigmoid(m(Si,t)
Tαi,p + Ai,t · f (Si,t)

T βi,b)
)

Yi,t ∼ Poisson
(

exp
(

m(Si,t)
Tαi,p + Ai,t · f (Si,t)

T βi,p

))
Ri,t = Zi,tYi,t

(A4)

The above model closely resembles the zero-inflated Poisson model class used to develop 889

the simulation environment in Appendix A.2; however, recall that the feature space used 890

by the RL algorithm and the model to generate the environment are different. Additionally, 891

here we model the reward directly, rather than the raw brushing duration. 892

Additionally, the posterior sampling algorithm will put the following uninformative 893

normal priors on the parameters: αi,b, αi,p ∼ N (0, σprior I4) and βi,b, βi,p ∼ N (0, σprior I3), 894

where σprior = 5. 895

Appendix B.3. Decision 2: Cluster Size 896

Clustering involves grouping k users together and pooling all of their data together 897

for the RL algorithm. This means that we have one RL algorithm instantiation per cluster 898

(no data shared across clusters). For our experiments, we draw 72 simulated users (the 899

expected sample size for the Oralytics study) with replacement and cluster these users at 900

random (every possible cluster is equally likely). We then keep these cluster assignments 901

fixed across the trials. 902

For simplicity in running our experiments, we consider randomly formed clusters, 903

but we are thinking of clustering by entry date in the real study. We cannot predict how 904

many users who share the same baseline feature will join within a relatively short period of 905

time (e.g. we cannot depend on there being 4 females within the first two weeks). Entry 906

date is reasonable because we are guaranteed to form a cluster for those users and the 907

domain experts believe that users who enter the study around the same time will be similar. 908

Users who enter near the end of the study may be very different from users who enter 909

near the beginning because of societal factors (e.g. pandemic restrictions being lifted), 910

seasonal influences (e.g. changes in user’s mood in spring versus mid-winter), and fidelity 911

(e.g. quality of on-boarding procedures and staff experience may improve over time). One 912

natural approach is to cluster by baseline features, however, that is not feasible for a study 913

where the recruitment rate is slow such as in Oralytics. 914

Appendix C. RL Algorithm Posterior Updates and Posterior Sampling Action Selection 915

Appendix C.1. Posterior Updates to the RL Algorithm at Update Time 916

During the update step, the reward approximating function will update the posterior 917

with newly collected data. Also, we make M draws of the parameters from the updated 918

posterior and use them for all decision times until the next update time. Here are the 919

procedures for how the posterior updates for the Bayesian Linear Regression model and 920

the 0-Inflated Poisson model. 921

Appendix C.1.1. Bayesian Linear Regression Model 922

Suppose we are selecting actions for decision time t. Let ϕ(Si,t, Ai,t) = [m(Si,t), 923

πi,t f (Si,t), (Ai,t − πi,t) f (Si,t)] be the joint feature vector and θi = [α0,i, αi,1, βi] be the 924

joint weight vector. Notice that Equation A3 can be vectorized of the form: Ri,t = 925

ϕ(Si,t, Ai,t)
Tθi + ϵi,t. Now let Φi,1:t−1 be the matrix of all stacked vectors {ϕ(Si,s, Ai,s)}t−1

s=1, 926

and Ri,1:t−1 be a vector of stacked rewards {Ri,s}t−1
s=1, where we have batch data of the t − 1 927

decision times before the current update time. 928

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2022 doi:10.20944/preprints202206.0028.v1

https://doi.org/10.20944/preprints202206.0028.v1

25 of 28

Recall we have Normal priors on θi where θi ∼ N (µprior, Σprior), where µprior = 929

0 ∈ R3+3+4 and Σprior = diag(σ2
prior I3, σ2

prior I3, σ2
prior I4). The posterior distribution of the 930

weights given current history Hi,t−1, p(θi|Hi,t−1) is conjugate and is also normal. 931

θi|Hi,t−1 ∼ N (µ
posterior
i,t−1 , Σposterior

i,t−1)

Σposterior
i,t−1 =

(
1
η2 ΦT

i,1:t−1Φi,1:t−1 + Σ−1
prior

)−1

µ
posterior
i,t−1 = Σposterior

i,t−1

(
1
η2 ΦT

i,1:t−1Ri,1:t−1 + Σ−1
priorµprior

)
Note, we fit η2 to the ROBAS 2 dataset and fixed it for all of our experiments. In the 932

real study, we want to consider assigning a conjugate prior on η2 and updating it at update 933

times. 934

Appendix C.1.2. Zero-Inflated Poisson Regression Model 935

For the 0-Inflated Poisson regression model, the posterior distribution of the weights 936

θi = {αi,b, βi,b, αi,p, βi,p} given data Hi,t−1, p(θi|Hi,t−1), does not have a closed form. There- 937

fore we use Metropolis Hastings (MH) with a normal proposal distribution as an approxi- 938

mate posterior sampling method. 939

Posterior Density 940

The log-likelihood of the 0-Inflated Poisson Regression Model is:

log f (Ri,t|Si,t, Ai,t; θi) =

{
log((1 − p) + p exp(−λ)) R = 0
log p − λ + R log λ − log R! R = 1, 2, 3, ...

where p = 1 − sigmoid
(
m(Si,t)

Tαi,b + Ai,t · f (Si,t)
T βi,b

)
, is the probability of the user in- 941

tending to brush, and λ = exp
(
m(Si,t)

Tαi,p + Ai,t · f (Si,t)
T βi,p

)
is the expected Poisson 942

count. 943

Therefore the log posterior density is:

log p(θi|Hi,t−1) ∝
N

∑
n=1

log f (Ri,t|Si,t, Ai,t; θi) + log p(θi)

Proposal Distribution 944

We choose a Normal distribution for our proposal distribution. At each step of MH, 945

we propose a new sample given the old sample, θk
prop ∼ N (θk

old, γ2 I), where θk denotes the 946

kth value of θ. 947

Metropolis Hastings Acceptance Ratio 948

The Metropolis Hastings acceptance ratio given a proposed sample θprop and an old 949

sample θold is defined as: 950

α(θprop, θold) := min
(

1,
p(θprop)/q(θprop|θold)

p(θold)/q(θold|θprop)

)
Since our proposal distribution is symmetric, the log acceptance ratio becomes: 951

log α(θprop, θold) := min(0, log p(θprop)− log p(θold))

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2022 doi:10.20944/preprints202206.0028.v1

https://doi.org/10.20944/preprints202206.0028.v1

26 of 28

Appendix C.2. Action Selection at Decision Time 952

Appendix C.2.1. Posterior Sampling 953

Our action selection scheme at decision time selects action 1 according to the posterior 954

probability that that arm is optimal. We define these as π̃i,t below. 955

956

Bayesian Linear Regression Model Based on the Bayesian Linear Regression model of the
reward, specified by Equation (A3):

π̃i,t = Pr
β̃∼N (µ

post
i,t−1,Σpost

i,t−1)

{
f (Si,t)

T β̃ > 0
∣∣Si,t, Hi,t−1

}
.

Note that the randomness in the probability above is only over the draw of β̃ from the 957

posterior distribution. 958

959

Zero-Inflated Poisson Model Based on the Zero-Inflated Poisson model of the reward, 960

specified by Equation (A4): 961

π̃i,t = Prα̃i,b ,α̃i,p ,β̃i,b ,β̃i,p

{
Z̃i,tỸi,t > 0

∣∣Si,t, Hi,t−1
}

where Z̃i,t ∼ Bernoulli
(
1 − sigmoid(m(Si,t)

T α̃i,p + Ai,t · f (Si,t)
T β̃i,b)

)
and 962

Ỹi,t ∼ Poisson
(
exp

(
m(Si,t)

T α̃i,p + Ai,t · f (Si,t)
T β̃i,p

))
. Note that the randomness in the 963

probability above is only over the draw of (α̃i,b, α̃i,p, β̃i,b, β̃i,p) from the posterior distribu- 964

tion. 965

966

Appendix C.2.2. Clipping to form Action Selection Probabilities 967

Since we want to facilitate after study analyses, we clip action selection probabilities
using action clipping function for some chosen values of πmin, πmax where 0 < πmin ≤
πmax < 1 chosen by the scientific team:

clip(π) = min(πmax, max(π, πmin)) ∈ [πmin, πmax] (A5)

This means that
πi,t = clip(π̃i,t)

References 968

1. Yu, B.; Kumbier, K. Veridical data science. Proceedings of the National Academy of Sciences 2020, 117, 3920–3929. 969

2. Liao, P.; Greenewald, K.H.; Klasnja, P.V.; Murphy, S.A. Personalized HeartSteps: A Reinforcement Learning Algorithm for 970

Optimizing Physical Activity. CoRR 2019, abs/1909.03539, [1909.03539]. 971

3. Yom-Tov, E.; Feraru, G.; Kozdoba, M.; Mannor, S.; Tennenholtz, M.; Hochberg, I. Encouraging physical activity in patients with 972

diabetes: intervention using a reinforcement learning system. Journal of medical Internet research 2017, 19, e338. 973

4. Hochberg, I.; Feraru, G.; Kozdoba, M.; Mannor, S.; Tennenholtz, M.; Yom-Tov, E. A reinforcement learning system to encourage 974

physical activity in diabetes patients. arXiv preprint arXiv:1605.04070 2016. 975

5. Forman, E.M.; Kerrigan, S.G.; Butryn, M.L.; Juarascio, A.S.; Manasse, S.M.; Ontañón, S.; Dallal, D.H.; Crochiere, R.J.; Moskow, D. 976

Can the artificial intelligence technique of reinforcement learning use continuously-monitored digital data to optimize treatment 977

for weight loss? Journal of behavioral medicine 2019, 42, 276–290. 978

6. Allen, S. Stanford Computational Policy Lab Pretrial Nudges. https://policylab.stanford.edu/projects/nudge.html, 2022. 979

7. Cai, W.; Grossman, J.; Lin, Z.J.; Sheng, H.; Wei, J.T.Z.; Williams, J.J.; Goel, S. Bandit algorithms to personalize educational chatbots. 980

Machine Learning 2021, pp. 1–30. 981

8. Qi, Y.; Wu, Q.; Wang, H.; Tang, J.; Sun, M. Bandit Learning with Implicit Feedback. In Proceedings of the Advances in Neural 982

Information Processing Systems; Bengio, S.; Wallach, H.; Larochelle, H.; Grauman, K.; Cesa-Bianchi, N.; Garnett, R., Eds. Curran 983

Associates, Inc., 2018, Vol. 31. 984

9. Bezos, J.P. 1997 LETTER TO SHAREHOLDERS. https://www.sec.gov/Archives/edgar/data/1018724/000119312516530910/d1 985

68744dex991.htm, 1997. 986

10. Sutton, R.S.; Barto, A.G. Reinforcement learning: An introduction; MIT press, 2018. 987

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2022 doi:10.20944/preprints202206.0028.v1

http://xxx.lanl.gov/abs/1909.03539
https://policylab.stanford.edu/projects/nudge.html
https://www.sec.gov/Archives/edgar/data/1018724/000119312516530910/d168744dex991.htm
https://www.sec.gov/Archives/edgar/data/1018724/000119312516530910/d168744dex991.htm
https://www.sec.gov/Archives/edgar/data/1018724/000119312516530910/d168744dex991.htm
https://doi.org/10.20944/preprints202206.0028.v1

27 of 28

11. den Hengst, F.; Grua, E.M.; el Hassouni, A.; Hoogendoorn, M. Reinforcement learning for personalization: A systematic literature 988

review. Data Science 2020, 3, 107–147. 989

12. Wang, C.C.; Kulkarni, S.R.; Poor, H.V. Bandit problems with side observations. IEEE Transactions on Automatic Control 2005, 990

50, 338–355. 991

13. Langford, J.; Zhang, T. The epoch-greedy algorithm for contextual multi-armed bandits. Advances in neural information processing 992

systems 2007, 20, 96–1. 993

14. Tewari, A.; Murphy, S.A. From ads to interventions: Contextual bandits in mobile health. In Mobile Health; Springer, 2017; pp. 994

495–517. 995

15. Fan, H.; Poole, M.S. What is personalization? Perspectives on the design and implementation of personalization in information 996

systems. Journal of Organizational Computing and Electronic Commerce 2006, 16, 179–202. 997

16. Thomas, P.; Brunskill, E. Data-efficient off-policy policy evaluation for reinforcement learning. In Proceedings of the International 998

Conference on Machine Learning. PMLR, 2016, pp. 2139–2148. 999

17. Levine, S.; Kumar, A.; Tucker, G.; Fu, J. Offline reinforcement learning: Tutorial, review, and perspectives on open problems. 1000

arXiv preprint arXiv:2005.01643 2020. 1001

18. Boruvka, A.; Almirall, D.; Witkiewitz, K.; Murphy, S.A. Assessing time-varying causal effect moderation in mobile health. Journal 1002

of the American Statistical Association 2018, 113, 1112–1121. 1003

19. Hadad, V.; Hirshberg, D.A.; Zhan, R.; Wager, S.; Athey, S. Confidence intervals for policy evaluation in adaptive experiments. 1004

Proceedings of the National Academy of Sciences 2021, 118. 1005

20. Yao, J.; Brunskill, E.; Pan, W.; Murphy, S.; Doshi-Velez, F. Power Constrained Bandits. In Proceedings of the Proceedings of the 1006

6th Machine Learning for Healthcare Conference; Jung, K.; Yeung, S.; Sendak, M.; Sjoding, M.; Ranganath, R., Eds. PMLR, 2021, 1007

Vol. 149, Proceedings of Machine Learning Research, pp. 209–259. 1008

21. Murnane, E.L.; Huffaker, D.; Kossinets, G. Mobile Health Apps: Adoption, Adherence, and Abandonment. In Proceedings of the 1009

Adjunct Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings 1010

of the 2015 ACM International Symposium on Wearable Computers; Association for Computing Machinery: New York, NY, USA, 1011

2015; UbiComp/ISWC’15 Adjunct, p. 261–264. https://doi.org/10.1145/2800835.2800943. 1012

22. Dennison, L.; Morrison, L.; Conway, G.; Yardley, L. Opportunities and Challenges for Smartphone Applications in Supporting 1013

Health Behavior Change: Qualitative Study. J Med Internet Res 2013, 15, e86. https://doi.org/10.2196/jmir.2583. 1014

23. Agarwal, A.; Alomar, A.; Alumootil, V.; Shah, D.; Shen, D.; Xu, Z.; Yang, C. PerSim: Data-Efficient Offline Reinforcement Learning 1015

with Heterogeneous Agents via Personalized Simulators. arXiv preprint arXiv:2102.06961 2021. 1016

24. Figueroa, C.A.; Aguilera, A.; Chakraborty, B.; Modiri, A.; Aggarwal, J.; Deliu, N.; Sarkar, U.; Jay Williams, J.; Lyles, C.R. Adaptive 1017

learning algorithms to optimize mobile applications for behavioral health: guidelines for design decisions. Journal of the American 1018

Medical Informatics Association 2021, 28, 1225–1234. 1019

25. Wei, H.; Chen, C.; Liu, C.; Zheng, G.; Li, Z. Learning to simulate on sparse trajectory data. In Proceedings of the Joint European 1020

Conference on Machine Learning and Knowledge Discovery in Databases. Springer, 2020, pp. 530–545. 1021

26. Ie, E.; wei Hsu, C.; Mladenov, M.; Jain, V.; Narvekar, S.; Wang, J.; Wu, R.; Boutilier, C. RecSim: A Configurable Simulation 1022

Platform for Recommender Systems, 2019, [arXiv:cs.LG/1909.04847]. 1023

27. Santana, M.R.O.; Melo, L.C.; Camargo, F.H.F.; Brandão, B.; Soares, A.; Oliveira, R.M.; Caetano, S. MARS-Gym: A Gym framework 1024

to model, train, and evaluate Recommender Systems for Marketplaces, 2020, [arXiv:cs.IR/2010.07035]. 1025

28. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. OpenAI Gym, 2016, 1026

[arXiv:cs.LG/1606.01540]. 1027

29. Wang, S.; Zhang, C.; Kröse, B.; van Hoof, H. Optimizing Adaptive Notifications in Mobile Health Interventions Systems: 1028

Reinforcement Learning from a Data-driven Behavioral Simulator. Journal of medical systems 2021, 45, 1–8. 1029

30. Singh, A.; Halpern, Y.; Thain, N.; Christakopoulou, K.; Chi, E.; Chen, J.; Beutel, A. Building healthy recommendation sequences 1030

for everyone: A safe reinforcement learning approach. In Proceedings of the FAccTRec Workshop, 2020. 1031

31. Korzepa, M.; Petersen, M.K.; Larsen, J.E.; Mørup, M. Simulation Environment for Guiding the Design of Contextual Person- 1032

alization Systems in the Context of Hearing Aids. In Proceedings of the Adjunct Publication of the 28th ACM Conference on 1033

User Modeling, Adaptation and Personalization; Association for Computing Machinery: New York, NY, USA, 2020; UMAP ’20 1034

Adjunct, p. 293–298. https://doi.org/10.1145/3386392.3399291. 1035

32. Hassouni, A.e.; Hoogendoorn, M.; van Otterlo, M.; Barbaro, E. Personalization of Health Interventions Using Cluster-Based 1036

Reinforcement Learning. In Proceedings of the PRIMA 2018: Principles and Practice of Multi-Agent Systems; Miller, T.; Oren, N.; 1037

Sakurai, Y.; Noda, I.; Savarimuthu, B.T.R.; Cao Son, T., Eds.; Springer International Publishing: Cham, 2018; pp. 467–475. 1038

33. Hassouni, A.e.; Hoogendoorn, M.; van Otterlo, M.; Eiben, A.E.; Muhonen, V.; Barbaro, E. A clustering-based reinforcement 1039

learning approach for tailored personalization of e-Health interventions, 2018. https://doi.org/10.48550/ARXIV.1804.03592. 1040

34. Dwivedi, R.; Tan, Y.S.; Park, B.; Wei, M.; Horgan, K.; Madigan, D.; Yu, B. Stable Discovery of Interpretable Subgroups via Calibra- 1041

tion in Causal Studies. International Statistical Review 2020, 88, S135–S178, [https://onlinelibrary.wiley.com/doi/pdf/10.1111/insr.12427].1042

https://doi.org/https://doi.org/10.1111/insr.12427. 1043

35. Ward, O.G.; Huang, Z.; Davison, A.; Zheng, T. Next waves in veridical network embedding. Statistical Analysis and Data Mining: 1044

The ASA Data Science Journal 2021, 14, 5–17. 1045

36. Margot, V.; Luta, G. A new method to compare the interpretability of rule-based algorithms. AI 2021, 2, 621–635. 1046

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2022 doi:10.20944/preprints202206.0028.v1

https://doi.org/10.1145/2800835.2800943
https://doi.org/10.2196/jmir.2583
http://xxx.lanl.gov/abs/1909.04847
http://xxx.lanl.gov/abs/2010.07035
http://xxx.lanl.gov/abs/1606.01540
https://doi.org/10.1145/3386392.3399291
https://doi.org/10.48550/ARXIV.1804.03592
http://xxx.lanl.gov/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/insr.12427
https://doi.org/https://doi.org/10.1111/insr.12427
https://doi.org/10.20944/preprints202206.0028.v1

28 of 28

37. Shetty, V.; Morrison, D.; Belin, T.; Hnat, T.; Kumar, S. A Scalable System for Passively Monitoring Oral Health Behaviors 1047

Using Electronic Toothbrushes in the Home Setting: Development and Feasibility Study. JMIR Mhealth Uhealth 2020, 8, e17347. 1048

https://doi.org/10.2196/17347. 1049

38. Jiang, N.; Kulesza, A.; Singh, S.; Lewis, R. The dependence of effective planning horizon on model accuracy. In Proceedings of the 1050

Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems. Citeseer, 2015, pp. 1181–1189. 1051

39. Yom-Tov, E.; Feraru, G.; Kozdoba, M.; Mannor, S.; Tennenholtz, M.; Hochberg, I. Encouraging Physical Activity in Patients With 1052

Diabetes: Intervention Using a Reinforcement Learning System. J Med Internet Res 2017, 19, e338. https://doi.org/10.2196/jmir. 1053

7994. 1054

40. Russo, D.; Roy, B.V.; Kazerouni, A.; Osband, I. A Tutorial on Thompson Sampling. CoRR 2017, abs/1707.02038, [1707.02038]. 1055

41. Zhu, F.; Guo, J.; Xu, Z.; Liao, P.; Yang, L.; Huang, J. Group-driven reinforcement learning for personalized mhealth intervention. 1056

In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 1057

2018, pp. 590–598. 1058

42. Tomkins, S.; Liao, P.; Klasnja, P.; Murphy, S. IntelligentPooling: practical Thompson sampling for mHealth. Machine Learning 1059

2021, pp. 1–43. 1060

43. Deshmukh, A.A.; Dogan, U.; Scott, C. Multi-task learning for contextual bandits. Advances in neural information processing systems 1061

2017, 30. 1062

44. Vaswani, S.; Schmidt, M.; Lakshmanan, L. Horde of bandits using gaussian markov random fields. In Proceedings of the Artificial 1063

Intelligence and Statistics. PMLR, 2017, pp. 690–699. 1064

45. Feng, C.X. A comparison of zero-inflated and hurdle models for modeling zero-inflated count data. Journal of Statistical 1065

Distributions and Applications 2021, 8, 1–19. 1066

46. Cole, S.R.; Platt, R.W.; Schisterman, E.F.; Chu, H.; Westreich, D.; Richardson, D.; Poole, C. Illustrating bias due to conditioning on 1067

a collider. International journal of epidemiology 2010, 39, 417–420. 1068

47. Luque-Fernandez, M.A.; Schomaker, M.; Redondo-Sanchez, D.; Jose Sanchez Perez, M.; Vaidya, A.; Schnitzer, M.E. Educational 1069

Note: Paradoxical collider effect in the analysis of non-communicable disease epidemiological data: a reproducible illustration 1070

and web application. International journal of epidemiology 2019, 48, 640–653. 1071

48. Elwert, F.; Winship, C. Endogenous selection bias: The problem of conditioning on a collider variable. Annual review of sociology 1072

2014, 40, 31–53. 1073

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2022 doi:10.20944/preprints202206.0028.v1

https://doi.org/10.2196/17347
https://doi.org/10.2196/jmir.7994
https://doi.org/10.2196/jmir.7994
https://doi.org/10.2196/jmir.7994
http://xxx.lanl.gov/abs/1707.02038
https://doi.org/10.20944/preprints202206.0028.v1

