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Article

Quantum Hydrodynamics in External Magnetic Fields:
From Nonrelativistic to Relativistic Regimes

Matthew James Stephenson

University of Alabama at Huntsville; mjs0016@uah.edu

Abstract: We delve into nonrelativistic quantum electrodynamics within a background magnetic
field, ensuring gauge invariance via a vector potential. Our exploration extends to the Lagrangian,
which incorporates electron self-interactions and electromagnetic field interactions. Through the
path integral formalism, we elucidate the effective action, with a specific focus on the photon
propagator and screening effects. Examining density and current components reveals Laurent
expansions in the hydrodynamic limit. The equations of motion in real space are derived, leading to
discussions on phenomena such as Poiseuille-like flow and the Navier-Stokes equation. To ground
our theoretical framework at practical contexts, we consider applications such as the fluid dynamics
at binary star systems. Depending on the velocity of the expelled fluid, our analysis allows for both
nonrelativistic and relativistic treatments, providing a versatile tool for understanding the intricacies
of fluid behavior at astrophysical scenarios. Additionally, we recognize that at the presence of a
magnetic field, magnetohydrodynamics becomes crucial. While our current focus is at nonrelativistic
quantum electrodynamics, the insights gained here contribute to a broader understanding, offering a
comprehensive foundation for quantum electrodynamics analysis at diverse physical systems.

Keywords: nonrelativistic quantum electrodynamics; NRQED; background magnetic field; gauge
invariance; Lagrangian; electron self-interactions; electromagnetic field interactions; path integral
formalism; effective action; photon propagator; screening effects; density components; current
components; Laurent expansions; hydrodynamic limit; equations of motion; Poiseuille-like flow;
Navier-Stokes equation; relativistic hydrodynamics; linearized equations; nonrelativistic limit;
quantum electrodynamical analysis

1. Introduction

The investigation of nonrelativistic quantum electrodynamics (NRQED) in the presence of external
magnetic fields is a profound exploration of the intricate dynamics governing quantum matter’s
interaction with electromagnetic fields. By extending the Lagrangian formulation of NRQED, we
introduce electron self-interactions and dynamic coupling with the electromagnetic field, incorporating
gauge invariance as a fundamental aspect. Our study employs the path integral formalism to analyze
the effective action, revealing crucial details such as the behavior of the photon propagator and the
emergence of screening effects in the quantum realm. Examining density and current components,
we uncover intricate Laurent expansions inherent in the hydrodynamic limit, providing essential
insights into the quantum system’s response to external magnetic fields. A key contribution of our
work lies in the derivation of equations of motion in real space, offering a detailed understanding of
quantum matter’s behavior under the influence of electromagnetic fields. Our exploration encompasses
scenarios resembling Poiseuille-like flow, establishing connections with the classical Navier-Stokes
equation, a cornerstone in fluid dynamics. Extending our analysis beyond the nonrelativistic regime,
we seamlessly transition to relativistic hydrodynamics, providing a unified mathematical framework.
The linearized equations presented offer a comprehensive understanding of the system’s response in
diverse scenarios. Moreover, our study delves into the implications of the nonrelativistic limit, drawing
parallels with classical fluid dynamics. This research establishes a robust mathematical framework for
analyzing quantum electrodynamics in the nonrelativistic regime, providing nuanced insights into the
intricate interplay of quantum matter and electromagnetic fields.
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2. Nonrelativistic Free Electrons

2.1. Gauge Invariance

Consider the gauge transformation aµ = (a0,−a) → −Aµ. The Lagrangian is given by:

L =
1
2

ψ†i∂tψ − 1
2

i(∂tψ
†)ψ +

1
2m

(i∇+ a)ψ†(−i∇+ a)ψ

+
(

µ + a0 − g
4m

σ(∇× a)
)

ψ†ψ
(1)

The functional integral is expressed as:

eiW[â] =
∫

D[ψ]D[ψ†]eiψ† [Ĝ−1
0 +â/+ σ̂

2m â2]ψ̂ (2)

The transformation properties are defined by:

a/ = aµ(Cµ + Bµ) = a0(C0 + B0)− a(C + B)

ψ†C0 xψ = ψ†
xψx, ψ†Cxψ = − i

2m
[ψ†∇ψ − (∇ψ†)ψ]x

∂ψ = i
∆

2m
ψ, ∂ψ† = −i

∆
2m

ψ†, ∂t(ψ
†ψ) = iψ† ∆

2m
ψ − i

∆
2m

ψ†ψ∫
x

ψ†aBψ =
g

4m
ϵabc

∫
x

aa∇c(ψ†σbψ), B0 = 0

The variational derivatives of the generating functional are:

δW[â0, â]
δa0 = ρ̂,

δW[â0, â]
δâ

= ĵ + σ̂
ρ̂d
m

â = Ĵ,

ρ̂m =

(
ρ+ 0
0 ρ−

)
, â2 =

(
a+2

a−2

) (3)

The effective action is given by:

Γ[ρ̂, ĵ] = W[â0, â]− ρ̂â0 − âĵ − ρ̂
σ̂

2m
â2

δΓ
δρ̂

= −â0 − σ̂
â2

2m
,

δΓ
δ ĵk

= −âk

(4)

The explicit form of the functional integral yields:

W[â] ≈ −iTr ln Ĝ−1
0 − iTrĜ0

(
â/ +

σ̂

2m
â2
)
+

ih̄
2

Tr(Ĝ0 â/)2 (5)

This can be further expressed as:

W[â] = ρ̂0 â − 1
2

â
(
Ĝ − σ̂Ŝ

)
â,

Ŝ =
ρ0m

m

(
0 0
0 1

) (6)

The charge and current density matrices are defined as:(
ρ̂

Ĵ

)
=

(
ρ̂0

0

)
− (Ĝ − σ̂Ŝ)â (7)
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The functional derivative of the effective action with respect to the charge density and current are
given by:

δΓ
δρ̂σ

= −â0σ − σ
aσ2

2m
,

δΓ
δ ĵk

= −âk

(8)

Finally, the expressions for the nonrelativistic and transverse components of the Green’s function
are provided, and the Ward identity is presented as ∂tρ +∇j = 0.

3. Quantum Electrodynamics (QED)

Consider the Quantum Electrodynamics (QED) action:

S = ψ̄(i∂ · r̄ − m + a · r̄ − eA · r̄e)ψ +
1
2

AD−1
0 A + SQED

CT + Se
CT (9)

Here, ψ represents the fermion field, A is the electromagnetic potential, and SQED
CT and Se

CT are
counterterms.

The counterterms are given by:

SQED
CT =

e2z3

2
AD−1

0 A + ψ̄[(Z2 − 1)i∂ · r̄ + (Z0 − 1)m + (Z1 − 1)(a · r̄ − eA · r̄)]ψ

Se
CT = −z3eaD−1

0 A +
z3

2
aD−1

0 a
(10)

Where Z1 = Z2, mB = Z0
Z1

m, ψB =
√

Z1ψ, AB = eA, and after subtraction at p = 0, 1
e2

B
= 1

e2 + z3,

where z3 > 0.
The transformed action in terms of renormalized fields becomes:

S = ψ̄B(i∂ · r̄ − mB + a · r̄ − A · r̄B)ψB +
1

2e2
B

ABD−1
0 AB + Se

CT

= ψ̄B(i∂ · r̄ − mB + a · r̄ − eA · r̄B)ψB +
1
2

AD−1
0 A +

z3

2
(eA − a)D−1

0 (eA − a)
(11)

where the last counterterm is mechanical, addressing the UV divergence in the free Dirac sea.
Now, introduce an auxiliary field kµ, representing the UV part of the current:

S = ψ̄B(i∂ · r̄ − mB + a · r̄ − eA · r̄B)ψB +
1
2

AD−1
0 A − (eA − a)k +

1
2z3

kD0k

= ψ̄B(i∂ · r̄ − mB)ψB +
1
2

AD−1
0 A +

1
2z3

kD0k + (aµ − eAµ)(ψ̄BγµψB − kµ)

(12)

3.1. Generator Functionals

The generator functional is given by:

eiW[â, ĵ] =
∫

D[ψ̂]D[ ˆ̄ψ]D[Â]ei ˆ̄ψ[F̂−1
0 +â·r̄e− e

c σÂ·r̄e ]ψ̂+
i
2 ÂD̂−1

0 Â+i ĵÂ (13)

Here, ψ̂ and Â are matrix fields defined as:

ψ̂ =

(
ψ+

ψ−

)
, Â =

(
A+

A−

)
(14)

The inverse free propagators are defined as:
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F̂−1
0 =

(
G−1

0
0 −γ0G−1

0 γ0

)
+ F̂−1

BC , D̂−1
0 =

(
D−1

0 0
0 −D−1

0

)
+ D̂−1

BC (15)

with:

F−1
0 = i∂ · r̄ − m + iϵ, D−1

0 =
1
e2□T + ξ□L + iϵ (16)

where Tab = gab − Lab, and Lab = ∂a∂b

□ .
Continue generation

4. Equation of Motion

4.1. Retardation

The retarded and advanced accelerations are given by

a± =
ā
2
± a (17)

The Green’s function is defined as

G =

(
Gn −G f

G f −Gn

)
+ iGi

(
1 1
1 1

)
(18)

The real and imaginary parts of Gâ are

ℜ(Gâ) =

(
Gra + Ga

2 ā
Gra − Ga

2 ā

)
âℜ(Gâ) = aGa ā + āGra

ℑ(Gâ) =

(
1
1

)
ā

âℑ(Gâ) = (
ā
2
+ a,

ā
2
− a)

(
1
1

)
ā = āā (19)

The action functional is given by

W[a, ad] = −1
2

âGâ = −1
2
(a, ā)

(
0 Ga

Gr i

)(
a
ā

)
(20)

The inversion matrix is defined as

1 =

(
0 Ga

Gr i

)(
−iGr−1Ga−1 Gr−1

Ga−1 0

)
(21)

The effective action in terms of source terms Jd and J is

Γ[ Ĵ] =
1
2
(Jd, J)

(
−iGr−1Ga−1 Gr−1

Ga−1 0

)(
Jd
J

)
= − i

2
JdGr−1Ga−1 Jd +

1
2

JdGr−1 J +
1
2

JGa−1 Jd (22)
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The equations of motion are given by

a = iGr−1Ga−1 Jd − Gr−1 J

ā = −Ga−1 Jd (23)

On-shell conditions are ā = 0 and Jd = 0, leading to

a = −Gr−1 J (24)

The effective action on-shell becomes

Γ[ Ĵ] = − i
2

JdGr−1Ga−1 Jd +
1
2

JdGr−1 J +
1
2

JGa−1 Jd (25)

The equation of motion for Jd is
−a = Gr−1 J (26)

The inverse Green’s function is given by

Gr−1 = G−1
0 − e2Dr

0 → G−1
0 − e2

c2 Dr (27)

4.2. Photon Propagator

The photon propagator components are given by

−D̂0(ω,q) =

( 1
ω2−q2+iϵ −2πiδ(ω2 − q2)Θ(−ω)

−2πiδ(ω2 − q2)Θ(ω) − 1
ω2−q2−iϵ

)

−Dr
0(ω,q) =

1
ω2 − q2 + iϵ

+ 2πiδ(ω2 − q2)Θ(−ω)

=
1

ω2 − q2 + iϵΘ(ω)

=
1

(ω + iϵ)2 − q2 (28)

The full photon propagator D is given by

D =
1

D̂−1
0 − e2σĜσ

, D
r
a = [D̂−1

0 − e2σĜσ]
r
a, Di = DrGiDa (29)

The inverse of D̂0 is

D̂−1
0 = −T

[
k2

(
1 0
0 −1

)
+ iϵ

(
1 −2Θ(−k0)

−2Θ(k0) 1

)]
(30)
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The components of D−1 are

D−1n = −k2, D−1i = −ϵ, D−1 f = −isign(k0)ϵ

Dr
ℓ =

1
D−1r

0 − e2Gr
ℓ

= − 1
k2 + isign(k0)ϵ + e2(G++

vac − G+−
vac + Gr

ℓ)

Dr
t =

1
D−1r

0 − e2Gr
t

= − 1
k2 + isign(k0)ϵ + e2(G++

vac − G+−
vac + Gr

t )
(31)

The screening condition is Dr−1
ℓ (q = 0) = q2

TF = 1
π2 e2mkF

4.3. Separation of Density and Current

The parameters are defined as follows:

kF =
1

sr0
≈ 1.92

a0rs
, s =

(
4

9π

) 1
3
= 0.5211

z =
ωm
h̄k2

F
, zpl =

√
4srs

3π
= 0.471

√
rs

The Bohr radius is given by a0 = 1
α

λC
2π = 0.529 angstrom = 5.29 × 10−9 cm, and a0kF is

a0kF =
a0

λC

h̄kF
mc

=
1

2πα

h̄kF
mc

. (32)

For metallic Fermi systems, kFmetal ∼ 108 cm−1 = 0.529
a0

= 0.529×2πα
λC

∼ 2.3×10−2

λC

The vector potential components are aµ =
(

ϕ
c , a
)

, and the equations for −aµ are

−aµ =

(
1

Gr
ℓ

Pµ
ℓν +

1
Gt

Pµ
tν

)
Jν

=
1
c

[
1

cG̃r
ℓ

(
1 nξ

nξ ξ2L

)
+

c
G̃t

(
0 0
0 T

)](
cρ

−j

)

−ϕ =
1

G̃r
ℓ

ρ

−a =
1

G̃t
Tj (33)

4.4. Laurent Expansion

Hydrodynamical limit: x, y ∼ 0:

Gr
ℓ =

kFm
π2

(
−1 − π

2
ix + x2 +

y2

12

)
Gr−1
ℓ =

π2

kFm

(
−1 +

π

2
ix − x2 − y2

12
+

π2

4
x2
)

(34)
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Gr
t =

k3
F

6π2m

(
3πix − 6x2 + y2

)
=

G̃r
t

3πix + y2

G̃r
t =

k3
F

6π2m

[
1 +

2
π

ix − 3
2

x2 − 1
2

xy −
(

1
8
+

2
3π2

)
y2
]

G̃r−1
t =

6π2m
k3

F

[
1 − 2

π
ix +

(
3
2
− 4

π2

)
x2 +

1
2

xy +

(
1
8
+

2
3π2

)
y2
]

(35)

x = mω
|q|kF

, y = |q|
kF

−mkF

π2 ϕ =

(
aℓ0 + aℓx

m
kF

iω
|q| + aℓxx

m2

k2
F

ω2

q2 +
aℓyy

k2
F

q2 +
aℓxy

kF
|ω||q|

)
n

−
k3

F
6π2m

a
3πm

kF
iω
|q| +

q2

k2
F

=

(
at

0 + at
x

m
kF

iω
|q| + at

xx
m2

k2
F

ω2

q2 +
at

yy

k2
F

q2 +
at

xy

kF
|ω||q|

)
jT (36)

∂tn +∇j = 0, ωn = kj = |k|jℓ, jℓ = k
ωn
k2 (37)

−mkF

π2
ω

|q|ϕ =

(
aℓ0 + aℓx

m
kF

iω
|q| + aℓxx

m2

k2
F

ω2

q2 +
aℓyy

k2
F

q2 +
aℓxy

kF
|ω||q|

)
jℓ

−
k3

F
6π2m

a
3πm

kF
iω
|q| +

q2

k2
F

− mkF

π2
ωq
q2 ϕ =

(
at

0 + at
x

m
kF

iω
|q| + at

xx
m2

k2
F

ω2

q2 +
at

yy

k2
F

q2 +
at

xy

kF
|ω||q|

)
j (38)

4.5. Equations of motion in real space

∂tk−1n = (−b0
0 + b0

kk∆)n + ϕ̄,

∂tk−1j =

(
−bT

0 + bT
kk∆ − ē2

k2

)
j − k−1∇r + ā (39)

where

r = [b0
0 − bT

0 − (b0
kk − bT

kk)∆][(b
0
0 − b0

kk∆)n − ϕ̄]

= [(b0
0 − bT

0 )b
0
0 − [b0

0(b
0
kk − bT

kk) + (b0
0 − bT

0 )b
0
kk]∆n − [b0

0 − bT
0 − (b0

kk − bT
kk)∆]ϕ̄ (40)

∂tnx = (b0
0 − b0

kk∆)
∫

d3y
[(y∇y)2 − 2y∇y]ny

2π2(x − y)4 −
∫

d3y
[(y∇y)2 − 2y∇y]ϕ̄y

2π2(x − y)4

∂t jx = −∇r + ē2
∫

d3y
jy

2π2(x − y)2 + (bT
0 − bT

kk∆)
∫

d3y
[(y∇y)2 − 2y∇y]jy

2π2(x − y)4 −
∫

d3y
[(y∇y)2 − 2y∇y]āy

2π2(x − y)4 .(41)

where

r = [[(b0
0 − bT

0 )b
0
0 − [b0

0(b
0
kk − bT

kk) + (b0
0 − bT

0 )b
0
kk]∆n − [b0

0 − bT
0 − (b0

kk − bT
kk)∆]ϕ̄] (42)
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or ∫
d3y

∂tny

2π2(x − y)2 = (−b0
0 + b0

kk∆)n + ϕ̄,∫
d3y

∂t jy +∇ry

2π2(x − y)2 =
(
−bT

0 + bT
kk∆
)

j − ē2
∫

d3y
jy

4π|x − y| + ā (43)

for configurations with such space-time dependence that ω/|k| is small
Poiseuille-like flow: Navier-Stokes ∇p = η∆v
Cylindrical coordinate system: v = vez, −∇p = f ez, r < R

f = −η
1
r

∂rr∂rv, v = − f
4µ

r2 + c1 ln r + c2 → f
4µ

(R2 − r2) (44)

ϕ̄ = (b0
0 − b0

kk∆)n

k−1∇r =
(
−bT

0 + bT
kk∆
)

j (45)

4.6. Nonrelativistic hydrodynamics

Convective derivative:
Dt = ∂t + v∇
Transport equations: f = f (t, x), F = F(t, x)

d
dt

∫
V(t)

d3x f =
∫

V(t)
d3x[∂t f +∇( f v)] =

∫
V(t)

d3x(Dt f + f∇v)

d
dt

∫
V(t)

d3xF =
∫

V(t)
d3x∂tF + (v∇)F + F(∇v)] =

∫
V(t)

d3x[DtF + F(∇v)] (46)

Mass: n
0 = Dtn + ρ∇v, ∂tn = −∇(ρv) (47)

Momentum: nv

F −∇p = Dtnv + nv(∇v) = ∂t(nv) + (v∇)(nv) + nv(∇v)

= −v[∇(nv)] + n∂tv + v(v∇)n + n(v∇)v + nv(∇v) = nDtv (48)

Energy: 1
2 nv2

0 = Dtnv2 + nv2∇v = ∂tnv2 +∇(nv2v) (49)

Ideal fluids: force across a surface is perpendicular to the surface, dF = −pdΣ → −ΠdΣ, Π = p1
Viscous fluids: Πjk = pδjk − η

(
∇jvk +∇kvj − 2

3 δjk∇v
)
− ξδjk∇v, F = 0

nDtv = −∇Π = −∇p + η∆v +
(

ξ +
η

3

)
∇(∇v)

∂t(nv2) = −∇(ρv2)− vk∇jΠjk = −∇(ρv2)− v∇p + ηv∆v +
(

ξ +
η

3

)
(v∇)(∇v) (50)
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Linearized equation in terms of the current:

∂t j = n∂tv + v∂tn

= − 1
n

j(∇j)−∇p + η∆
j
n
+
(

ξ +
η

3

)
∇
(
∇ j

n

)
= − 1

n
j(∇j)−∇p + η∇

(
1
n
∇j − 1

n2 j∇n
)
+
(

ξ +
η

3

)
∇
(

1
n
∇j − 1

n2 j∇n
)

= − 1
n

j(∇j)−∇p + η

[
1
n
∇(∇j)− 1

n2 (∇j)∇n +
2
n3 (j∇)n∇n − 1

n2 ∇[(j∇)]n − 1
n2 (j∇)∇n

]
+
(

ξ +
η

3

) [ 1
n
∇(∇j)− 1

n2 ∇n(∇j) +
2
n3 ∇n(j∇)n − 1

n2 ∇[(j∇)]n − 1
n2 (j∇)∇n

]
(51)

5. Relativistic Hydrodynamics

5.1. Eckart Frame

In the Eckart frame, the particle flow is represented by the four-vector jµ = (ρ, j⃗) with the
constraint u2 = 1 and ρ =

√
j2.

The conservation equation ∂µ(ρuµ) = 0 arises, expressing the conservation of particle number.

5.2. Spatial Projector and Enthalpy

The spatial projector tµν = gµν − uµuν and the enthalpy w = ρ + ϵ are introduced.
The energy-momentum tensor Tµν is then expressed in terms of the enthalpy and fluid velocity.

5.3. Conservation Equation

The conservation equation for the particle number ∂νTνµ = 0 is derived, where ξ, η, and q are set
to zero for the ideal fluid case.

In terms of the fluid variables, this conservation equation is expressed, and the components of the
energy-momentum tensor are detailed.

5.4. Ideal Fluid Case

For an ideal fluid (ξ = η = q = 0), the conservation equation reduces to a simplified form
involving the particle density ρ, velocity v⃗, and enthalpy w.

The energy-momentum tensor is explicitly written in terms of the fluid variables.

5.5. Nonrelativistic Limit

The nonrelativistic limit (c ̸= 1) is considered, where jµ = (cρ, j⃗). The conservation equation
and energy-momentum tensor components are revisited in this limit, emphasizing the role of particle
density ρ, fluid velocity v⃗, and enthalpy w.

6. Conclusion

In this paper, we have explored the foundations of relativistic hydrodynamics, focusing on the
Eckart frame and its implications for conservation equations and energy-momentum tensors. We began
by introducing the four-vector representation of particle flow, emphasizing the conservation of particle
number in the Eckart frame. The spatial projector and enthalpy were then introduced to express the
energy-momentum tensor in a form suitable for relativistic hydrodynamics. We derived the conservation
equation for the particle number, accounting for the ideal fluid case with vanishing viscosity, heat
conductivity, and dissipation. The ideal fluid case provided a simplified picture of relativistic hydrodynamics,
featuring the particle density, fluid velocity, and enthalpy as key variables. The energy-momentum
tensor components were explicitly expressed in terms of these fluid variables. Finally, we considered
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the nonrelativistic limit to connect our results with the familiar expressions from classical fluid dynamics.
This allowed us to emphasize the roles of particle density, fluid velocity, and enthalpy in a regime where
relativistic effects are negligible. In conclusion, this paper has provided a comprehensive overview of
relativistic hydrodynamics, covering foundational concepts and their mathematical expressions. The derived
equations offer insights into the behavior of ideal fluids in relativistic regimes and establish connections
with classical fluid dynamics in the nonrelativistic limit. Further research can explore applications of these
principles in astrophysics, high-energy physics, and cosmology.
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