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Article 
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Abstract: Due to the large interest and need, there has been much recent work in epileptic seizure detection 

using machine learning models. Using un-intrusive measurements of brain activity such as 

electroencephalograms (EEG) has allowed for large datasets to be constructed and used for computational 

intelligence to identify seizure events within EEG data. In this paper, we use a publicly avaibale EEG dataset 

to develop a lightweight Machine learning supervised model (simple Decision Tree) to classify seizure events 

from brain waves. The performance of this developed model was compared with a complex ML model 

(Support Vector Machine). The cross-validated Decision Tree model performed better for seizure event 

classification with an overall accuracy of 91.17%. This lightweight model will allow for developing mobile 

applications and user comfort 

Keywords: EEG; epileptic seizure; seizure identification; machine learning 

1. Introduction

The Epilepsy is one of the most prevalent neurological disorders across the world and affects 

people across all age groups. To increase the quality of life and care for individuals suffering from 

epileptic seizures, learning to predict and identify seizure events would be very useful and offer great 

benefits. Studying the voltage signals from around the brain has been extensively investigated and 

has been shown to be a good indicator of the occurrence of seizure events. EEG voltage signals from 

the brain have been found to be useful indicators for many studying and identifying different 

physiological processes, including seizure event identification. EEG voltage measurements can be 

collected from the brain during non-seizure and seizure events. The electrode placement in a scalp 

EEG spatially covers the scalp fully, much more so than other more invasive EEG measurements such 

as Intracranial EEG (iEEG), which requires electrodes on the brain [2]. The CHB EEG Signal dataset 

was taken using the "International 10-20 system of EEG positions", where the spacing of the electrodes 

on the scalp is dictated by the 10 and 20 values [1–3]. The positions of each electrode are referenced 

by the region of the brain they cover: frontal, parietal, temporal, occipital and the numbering has odd 

numbers referring to the left half of the skull, even numbers to the right side of the skull, and uses 'Z' 

for the midline, see Figure 1 for image [1,3]. 

In recent years there have been many research on seizure event detection and classification using 

machine learning on EEG signals. The motivation for this is to allow for seizure onset detection (in 

the pre-ictal state) as well as active seizure detection (ictal). Being able to do these two tasks 

automonously would give care-givers and patients better alerts to seizure activity to allow for faster 

and care. Pre-ictal period detection could allow for preemptive care even. Given the number of 

epilepsy patients worldwide is well into the millions this type of technology could help reduce the 

impact of this disorder on their lives. 
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Figure 1. The electrode placement and naming scheme for 10-20 International EEG electrode 

placement [3]. 

This paper shares the same base dataset with the study [1], the Pre-Processed CHB EEG dataset, 

which was created as part of that work. It is based on the original full CHB EEG dataset from [2]. The 

study [1] uses MinMaxScaler for normalizing the data and trained Recurrent Neural Network (RNN), 

Long Short-Term Memory Network (LSTM), and Bidirectional LSTM models to perform seizure 

detection. Of the three models, the Bidirectional LSTM was found to perform the best by far, with the 

LSTM and RNN being very close to each other in performance but clearly separated from the 

Bidirectional LSTM [1]. The study [4] investigated using Support Vector Machine (SVM), Ensemble, 

K-Nearest Neighbor (KNN), Linear Discriminant Analysis (LDA), Logic Regression (LR), Decision 

Tree (DT), and Naïve Bayes (NB) models to be considered for automated seizure identification. All 

of the models trained in [4] were found to perform fairly close to one another, with KNN slightly 

edging out the rest on accuracy for un-filtered data and tying LR for the best accuracy with filtered 

data. In addition, [5] reviewed using DT, SVM, KNN, Random Forest (RF), and Artificial Neural 

Network (ANN) models. 

This work aims to further test seizure event detection using couples of ML models to classify 

whether a seizure event is occurring or not. These models were chosen specifically to compare a 

lighter-weight supervised model like Decision Trees against another supervised but computationally 

heavier model such as SVM. Similar to [1], MinMaxScaler normalization was applied to the data after 

initial detrending and notch filtering for the 60Hz artifact was applied. From here features were 

extracted and selected using DT feature selection and then modeled using the DT and SVM models. 

This work differs from [1] by focusing on supervised learning models, as well as using less of the 

dataset for training, as this work utilizes an 80-20 training, validation, and test dataset breakdown for 

Hold-Out based models and also uses 10-fold cross-validation (CV) as well for the models. All 

analysis and pipeline execution was performed on an Windows 10 desktop machine with an Intel i7-

8700 6-core CPU, Nvidia Quadro P2000 GPU, and 16GB DDR4 RAM. 

The remaining sections of this paper are structured as follows: Section 2 presents a 

comprehensive overview of the dataset, providing specific details. The pre-processing procedure is 

elaborated upon in Section 3. Section 4 outlines the overall machine learning pipeline employed in 

this study. Moving on to Section 5, the signal processing methods are described in detail. 

Additionally, Section 6 delves into the specifics of feature extraction and section processing. The 

machine learning methods utilized in this study are elucidated in Section 7. Lastly, the study's 

discussion and conclusion can be found in Sections 8 and 9, respectively. 
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2. Dataset 

2.1. CHG EEG Dataset 

The dataset used in this paper is the Pre-Processed version of the Children's Hospital Boston 

(CHB) Scalp EEG dataset first published in [2]. The original CHB dataset consists of EEG 

measurements from 22 unique individuals consisting of 5 male and 17 female subjects, combining to 

provide a total of 24 separate "cases" totaling over 900 hours of recorded data [2,6]. All of the EEG 

measurements had a 16-bit resolution and were recorded with a sample rate of 256Hz [2,6]. Each case 

contains multiple captures that, on average, had a 10-second gap between consecutive captures; 

however, it was variable due to hardware limitations [2,6]. Each capture within the dataset consists 

of 96 channels with 23 "essential channels," which contain the voltage measurements between specific 

electrodes from the scalp EEG [1,2]. The CHB dataset is well regarded due to its large size, containing 

over 24 cases, over 900 total hours of recorded data in addition to 68 minutes of data during seizures 

[1]. Another reason the CHB dataset is well regarded as the 256Hz sampling rate of its recordings 

allows for analyzing higher frequency aspects of the EEG signals compared to other datasets [1]. 

2.2. Pre-processed CHB EEG Dataset 

Due to the noisy, imbalanced nature of the CHB dataset, this paper uses the Pre-Processed CHB 

EEG Dataset, which is a streamlined and balanced version of the CHB dataset provided by the 

authors of [1]. The balancing of the CHB dataset was performed by extracting the pre-ictal (leading 

up to a seizure event) and ictal (during the seizure event) data portions in equal amounts and put 

into paired files with the same number of samples in each [1]. The number of EEG data channels was 

also reduced to 23 essential channels from the original 96 EEG channels. It was discovered in a specific 

pair of files from the pre-processed dataset, multiple channels were found to be invalid as every data 

point was identical. While this does not necessarily seem immediately problematic, due to 

considering MinMaxScaler and Z-Score data normalizations which divide by the range of the data or 

standard deviation, respectively, this would lead to dividing data by zero. The solution to this was 

to leave the paired set of files out of the dataset for this work's analysis. 

3. Machine Learning Pipeline Overview 

The code and analysis presented in this paper were all performed in MATLAB 2022b, and some 

internal MATLAB functions were utilized. Any special configurational constraints or parameters for 

built-in MATLAB functions and objects used will be noted. Figure 2 below shows a high-level block 

diagram and flow of the ML pipeline. 

 

Figure 2. The high-level machine-learning pipeline structure. 

The MATLAB pipeline built and used in this work is that of a very straightforward supervised 

machine learning model. The first step is reading in and parsing the paired pre-ictal and ictal data 

files. This data is then put through initial signal processing, including notch filtering out artifacts and 
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data normalization. Next, the two pre-ictal and ictal data are placed together but labeled and undergo 

feature extraction. Next, feature selection is performed on 80% of the dataset reserved for training. 

From here, the best number of features are selected for training the model for classification while the 

rest are reduced. Multiple different values will be tested for the number of features kept. Next, the 

models are trained. The hold-out DT and SVM models are trained on 80% of the dataset, while a 

second set of the DT and SVM models are trained using 10-fold cross-validation. Finally, the models 

perform classification on the test data, and the results are displayed to be analyzed.  

4. Initial Signal Processing 

The first step taken in the initial preparation of the samples in the dataset after reading in 

matched pair of files was to apply a second order Butterworth IIR (Infinite Impulse Response) 60Hz 

notch filter is applied to the presence of any AC power artifacts. The 60Hz notch is used specifically 

due to the dataset being taken in the United States, where the AC power transmission is dominated 

by 60Hz [2]. This was done using the MATLAB filtfilt() function, which applies the filter in both the 

forward and reverse directions, essentially doubling the order of the filter [7]. The last step of the 

initial signal processing in this work was normalizing the data. Two types of normalization were 

considered in this work: MinMaxScaler and Z-Score normalization. The study [1] uses MinMaxScaler 

normalization on the Pre-Processed data set. Following the lead of Deepa and Ramesh, MinMaxScaler 

was used in this work. Z-Score was considered for the normalization due to the sensitive nature of 

MinMaxScaler to outliers in datasets skewing the maximum or minimum values used in the 

normalization. After reviewing the dataset, this was found not to be an issue. This normalization is 

performed on each channel of a data file separately and is done for each utilized data file. 

A commonly used initial signal processing stage for EEG signals not utilized in this work was 

linear detrending of the signal data. It was found that applying linear polynomial detrending of the 

data hampered performance for both the DT and SVM models. 

5. Feature Extraction and Selection 

5.1. Feature Extraction 

For extracting features, a window size of two seconds was chosen after reviewing literature and 

EEG seizure signals [5]. This means that each window consists of 512 samples for this specific dataset 

with a sampling rate 256Hz. Different from other works, the windows utilized were overlapped by 

256 samples (one second) for extracting features. Each individual channel had ten features calculated 

for it, and 22 of the 23 channels in the dataset were utilized. This resulted in a total of 220 features 

being extracted before feature selection and reduction. The base set of 10 features extracted on each 

channel was chosen based on reviewing literature and is shown in Table 1 [5,8]. 

5.2. Feature Selection 

After feature extraction, the extracted feature data was divided into the training, validation, and 

test feature sets. The training set was run through a DT feature selection algorithm. This was 

performed using the existing MATLAB object fitctree, more specifically, the predictorImportance() 

function from within the object [7]. The output of this model was a set of importance values for each 

feature. Using this importance value, only a select number of features were utilized for training the 

machine learning models. The process of feature reduction, after feature selection, was implemented 

such that it is done automatically by the score; however, typically, it was found that the variance 

(Hjorth Activity) was the most popular of the ten features extracted per channel by far. 

As an alternative method of feature selection, a Chi-Square-based feature selection test was 

utilized as well. The MATLAB fscchi2 function was used to perform feature ranking using Chi-

Squared tests, which resulted in a feature importance score. In terms of which features scored the 

highest in importance score, this selection method found the variance for every data channel most 

important.  
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Table 1. Feature set used in the study. 

Feature Name Definition Mathematical Representation 

Mean 

The average of the data. 

This is computed by 

dividing the sum of all data 

by the number of entries. 

𝑥̅ =  ଵே ∑ 𝑥௡ே௡ୀଵ    

Peak Frequency Greater 

than 5Hz 

This is calculating the 

frequency component with 

the largest magnitude that 

does not fall under the 

Delta Wave (4Hz and less). 

5Hz was selected by 

viewing Discrete Fourier 

Transforms (DFTs) via the 

Fast Fourier Transform 

(FFT) of windowed data. 

𝑓(𝑖) =  − 𝑓௦2 + 𝑖 ∗ 𝑓௦𝐹𝐹𝑇𝑠𝑖𝑧𝑒 , 𝑖= 0,1,2, … , 𝑁 − 1 𝑓௣௘௔௞ = 𝑓 ൬𝑎𝑟𝑔𝑚𝑎𝑥 ቀ𝐹𝐹𝑇൫𝑥(𝑛)൯ቁ൰ , |𝑓|< 5 𝑖𝑔𝑛𝑜𝑟𝑒𝑑 

Variance 

A measure of the spread of 

the data from the mean. 

Taking the square root 

gives the standard 

deviation, which is also 

commonly used to 

measure. This is also the 

Hjorth Activity parameter. 

𝐻஺௖௧ =  𝜎ଶ =  1𝑁 ෍(𝑥௡ − 𝑥̅)ଶே
௡ୀଵ  

Skewness 

This measures the 

asymmetry of the mean of 

the data [7,9]. 
𝑠 =  1𝑁 ∑ (𝑥௡ − 𝑥̅)ଷே௡ୀଵ𝜎ଷ  

Kurtosis 

This measures the outer 

data points further from the 

mean and is concerned with 

how many outliers and 

how often they occur 

within the data [7,9]. 

𝒔 =  𝟏𝑵 ∑ (𝒙𝒏 − 𝒙ഥ)𝟒𝑵𝒏ୀ𝟏 𝝈𝟒  

Zero Crossing Rate 

This is a measure of the rate 

at which the input signal 

data crosses from zero to 

positive or negative [7]. 

𝒛𝒄𝒓 =  𝟏𝑵 − 𝟏 ෍ 𝟏(𝒙𝒏𝒙𝒏ି𝟏)𝑵
𝒏ୀ𝟐 ,𝟏(𝒙) = 𝑰𝒏𝒅𝒊𝒄𝒂𝒕𝒐𝒓 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 

Hjorth Mobility 

This Hjorth parameter 

relates to the mean 

frequency. In addition, it 

can also be used to infer the 

proportion of the standard 

deviation of the power [9]. 

𝑯𝑴𝒐𝒃 = ඨ𝑯𝑨𝒄𝒕൫𝒙ᇱ(𝒏)൯𝑯𝑨𝒄𝒕൫𝒙(𝒏)൯  

Hjorth Complexity 

This Hjorth parameter 

measures the frequency 

change in the signal data 

[9]. 

𝑯𝑪𝒐𝒎𝒑 = 𝑯𝑴𝒐𝒃൫𝒙ᇱ(𝒏)൯𝑯𝑴𝒐𝒃൫𝒙(𝒏)൯  

Approximate Entropy 

This features measures the 

unpredictability and 

regularity of the changes in 

the signal data over time 

[7]. 

Performed using 

approimateEntropy() built-in 

MATLAB function. According to [7], 

calculated by: 
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Create delayed reconstruction Y(1:N) 

from X(1:N) with a lag τ and 

"embedding dimension" m. 𝑵𝒊 =  ෍ 𝟏(‖𝒀𝒊 − 𝒀𝒌‖ஶ𝑵
𝒊ୀ𝟏,𝒊ஷ𝒌 < 𝑹)   𝒘𝒉𝒆𝒓𝒆 𝟏 𝒊𝒔 𝒕𝒉𝒆 𝒊𝒏𝒅𝒊𝒄𝒂𝒕𝒐𝒓 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝜱𝒎 = 𝟏(𝑵 − 𝒎 + 𝟏) ෍ 𝒍𝒏(𝑵𝒊)𝑵ି𝒎ା𝟏

𝒊ୀ𝟏  𝑺𝒂𝒑𝒑𝒓𝒐𝒙 =  𝜱𝒎 − 𝜱𝒎ା𝟏 

Median 

This selects the middle 

value of the data. For an 

odd-numbered set of data, 

the middle value can be 

pulled. For an even-length 

data set, the mean of the 

middle two values is taken 

to calculate the median. 

𝑴𝒆𝒅𝒊𝒂𝒏 = 𝒙 ቆ𝒄𝒆𝒊𝒍 ൬𝑵𝟐൰ቇ  𝒇𝒐𝒓 𝒐𝒅𝒅 𝑵 𝑴𝒆𝒅𝒊𝒂𝒏 = 𝒎𝒆𝒂𝒏 ൬൤𝒙 ൬𝑵𝟐൰ , 𝒙 ൬𝑵𝟐+ 𝟏൰൨൰  𝒇𝒐𝒓 𝒆𝒗𝒆𝒏 𝑵 

6. Implemented Models 

The two main types of models used to classify ictal versus pre-ictal EEG data were DT and SVM 

models. Both models were implemented using the existing MATLAB objects: fitcsvm and fitctree, 

respectively. There were two different dataset division methodologies tested in this work, with the 

first being 80-20 Hold-Out for training and test data, respectively. The second was using 10-fold cross 

validation for each model as well. For the hold-out method of dataset division, the MATLAB predict() 

function was used on the test data to have the model classify the data [7]. For the cross-validation, 

the kfoldPredict() function was utilized, which takes the k-fold cross-validated model and gets the 

classification for the data for each of the k folds [7].  

Two different parameters of the models were experimented with in attempts to optimize 

performance. The first was changing the number of features utilized for classification in an attempt 

to discern what number of features input to the model allowed for the best performance. The other 

parameter experimented with was controlling the depth of the two DT models specifically. This was 

done using the MATLAB parameter "MaxNumSplits" within the fitctree object [7]. While there is an 

explicit "MaxDepth" parameter in MATLAB, this parameter is not usable for cross-validated models 

[7]. As such, the depth control was done by limiting the maximum number of branch splits since this 

parameter was usable for both the hold-out and cross-validated models [7]. For modifying these two 

parameters, a grid-like search was performed across different values of each to attempt to find the 

best-performing models. The number of features was iterated from 8 to 98 in increments of 6. The 

"MaxNumSplits" was stepped in increments of 50 from 51 to 301. An initial wider run of the grid 

found the models' performances in the aforementioned ranges to be optimal for the extracted feature 

set. The two tables below show the results for the models using both DT feature selection (Table 2) 

and Chi-square feature selection (Table 3). With each of the four model types in one of the tables is 

displayed the three best models found for that type based on accuracy. 

Table 2. Model results for decision tree-based feature selection. 

Model 

Name 

Num 

Features 

Used 

Max Num 

Splits 

Accuracy Sensitivity Precision F-Measure 

SVM HO 8 

20 

- 

- 

70.08 

60.69 

61.44 

83.54 

75.54 

58.06 

67.76 

68.51 
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4 - 58.88 70.28 58.14 63.63 

DT HO 8 

8 

8 

151 

101 

301 

51.81 

51.64 

51.13 

41.62 

41.85 

40.92 

50.92 

50.70 

50.07 

45.80 

45.85 

45.04 

SVM CV 20 

14 

8 

- 

- 

- 

64.72 

63.20 

60.50 

83.64 

83.64 

71.17 

60.68 

59.37 

58.65 

70.33 

69.45 

64.32 

DT CV 32 

44 

86 

151 

101 

101 

91.17 

91.13 

91.10 

90.22 

89.68 

90.00 

91.97 

92.36 

92.02 

91.09 

91.00 

91.00 

Table 3. Model results for Chi Square-based feature selection. 

Model 

Name 

Num 

Features 

Used 

Max Num 

Splits 

Accuracy Sensitivity Precision F-Measure 

SVM HO 38 

44 

32 

- 

- 

- 

57.92 

57.69 

57.41 

68.29 

68.18 

70.72 

57.49 

57.29 

56.74 

62.42 

62.26 

62.96 

DT HO 8 

8 

8 

251 

201 

151 

50.96 

50.85 

50.96 

38.03 

36.99 

36.42 

49.85 

49.69 

49.61 

43.15 

42.41 

42.00 

SVM CV 44 

50 

56 

- 

- 

- 

68.13 

67.85 

67.72 

79.29 

79.09 

78.41 

64.82 

64.58 

64.60 

71.33 

71.10 

70.84 

DT CV 62 

68 

98 

151 

201 

151 

90.57 

90.52 

90.51 

89.73 

90.07 

89.55 

91.28 

90.89 

91.30 

90.49 

90.48 

90.41 

 

Figure 3. The predictor (feature) importance scores from the DT feature selection. The value with the 

highest score is Ch11 variance feature. 
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Figure 4. The predictor (feature) importance scores from the Chi-square feature selection. The 

variance feature for each of the EEG data channels scored the highest. The actual values of variance 

scores are infinite due to the way the Chi-Square test works; however, to better visualize this plot any 

infinite score was set to three times the largest finite value. 

7. Results and Discussion 

From the results of this work, it is very clear that the Cross-Validated Decision Tree model far 

outperforms the rest of the models. As expected, the hold-out-based models performed worse than 

the Cross-Validated ones. Although the one case where a hold-out model outperformed its cross-

validated counterpart was for the SVM using DT feature selection. Although this was done with a 

very low number of features utilized in the model and with more test data would likely lose 

performance to the cross-validated SVM model. While it was expected the cross-validated DT model 

would outperform the rest of the models when using DT feature selection, it was interesting that this 

dataset was still able to outperform the cross-validated SVM model by 20% for the most accurate of 

each. For sensitivity, precision, and F-Measure (referred to as F-score in [1]), the cross-validated DT 

model performs best in as well capturing values of ~90% for each of those values in its top three 

models of each feature selection method. 

It would be of interest for future work to extend testing of the cross-validated decision tree 

model with different data sets. In addition, adding more features per channel would be interesting 

to see if model accuracy can be increased further in this regard. Also, there is room for work to be 

done in testing the effects of characteristics of subjects used for the model from the dataset. For 

example, it could be of interest to check how the model behaves depending on the gender or age of 

the subjects within the dataset. Currently, with each subject's data being used, there are 17 female 

and 5 male unique subjects in the dataset from this work. While this work scratches the surface of the 

potential for a lighter-weight machine learning model for epileptic seizure detection, such as a DT 

model, further work should be performed to push for performance improvements and further 

examine the portability of such a model so it can be used for real-world applications. 

8. Conclusions 

This work presents four supervised machine-learning models for identifying seizure events. In 

particular, the cross-validated DT model from this work shows the most promise with an accuracy 

of 91.17%, precision of 91.97%, and F-Measure of 91.09%. While this does not compare to the over 

99.5% reached for each of these values in [1], this paper did not utilize Deep Learning and Neural 

Networks and looked into supervised models. The cross-validate DT model shows enough promise 

for further work to see if it could be improved and utilized for seizure event classification on lower-

performance platforms where a neural network and deep learning model would be too 

computationally expensive. Further work into automatic seizure detection will enhance the lives of 
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epilepsy patients and anyone who suffers seizures often, and the smaller and cheaper the necessary 

equipment to perform this detection will allow the benefit of seizure detection to more patients. 
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