
Article Not peer-reviewed version

Micro-Expression Recognition Using
Transformers Neural Networks

Rodolfo Romero-Herrera * , Franco T. Sánchez , Nathan A. Álvarez , Billy Yong Lé , Edwin J. Juárez

Posted Date: 30 October 2025

doi: 10.20944/preprints202510.2352.v1

Keywords: facial microexpressions; transformers vision; multi-head attention; facial recognition

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.

https://sciprofiles.com/profile/826552
https://sciprofiles.com/profile/4850136
https://sciprofiles.com/profile/4850138
https://sciprofiles.com/profile/4850139


 

 

Article 

Micro-Expression Recognition Using Transformers 
Neural Networks 
Rodolfo Romero-Herrera *, Franco T. Sánchez, Nathan A. Álvarez, Billy Young Lé  
and Edwin J. Juárez  

IPN-ESCOM 
* Correspondence: rromeroh@ipn.mx 

Abstract 

A person's face can reveal their mood, and microexpressions, although brief and involuntary, are also 
authentic. People can recognize facial gestures; however, their accuracy is inconsistent, highlighting 
the importance of objective computational models. Various artificial intelligence models have 
classified microexpressions into three categories: positive, negative, and surprise. However, it is still 
significant to address the basic Ekman microexpressions (joy, sadness, fear, disgust, anger, and 
surprise). This study proposes a Transformers-based machine learning model, trained on CASME, 
SAMM, SMIC, and its own datasets. The model offers comparable results with other studies when 
working with seven classes. It applies various component-based techniques ranging from ViT to 
optical flow with a different perspective, with low training rates and competitive metrics comparable 
with other publications on a laptop. These results can serve as a basis for future research. 

Keywords: facial microexpressions; transformers vision; multi-head attention; facial recognition 
 

1. Introduction 

Facial expressions appear daily in human beings. They involve changes in the face that reflect 
emotional states; however, individuals may conceal or disguise their true feelings [1]. Despite this, 
the production of micro-expressions is unavoidable, as they tend to occur involuntarily within a 
second fraction, often becoming imperceptible to the human eye [2]. 

The recognition of micro-expressions is a research topic with various fields of practical 
application, such as in [3], where it is employed to identify emotions from a psychological 
perspective. There are basic emotions: happiness, surprise, contempt, sadness, anger, disgust, and 
fear, which can be used to analyze an individual’s emotional behavior in order to assess their actual 
emotional state [3]. Throughout this work, the focus will be placed on the basic emotions identified 
by Ekman [4–6]. 

Various techniques have been used for their analysis. For example, in [7], mathematical 
strategies are employed to address the recognition of micro-expressions and the micro-movements 
involved; in [8], image analysis is conducted across different domains, providing a comparison of the 
obtained results; and in [9], the Extreme Learning Machine technique is implemented for the 
recognition of seven types of basic expressions. 

In recent years, one of the technologies with the greatest growth due to its versatility and 
adaptability has been neural networks. In several of the consulted works, such as [2,7,8], and [9], 
some variation of this technology is applied to solve problems related to facial analysis. Throughout 
this project, a solution for the detection of facial micro-expressions based on neural networks is 
presented. 

1.1. Problem Statement 
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Micro-expressions are brief and spontaneous facial movements, with a maximum duration of 
up to 0.5 seconds. Additionally, in some cases, individuals attempt to mask these facial movements 
to hide or suppress their emotions, which makes them nearly impossible to detect with the naked eye 
and difficult to capture on video. 

For this system, a Transformer model was used, trained with a series of datasets based on human 
emotional expressions, such as SMIC, CASME, and SAMM, in addition to the creation of a dataset 
composed of adult participants. To elicit the required emotions for analysis, a set of videos 
categorized according to the emotional classification presented in [10] was shown to the participants. 
An RGB video camera was used to capture the expressed emotions. Once the recordings were 
obtained, they were divided into frames to be used primarily for machine learning based on 
Transformers. 

The objective is to develop a machine learning model capable of detecting facial micro-
expressions through frame-based analysis. 

1.2. Related Works 

The Facial Action Coding System (FACS) is a technique for classifying movements associated 
with facial muscles, as shown in Figure 1. It allows the measurement of all visible facial movements 
without being limited to actions related solely to emotions [11]. Instead of naming the muscles 
individually, Action Units (AUs) are specified, focusing on specific areas of facial movement. By 
combining these AUs, it is possible to identify different micro-expressions. 

     

 

 

Joy Sadness Surprise Anger Fear Neutral 

Figure 1. Facial expressions of a person [12]. 

Paul Ekman identified a limited set of seven fundamental emotions that are universally 
recognized through facial expressions [13–15]. These have subsequently been generally classified as 
positive and negative emotions. The task of detecting and classifying micro-expressions is 
challenging and involves several complexities. For example, in [16], an ensemble of multiple models 
based on convolutional neural networks is used in order to leverage the advantages of each model 
while compensating for their respective limitations. In studies [17] and [18], residual blocks are 
employed to create shortcut connections between neurons, thereby avoiding the generation of 
excessively long information chains. In [19], the most relevant information regarding facial features 
associated with specific micro-expressions is further grouped into memory units, so that these 
features are retained throughout the detection and recognition process. In [18], a micro-attention unit 
is utilized, achieving a significant improvement in results despite the use of a smaller data sample 
[19]. 

On the other hand, [17] and [8] employ a model trained for the detection of micro-expressions 
through image analysis. This process results in an improvement in detection performance with 
substantial room for further enhancement, outperforming other models. One of the main tasks in 
micro-expression detection involves isolating short-duration facial features. For instance, in [7], 
variational models and the RAFT method are used to compute Optical Flow, which emphasizes the 
desired facial characteristics, thereby facilitating precise detection of details that are decomposed into 
two domains: spatial and temporal, with the purpose of isolating micro-movements. The details are 
then magnified using an amplification factor and the “forward warping” method (a technique that 
involves transforming or mapping a source image to an end image using a deformation field). This 
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methodology highlights the importance of employing Transformers to enhance the detection and 
emphasis of micro-expressions. 

The final approach considered is presented in [20], which utilizes infrared cameras in 
combination with visible-light cameras to improve the accuracy of emotion detected, particularly 
when installed at different angles. 

2. Materials and Methods 

The component-based methodology was selected for the development of the system. This 
methodology consists of reusing code modules that enable the execution of different tasks [21,22], 
which leads to the construction of a complex system while ensuring its correct functioning and 
performance [23]. 

The diagram in Figure 2 illustrates two data flows. The first corresponds to the system training 
process: the user’s face is recorded by a camera, and this video is sent to the first component, the 
computer. The procedure starts with the recording of the video, which is stored for model training 
and then transferred to the dataset component. This component contains both the custom dataset and 
the external datasets; additionally, the Optical Flow method is applied to extract features that provide 
supplementary information to the model. Afterwards, both datasets are sent to the video processing 
component, where the video is segmented into frames and conditioning procedures are applied. 
Once the datasets have been processed, they are sent to the AI module, where parameter tuning and 
model evaluations are carried out to define the final system architecture. After obtaining the 
evaluation results, model testing is performed. 

The second data flow corresponds to the system execution phase. The camera records and stores 
a video of the user’s face, which is then sent to the first component, the computer. Subsequently, the 
video is passed to the video processing component, where it is segmented into frames, conditioned, 
and filtered. These frames are then forwarded to the model prediction component, and once the result 
is analyzed, it is displayed in the computer component through a graphical user interface. 

 

Figure 2. Architecture Diagram. 

To induce in the participants the different emotional states required for this work—joy, sadness, 
surprise, anger, disgust, fear, and neutral—existing micro-expression datasets were used, in which 
short movie clips and videos were employed to elicit emotional reactions. For the development of the 
dataset, the results from [10] were used, where a study was conducted to generate a set of film scenes 
proven to be effective in evoking emotional states, resulting in a total of 57 scenes associated with the 
seven target emotions. In addition to this set of film scenes, short video clips specifically selected to 
produce the desired emotions were also used. As a result, eight film compilations were generated, 
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each containing seven different scenes designed to induce one of the following emotions: neutral, 
sadness, surprise, fear, disgust, anger, and happiness. 

A “C922 PRO HD STREAM WEBCAM” was used, capable of recording in Full HD 1080p and 
720p at 60 fps, equipped with autofocus, glass lens, diagonal field of view of 78°, and 1.2x digital 
zoom. The camera was configured to 30 FPS, MP4 format, with a cropping filter to ensure that the 
recording remained focused and centered on the participant’s face. See Figure 3. 

 

Figure 3. Camera recording view. 

2.1. Data set 

In addition to the CASME, SAMM, and SMIC datasets, an additional dataset was created to 
validate the system. Each participant was provided with a form to record their emotions. The form 
included a multiple-choice question to register the emotion with the highest intensity as the response, 
with the option to specify in writing the moment at which the emotion was manifested. The resulting 
dataset is composed of a total of 85 individuals, of whom 76.47% are male and 21.18% are female. 

2.2. Segmentation and Frame Extraction 

Each video was recorded at a rate of 30 frames per second (fps), but only 20 fps were used for 
analysis. Based on the form responses, the moment of highest emotional intensity was identified for 
each of the 7 scenes shown in the compilation, and the time interval in which the micro-expression 
occurred was determined. This interval was segmented at 20 frames per second; the duration of the 
intervals ranged from 2 to 4 seconds for each scene. 

Based on the approach proposed by Jin Hyun Cheong and Eshin Jolly [24], a model was 
developed that enables the identification, measurement, and classification of macro-expressions 
using a person’s Facial Action Units. To accomplish this, the MP4 video corresponding to the selected 
recording interval was loaded. The model analyzes each frame, assigns the corresponding Action 
Units, provides a weighting to determine the associated emotion, and returns an analysis of the 
selected frames along with a plot representing the entire video. 

As a result of the analysis, two types of plots are generated, as shown in Figure 4. Each plot is 
accompanied by an image of the analyzed frame, in which the participant’s facial features are 
highlighted using a white outline. A scoring of the most significant Action Units in the participant’s 
face is performed, and these scores are summed up to determine the emotional intensity expressed. 
The plot displays the intensity of each of the seven emotional states across the frames. The plot on 
the right provides an analysis across all frames that make up the segmented video, allowing the 
visualization of facial expression changes over time. This visualization makes it possible to identify 
the points of highest emotional intensity and determine their corresponding emotional category. 
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Figure 4. Analysis results of the second Python script. 

2.3. Applied Approach 

Originally, the neural network classifies images by combining features extracted from two 
distinct branches: one based on the Vision Transformer (vit_pos) and the other on Inception and 
CBAM layers (incep_sca). The LSTM plays a fundamental role in this architecture, as it facilitates the 
capture of temporal and long-term dependencies among the combined features. First, the network 
extracts features from both branches, with each branch highlighting specific aspects of the image. 
These features are then merged into a single tensor, enriching the image representation by integrating 
different perspectives. 

In the present work, the DualHybridFace model was designed and implemented. This model 
incorporates the Vision Transformer architecture to interpret images, the Convolutional Block 
Attention Module (CBAM) to emphasize salient features, and additional convolutional neural 
network structures. Meanwhile, the Inception architecture applies convolutional filters—specifically, 
a Laplacian convolution filter in this case—without imposing high computational demands when 
scaling the image to different sizes. The DualHybridFace model thus combines two branches: a scale 
branch (incep_sca) based on the Inception and CBAM modules, and a channel-position branch 
(vit_pos) based on the Vision Transformer (ViT) module. The output of both branches is fused and 
passed through a fully connected layer to obtain the final prediction. 

As a result of the analysis of the B-LiT model, a system is obtained for micro-expression detection 
based on the processing of video frames for facial analysis and micro-expression identification 

Modules 
Considering the two branches of DualHybridFace, the system consists of the following four 

modules: 

• Data Flow: This module is present in each of the subsequent modules. First, channel attention is 
computed and multiplied by the input, producing an enhanced representation of the most 
significant channels. Then, spatial attention is calculated and multiplied by the output of the 
channel attention step, generating a final representation that emphasizes both relevant channels 
and spatial regions. The final output is the input image with channel and spatial attention 
applied, allowing the network to focus on the most relevant features for the task. 

Transformer DualHybridFace_IncepCBAM: This configuration uses only the Inception and 
CBAM branch (incep_sca), excluding the vit_pos branch. It includes the following hyperparameters:  

Transformer DualHybridFace_IncepCBAM: This configuration uses only the Inception and 
CBAM branch (incep_sca), excluding the vit_pos branch. It includes the following hyperparameters: 

• in_channels: Number of input channels (default: 3 for RGB and 2 for grayscale images). 
• num_classes: Number of classes for the classification task (default: 3 for RGB images and 2 for 

grayscale images). 
• fc: A sequence of fully connected layers that combines the extracted features and performs 

classification. 
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Transformer DualHybridFace_ViT: This configuration uses only the vit_pos branch based on the 
Vision Transformer module; it does not include the incep_sca branch nor the LSTM module. It 
includes the following hyperparameters: 

• in_channels: Number of input channels (default: 3 for RGB images and 2 for grayscale images). 
• num_classes: Number of classes for the classification task (default: 3 for RGB images and 2 for 

grayscale images). 
• fc: A sequence of fully connected layers that combines the extracted features and performs 

classification. 

Transformer DualHybridFace_LSTM: This module is similar to DualHybridFace but 
incorporates an LSTM layer after the vit_pos branch. The output of the LSTM is combined with the 
features from the incep_sca branch and passed through a fully connected layer for classification. It 
includes the following hyperparameters: 

• in_channels: Number of input channels (default: 3 for RGB images and 2 for grayscale images). 
• num_classes: Number of classes for the classification task (default: 3 for RGB images and 2 for 

grayscale images). 
• hidden_dim: Dimensionality of the additional feature representation (default: 512 for RGB 

images). 
• fc: A sequence of fully connected layers that combines the features from both branches and 

performs classification. 

Hyperparameters 
Only two hyperparameters are required to operate this architecture: 

• in_channels: The number of input channels (default: 3 for RGB images and 2 for grayscale 
images). 

• num_classes: The number of output classes for each convolution branch (default: 3 for RGB 
images and 2 for grayscale images). 

The LSTM processes the combined sequence of features, leveraging its ability to retain 
information across extended sequences. In image classification tasks where global context is critical, 
this allows the network to learn linkages and long-term dependences within the input data. By 
capturing patterns over lengthy sequences, the LSTM improves the network's capacity to generalize 
unseen input, leading to increased accuracy and resilience in the final classification. 

Hybrid Architecture 
The combination of the Inception, CBAM, and ViT modules within a single model can be highly 

effective, addressing several limitations inherent to each component individually: 

• Inception: Enables efficient extraction of high-frequency features such as textures and local 
details, which are crucial in many vision tasks. While CNNs excel at this, pure Transformer 
models tend to focus more on low-frequency, global dependencies. Combining Inception with 
ViT allows the system to leverage the strengths of both approaches. 

• Spatial and Channel Attention with CBAM: By introducing spatial and channel attention 
methods, the CBAM module improves performance in tasks like object detection and semantic 
segmentation by enabling the model to selectively focus on the most informative regions and 
channels. 

• Global Dependency Capture with ViT: The primary benefit of ViT is its capacity to use self-
attention mechanisms to record long-range dependencies throughout an image. This is 
especially helpful for duties that call for a comprehensive comprehension of the scene. 

• By integrating these three components, the model can: 
• Efficiently extract both high- and low-frequency features (Inception) 
• Selectively emphasize relevant spatial regions and channels (CBAM) 
• Capture global dependencies across the image (ViT) 
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This synergy leads to enhanced visual representations for classification, detection, and 
segmentation tasks. The complementary strengths of each module enable the combined model to 
surpass the performance of each component when used individually. 

Moreover, incorporating LSTM modules alongside Inception, CBAM, and ViT enables robust 
modeling of sequential and temporal dependencies, complementing the spatial and attention-based 
capabilities of the architecture. The LSTM enhances ViT’s self-attention by encoding inter-token 
relationships, processes multi-scale features from Inception and CBAM hierarchically, and models 
temporal dynamics in sequential video data. Thus, the combined Inception–CBAM–ViT–LSTM 
architecture can effectively integrate spatial, attention-based, global, and temporal information for 
richer visual understanding. 

DualHybridFace Transformer Model 
This model is inspired by the Dual Attention Network (DualATTNet or DANet), originally 
developed for segmenting images into regions corresponding to specific visual characteristics [25]. 
Since it incorporates two attention modules that rely on self-attention mechanisms, it enables 
improved feature detection. These two modules are positional attention and channel attention, and 
their interaction is illustrated in Figure 6. The first learns spatial relationships among pixels and 
updates each pixel’s representation by considering similar features across the entire image. The 
second analyzes correlations among multiple feature maps (channel maps), each representing 
responses to specific visual patterns—for example, the “grass” channel map may correlate with the 
“vegetation” or “tree” channel maps [25]. See Figure 5. 

 

Figure 5. Position attention module [25]. 

2.4. Transformer 

Transformer networks are deep learning architectures that use self-attention mechanism to 
handle sequential data like text, images, or audio. Self-attention enables the model to give varying 
weights to each segment of the input depending on its significance and relationships with the 
remainder of the sequence. In this way, the model can understand the contextual and semantic 
connections in the data, resulting in more precise and natural predictions [27] 

Transformer models are structured around an encoder–decoder architecture, similar to seq2seq 
models, but without the use of recurrent or convolutional networks [27]. Instead, they rely on 
attention layers, which can be categorized into three types: scaled dot-product attention, multi-head 
attention, and encoder–decoder attention. These layers enable the model to capture relationships 
between elements in both the input and output sequences, producing encoded representations that 
contain contextual information. 

The proposed B-LiT model (By Intelligent Learning for Microexpressions in Visible and Infrared 
Light) consists of a set of four architectures that use the Transformer model as a foundation, with 
modules specifically designed for the task of facial micro-expression recognition. The model was 
developed, trained, and evaluated on a portable Asus TUF Gaming FX505GM laptop equipped with 
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an Intel(R) Core(TM) i5-8300H CPU @ 2.30 GHz, 16 GB DDR4-SDRAM, an NVIDIA GeForce GTX 
1060 graphics card with 6 GB VRAM, running Windows 11 Home 64-bit and Python version 3.9.0. 

The prototype for recognizing facial micro-expressions was developed utilizing a Vision 
Transformer (ViT) model (refer to Figure 6). The process can be outlined in the following way: 

• The model receives an input image to be classified. The ViT partitions this image into small 
blocks called patches, which are then transformed into numerical vectors through a process 
known as linear embedding, analogous to describing the colors of a visual scene using descriptive 
terms. 

• After embedding the patches, the model incorporates positional embeddings, which allow it to 
retain information about the original spatial arrangement of each patch. This step is critical, as 
the meaning of visual components may depend on their spatial relationships. 

• Once the patches have been embedded and assigned positional information, they are arranged 
into a sequence and processed through a Transformer encoder. This encoder functions as a 
mechanism that learns the relationships between patches, forming a holistic representation of 
the image. 

• Finally, to enable image classification, a special classification token is appended at the beginning 
of the sequence. This token is trained jointly with the rest of the model and ultimately contains 
the information necessary to determine the image category. 

 
Figure 6. Vision Transformer (VIT) [28]. 

Consequently, the ViT can be conceptualized as a puzzle that takes an image, divides it into 
pieces, represents those pieces in a language the computer can interpret, and then reassembles them 
to determine the image’s content. 

To construct the model, ten primary modules were implemented to ensure the appropriate 
processing of frames: 
• Patch Embedding: The image is divided into patches and converted into linear embeddings. This 

is the initial step in preparing the image so that the Transformer can interpret it. 
• Classification Token: A special token added to the sequence of embeddings which, after passing 

through the Transformer, contains the necessary information for image classification. 
• Positional Embeddings: Incorporated into the patch embeddings to preserve spatial details about 

the original position of each patch in the image 
• Transformer Blocks: A series of blocks that sequentially process the embeddings using attention 

mechanisms to understand relationships among the different patches. 
• Layer Normalization: Applied to stabilize the embedding values before and after passing 

through the Transformer blocks. 
• Representation Layer or Pre-Logits: An optional layer that may transform the extracted features 

before final classification, depending on whether a representation size has been defined (patch 
size). 

• Classification Head: The final component of the model that maps the processed features to the 
predicted classes. 

• Mask Generation: An additional layer suggesting that the model may also be designed for 
segmentation tasks by producing a mask for the image. 
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• Weight Initialization: Functions that initialize the weights and biases of linear and normalization 
layers with specific values, providing a suitable starting point for training. 

• Additional Functions: Supplementary functions required to exclude certain parameters from 
weight decay, manipulate the classification head, and define the data flow throughout the model. 
In addition to the modules implemented in the ViT, it is necessary to define the hyperparameters 

required for the correct operation of the model, as these standardize and regulate the information 
processing. The following lists the hyperparameters used (number or specification indicated in 
parentheses): 
• Image Size: Defines the size of the input image and determines how it will be divided into patches 

(14). 
• Patch Size: Specifies the dimensions of each patch (1). 
• Input Channels: Indicates the number of channels in the input image (3). 
• Number of Classes: Determines the number of output categories for the classification head (1000). 
• Embedding Dimension: The embedding dimension for each patch, representing the feature space 

in which the Transformer operates (512). 
• Depth: The depth of the Transformer, referring to the number of sequential Transformer blocks 

in the model (3). 
• Number of Attention Heads: The count of attention heads in every Transformer block allows the 

model to concentrate on various parts of the image at the same time (4) 
• MLP Ratio: The ratio between the hidden layer size of the multilayer perceptron (MLP) and the 

embedding dimension (2). 
• Query-Key-Value Attention Bias: Enables bias terms in the query, key, and value projections 

when set to true (True). 
• Attention Dropout Rate: The dropout rate applied specifically to the attention mechanism for 

regularization (0.3). 
• Attention Head Dropout Type: Specifies the dropout strategy applied to the attention heads (e.g., 

HeadDropOut). 
• Attention Head Dropout Rate: The dropout rate applied to the attention heads (0.3). 

2.5. Mathematical Foundation 

The input characteristics of the image are height H, width W, and C channels; as previously 
mentioned, the image is divided into two-dimensional patches. This results in 𝑁 = ுௐ௣మ patches, where 

each patch has a resolution of (𝑝, 𝑝)pixels. 
Prior to inputting the data into the Transformer, the subsequent processes are performed: 

• For each image patch is compressed into a vector 𝑥௣௡of length 𝑝ଶ × 𝐶, where 𝑛 = 1, … ,𝑁. 
• A series of embedded image patches is produced by mapping the flattened patches into D 

dimensions using a trained linear projection 𝐸. 
• A learnable class embedding 𝑥classis prepended to the sequence of embedded image patches. The 

value of 𝑥classrepresents the classification output 𝑦. 
The patch embeddings are then expanded with one-dimensional positional embeddings 𝐸pos, 

thereby launching positional data into the input, which is also understood during training. The 
resulting sequence of embedding vectors after these operations is: 𝑧଴ =  ൣ 𝑥௖௟௔௦௘ ;  𝑥௣ଵ𝐸 ; … ; 𝑥௣ே𝐸 ൧ +  𝐸௣௢௦ (1) 

To perform classification, 𝑧଴is fed into the input of the Transformer encoder, which depend on 
of a stack of L identical layers. Then, the value of 𝑥classat the output of the 𝐿௧௛encoder layer is taken 
and passed via a classification head. 

Now, a Classification Head can be partitioned into Single-Head Attention and Multi-Head 
Attention. First, Single-Head Attention is defined in order to introduce the latter, which is the one 
implemented. Each attention mechanism is addressed separately. 

Single-Head Attention 
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Every attention module in a Transformer is based on Q (Queries), K (Keys), and V (Values), 
which form information matrices, as illustrated in Figure 7 [29]. 

 

Figure 7. Generation of queries, keys and values for single-headed attention. 

Considering the above, the attention module can be defined as follows: 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉)= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ቆ𝑄 ∙ 𝐾்ඥ𝑑௞ ቇ  ∙  𝑉 

(2) 

Where: 
Q is the Query 
K is the Key 
V is the value 
dk is the Ker Dimension 
T is the sequence Lenght 
Then, it can be specified as follows: 𝐴 =  𝑄 ∙ 𝐾்ඥ𝑑௞  (3) 

From which it can be obtained: 𝑞𝑘௦௖௔௟௘ =  1ඥ𝑑௞  = 𝑐ℎ𝑎𝑛ି଴.ହ (4) 

Where qk_scale is one of the hyperparameters required for training, and chan refers to the 
channel or channels of the model. 

Moreover, it is also necessary to compute the matrix multiplication Q · Kᵀ, as illustrated in Figure 
8 [28]. 

 

Figure 8. Matrix multiplication Q·Kᵀ. 

Finally, the value of the final x is computed. It is important to note that, in some cases, it may 
also be necessary to reduce the dimensions of this output, as shown in Figure 9: 
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Figure 9. Matrix multiplication A·V. 

Multi-head Attention 
In the context of the multi-head attention mechanism in Transformer neural networks, Queries 

(Q), Keys (K), and Values (V) are computed following the same procedure as in single-head attention. 
However, a key difference lies in how the data is structured. Instead of having a single large matrix 
for each of the components Q, K, and V, these matrices are divided into multiple smaller segments, 
one for each attention head. This is achieved by separating the channel dimension (chan) by the 
number of heads (num_heads), resulting in a new token length for each segment. 

The total size of the Q, K, and V matrices does not change, but their contents are redistributed 
across the head dimension. This can be visualized as segmenting the single-head matrices into 
multiple smaller matrices, one for each attention head (see Figure 10) [29]. 

 

Figure 10. Multi-Head Attention Segmentation. 

The submatrices are denoted as Q_Hi for Query Head 𝑖, from which the following can be defined: 𝐴ு௜ =  𝑄ு௜  ∙  𝐾ு௜்ඥ𝑑௞  (5) 

So, for each Query Head we have: 𝑑௞ =  𝑐ℎ𝑎𝑛𝑛𝑢𝑚_ℎ𝑒𝑎𝑑𝑠 (6) 

Having Figure 12: 

 

Figure 11. Matrix multiplication Q·Kᵀ for MSA. 

For the calculation of the softmax parameter of A, it remains unchanged, and its dimension does 
not change either. However, it is worth mentioning that: 𝑥ு௜ =  𝐴ு௜ ∗  𝑉ு௜ (7) 

With this, finally, we have Figure 12: 
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Figure 12. Matrix multiplication Q·Kᵀ for MSA. 

In Positional Embedding (PE), the order of elements is important (e.g., pixels in an image). 
Positional embeddings assistance the model recognizes the spatial structure and context of the input 
data. Typically, positional embeddings are added to the standard embeddings (pixel embeddings in 
computer vision) to give the model with information about the position or order of elements in a 
sequence. This allows the model to consider the relative positions of elements when processing the 
input, which can be crucial for capturing temporal or spatial dependencies in the data and improving 
model performance in tasks such as machine translation or object recognition in images (see Figure 
13). 

 

Figure 13. Shape of the positional embedding’s matrix. 

And it can be defined as follows: 𝜃௜௝ =  𝑖10,000ଶ௝ௗషభ (8) 𝑃𝐸(௜,ଶ௝) =  sin൫𝜃௜௝൯ (9) 𝑃𝐸(௜,ଶ௝ାଵ) =  cos൫𝜃௜௝൯ (10) 
Where: 
i is the Token Number. 
j is the Projection of the Token Length. 
Finally, the num_tokens parameter that is used to define the order and number of tokens for the 

Token Transformer is defined visually in Figure 14 [29]: 

 

Figure 14. Token matrix. 

Mathematically. it may be described in the following way 𝑛𝑢𝑚௧௢௞௘௡௦ =  ቞ℎ + 2 ∗ 𝑝 − (𝑘 − 1) − 1𝑠  +  1቟  ∗  ቞𝑤 + 2 ∗ 𝑝 − (𝑘 − 1) − 1𝑠  +  1቟ 
(11) 

Where: 
h is the height of the image. 
w is the width of the image. 
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s is the stride, which can be explained as s=ceil(k/2). 
p is the padding, which can be described as p=ceil(k/4). 
k is the kernel. 
ceil refers to the ceiling function. 
Reconstructing the image layer considering the chan [29], the batch and the num_tokens gives the 

representation in Figure 15: 

 
Figure 15. A single batch of tokens. 

Transforming to its 2D version, it can be represented as in Figure 16: 

 

Figure 16. Reconstructed image. 

Convolutional Block Attention Module (CBAM) Model 
CBAM is an element used to enhance the implementation of convolutional neural networks by 

allowing them to discover to center on the most important features in both the channel and spatial 
dimensions of input images. This attention-based approach helps the network concentrate on 
relevant features while suppressing irrelevant ones, which can conduct to enhanced performance in 
diverse assignments, such as image classification (see Figure 17). This capability is particularly well-
suited for detecting facial features, especially the subtle and imperceptible changes associated with 
micro-expressions [28]. 

 
Figure 17. Convolutional Block Attention Module [28]. 

For this architecture, only three modules are used for its operation: 
Channel Attention: This module uses max-pooling and average-pooling operations along the 

spatial dimension to obtain unique and complementary channel features. A shared fully linked layer 
is applied to both the max-pooled and average-pooled features to efficiently capture channel 
information. The channel features are combined and moved through a sigmoid function to take the 
channel attention map, representing the relative significance of each channel. Finally, the channel 
attention map is multiplied by the input to emphasize essential channels and remove less important 
ones 

Spatial Attention: This module captures spatial features by averaging and taking the maximum 
across the channel dimension, producing unique and complementary spatial features. These spatial 
characteristics are concatenated and passed through a 2D convolution followed by a sigmoid function 
to generate the spatial attention map, which represents the relative importance of each spatial region. 
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The spatial attention map is multiplied by the input to emphasize important regions and suppress 
less relevant ones. 

Data Flow: First, the channel attention is computed and multiplied by the input, producing an 
enhanced representation of important channels. Then, spatial attention is calculated and multiplied 
by the output of the channel attention, producing a final representation that emphasizes both 
important channels and spatial regions. The final output is the input image with both channel and 
spatial attention applied, enabling the network to center on the most significant characteristics. 

The model has only three hyperparameters necessary to operate this architecture: 
• Channel (channel: 48): The number of input channels. 
• Reduction (reduction: 16): Used to reduce the channel dimension in the fully-connected layers, 

enabling greater computational efficiency. 
• Kernel Size (k_size: 3): The kernel size for the 2D convolution used in spatial attention. 

The Spatial Attention Module (SAM) consists of a sequential three-step operation. The initial 
step is named the Channel Pool, where the input tensor of dimensions 𝑐 × ℎ × 𝑤(where 𝑐is the 
channel, ℎis the height, and 𝑤is the width) is decomposed into two channels, i.e., 2 × ℎ × 𝑤, where 
each of the two channels symbolizes Max Pooling and Average Pooling throughout the channels. 
This serves as input to a convolutional layer that produces a single-channel feature map, i.e., the 
output dimension is 1 × ℎ × 𝑤. This convolution preserves the spatial dimensions using padding. In 
implementation, the convolution is continued by a Batch Normalization layer to normalize and scale 
the convolution output. Some approaches provide the alternative to use a ReLU activation after the 
convolution layer; however, by default, only Convolution + Batch Norm is used. The output is then 
given through a Sigmoid Activation layer. The sigmoid function, existing a probabilistic activation 
function, maps all values to a range between 0 and 1. This spatial attention mask is used for all feature 
maps in the input tensor by element-by-element multiplication. 

The mathematical model is: 
1. Grouping Channel 𝑀𝑎𝑥 𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑋)௜௝  =  𝑚𝑎𝑥௞ 𝑋௜௝௞     𝑝𝑎𝑟𝑎    𝑘= 1 , … , 𝑐 

(12) 

𝐴𝑣𝑔 𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑋)௜௝  =  1𝑐  ෍ 𝑋௜௝௞௖௞ୀଵ  (13) 

Where: 
X is the input tensor of dimensions c×h×w. 
i and j are the spatial coordinates. 
c is the number of channels. 
h,w are the height and width of the image, correspondingly. 

2. Convolution Layer 𝑌௜௝  =  ෍ ෍ 𝑋௜ା௠  ,   ௝ା௡  ×  𝑊௠,௡௞௡ୀି௞௞௠ୀି௞  (14) 

Where: 
Y is the convolution output. 
X is the input. 
W is the convolution kernel. 
k is the kernel size. 

3. Batch Normalization 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝑋)௜௝ =  𝛾 𝑌௜௝ − 𝜇√𝜎ଶ + 𝜖 +  𝛽 (15) 

Where: 
μ and σ2 are the mean and variance of Y calculated over the batch. 
γ and β are the learned scale and bias parameters, respectively. 
ϵ is a constant for numerical stability. 

4. Sigmoid Activation 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 October 2025 doi:10.20944/preprints202510.2352.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.2352.v1
http://creativecommons.org/licenses/by/4.0/


 15 of 28 

 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑍)௜௝ =  11 +  𝑒ି௓೔ೕ (16) 

Where: 
Z is the input of the sigmoid function, which is the output of the Batch Normalization layer. 

5. Spatial Attention Mask 𝑂𝑢𝑡𝑝𝑢𝑡௜௝௞ =  𝑋௜௝௞ × 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑍)௜௝ (17) 
Where: 
X is the input tensor. 
Z is the output of the convolution layer continued by Batch Normalization and Sigmoid 

Activation. 
This data flow is represented in Figure 18. 

 
Figure 18. Spatial Attetion Module [28]. 

The Channel Attention Module (CAM) is another sequential operation, more complex than the 
Spatial Attention Module (SAM). The CAM resembles a Compression and Excitation (SE) layer.  

Specifically: 
• Squeeze Operation: The "squeeze" operation consists of reducing the spatial dimensions of a 

feature tensor X (with dimensions 𝑐 × ℎ × 𝑤) to a single-channel feature tensor (dimensions 𝑐 × 1 × 1). This is achieved through Global Average Pooling: 𝑆௜  =  1ℎ × 𝑤  ෍ ෍ 𝑋௜௝௞௪௞ୀଵ௛௝ୀଵ     𝑝𝑎𝑟𝑎    𝑖= 1 , … , 𝑐 

(18) 

Where: 
Si represents the "squeeze" value for channel 𝑖, indicating the importance of the channel relative 

to the other channels. 
• Excitation Operation: The "excitation" operation uses fully linked layers to model the 

relationships between channels and to learn attention weights. 𝐸௜  =  𝜎൫𝑊ଶ𝛿(𝑊ଵ𝑆௜)൯    𝑝𝑎𝑟𝑎    𝑖= 1 , … , 𝑐 
(19) 

Where: 
δ represents an activation function (in this case, ReLU). 
W1 and W2 are learned weight matrices. 

• Scale Operation: The "scale" operation scales the original feature channels using the attention 
weights calculated in the "excitation" stage. 𝑌௜௝௞  =  𝐸௜  𝑋௜௝௞    𝑝𝑎𝑟𝑎    𝑖 = 1 , … , 𝑐 (20) 
Where: 
Yijk is the final value of the output tensor Y after applying channel attention, where each value 

of channel i at spatial position (j,k) is scaled by the excitation weight Ei. 
These equations model the Channel Attention Module (CAM). As illustrated in Figure 19, they 

represent pooling operations, nonlinear transformations, and attention-based scaling, enabling the 
model to focus on specific channels and enhance feature representations according to their relative 
importance. 
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Figure 19. Channel attention model [26,28]. 

Inception Model Architecture 
The Inception module is a convolutional neural network designed to address the problem of 

representing patterns at different spatial scales. The central component of this architecture is the 
Inception block, as shown in Figure 20, which permits the network to efficiently learn characteristics 
from kernels of various sizes. By using convolutional filters of different sizes in parallel, the network 
can obtain patterns at multiple scales without a significant increase in computational cost. 
Furthermore, the different branches of the Inception block learn complementary representations of 
the input data, which can lead to improved performance across various tasks. The Inception block 
can be stacked and combined with other layers and modules to build more complex and deeper 
convolutional neural networks, as in this case, its combination with CBAM and ViT [28,30]. 

 
Figure 20. Inception Architecture [28,30]. 

Modules 
For this architecture, only two modules are considered necessary for its operation: 
Inception Block: It consists of four parallel branches that apply different convolution operations. 

It is worth noting that convolutions of different sizes can continue to be applied, but in this case, only 
up to 5×5 is considered: 1×1 Branch, 3×3 Branch, 5×5 Branch, Max-Pooling Branch. 

Data Flow: The input is propagated through all branches in parallel. The outputs from all 
branches are chain along the channel dimension using matrix concatenation. The final output is the 
concatenation of the features learned by each branch with different kernel sizes, permitting the 
network to acquire patterns at multiple spatial scales. 

Hyperparameters 
Two hyperparameters are defined for the model of integration with the CBAM, the parameter 

configuration is set as follows: 
• in_channels: 3 input channels. 
• out_channels: 6 output channels for each convolutional branch. 

Equations 
To define the equations of the Inception model, the ViT model and the definitions from that 

architecture must first be reviewed. ViT first divides the input image into a sequence of tokens, and 
each patch token is thrown into a hidden vector through a linear layer, denoted as: ሼ𝑥ଵ,𝑥ଶ, … , 𝑥ேሽ o Χ ϵ ℝ(ே×஼) (21) 

Where: 𝑁is the number of patch tokens. 𝐶denotes the feature dimension. 
All tokens are linked with the Positional Embedding and fed into the ViT layers, which 

comprise Multi-Head Self-Attention (MSA) and a Feedforward Neural Network (FFN). With the 
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context of the Inception architecture model, there are three fundamental components required to 
mathematically model it. 

First, the Inception Token Mixer, which is used to inject the deep capability of Convolutional 
Neural Networks (CNNs)—for extracting high-frequency representations—into ViTs. Instead of 
feeding the image tokens directly into the MSA mixer, the Inception mixer first splits the input feature 
along the channel dimension and then feeds the split modules respectively into the High-Frequency 
Mixer and the Low-Frequency Mixer. Here, the high-frequency mixer consists of a max-pooling 
operation and a parallel convolution operation, whereas the low-frequency mixer is implemented 
via self-attention. 

Mathematically, this can be expressed as 𝐗 ∈ ℝே×஼, which is factorized as: Χ௛ ϵ ℝ(ே×஼೓) y Χ௟ ϵ ℝ(ே×஼೗) (22) 
Where: 𝐗௛is the High-Frequency Mixer. 𝐗௟is the Low-Frequency Mixer. 𝐶௛denotes the feature dimension of the High-Frequency Mixer. 𝐶௟denotes the feature dimension of the Low-Frequency Mixer 
All of this is along the channel dimension, where 𝐶௛ + 𝐶௟ = 𝐶. Then, 𝐗௛and 𝐗௟are transferred to 

the High-Frequency Mixer and the Low-Frequency Mixer, respectively. 
For the High-Frequency Mixer, considering the sharp sensitivity of the max-pooling filter and 

the detail perception of the convolution operation, a parallel structure is proposed to learn the high-
frequency components by splitting the input 𝐗௛into: Χ௛ଵ ϵ ℝቀே×಴೓మ ቁ y Χ௛ଶ ϵ ℝቀே×಴೓మ ቁ (23) 

Both along the channel dimension. Χh1 is embedded with Max-pooling and a Linear layer, and 
Χh2 is fed into a Linear layer and a Depthwise convolution layer: 𝑌௛ଵ = 𝐹𝐶൫𝑀𝑎𝑥𝑃𝑜𝑜𝑙(Χ௛ଵ)൯ (24) 𝑌௛ଶ = 𝐷𝑤𝐶𝑜𝑛𝑣൫𝐹𝐶(Χ௛ଶ)൯ (25) 

Where: 𝑌௛ଵand 𝑌௛ଶdenote the outputs of the high-frequency mixers. 
FC is the Fully Connected layer, referring to a linear or dense layer. 
MaxPool performs max subsampling to reduce resolution and capture invariant features. 
DwConv refers to the Depthwise Convolution layer (channel-wise separable) and efficiently 

applies convolutions separately for each channel to capture spatial and channel-wise patterns. 
On the other hand, the Low-Frequency Mixer uses standard multi-head self-attention to 

transmit information including all tokens. Although the strong capacity of attention to learn macro 
representations, the high resolution of the feature maps would incur a substantial computational cost 
in the lower layers. Thus, an average-pooling layer is applied to decrease the spatial scale of 𝐗௟before 
the attention operation, and an upsampling layer is used to restore the first spatial dimension after 
attention. This alternative reduces computational costs and allows the operation of the service to 
incorporate general information. 

This branch can be defined as: 𝑌௟ = 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒 ቀ𝑀𝑆𝐴൫𝐴𝑣𝑒𝑃𝑜𝑜𝑙𝑖𝑛𝑔(Χ௟)൯ቁ (26) 

Where: 𝑌௟is the output of the Low-Frequency Mixer. 
Upsample is an operation that improves the spatial resolution of a feature or feature map. 
MSA (Multi-Head Self-Attention) enables capturing global dependencies among tokens. 
AvePooling (Average Pooling) performs subsampling by averaging regions to reduce 

resolution and smooth features. 𝑌௖ = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑌௟ ,𝑌௛ଵ,𝑌௛ଶ) (27) 
Therefore, the Transformer Inception block is defined as: 𝑌 =  Χ +  ITM൫𝐿𝑁(Χ)൯  y 𝐻 =𝐹𝐹𝑁൫𝐿𝑁(𝑌)൯ (28) 
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Where: 
ITM is the Inception Token Mixer. 
FFN is the Feedforward Neural Network. 
LN denotes Layer Normalization. 
These are the main equations that model the Inception Transformer. The model combines the 

capability of CNNs to capture high-frequency details with the ability of Transformers to capture 
global dependencies, through a novel design of High- and Low-Frequency Mixers, in addition to a 
frequency ramp structure. 

Long Short-Term Memory (LSTM) 
The Long Short-Term Memory (LSTM) constitutes a distinct variant of recurrent neural 

networks (RNNs) that have been meticulously engineered to address challenges associated with 
long-term sequence processing and temporal dependencies. In contrast to conventional RNNs, which 
are susceptible to the vanishing gradient phenomenon, LSTMs possess the capability to acquire long-
term dependencies owing to their distinctive internal configuration. This configuration encompasses 
a series of gates that modulate the information flow, thereby enabling the network to judiciously 
retain and discard information. 

Architecture of an LSTM Cell 
An LSTM cell is comprised of four fundamental components: the memory cell, the input gate, 

the forget gate, and the output gate. The operational characteristics of these gates are delineated 
through a series of mathematical formulations that regulate the information flow within the cell [31]. 
The architecture is illustrated in Figure 21. 

 

Figure 21. LSTM architecture. 

Hyperparameters 
In the implementation of an LSTM, the parameters required to configure an LSTM cell are as 

follows: 
• input_size: Number of input features per time step. 
• hidden_size: Dimensionality of the hidden vector (ℎ௧) and the cell state (𝐶௧). 
• batch_first: If True, the LSTM input and output will have the shape (batch_size,seq_length,feature_size). 

The parameter configuration for the present case is: 
input_size: 14 × 14 × (256 + 256). 
hidden_size: 512. 
batch_first: True. 
Cell State: The cell state functions as a long-term memory, transmitting relevant information 

throughout the sequence. The input gate modifies it, as does the forgetting gate. The cell is updated 
at time intervals, and the input and forget gates control what information is added or deleted. 

Forget Gate: The forget gate determines how much of the prior information should be forgotten. 
A value near to 0 shows that the data should be discarded, while a value close to 1 show that it should 
be retained. This is mathematically modeled as follows: 

o
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𝑓௧ =  𝜎൫𝑊௙  ∙  ሾℎ௧ିଵ, 𝑥௧ሿ + 𝑏௙൯ (29) 
Where: 

• ft is the activation vector of the forget gate. 
• 𝜎 serve as the sigmoid function, which converts input values into the range [0, 1]. 
• Wf is the weight matrix for the forget gate. 
• [ℎ௧ିଵ, 𝑥௧]contains the chain of the previous hidden state and the current input. 
• bf is the bias of forget gate. 

Input Gate: The input gate controls the amount of new information added to the cell state. The 
candidate memory (𝐶ሚ௧ ) denotes the new probable information that can be additional, which is 
represented as: 𝑖௧ =  𝜎(𝑊௜  ∙  [ℎ௧ିଵ, 𝑥௧] + 𝑏௜)   𝑦   𝐶ሚ௧=  tanh(𝑊௖  ∙  [ℎ௧ିଵ, 𝑥௧] + 𝑏௖) 

(30) 

Where: 
• 𝑖௧is the activation vector of the input gate. 
• 𝜎serves as the sigmoid function, which regulates the amount of new information added. 
• 𝐶ሚ௧ is the new candidate memory that can be added to the cell state. 
• tanh is the hyperbolic tangent function, which converts input values into the range [-1, 1]. 
• Wi, bi are the weights and bias of the input gate, correspondingly. 
• Wc, bc are the weights and bias for the candidate memory, correspondingly. 

Cell State Update: The cell state is renewed by linking the maintained data (modulated by 𝑓௧) 
with the new data (modulated by 𝑖௧). 𝐶௧ =  𝑓௧  ⨀ 𝐶௧ିଵ  +  𝑖௧  ⨀ 𝐶ሚ௧ (31) 

Where: 
• 𝐶௧ is the updated cell state. 
• ⊙ denotes the element-wise product operation. 
• ft⊙Ct−1 represents the data maintained from the previous cell state. 
• 𝑖௧ ⊙ 𝐶ሚ௧represents the new information added to the cell state. 

Output Gate: Finally, the output gate determines how much information from the current cell 
state should be emitted as the hidden state ( ℎ௧ ) and the network output at that time step. 
Mathematically, this can be defined as: 𝑜௧ =  𝜎(𝑊௢  ∙  [ℎ௧ିଵ, 𝑥௧] + 𝑏௢)   𝑦   ℎ௧=  𝑜௧ ⨀ tanh(𝐶௧) 

(32) 

Where: 
• ot is the activation vector of the output gate. 
• ht is the hidden state and output of the LSTM at the current time step. 
• Wo is the weight matrix for the output gate. 
• [ℎ௧ିଵ, 𝑥௧]contains the concatenation of the prior hidden state and the current input. 
• 𝑏௢is the bias of the output gate. 
• σ serves as the sigmoid function, which regulates the amount of information emitted. 
• tanh  is the hyperbolic tangent function applied to the cell state. 

Optical Flow 
Methods for estimating optical flow are based on two principles: brightness constancy and light 

motion. Brightness constancy accepts that the grayscale intensity of a moving object remains 
unchanged, while small motion assumes that the velocity vector field changes gradually over a short 
time interval. 

Thus, a pixel can be defined as 𝐼(𝑥,𝑦, 𝑡)in a video clip, such as those in our datasets, which 
moves by Δ𝑥,Δ𝑦,Δ𝑡to the next frame. Corresponding to the brightness constancy assumption, the 
pixel intensity before and after motion remains constant, allowing us to derive: 𝐼(𝑥,  𝑦,  𝑡)  =  𝐼(𝑥  +  ∆𝑥,  𝑦  +  ∆𝑦,  𝑡 +  ∆𝑡) 

(33) 
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The right-hand side of equation (33) can be expanded by a Taylor series, resulting in equation 
(34). 𝐼(𝑥  +  ∆𝑥,  𝑦  +  ∆𝑦,  𝑡  +  ∆𝑡) =  𝐼(𝑥,  𝑦,  𝑡)  + 𝜕𝐼𝜕𝑥 ∆𝑥 + 𝜕𝐼𝜕𝑦 ∆𝑦 + 𝜕𝐼𝜕𝑡 ∆𝑡 + 𝜀 

(34) 

where ε represents the higher-order term, which can be ignored.  
The variables, u and v represent the horizontal and vertical parts of the optical flow, respectively, 

as u = ∆x/∆t and v = ∆y/∆t. Substituting them in the previous equation, we have: 𝐼௫𝑢  +  𝐼௬𝑣  + 𝐼௧  =  0 (36) 
Where 𝐼௫ = பூப௫ , 𝐼௬ = பூப௬ , 𝐼௧ = பூப௧ are the partial derivatives of the pixel intensity with respect to 𝑥, 𝑦, and 𝑡, respectively, and (𝑢, 𝑣)is referred to as the optical flow field. 
Based on the above, and as an example, Figure 22 illustrates an application of optical flow, 

showing the result of the module. The figure uses the frame flow from one of the users in our own 
dataset to visualize the flow vectors corresponding to motion or changes throughout the sequence. 

 
Figure 23. Example of the Application of Optical Flow. 

3. Results and Discussion 

The B-Lit Transformer model was initially trained using three microexpression datasets: SMIC, 
CASME, and SAMM, and validated on a proprietary dataset [18]. See Table 1. 

Table 1. Summary of the three datasets (CASME, SAMM, and SMIC). 

Feature CASME II SAMM SMIC 

Number of Sample 255 159 164 

Participants 35 32 16 

Ethnicities Chinese Chinese and 12 more Chinese 

Facial Resolution 280x340 400x400 640x480 

 Happiness (25) Happinese (24)  

 Surprise (15) Surprise (13) Positive (51) 

Categories Anger (99) Anger (20) Negative (70) 

 Sadness (20) Sadness (3) Surprise (43) 

 Fear (1) Others (69) Fear (7) Others (84)  

A second stage of preprocessing consisted of the generation of tensors, mathematical objects 
that allow storing image features across each of their dimensions. 

In Figure 23, two frames corresponding to different emotional states are shown: on the right, an 
image of a neutral state, and on the left, an image of anger. The main difference between the two 
occurs in the participant's brow and lip corners. In the left image, the brow is pronounced due to 
shadows and facial wrinkles in that area, while the shape of the mouth is not associated with any 
specific emotion. Conversely, in the right image, the brow curves downward, and a slight movement 
of the mouth is perceptible; both movements are associated with the emotion of anger. 
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Figure 23. Person 49 analysis - Facial variation (neutral state on the left, angry state on the right). 

In Figure 24, frames are extracted at 5-second intervals. The changes in the participant's face are 
subtle, occurring mainly around the eyes, when the participant shifts their gaze to different areas of 
the screen (minute 1:35) and during blinking (1:55), as well as slight rotations of the head. From these, 
the micro expressions produced in the preceding frames were recorded. 

In Figure 25, there is considerably more movement in the participant's face. Participant 69 
exhibited a wide variety of facial movements in a short period, between minutes 0:55 and 1:20. 
Gestures can be identified around the mouth (minute 1:05) or the eyes (minute 1:20), in addition to 
changes in head position throughout the entire recording. 

Minute 1:30 Minute 1:35 Minute 
1:40 

Minute 
1:45 

Minute 
1:55 

     

Figure 24. Recording person 39 (from minute 1:30 to 1:59). 

Minute 0:55 Minute 1:00 Minute 1:05 Minute 1:10 Minute 1:20 

     

Figure 25. Person 69 (from minute 0:55 to 1:20). 

Stochastic Gradient Descent 
It is essential to identify a method to accelerate the training process [32], given that the initial 

execution required approximately one and a half days. Therefore, the Stochastic Gradient Descent 
(SGD) method was employed. As a result, the training procedure became more efficient. Thus, 
training on 132,000 images required less than two hours, as described in Table 11, representing a 
reduction of more than 95% in training time compared to the report in [32]. 

Optical Flow 
As Transformer models are generated, time can be optimized, as it is evident that the model can 

pay attention to irrelevant details. Knowing that Optical Flow only provides a representation of the 
motion of the original image, changes over time are captured; the Transformer model can focus 
exclusively on these pixel variations between frames. In this way, the Transformer avoids processing 
or learning trivial features, such as face shape, distance between facial features, skin tone, hair color, 
or eye color. 

Consequently, processing times were significantly reduced compared to standard executions. 
See Table 11: even with 40 fewer epochs, the version of the model without Optical Flow takes 
approximately five times longer, and although both versions achieve similar accuracy and F1-score 
performance, there is a substantial improvement in training loss (with an 80% training / 20% testing 
split). See Table 2. 
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Table 2. Performance comparison when applying Optical Flow across the three main datasets (CASME, SAMM, 
and SMIC). 

Model version 
Number 

of epochs 
Training time 

Loss of 

training 
Accuracy F1 score 

Without Optical 

Flow 
60 

1 hour 45 minutes 

and 58 seconds 
0.2108 90.28% 0.8453 

With Optical 

Flow 
100 

23 minutes and 55 

seconds 
0.0986 90% 0.8556 

Performance Metrics for Three Classes (CASME, SMIC, SAMM Datasets) 
Table 12 summarizes the most relevant characteristics with the aim of presenting the 

performance of model when performing the three-class classification task (positive, negative, 
surprise), for both the training and testing stages. 

For the training stage, 70% of the data that was used, employing a cross-validation method 
known as LOSO (Leave-One-Subject-Out), which, according to [33], is considered optimal for micro 
expression classification tasks. The training process consisted of a total of 60 epochs, resulting in a 
training loss of 0.1917 and an accuracy of 0.9474, with a total execution time of 8 minutes and 38 
seconds. This process required 13.3% of the CPU processing power and 72.1% of the available RAM. 
Considering that these three datasets together comprise more than 132,000 frames, the low 
computational resources and short execution time required are noteworthy, especially given that 
image analysis tasks typically involve a high computational load. See Table 3. 

Table 3. Training results for the three-class model. 

Training loss Accuracy Epochs Training time 
CPU 

usage 

Memory 

usage 

0.1917 0.9474 60 
8 minutes 38 

seconds 
13.3% 72.1% 

For the testing stage of the model, 20% of the available data from the three-class datasets was 
used. The metrics employed to evaluate the performance of the model in this stage are summarized 
in Table 13. In the F1-score column, the value obtained was 0.8574, which indicates that the model 
maintains a strong balance between correctly predicting each class and minimizing false predictions 
across classes. The percentage of correctly classified predictions is measured through the accuracy 
column, where it can be observed that the model correctly classifies 81.27% of all test instances. 
Meanwhile, the precision value indicates that 85.19% of the model’s predictions are correct. The recall 
score has a value of 0.8127, suggesting that the model correctly identifies 81.27% of all positive cases. 
See Table 4. 

Table 4. Performance metrics for the three-class model – Testing stage. 

F1-

Score 
Precision Accuracy Recall 

Mean square 

error (MSE) 

Mean absolute 

error (MAE) 
𝑹𝟐 

0.8574 0.8127 0.8519 0.8127 0.2278 0.2175 0.8243 

Figure 26 presents the graph illustrating the loss of training time by epoch. It can be observed 
that although the initial loss value is relatively high, it rapidly begins to converge toward lower levels, 
indicating that the model is effectively adapting and learning efficiently. Around epoch 30, the loss 
value ceases to show significant variation and begins to stabilize; by epoch 60, the rate of reduction 
reaches its lowest point. Increasing the number of epochs beyond this point would entail the risk of 
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overfitting the model. Therefore, it was determined that 60 epochs constitute an appropriate number 
to achieve optimal model performance. 

 

Figure 26. Training loss graph for 3 classes. 

The training accuracy graph in Figure 27 illustrates the model’s adjustment process over each 
epoch. Initially, the model’s accuracy is low, approximately 0.4, and exhibits considerable fluctuation. 
This behavior is normal in the early stages of training, as the model is still adjusting its parameters. 
Starting around epoch 20, the curve demonstrates a more stable upward trend, indicating that the 
model is learning and improving its accuracy on the training dataset. Subsequently, from 
approximately epoch 30 onward, accuracy stabilizes around 0.9, with minor fluctuations. This 
suggests that the model has achieved a high level of accuracy and is converging. 

The accuracy curve becomes more stable and approaches a value near 0.75, indicating that the 
model has learned the fundamental patterns within the data, improving its performance while 
slowing the rate of further gains. As a result, beyond this point, more epochs are required to observe 
meaningful improvements. Around epoch 60, the model’s performance reaches its highest level. 

 

Figure 27. Training Accuracy Plot. 

The ROC curve represents the relationship between the true positive rate and the false positive 
rate. When a ROC curve lies close to the diagonal line, it indicates poor model performance. An AUC 
value of 1 corresponds to a perfect classifier, whereas an AUC value of 0.5 indicates a classifier with 
no discriminative capability [34]. 

The plot shown in Figure 28 and 29 illustrates the classifier’s performance, where it can be 
observed that for all three classes (0 for positive, 1 for negative, and 2 for surprise), the AUC value is 
high, exceeding 0.8 in every case. Since the AUC measures the classifier’s ability to distinguish 
between classes, these values indicate that the model possesses strong discriminative capability, 
making few errors when determining the correct class to which a given sample belongs. 
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Figure 28. ROC and AUC Plot for Three Classes. 

 

Figure 29. Training Accuracy Curve for Seven Classes. 

Testing with Proprietary Data 
For the proprietary dataset, a confusion matrix was generated, with the following class 

encoding: 0: Neutral, 1: Sadness, 2: Surprise, 3: Fear, 4: Disgust, 5: Anger, 6: Happiness. It can be 
observed that the Neutral class has the highest number of correct predictions (20), whereas the Sadness 
and Surprise classes are the most frequently misclassified (6 misclassified instances in both cases). The 
Sadness class is most commonly confused with Neutral (3 confusions), and to a lesser extent with Fear 
(1 confusion), Disgust (1 confusion), and Anger (1 confusion), likely due to visual similarity. 

Meanwhile, the Surprise class is most frequently confused with Sadness (2 confusions) and Anger 
(2 confusions). The first case may be explained by the fact that concern can arise from a combination 
of surprise and fear, with fear being the predominant expression in those microexpressions. In the 
second case, the confusion with anger may be attributed to surprise triggering a fight-oriented 
response, leading the microexpressions to resemble anger. See Figure 30. 
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Figure 30. Confusion matrix for 7 classes during the testing stage. 

In the ROC curve shown in Figure 31, it can be observed that, overall, the model performs well 
in discriminating among the 7 classes. Class 0 (neutral) and class 6 (happiness) achieve the highest 
scores, both with 0.87. This result is consistent with the confusion matrix, as these are the classes for 
which the model exhibits the fewest errors and, therefore, the ones it learned to differentiate most 
effectively from the rest. Although the performance for classes 1, 2, and 3 (sadness, surprise, and fear, 
respectively) is satisfactory, with values close to 0.80, it is evident that the model still has a greater 
margin for improvement in these cases. Specifically, the model could be further refined to enhance 
discrimination for these classes, in order to reach levels comparable to classes such as 4 and 5 (disgust 
and anger, respectively), which, with values close to 0.85, indicate that the model learned to identify 
them more optimally. 

 

Figure 31. ROC and AUC curve for 7 classes. 

Comparison of Machine Learning Models 
The results presented in Figure 28 may be considered as an average across the three datasets 

(CASME, SAMM, and SMIC), which demonstrates that the B-LiT Transformer model is, to some 
extent, superior to those reported in [18]. It is likely that using the three datasets simultaneously, 
rather than independently, contributed to improving performance, since the model had access to a 
larger number of training instances and, to a certain degree, the manner in which the frames are 
presented is very similar across datasets. However, we consider this to be a relatively low-probability 
factor, as the average results reported in that study would still not surpass our findings. 

Furthermore, the study in [17] corresponds to a competition held in 2018 focused on micro-
expression detection, where the highest F1 score achieved was 0.8330. In contrast, our results reached 
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0.8556 and 0.8453, with and without Optical Flow, respectively. This represents a significant 
improvement, which is further reinforced by the use of gradient descent techniques that drastically 
reduced training time, as well as by the inclusion of Optical Flow, whose implementation clearly had 
a positive impact on the overall performance. 

4. Conclusions 

The dataset did not require data augmentation strategies such as image rotation or the 
application of filters. Data augmentation is generally beneficial in machine learning classification 
tasks; however, in the case of the B-LiT model, having a large sample allowed for a greater range of 
possibilities in terms of both diversity and representativeness. An increased number of instances in 
the dataset directly impacted the model’s accuracy and robustness. Furthermore, avoiding data 
augmentation has a positive effect, as such techniques can introduce unwanted artifacts or biases. 

Technologies such as Stochastic Gradient Descent (SGD) and Optical Flow demonstrated their 
effectiveness in accelerating the training process and substantially improving performance. SGD’s 
capability to update parameters was crucial for optimizing the model when handling large volumes 
of information, while Optical Flow, commonly associated with motion analysis in images and videos, 
was employed as a data flow technique that helped reduce image-specific features and, consequently, 
video features. The concurrent iteration of tests enabled model refinement through parameter 
adjustment and training time optimization, constituting a critical stage in the machine learning 
workflow. 
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