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Abstract 

Understanding atomistic basis of multi-layer mechanisms employed by broadly reactive neutralizing 
antibodies of SARS-CoV-2 spike protein without directly blocking receptor engagement remains an 
important challenge in coronavirus immunology. Class 4 antibodies represent an intriguing case: 
they target a deeply conserved, cryptic epitope on the receptor-binding domain yet exhibit variable 
neutralization potency across subgroups F1 (CR3022, EY6A, COVA1-16), F2 (DH1047), and F3 
(S2X259). In this study, we employed a multi-modal computational approach combining atomistic 
and coarse-grained simulations, mutational scanning of binding interfaces, binding free energy 
calculations, and allosteric modeling using dynamic network analysis to map the allosteric 
landscapes and binding hotspots of these antibodies. Through this approach, our data revealed that 
distal binding can influence ACE2 engagement and immune escape traits through the confluence of 
direct interfacial interactions and allosteric effects. We found that group F1 antibodies can operate 
via classic allostery by modulating flexibility in the receptor binding domain loop regions and 
indirectly interfering with ACE2 binding using long-range effects. Group F2 antibody DH1047 
represents an intermediate mechanism, engaging residues T376, R408, V503, and Y508 hotspots 
which are both critical for ACE2 binding and under immune pressure. Mutational scanning and 
rigorous binding free energy calculations highlight the synergy between hydrophobic and 
electrostatic interactions, while dynamic network modeling reveals a shift toward localized 
communication pathways connecting the cryptic site to the ACE2 interface. Our results demonstrate 
how group F3 antibody S2X259 achieves efficient synergistic mechanism through confluence of direct 
competition with ACE2 and localized allosteric effects leading to stabilization of the spike protein at 
the cost of increased escape vulnerability. Dynamic network analysis identifies a shared "allosteric 
ring" embedded in the core of the receptor binding domain and serving a conserved structural 
scaffold mediating long-range signal propagation — with antibody-specific extensions propagating 
toward the ACE2 interface. The findings of this study support a modular model of antibody-induced 
allostery where neutralization strategies evolve via refinement of peripheral network connections, 
rather than complete redesign of the epitope itself. Taken together, this study establishes a robust 
computational framework for atomistic understanding of mechanisms underlying neutralization 
activity and immune escape for class 4 antibodies which harness conformational dynamics, binding 
energetics, and allosteric modulation to influence viral entry. The findings highlight the modular 
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evolution of neutralization strategies, where progressive refinement of peripheral interactions 
enhances potency but increases susceptibility to immune pressure. 

Keywords: SARS-CoV-2 spike protein; Omicron variants; antibody binding; immune escape; 
molecular dynamics; protein stability; mutational scanning; binding energetics; ; evolutionary 
mechanisms 
 

1. Introduction 

 
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered 

an unprecedented surge in global research efforts aimed at deciphering its molecular architecture, 
mechanisms of cellular invasion, and the immune responses it elicits. Central to these investigations 
is the SARS-CoV-2 Spike (S) glycoprotein, a trimeric surface protein that plays a pivotal role in 
mediating viral entry into host cells and serves as the primary target for neutralizing antibodies [1–
15]. The S protein exhibits extraordinary conformational plasticity, enabling it to navigate through 
multiple functional states—from receptor engagement to membrane fusion—while simultaneously 
evading immune surveillance. Structurally, the S protein is composed of two functionally distinct 
subunits: S1 and S2. The S1 subunit contains four key domains—the N-terminal domain (NTD), the 
receptor-binding domain (RBD), and two conserved subdomains, SD1 and SD2 —each contributing 
uniquely to the dynamic life cycle of the virus. The NTD is implicated in early stages of host cell 
recognition, potentially facilitating attachment via interactions with glycans or other cell surface 
components [1–15]. However, the RBD remains the focal point of both infection and immunity, as it 
undergoes reversible transitions between “up” and “down” conformations. In the “up” state, the 
RBD becomes exposed and accessible for binding to the angiotensin-converting enzyme 2 (ACE2) 
receptor on host cells, while in the “down” state, it is shielded from antibody recognition [1–15]. 
Beyond the RBD, the SD1 and SD2 subdomains play essential structural roles in maintaining the 
prefusion conformation of the S protein, acting as molecular scaffolds that regulate the timing and 
efficiency of membrane fusion [10–18]. Detailed biophysical analyses have illuminated the 
thermodynamic and kinetic underpinnings of these conformational transitions, revealing how subtle 
energetic shifts govern large-scale structural rearrangements critical for viral infectivity [16–18]. Over 
the course of the pandemic, the rapid evolution of SARS-CoV-2 variants of concern (VOCs) has 
underscored the importance of understanding how mutations in the S protein affect antigenicity and 
transmissibility. Cryo-electron microscopy (cryo-EM) and X-ray crystallography studies generated 
an extensive structural atlas of the S protein in various functional states, including complexes formed 
with neutralizing antibodies [19–25].  

A cornerstone of the adaptive immune response to SARS-CoV-2 is the production of neutralizing 
antibodies targeting the S protein, especially those directed against the RBD. Recent technological 
innovations such as high-throughput yeast display screening and deep mutational scanning (DMS) 
have revolutionized our ability to dissect the antigenic landscape of the RBD at near-residue 
resolution [26]. Through the identification of 247 broadly neutralizing antibodies against 
sarbecoviruses. combined with high-throughput yeast-display DMS the escape mutation profiles of 
the RBD were determined and  these antibodies into six major epitope groups (A–F) based on their 
breadth and epitope specificity [26].  This classification was revisited using data from post-
vaccination infections with the Omicron BA.1 variant, leading to the identification of 12 distinct 
epitope groups among 1,640 RBD-targeting antibodies [27]. This expanded categorization provides a 
more nuanced understanding of how different antibody classes interact with the RBD and respond 
to emerging mutations. Among these groups, A–C are characterized by antibodies that bind directly 
within the ACE2-binding motif, making them highly effective at blocking viral attachment.  
However, they are also the most vulnerable to escape mutations, particularly at residues K417, E484, 
and N501, which are frequently altered in VOCs such as Beta, Gamma, and Omicron lineages. These 
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mutations can significantly reduce antibody binding affinity and neutralization potency, highlighting 
the evolutionary pressure exerted by immune selection. In contrast, Group D antibodies, exemplified 
by monoclonals such as REGN-10987, LY-CoV1404, and COV2-2130, recognize a distinct epitope 
centered around residues 440–449 on the RBD. This group is further subdivided into D1 and D2 
subgroups, reflecting subtle differences in binding orientation and mutational sensitivity. Groups E 
and F represent antibodies that recognize epitopes outside the central ACE2-binding site, offering 
broader protection due to their less direct overlap with the receptor interface. These groups were 
further subdivided into E1–E3 and F1–F3, respectively, covering both the front and back surfaces of 
the RBD, thereby providing a comprehensive view of non-competitive epitopes. In this classification, 
group E1 antibodies target the S309 epitope [28,29], group E3 antibodies target the S2H97 binding 
site [30], group F1 antibodies recognize the CR3022/S304 epitope [31,32], group F2 antibodies bind to 
the DH1047 site [33], and group F3 antibodies binding the ADG-2 site [34,35]. The epitope clusters E 
and F correspond to Class 3 and Class 4 antibodies in earlier taxonomies [36]. The follow-up seminal 
studies analyzed the escape mutation profiles of a total of 2,688 monoclonal antibodies including 
1,874 antibodies isolated from individuals infected with XBB or JN.1 variants, ultimately resulting in 
the identification of 22 distinct antibody clusters and a detailed antigenic map of the RBD [37,38]. 
Importantly, this latest pioneering study showed the possibility of accurately predicting SARS-CoV-
2 RBD evolution by aggregating high-throughput antibody DMS results and constructing 
pseudoviruses that carry the predicted mutations as filters to screen for potent neutralizing 
antibodies.  Subsequent discoveries of E1 and F3 antibodies [39,40] revealed that group F3 antibody 
SA55 and group E1 antibody SA58 can bind non-competitively to the RBD with robust neutralizing 
activity against a broad range of immune-evading variants, including those harboring convergent 
mutations in the RBD of BQ.1, BQ.1.1, and XBB lineages [39,40]. Another large-scale investigation 
employing high-throughput DMS assays for 1,637 potent monoclonal antibodies evaluated immune 
escape across eight major SARS-CoV-2 variants, including B.1 (D614G), Omicron BA.1, BA.2, BA.5, 
BQ.1.1, XBB.1.5, HK.3, and JN.1 [41]. Pan-sarbecovirus binding assays combined with in vitro 
mapping of viral escape, structural analyses and DMS experiments provided a comprehensive 
characterization of a panel of antibodies targeting different epitopes, including conserved cryptic 
RBD region [42]. In a recent breakthrough, two newly identified antibodies CYFN1006-1 and 
CYFN1006-2 demonstrated superior neutralization breadth across all tested SARS-CoV-2 variants, 
even outperforming SA55 [43]. Their distinct binding profile suggests that combining SA55 with 
CYFN1006-1 could offer synergistic protection against JN.1, KP.2, KP.3, and other emerging SARS-
CoV-2 variants [43]. These investigations have systematically cataloged RBD escape mutations 
associated with a wide array of monoclonal antibodies, revealing distinct patterns of escape-prone 
regions and mutation-resistant epitopes. Recent surveillance of emerging variants indicates that 
SARS-CoV-2 preferentially accumulates mutations in frequently targeted “hotspot” epitopes, while 
maintaining the structural integrity of critical RBD regions essential for folding, stability, and 
function.  

 
Computational approaches have played a transformative role in elucidating the structural 

dynamics and functional mechanisms of the SARS-CoV-2 S protein at atomic resolution. These tools 
have enabled researchers to probe not only the intrinsic flexibility of the S protein but also its 
interactions with key molecular partners such as the ACE2 receptor and a wide array of neutralizing 
antibodies. Through advanced simulation techniques—including molecular dynamics (MD) 
simulations and Markov state models (MSMs) —the conformational landscapes of Omicron 
subvariants such as XBB.1 and XBB.1.5, both in their free forms and bound to ACE2 or antibodies, 
have been systematically characterized [44]. These studies have provided critical insights into how 
mutations modulate conformational transitions, stability, and receptor accessibility across evolving 
variants. In parallel, computational mutational scanning and binding affinity analyses have offered 
a quantitative framework for interpreting experimental observations related to the interaction 
between Omicron XBB variants and ACE2, as well as their susceptibility to a panel of Class 1 
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neutralizing antibodies [45,46]. These approaches have proven instrumental in dissecting the 
molecular basis of immune escape and viral adaptation. Building on these advances, our group has 
integrated AlphaFold2-based atomistic modeling with ensemble sampling methods to predict and 
analyze the structures and conformational ensembles of S-ACE2 complexes across the most prevalent 
Omicron subvariants, including JN.1, KP.1, KP.2, and KP.3 [47]. Recent investigations uncovered a 
multifactor-based mechanism that governs the emergence of escape mutants against ultra-potent 
monoclonal antibodies [48,49].In the proposed mechanism, the selection of specific mutations is 
driven by an intricate interplay between their effects on protein structural stability, binding affinity, 
and long-range allosteric communication networks within the RBD. Further computational efforts 
have focused on understanding the mechanisms of broadly neutralizing antibodies, particularly 
those belonging to the E1 and F3 groups [50]. A recent comparative modeling study shed light on the 
distinct molecular strategies employed by several broadly neutralizing antibodies, including S309, 
S304, CYFN1006, and VIR-7229 [51]. These findings revealed two overarching paradigms: 
conservation-driven binding, wherein antibodies target highly conserved residues crucial for viral 
function, and adaptability-driven binding, where antibodies exploit flexible or dynamic interfaces to 
maintain potency despite antigenic drift. Computational and experimental studies highlighted many 
factors underlying the complexity of SARS-CoV-2 evolution at the molecular level [52-54]. 
Conformational dynamics and allosteric perturbations can be  linked to binding of novel human 
antibodies where antibody-induced dynamics can render weak, moderate and strong neutralizing 
antibodies [55]. Collectively, the existing evidence suggests that viral evolution is not merely a 
stochastic process but rather a finely tuned balance between immune evasion, receptor-binding 
affinity, and fitness constraints imposed by mutation-induced structural perturbations. These forces 
are further shaped by the diversity and specificity of the host antibody repertoire.  

 
In the current study, we investigate the interplay between dynamic, energetic, and allosteric 

mechanisms that govern antibody binding and immune escape, focusing specifically on distinct 
groups of Class 4 antibodies. Class 4 antibodies represent a unique category of broadly reactive 
monoclonal antibodies that target a deeply conserved, cryptic epitope within the S-RBD protein. 
Here, we present a multi-dimensional analysis integrating structural mapping, conformational 
dynamics, mutational scanning, and binding free energy calculations, along with dynamic network 
modeling, to elucidate the molecular basis of antibody recognition, allostery, and immune escape 
across class 4 group F1 (CR3022, EY6A, COVA1-16), group F2 (DH1047), and group F3 (S2X259) 
antibodies. We perform structural binding epitope mapping and analysis of closely-related cross-
reactive but weakly neutralizing class 4 group F1 antibodies CR3022 [31,56,57], EY6A [57] and 
COVA1-16 [58]. Through structural analysis we establish that in addition to CR3022,  EY6A and 
COVA1-16 class 4 antibodies targeting the conserved cryptic site with very similar binding footprints 
can be all classified as group F1 [ 26,27,37-39]. Additionally, we studied class 4 antibodies DH1047 of 
group F2 [33], and S2X259 of group F3 [59].The classification of RBD-directed antibodies has recently 
been redefined to include a larger set of antibodies and finer epitope binning [60]. To investigate 
dynamics, energetics and binding profiles of these antibodies with S-RBD we employed coarse-
grained (CG) and atomistic molecular dynamics (MD) simulations, systematic mutational scanning 
of the antibody-RBD binding interfaces and binding free energy calculations. Through network-
based modeling of conformational ensembles, we explored the allosteric consequences of antibody 
binding. Our results provide a broader mechanistic framework for understanding how binding and 
allostery synergistically shape immune defense responses, which are inherently context-dependent 
and energetically nuanced. This work establishes a mechanistic continuum among class 4 antibodies, 
from indirect allostery (F1) to hybrid (F2) and combination of direct receptor blocking with localized 
allostery (F3), revealing key insights into how cryptic site recognition translates into functional 
impact. Importantly, it highlights that neutralization need not rely solely on physical occlusion of 
ACE2 but can emerge through dynamic reorganization of the RBD. These findings offer a useful 
computational framework for understanding antibody function beyond canonical epitopes and 
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provide guidance for designing next-generation therapeutics and vaccines that harness the power of 
conformational dynamics and network-level control to combat evolving sarbecoviruses. 

2. Materials and Methods 

2.1. Coarse-Grained Simulations Molecular Dynamics Simulations  

The crystal and cryo-EM structures of the RBD-antibody are obtained from the Protein Data 
Bank [61] We employed CABS-flex approach that efficiently combines a high-resolution coarse-
grained model and efficient search protocol  capable of accurately reproducing all-atom MD 
simulation trajectories and dynamic profiles of large biomolecules on a long time scale [62-67]. In this 
high-resolution model, the amino acid residues are represented by Cα, Cβ, the center of mass of side 
chains and another pseudoatom placed in the center of the Cα-Cα pseudo-bond. In this model, the 
amino acid residues are represented by Cα, Cβ, the center of mass of side chains and the center of the 
Cα-Cα pseudo-bond. The CABS-flex approach implemented as a Python 2.7 object-oriented 
standalone package was used in this study to allow for robust conformational sampling proven 
to accurately recapitulate all-atom MD simulation trajectories of proteins on a long time scale. 
Conformational sampling in the CABS-flex approach is conducted with the aid of Monte Carlo 
replica-exchange dynamics and involves local moves of individual amino acids in the protein 
structure and global moves of small fragments.  The default settings were used in which soft native-
like restraints are imposed only on pairs of residues fulfilling the following conditions : the distance 
between their Cα atoms was smaller than 8 Å, and both residues belong to the same secondary 
structure elements. A total of 1000 independent CG-CABS simulations were performed for each of 
the systems studied. In each simulation, the total number of cycles was set to 10,000 and the number 
of cycles between trajectory frames was 100.  MODELLER-based reconstruction of simulation 
trajectories to all-atom representation [68] provided by the CABS-flex package was employed to 
produce atomistic models of equilibrium ensembles for studied systems.  

2.2. Molecular Dynamics Simulations  

The missing regions for the studied structures of the RBD-antibody are reconstructed and 
optimized using template-based loop prediction approach ArchPRED [69]. The side chain rotamers  
were refined and optimized by SCWRL4 tool [70]. The protonation states for all the titratable residues 
of the antibody and RBD proteins were predicted at pH 7.0 using Propka 3.1 software and web server 
[71,72].  The glycan chains were built using CHARMM-GUI Glycan Reader [73,74]  and Modeller 

[68] at glycosylation sites N331 and N343 of RBD. NAMD 2.13-multicore-CUDA package [75]  with 
CHARMM36m force field [76]  employed to perform all-atom MD simulations for the RBD-antibody 
complexes. Each system was solvated with TIP3P water molecules and neutralizing 0.15 M NaCl in 
a periodic box that extended 10 Å beyond any protein atom in the system [77]. All Na+ and Cl− ions 
were placed at least 8 Å away from any protein atoms and from each other. MD simulations are 
typically performed in an aqueous environment in which the number of ions remains fixed for the 
duration of the simulation, with a minimally neutralizing ion environment or salt pairs to match the 
macroscopic salt concentration [78]. The heavy atoms in the complex were restrained using a force 
constant of 1000 kJ mol−1 nm−1 to perform 500 ps equilibration simulation. Long-range, non-bonded 
van der Waals interactions were computed using an atom-based cutoff of 12 Å, with the switching 
function beginning at 10 Å and reaching zero at 14 Å. The SHAKE method was used to constrain all 
the bonds associated with hydrogen atoms. The simulations were run using a leap-frog integrator 
with a 2 fs integration time step. The ShakeH algorithm in NAMD was applied for the water molecule 
constraints. A 310 K temperature was maintained using the Nóse-Hoover thermostat with 1.0 ps time 
constant and 1 atm pressure was maintained using isotropic coupling to the Parrinello-Rahman 
barostat with time constant of 5.0 ps [79,80]. The long-range electrostatic interactions were calculated 
using the particle mesh Ewald method [81] with a cut-off of 1.2 nm and a fourth-order (cubic) 
interpolation. The simulations were performed under an NPT ensemble with a Langevin thermostat 
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and a Nosé–Hoover Langevin piston at 310 K and 1 atm. The damping coefficient (gamma) of the 
Langevin thermostat was 1/ps. In NAMD, the Nosé–Hoover Langevin piston method is a 
combination of the Nosé–Hoover constant pressure method [82]  and piston fluctuation control 
implemented using Langevin dynamics [83]. An NPT production simulation was run on equilibrated 
structures for 1µs keeping the temperature at 310 K and a constant pressure (1 atm).  

2.3. Mutational Scanning Profiling  

We conducted mutational scanning analysis of the binding epitope residues for the S RBD-
antibody complexes. Each binding epitope residue was systematically mutated using all substitutions 
and corresponding protein stability and binding free energy changes were computed. BeAtMuSiC 
approach [84-88] was employed that is based on statistical potentials describing the pairwise inter-
residue distances, backbone torsion angles and solvent accessibilities, and considers the effect of the 
mutation on the strength of the interactions at the interface and on the overall stability of the complex.  

The BeAtMuSiC approach evaluates the impact of mutations on both the strength of interactions at 
the protein-protein interface and the overall stability of the complex using statistical energy functions 
for ΔΔG estimation, derived from the Boltzmann law which relates the frequency of occurrence of a 
structural pattern to its free energy. BeAtMuSiC identifies a residue as part of the protein-protein 
interface if its solvent accessibility in the complex is at least 5% lower than its solvent accessibility in 
the individual protein partner(s). The binding free energy of protein-protein complex can be 
expressed as the difference in the folding free energy of the complex and folding free energies of the 
two protein binding partners: 

com A B
bindG G G G    (1) 

The change of the binding energy due to a mutation was calculated then as the following: 

mut w t
bind bind bindG G G     (2) 

We leveraged rapid calculations based on statistical potentials to compute the ensemble-
averaged binding free energy changes using equilibrium samples from simulation trajectories. The 
binding free energy changes were obtained by averaging the results over 1,000 and 10, 000 
equilibrium samples for each of the systems studied. 

2.4. Binding Free Energy Computations 

We calculated the ensemble-averaged changes in binding free energy using 1,000 equilibrium 
samples obtained from simulation trajectories for each system under study. Initially, the binding free 
energies of the RBD-antibody complexes were assessed using the MM-GBSA approach [89,90]. 
Additionally, we conducted an energy decomposition analysis to evaluate the contribution of each 
amino acid during the binding of RBD to antibodies [91,92]. The binding free energy for the RBD-
Antibody complex was obtained using: 

ΔGbind = GRBDିAB − GRBD − GAB (3) 

Δ𝐺௕௜௡ௗ,ெெீ஻ௌ஺ = Δ𝐸ெெ + Δ𝐺௦௢௟ − 𝑇Δ𝑆 (4) 

where ΔEMM is total gas phase energy (sum of ΔEinternal, ΔEelectrostatic, and ΔEvdw); ΔGsol 
is sum of polar (ΔGGB) and non-polar (ΔGSA) contributions to solvation. Here, G RBD–ANTIBODY 
represent the average over the snapshots of a single trajectory of the complex, GRBD and GANTIBODY 

corresponds to the free energy of RBD and antibody respectively. 
The polar and non-polar contributions to the solvation free energy is calculated using a 

Generalized Born solvent model and consideration of the solvent accessible surface area [93]. MM-
GBSA is employed to predict the binding free energy and decompose the free energy contributions 
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to the binding free energy of a protein–protein complex on per-residue basis. The binding free energy 
with MM-GBSA was computed by averaging the results of computations over 1,000 samples from 
the equilibrium ensembles. First, the computational protocol must be selected between the “single-
trajectory” (one trajectory of the complex), or “separate-trajectory” (three separate trajectories of the 
complex, receptor and ligand). To reduce the noise in the calculations, it is common that each term is 
evaluated on frames from the trajectory of the bound complex. In this study, we choose the “single-
trajectory” protocol, because it is less noisy due to the cancellation of intermolecular energy 
contributions. Entropy calculations typically dominate the computational cost of the MM-GBSA 
estimates. Therefore, it may be calculated only for a subset of the snapshots, or this term can be 
omitted [94,95]. In this study, the entropy contribution was not included in the calculations of binding 
free energies of the RBD-antibody complexes because the entropic differences in estimates of relative 
binding affinities are expected to be small owing to small mutational changes and preservation of the 
conformational dynamics [94,95]. MM-GBSA energies were evaluated with the MMPBSA.py script 
in the AmberTools21 package [96] and gmx_MMPBSA, a new tool to perform end-state free energy 
calculations from CHARMM and GROMACS trajectories [97].  

2.5. Modeling of Residue Interaction Networks 

To analyze protein structures, we employed a graph-based representation where residues are 
modeled as network nodes, and non-covalent interactions between residue side-chains define the 
edges [98,99]. This approach captures the spatial and functional relationships between residues, 
providing insights into the protein structural and dynamic properties. The Residue Interaction 
Network Generator (RING) program [100-102] was used to generate the initial residue interaction 
networks from the crystal structures of the protein complexes. We computed the network parameters, 
such as shortest paths and betweenness centrality, to identify residues critical for communication 
within the protein structure. The short path betweenness (SPC) of residue i is defined to be the sum 
of the fraction of shortest paths between all pairs of residues that pass through residue i: 

𝐶௕(𝑛௜) = ∑
௚ೕೖ(௜)

௚ೕೖ

ே
௝ழ௞  (5) 

where jkg  denotes the number of shortest geodesics paths connecting j  and k, and ( )jkg i  

is the number of shortest paths between residues j  and k passing through the node in . Residues 

with high occurrence in the shortest paths connecting all residue pairs have a higher betweenness 
values. For each node n , the betweenness value is normalized by the number of node pairs excluding 
n  given as ( -1)( - 2) / 2N N , where N  is the total number of nodes in the connected component 
that node n  belongs to.  

𝐶௕(𝑛௜) =
ଵ

(ேିଵ)(ேିଶ)
∑

௚ೕೖ(௜)

௚ೕೖ

ே
௝ழ௞
௝ஷ௜ஷ௞

 (6) 

To account for differences in network size, the betweenness centrality of each residue ii was 
normalized by the number of node pairs excluding ii. The normalized short path betweenness of 

residue i can be expressed as : jkg  is the number of shortest paths between residues j  and k; 

( )jkg i is the fraction of these shortest paths that pass through residue i. Residues with high 

normalized betweenness centrality values were identified as key mediators of communication within 
the protein structure network.  

All parameters were computed using the python package NetworkX [103] and Cytoscape 
package for network analysis [104-106].  
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2.6. Network-Based Mutational Profiling of Allosteric Residue Centrality 

Through mutation-based perturbations of protein residues we  compute dynamic couplings of 
residues and changes in the short path betweenness centrality (SPC) averaged over all possible 
modifications in a given position.  The change of SPC upon mutational changes of each node is 
reminiscent to the calculation of residue centralities by systematically removing nodes from the 
network. 

Δ𝐿௜ = ⟨ቚหΔ𝐿௜
௡௢ௗ௘(𝑗)หቚ

ଶ

⟩ (7) 

where i is a given site, j is a mutation and〈⋯〉denotes averaging over mutations. Δ𝐿௜
௡௢ௗ௘(𝑗) 

describes the change of SPC  parameters upon mutation 𝑗 in a residue node 𝑖. Δ𝐿௜  is the average 
change of ASPL triggered by mutational changes in position 𝑖. Z-score is then calculated for each 
node as follows: 

𝑍𝑖 =
Δ𝐿௜ − 〈Δ𝐿〉

𝜎
  (8) 

〈Δ𝐿〉 is the change of the SPC network parameter under mutational scanning  averaged over 
all protein residues and σ is the corresponding standard deviation. The ensemble-average Z score 
changes are computed from network analysis of the conformational ensembles of antibody-RBD 
complexes using 1,000 snapshots of the simulation trajectory.  

3. Results  

Structural Analysis of the RBD Complexes with Class 4 Antibodies 

We first performed structural binding epitope mapping and analysis of closely-related cross-
reactive but weakly neutralizing class 4 antibodies CR3022 (group F1, class 4) [31,56,57], EY6A [57] 
and COVA1-16 [58] (Figure 1, Supporting Information, Tables S1-S3). The CR3022 epitope is typically 
only accessible when at least two RBDs of the S protein are in the "up" conformation (Figure 1A,B). 
EY6A and CR3022 bind to the same epitope on the RBD but EY6A binds at about 70 degrees to the 
perpendicular axis of the α3-helix, which is central to both epitopes (Figure 1C,D) [110]. Both CR3022 
and EY6A target residues 368-392 on the RBD, CR3022 interacts with sites 408,427-433, 515-519 while 
EY6A makes contacts with 411-414, 427-430 (Figures 1,2). The binding epitope for COVA1-16 showed 
a very similar footprint of residues 368-385, 408, 412-415,427-430 (Figures 1,2). Structural mapping of 
the binding epitopes for these three antibodies highlighted the same mode of binding and small 
antibody-specific variations around the cryptic site (Figure 1A-F). It is evident that CR3022 makes 
contacts with more residues in the binding site, particularly residues 515-519 (Figure 1A,B). However, 
our analysis strongly suggests that in addition to CR3022, both EY6A and COVA1-16 are class 4 
antibodies that can be attributed to the same group F1 (Figure 1C-F).  
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 Figure 1. Structural organization of the RBD complexes and binding epitopes for class 4 antibodies. (A) The 
structure of class 4, group F1 CR3022 with RBD (pdb id 6YM0). The RBD in wheat-colored surface. The heavy 
chain in orange ribbons, the light chain in red ribbons. (B) The RBD and binding epitope footprint for CR3022. 
The binding epitope residues are shown in blue surface. (C) The structure of class 4 group F1 antibody EY6A 
bound with RBD (pdb id 7ZF3). (D) The RBD and binding epitope footprint for EY6A.(E) The structure of class 
4 group F1 antibody COVA1-16 bound with RBD (pdb id 7JMW). (F) The RBD and binding epitope footprint for 
COVA1-16. (G) The structure of class 4 group F2 antibody DH1047 bound with RBD (pdb id 8DTK). (H) The 
RBD and binding epitope footprint for DH1047.  (I) The structure of class 4 group F3 antibody S2X259 bound 
with RBD (pdb id 7RAL). (D) The RBD and binding epitope footprint for S2X259. 

Members of the F1 group, such as CR3022, EY6A and COVA1-16 require a wide open RBD to 
engage and do not directly block ACE2, therefore displaying weak neutralizing activities. DH1047 
antibody interacts with specific regions of the RBD, including those known to be mobile, through its 
heavy-chain complementarity-determining region 3 (HCDR3) and light-chain complementarity-
determining region 1 (LCDR1) and LCDR3 (Figure 1G,H). By directly engaging with these areas, the 
antibody can restrict their movement. Structural analysis reveals that the binding of DH1047 to the 
RBD creates steric hindrance and reaches towards so-called “right shoulder” of the RBD [107], 
making some partial overlap the ACE2 binding site. The notable extension of the binding epitope for 
group F2 DH1047 is formation of multiple contacts with R408 and additional interactions with 
residues 500-508 that overlap with the ACE2 binding site (Figure 1G,H, Supporting Information, 
Table S4). For group F3 S2X259 we observe even further movement of the epitope to the right 
shoulder, towards the ACE2 binding site, making contacts with residues 377-385, 404-408, 501-508 
(Figure 1I,J, Supporting Information, Table S5).  

Group F3 antibodies such as S2X259 reach further towards the ACE2-binding site and interact 
with appreciable number of ACE2-binding residues therefore directly competing with ACE2 (Figure 
1I,J). Interestingly, the key interacting sites D405, R408, V503, G504 and Y508 for group F3 S2X259 
(Figure 1I,J, Supporting Information, Table S5) can enable interference with ACE2 but also are 
associated with the major escape sites for this group of antibodies [26,27,37,38]. Among these, Y501 
and H505 are especially important for ACE2 engagement, and by directly interacting with them, 
S2X259 effectively competes with the host receptor for RBD binding. Because these residues are 
indispensable for viral entry, they are under strong evolutionary constraint, making them poor 
candidates for immune escape mutations. S2X259 and other group F3 antibodies are engaged in 
interactions with peripheral residues D405, and R408 that can mutate and serve as immune escape 
positions [26,27]. This analysis emphasizes the dual nature of the S2X259 epitope where a central, 
conserved core which is arguably resistant to mutational drift due to its functional importance, 
flanked by more flexible peripheral regions that may accommodate escape mutations under selective 
pressure. Structural analysis reveals that all class 4 antibodies engage a central hydrophobic core of 
the RBD, accessible only when at least two RBDs adopt the "up" conformation. However, subtle 
differences in orientation and contact footprint distinguish between each subgroup. 
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Figure 2. Overlap of Binding Hotspots Among Class 4 RBD Antibodies Across Groups F1 and F2. (A) Venn 
diagram illustrates the overlap in binding hotspots among group F1 class 4 antibodies CR3022, EY6A, and 
COVA1-16. The diagram shows the number of residues (and their percentage contributions) that are shared or 
unique to each antibody within this group. For example, CR3022 (F1) shares 15 residues (36.6%) with both EY6A 
and COVA1-16, while 5 residues (12.2%) are unique to CR3022. (B) Venn diagram comparing the binding 
hotspots between group F1 antibody CR3022 (F1) and group F2 antibody DH1047 (F2). This comparison 
highlights the transition from indirect allostery to partial steric hindrance as observed in group F2. Notably, 
DH1047 (F2) exhibits a larger set of unique binding hotspots (14 residues, 26.9%) compared to its overlap with 
CR3022 (4 residues, 7.7%), reflecting its more direct engagement with the ACE2 interface. The green circle 
represents the overlapping residues common to all three groups, indicating conserved interactions across these 
antibodies. The percentages indicate the relative contribution of each subset of residues to the total binding 
hotspots identified for each antibody. 

We also illustrated the overlap in the binding epitope residues for CR3022 of group F1, DH1047 
of group F2 and S2X259 of group F3 (Figure 2). All three antibodies belong to class 4. The Venn 
diagram for group F1 antibodies (Figure 2A) reveals that CR3022, EY6A, and COVA1-16 share a 
significant number of binding hotspots, indicating a common mode of recognition centered around 
the deeply conserved hydrophobic core of the RBD. The shared residues (~15%) highlight the 
conservation of epitope targeting within this group, which explains their broad reactivity across 
sarbecoviruses. However, each antibody exhibits unique features. CR3022 engages more residues in 
the binding site, particularly residues 515–519, suggesting a slightly broader footprint compared to 
EY6A and COVA1-16. EY6A binds at a similar region but with a slightly different orientation, leading 
to subtle differences in contact geometry and mutational sensitivity. It is notable from structural 
mapping of the epitopes that group F2 DH1047 has a significant overlap with group F1 antibodies 
but begins to extend partly towards the ACE2 binding interface (Figure 2B).  These diagrams 
provide insight into the shared and distinct epitope footprints of class 4 antibodies, highlighting how 
subtle shifts in binding geometry influence their neutralization mechanisms and escape 
vulnerabilities. 

3.2. Conformational Dynamics of the RBD Complexes with Antibodies Using Coarse-Grained and Atomistic 
Simulations 

We performed multiple CG-CABS and atomistic simulations of the RBD-antibody complexes. 
The root-mean-square fluctuation (RMSF) profiles provide a detailed view of the dynamic behavior 
of RBD residues upon antibody binding, highlighting both shared features and notable differences 
among the antibodies. The RMSF analysis of RBD residues for class 4 antibodies provided some 
insights into the dynamic behavior of the RBD upon antibody binding. These profiles reveal both 
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shared characteristics and particular features for each antibody (Figure 3A). This central β-sheet core 
(β1: residues 354–358; β2: residues 376–379; β3: residues 394–403; β4: residues 432–437; β5: residues 
452–454; β6: residues 492–494; β7: residues 507–516) and α-helices exhibit low RMSF values across all 
class 4 antibodies, indicating minimal flexibility in these regions. This reflects the conserved 
structural integrity of the RBD core, which is critical for maintaining its overall stability. Residues 
such as 350–360, 375–380, and 394–403 show consistently low fluctuations, underscoring their role in 
stabilizing the RBD structure regardless of the antibody bound (Figure 3A).  

Conformational dynamics analysis reveals that group F1 antibodies engage a deeply conserved, 
cryptic epitope located in the core of the RBD, accessible only when at least two RBDs adopt the "up" 
conformation. These antibodies stabilize the central β-sheet structure of the RBD — composed of 
residues such as β1–β7 — reducing local flexibility and reinforcing structural integrity. However, 
their binding also increases mobility in the receptor-binding motif (RBM) loop (residues ~470–490), 
promoting greater conformational sampling and facilitating access to the cryptic site. This 
redistribution of rigidity and flexibility appears to underpin their neutralization mechanism: rather 
than directly blocking ACE2, they modulate the RBD's conformational equilibrium, indirectly 
impairing receptor engagement by favoring non-productive open states. RMSF profiles confirm this 
pattern, showing a stabilized core with elevated fluctuations in the RBM loop for all F1 antibodies. 
The increased flexibility in this region may help expose the epitope but also contributes to the 
relatively weak neutralization potency observed in these antibodies. Importantly, this allosteric 
modulation aligns with experimental evidence showing altered ACE2 kinetics upon CR3022 binding 
— slowing association and accelerating dissociation — suggesting that neutralization arises not from 
physical occlusion, but from long-range dynamic effects [57]. 

Group F2 antibody DH1047 exhibits a more direct influence on the ACE2 interface compared to 
F1 antibodies, while still engaging the conserved RBD core. RMSF analysis shows minor increases in 
flexibility in residues 450–470, coupled with reduced mobility in the RBM-containing loop (~470–
490), indicating a shift in dynamic control toward stabilizing the ACE2-contacting regions (Figure 
3B). This stabilization likely supports a hybrid mechanism of action, where DH1047 exerts partial 
steric hindrance on ACE2 binding while maintaining allosteric effects via interactions with 
structurally conserved sites. Cryo-EM and simulation data suggest that DH1047 binding restricts the 
RBD’s ability to transition between conformations, locking it into states less favorable for viral entry. 
This dual mode — combining dynamic modulation and localized interference — enhances 
neutralization potency relative to group F1, though at the cost of increased sensitivity to mutations. 
Notably, Omicron BA.2 mutations such as T376A and R408S severely compromise DH1047 binding, 
highlighting how increased proximity to the receptor interface correlates with escape vulnerability 
[26,27]. Overall, DH1047 may represent an intermediate evolutionary and dynamic adaptation 
among class 4 antibodies — leveraging both allostery and direct interference to achieve stronger 
neutralization without fully overlapping with the ACE2 footprint.  
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.Figure 3. RMSF Profiles of RBD Residues Upon Binding with Class 4 Antibodies. (A) RMSF profiles for 
residues of the RBD in complexes with group F1 class 4 antibodies. The figure compares the dynamic behavior 
of the RBD upon binding to CR3022 (PDB ID: 6YM0, orange), EY6A (PDB ID: 7ZF3, red), and COVA1-16 (PDB 
ID: 7JMW, blue). Residues within the central β-sheet structure (e.g., residues 354–358, 376–379, 394–403, 432–437, 
452–454, 492–494, and 507–516) exhibit low RMSF values across all three antibodies, indicating minimal 
flexibility. Residues ~470–490 show elevated RMSF values, particularly for group F1 antibodies, reflecting 
enhanced local flexibility in this region. (B) RMSF profiles for residues of the RBD in complexes with group F2 
(DH1047) and group F3 (S2X259) class 4 antibodies. Group F2 (DH1047, PDB ID: 8DTK, orange) : Residues 450–
470 exhibit moderately increased mobility, while the 470–490 loop shows reduced flexibility compared to group 
F1 antibodies. Group F3 (S2X259, PDB ID: 7RAL, blue) : Similar to DH1047, S2X259 also displays reduced 
flexibility in the 470–490 loop, consistent with its more direct engagement of the ACE2 interface. 

The group F3 antibody S2X259 demonstrates the most pronounced impact on RBD dynamics, 
reflecting its direct competition with ACE2. RMSF profiles show significantly reduced flexibility in 
the RBM loop (~470–490), consistent with strong binding that locks the RBD into a conformation 
incompatible with efficient ACE2 engagement (Figure 3B). These shifts suggest that both DH1047 
and S2X259 modulate RBD dynamics in distinct ways, subtly reshaping the conformational landscape 
to enhance direct competition with ACE2. The observed stabilization of key interface residues likely 
contributes to their increased neutralization potency compared to earlier group F1 antibodies, 
offering a mechanistic link between dynamic modulation and receptor blocking. To sum up, the 
RMSF profiles reveal a progressive shift in conformational dynamics across class 4 antibodies from 
groups F1 to F3. Group F1 antibodies stabilize the core while increasing flexibility in the RBM loop, 
promoting allosteric interference with ACE2 binding (Figure3, Table 1). In contrast, groups F2 and 
F3 exhibit reduced flexibility in the RBM loop, reflecting their closer proximity to the ACE2 interface 
and stronger interactions with critical residues involved in receptor binding (Table 1). These results 
may underscore the mechanistic evolution of neutralization strategies among class 4 antibodies, 
transitioning from indirect allostery (F1) to partial steric hindrance (F2) and direct competition with 
ACE2 (F3).  

Table 1. Summary of the Structural and Dynamics Analysis for Class 4 Antibodies. 

 Group F1 antibodies     Group F2 antibodies       Group F3 antibodies 

Binding Site  Core RBD, cryptic Partial overlap + 

ACE2 interface 

Further shift toward 

ACE2 interface 

ACE2 Competition  No Partial Yes 
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Key Interactions  Leu445, Phe486, Tyr505 R408, 500–508 D405, R408, V503, G504, 

Y508 

Escape Mutations  383–386, 390, 391 408, 500–508 501, 505 

RMSF Profile  Stabilized core, flexible 

470–490 loop 

Moderate flexibility 

in 450–470 

Reduced flexibility in 

470–490 

Neutralization 

Mechanism  

Allosteric Partial steric 

hindrance 

Direct competition with 

ACE2 

3.3. Mutational Profiling of Antibody-RBD Binding Interactions Interfaces Reveals Molecular Determinants 
of Immune Sensitivity and Emergence of Convergent Escape Hotspots 

Using the conformational ensembles of the RBD-antibody complexes, we embarked on 
structure-based mutational analysis of the S protein binding with antibodies.  To provide a 
systematic comparison, we constructed mutational heatmaps for the RBD interface residues of the S 
complexes with class I antibodies. Mutational scanning studies of RBD–antibody complexes provides 
insight into the epitope sensitivity and escape vulnerability of class 4 group F1 antibodies — CR3022, 
EY6A, and COVA1-16. These analyses, derived from conformational ensembles and DMS datasets, 
reveal a consistent pattern: while these antibodies target a highly conserved core epitope, their 
neutralizing activity is constrained by specific mutation-induced disruptions. Mutational profiling of 
CR3022 binding identifies a set of key interface residues that are essential for antibody recognition. 
F377, C379, Y380, T385 emerged as dominant hotspots (Figure 4A). Additional contributions come 
from K378, G381, V382, S383, P384, L390, and F392, which also play supportive roles in maintaining 
epitope integrity. Our results are consistent with the DMS data revealing that residues 383–386, 390, 
and 392 represent major escape hotspots for CR3022 and other F1-class antibodies. These residues lie 
at the edge of the epitope, suggesting that immune pressure drives mutations here to evade antibody 
recognition without compromising viral function. EY6A binds to a nearly identical region on the RBD 
as CR3022 (Figures 1,2) yet exhibits somewhat distinct mutational sensitivity profile reflecting 
differences in orientation and contact geometry. The heavy chain of CR3022 features hotpots in 
positions I30, T31, Y32, W33 (Figure 4B). 

Mutational profiling revealed that EY6A engages similar dominant residues — including F377, 
C379, Y380, T385, and S383 — confirming that both antibodies recognize a shared structural motif. 
However, EY6A also makes weaker interactions with P412 and G413, which are located slightly 
further from the central hotspot (Figure 4C). This broader interaction profile may offer modest 
resilience to certain escape mutations, although it remains sensitive to changes at key peripheral sites. 
The heavy chain of EY6A shows strong hotspot contributions from Y59, W104, V105, and Y106, 
underscoring the importance of aromatic stacking and van der Waals forces in stabilizing this 
complex (Figure 4D).  
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Figure 4. Ensemble-based dynamic mutational profiling of the RBD intermolecular interfaces in the RBD 
complexes. Mutational heatmaps for RBD complex with group F1 CR3022 antibody (A,B), the RBD complex with 
group F1 E6YA antibody (C,D) and the RBD complex with group F1 COVA1-16 antibody (E,F). The mutational 
scanning heatmaps are shown for the interfacial RBD residues and interfacial heavy chain residues of respective 
class 4 group F1 antibodies. The heatmaps show the computed binding free energy changes for 20 single 
mutations of the interfacial positions. The standard errors of the mean for binding free energy changes using 
randomly selected 1,000 conformational samples (0.12-0.18 kcal/mol) obtained from the atomistic trajectories. 

For COVA1-16, mutational analysis confirms a binding mode overlapping with CR3022 and 
EY6A, targeting residues 368–385, 408, 412–415, and 427–430, with major contributions from F377, 
K378, C379, and Y380 (Figure 4E). Minor hotspots such as R408 and G413 were also identified, 
suggesting that COVA1-16 extends its influence closer to the ACE2 interface than CR3022 or EY6A. 
Despite this, it retains the hallmark features of group F1 antibodies — broad reactivity due to 
targeting a structurally conserved RBD core, and vulnerability to mutations affecting epitope 
integrity or solvent exposure. Its heavy chain interactions are dominated by Y32, Y99, and Y100, 
highlighting a unique residue-level specificity that may shape its conformational adaptability and 
dynamic coupling with the RBD (Figure 4F). Taken together, these mutational scanning results 
highlight a trade-off between conservation and conformational dependency in group F1 antibodies. 
While their targeting of a deeply conserved RBD core ensures broad sarbecovirus reactivity, their 
reliance on rare "up" conformations and sensitivity to edge mutations limits their neutralization 
potency, especially against evolving variants. 

The mutational scanning analysis of group F2 antibody DH1047 and group F3 antibody S2X259 
provides key insights into how these class 4 antibodies engage the RBD and respond to immune-
evading mutations. While both target epitopes that overlap with the ACE2 interface, they do so with 
distinct energetic and functional consequences. For DH1047, mutational profiling identifies a set of 
critical RBD residues — including Y369, F374, T376, F377, C379, Y380, R408, V503, Y505, and Y508 — 
that are essential for antibody recognition. Among these, T376, R408, V503, and Y508 emerge as major 
destabilization sites, where single-point mutations such as T376A (ΔΔG = 2.15 kcal/mol), R408A/S 
(ΔΔG = 2.35–2.44 kcal/mol), and Y508H/N significantly impair binding (Figure 6A).  
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Figure 5. Structural and Epitope Mapping of Group F1 Class 4 Antibodies Binding to the RBD. The structures 
and epitope hotspots for three representative group F1 class 4 antibodies — CR3022 (PDB ID: 6YM0), EY6A (PDB 
ID: 7ZF3), and COVA1-16 (PDB ID: 7JMW). The three-dimensional structures of the RBD–CR3022 complex (A), 
RBD-EY6A complex (C) and COVA1-16/RBD (F). The RBD is depicted in wheat-colored surface, with the heavy 
chain (HC) of the antibody in orange and the light chain (LC) in red. The binding epitope residues are shown in 
blue surface and the RBD binding hotspots are shown in orange surface. Panels B, D, and F provide a detailed 
view of the RBD, the epitope and binding hotspots for CR3022 (PDB ID: 6YM0), EY6A (PDB ID: 7ZF3), and 
COVA1-16 (PDB ID: 7JMW) respectively. The epitope sites are highlighted in blue surface, and binding hotspots 
are in orange surface. These panels reveal that while all three antibodies target a deeply conserved hydrophobic 
core within the RBD, there are subtle differences in their contact footprints and residue-specific interactions, 
reflecting minor variations in orientation and binding geometry. 

The emergence of these mutations highlights a growing escape risk associated with proximity 
to the ACE2 interface, despite the functional constraints on many of these residues. These findings 
indicate that even though the core RBD region remains conserved, certain peripheral residues under 
immune pressure are mutable, especially those near the ACE2-binding motif. Importantly, the heavy 
chain residue Tyr100D in DH1047 forms extensive hydrogen bonds with Ser371, Thr376, Phe377, and 
Tyr369, reinforcing the idea that this region plays a critical role in stabilizing the antibody–RBD 
complex (Figure 6B). However, the presence of Omicron BA.1/BA.2 mutations (S371L, S373P, S375F) 
indirectly compromises binding by altering the local conformation or solvent exposure of nearby 
hotspot residues, further highlighting the network-level sensitivity of DH1047 to changes in the RBD 
landscape. Structural mapping of the DH1047 complex with RBD and the footprint of the binding 
hotspots on the RBD (Figure 6C,D) illustrates a broadly distributed allocation of the binding hotspots. 
Notably the partial overlap with the ACE2 binding site does not involve strong binding hotspots 
suggesting that these interactions can modulate the binding and immune escape patterns for this 
group of antibodies. 
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Figure 6. Mutational Heatmaps and Epitope Mapping of Group F2 and F3 of Class 4 Antibodies Binding to 
the RBD.  Mutational heatmaps of the RBD binding interface residues for RBD complex with group F2 DH1047 
antibody (A) and mutational heatmap of the heavy chain of DH1047 (B). The three-dimensional structures of the 
DH1047 complex with RBD (C), and a detailed view of the RBD, the epitope and binding hotspots for DH1047 
(D) (PDB ID: 8DTK). Mutational heatmaps of the RBD binding interface residues for RBD complex with group 
F3 S2X259 antibody (E) and mutational heatmap of the heavy chain of S2X259 (F). The three-dimensional 
structures of the S2X259 complex with RBD (C), and a detailed view of the RBD, the epitope and binding hotspots 
for S2X259 (D) (PDB ID: 7RAL). The RBD is in wheat-colored surface. The epitope sites are highlighted in blue 
surface, and binding hotspots are in orange surface. 

Group F3 antibody S2X259 engages the RBD through an even more direct overlap with the ACE2 
footprint, interacting strongly with D405, R408, V503, G504, and Y508 — all of which are key contact 
points for host receptor engagement (Figure 6E,F).. This proximity enables direct competition with 
ACE2, resulting in stronger neutralization potency, but also increases susceptibility to immune 
escape. Mutational data show that substitutions such as D405N, R408S, and T376A severely disrupt 
binding, consistent with their high energetic contributions to the interaction (Figure 6E). R408 and 
T376 remain mutable under selective pressure, making them high-risk escape positions. The 
emergence of T376A and R408S in Omicron BA.2 exemplifies how immune pressure drives mutations 
at the periphery of functionally constrained regions, compromising antibody binding while 
preserving viral fitness [26,27,37,38]. This analysis underscores the trade-off between neutralization 
strength and escape resistance, driven by the progressive shift from allostery toward steric 
interference across class 4 antibodies.  

3.4. MM-GBSA Analysis of the Binding Energetics for Class 4 Antibodies Complexes 

The MM-GBSA analysis offers a detailed energetic dissection of how class 4 antibodies engage 
the RBD revealing distinct patterns of interaction that reflect their neutralization mechanisms, escape 
vulnerabilities, and evolutionary positioning within the antibody classification system. By 
decomposing the total binding free energy into its van der Waals (VDW) and electrostatic (ELE) 
components, we gain insight into the molecular determinants of binding affinity, and how mutations 
at key positions can disrupt these interactions, leading to immune evasion. For group F1 antibodies 
CR3022, EY6A, and COVA1-16, the MM-GBSA results highlight a strong reliance on hydrophobic 
interactions, particularly involving residues 377-382, which form a tightly packed core critical for 
stabilizing the antibody–RBD complex. These residues are part of the central β-sheet structure of the 
RBD and are highly conserved across sarbecoviruses, explaining the broad reactivity of this group 
(Figure 7A,B). In contrast, electrostatic contributions are modest and distributed, with K378 and D428 
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showing favorable interactions that help fine-tune the binding interface but do not dominate 
energetically (Figure 7C).  

 

Figure 7. Binding Free Energy Decomposition of Group F1 Antibodies with the RBD Using MM-GBSA 
Analysis. MM-GBSA binding free energy decomposition for three representative group F1 class 4 antibodies — 
CR3022, EY6A, and COVA1-16 in complex with RBD. (A) The total binding free energy for CR3022 binding to 
the RBD, highlighting key residues contributing to overall stability. (B) Van der Waals (VDW) component of the 
binding free energy, showing dominant contributions from hydrophobic interactions. (C) Electrostatic (ELE) 
component of the binding free energy, revealing residues critical for charge-based stabilization. ( D) The total 
binding free energy for EY6A binding to the RBD, emphasizing energetic contributions across the interface. (E) 
VDW contribution to binding, illustrating the role of nonpolar contacts in stabilizing the complex. (F) ELE 
contribution to binding, identifying residues involved in electrostatic interactions. (G) The total binding free 
energy for COVA1-16 binding to the RBD. (H ) VDW component of the binding free energy, highlighting 
residues that mediate hydrophobic interactions. (I) ELE component of the binding free energy, pinpointing 
residues crucial for electrostatic complementarity. Residue-based binding free energy values are shown for total 
energies as magenta-colored filled bars, van der Waals contributions as orange-colored bars and electrostatic 
contributions as light-brown colored bars. MM-GBSA contributions are evaluated using 1,000 samples from MD 
simulations. 

EY6A binds to a very similar region of the RBD as CR3022, yet its energetic profile reveals some 
specific features. The central core residues 378- 385 are the main contributors to binding, with 
favorable van der Waals interactions playing a dominant role (Figure 7D,E). EY6A engages a slightly 
broader region than CR3022, including residues P412 and G413, which may offer some resilience 
against localized mutations (Figure 7D,E). While K378, K386, D405, D427, and D428 exhibit favorable 
electrostatic contacts (Figure 7F), these interactions are largely offset by unfavorable solvation 
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penalties, resulting in only marginal net stabilization of the complex. This suggests that EY6A relies 
more heavily on hydrophobic interactions than on electrostatic complementarity, making it 
potentially more robust against certain polar substitutions, but vulnerable to mutations that alter 
hydrophobic packing including those seen in Omicron variants. 

COVA1-16 presents an energy profile, marked by a more distributed pattern of hotspot residues 
compared to CR3022 and EY6A. Key contributors include C379, Y369, F377, Y380, P384, along with 
Y380, D427, and R408, emphasizing the importance of aromatic stacking and aliphatic interactions in 
stabilizing the complex (Figure 7G,H). Electrostatically, favorable contributions arise from D420, 
D427, and D428, reinforcing the idea that charged residues play a supportive but secondary role in 
binding (Figure 7I). This broader footprint may confer some resilience to localized mutations, 
although it also increases the number of potential escape pathways, particularly at positions 412–415 
and 427–428, which are under growing immune pressure. Importantly, the interactions of COVA1-
16 extend slightly toward residues partly overlapping with the ACE2 interface, suggesting that its 
neutralization mechanism may involve a mild competitive component, despite being classified as a 
class 4 antibody. 

One of the most striking insights from this analysis is the delicate interplay between different 
energetic components that define the binding landscape of group F1 antibodies. In CR3022 and EY6A, 
hydrophobic interactions dominate, contributing to high conservation and broad reactivity, but also 
rendering them vulnerable to mutations that destabilize local structure. In contrast, a somewhat 
wider hotspot distribution and greater involvement of electrostatics found for COVA1-16 antibody 
suggest a more adaptable binding mode, though one that may be more sensitive to polar or charged 
mutations. These energetic trade-offs have clear implications for immune evasion. Mutations T376A 
and R408S, found in Omicron BA.2 can disrupt critical hydrophobic or electrostatic contacts, leading 
to complete loss of neutralization by these antibodies (Figure 7) Even conserved residues F377 and 
C379, though rarely mutated due to structural constraints, can be compromised by second-order 
effects such as loop destabilization or alterations in solvent exposure. From a functional perspective, 
the MM-GBSA results reinforce that group F1 antibodies rely on a delicate balance of forces — 
dominated by hydrophobic interactions, supported by electrostatics, and constrained by structural 
rigidity.  

The strongest binding hotspots for group F2 DH1047 include Y505, R408, V503, T375, F377, K378, 
Y380, C379, T415, and F374 (Figure 8A). These residues form a structurally conserved yet partially 
exposed interface, highlighting the delicate balance between conservation and accessibility. For this 
group F2 antibody, residues V503, Y505, T376, S375, Y380, F377, and R408 dominate the hydrophobic 
contacts, providing the primary stabilizing force for the complex (Figure 8B). While K378, R408, and 
K386 contribute favorable electrostatics, these interactions are offset by solvation penalties, resulting 
in only marginal net stabilization (Figure 8C). DH1047 engages critical residues R408, V503, and Y505, 
which are also essential for ACE2 binding.  Notably, DH1047 exhibits a hybrid interaction pattern, 
combining elements of both group F1 conservation and group F3 interference with ACE2 binding. 
This suggests that group F2 antibodies may occupy an evolutionary intermediate stage, where 
increased potency comes at the cost of greater sensitivity to immune pressure, especially in evolving 
variants. Hence. MM-GBSA profile of DH1047, a representative group F2 class 4 antibody, reveals a 
transition in energetic strategy, with increased involvement of ACE2-proximal residues such as R408, 
V503, and T376. These sites contribute strongly through hydrophobic contacts, while K378 and R408 
also provide favorable electrostatic contributions (Figure 8C).  
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Figure 8. Binding Free Energy Decomposition of Group F2 and F3 Antibodies with the RBD Using MM-
GBSA Analysis. MM-GBSA binding free energy decomposition for group F2 DH1047 and group F3 S2X259 in 
complex with RBD. (A) The total binding free energy for DH1047 binding to the RBD, highlighting key residues 
contributing to overall stability. (B) Van der Waals (VDW) component of the binding free energy, showing 
dominant contributions from hydrophobic interactions. (C) Electrostatic (ELE) component of the binding free 
energy, revealing residues critical for charge-based stabilization. ( D) The total binding free energy for S2X259 
binding to the RBD (E) VDW contribution to binding, illustrating the role of nonpolar contacts in stabilizing the 
complex. (F) ELE contribution to binding, identifying residues involved in electrostatic interactions. Residue-
based binding free energy values are shown for total energies as magenta-colored filled bars, van der Waals 
contributions as orange-colored bars and electrostatic contributions as light-brown colored bars. MM-GBSA 
contributions are evaluated using 1,000 samples from MD simulations. 

S2X259, a representative group F3 antibody, exhibits a binding mode that extends even closer to 
the ACE2 interface, which may effectively transition mechanistically from allosteric effects on ACE2 
binding toward direct competitive inhibition. The MM-GBSA results highlighted several key 
features. We found that residues V503, R408, P384, F377, and D405 form robust hydrophobic 
interactions, anchoring the antibody firmly to the RBD (Figure 8D,E). The favorable electrostatic 
interactions are observed at R408, K378, R403, D389, and K417, further stabilizing the complex (Figure 
8F). The combination of strong hydrophobic and electrostatic interactions creates a robust binding 
interface that overlaps significantly with the ACE2 footprint, particularly at R408, V503, and G502, 
which are among the most critical residues for viral entry. The MM-GBSA results suggest that 
neutralization potency of S2X259 stems from its ability to engage both hydrophobic cores and 
charged interfaces, thereby combining structural conservation with functional interference. 
However, this proximity to ACE2 also introduces escape vulnerabilities, particularly at D405 and 
R408, where substitutions such as D405N and R408S have been shown to significantly reduce 
binding. Mutational scanning supports these findings, indicating that while only a few residues (e.g., 
D405, R408, V503/G504) represent major points of vulnerability, they are biochemically significant — 
often requiring dramatic amino acid changes to evade antibody recognition. Nonetheless, the 
emergence of T376A, D405N, and R408S mutations in Omicron BA.2 highlights how selective 
pressure can still drive escape even at functionally constrained sites [26,27].  MM-GBSA calculations 
reveal that these interactions act synergistically, creating a robust binding interface that enables direct 
steric competition with ACE2. This explains the highest neutralization potency observed among class 
4 antibodies. However, it also introduces significant escape risks, particularly at R408 and D405, 
where substitutions severely reduce binding affinity. These findings are fully consistent with DMS 
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data which identified R408S and D405N as high-impact escape mutations. While some of these 
residues are evolutionarily constrained due to their essential role in viral entry, others remain 
mutable under selective pressure, reflecting the functional duality of this region: structural 
conservation vs. immunogenic exposure.  

When comparing the energetic profiles and escape vulnerabilities across group F1 (CR3022, 
EY6A, COVA1-16), group F2 (DH1047), and group F3 (S2X259), an interesting evolutionary trajectory 
emerges reflecting a progression from deeply cryptic, allosteric engagement (F1), through partial 
overlap with ACE2 and enhanced hydrophobic/electrostatic synergy (F2), to direct receptor 
competition with strong energetic coupling (F3. From this comparative view, we observe a gradual 
shift in energetic strategy. Group F1 antibodies rely on deeply conserved hydrophobic cores, offering 
broad reactivity but low potency due to low accessibility and indirect neutralization mechanisms. 
Group F2 antibodies begin to leverage electrostatic complementarity, enhancing affinity and partial 
receptor blocking, but at the cost of increased escape susceptibility. Group F3 antibodies achieve the 
strongest binding synergy, combining hydrophobic stability with electrostatic reinforcement, 
allowing them to effectively compete with ACE2 — albeit with greater vulnerability to mutations at 
key receptor-contacting residues. Our results enable energetic rationalization why group F1 class 4 
antibodies excel in breadth and conservation but suffer from limited access and weak binding. In 
contrast, group F2 antibodies offer a balanced middle ground, with improved potency and moderate 
escape risk. Finally, group F3 antibodies deliver strong neutralization, but face evolving escape 
challenges, particularly at R408, D405, and T376. 

3.5. Exploring Allosteric Binding Pathways Using Dynamic Network Analysis  

We used the ensemble-based network centrality analysis and the network-based mutational 
profiling of allosteric residue propensities that are computed using the topological network 
parameters particularly the SPC and Z-Score of the ASPL in the network where we compute changes 
in the metrics averaged over all possible modifications in a given position for all RBD residues in the 
complex.  Through ensemble-based averaging  over mutation-induced changes  in the network 
parameters we identify positions in which mutations on average cause network changes. Allosteric 
hotspots are identified as residues  in which mutations incur significant perturbations of the global 
residue interaction network that disrupt the network connectivity and cause a significant impairment 
of network communications and compromise signaling. 

The network analysis of allostery for group F1 antibodies CR3022, EY6A, and COVA1-16 reveals 
a unified yet subtly differentiated mechanism by which these antibodies engage the RBD. By 
leveraging dynamic simulations, mutational scanning, and energetic decomposition, we have 
uncovered key insights into how these antibodies stabilize the RBD core while inducing subtle shifts 
in conformational flexibility, particularly within the RBM loop (~470–490). These findings underscore 
the modular nature of RBD allostery, where conserved structural motifs form the backbone of 
antibody recognition, while peripheral residues mediate functional consequences such as indirect 
interference with ACE2 binding. Across all three group F1 antibodies, the central hydrophobic core 
of the RBD remains a conserved interaction hub, stabilized by residues forming β-strands (β1–β7 ) 
and α-helices. This core exhibits minimal fluctuations, reflecting its critical role in maintaining overall 
RBD integrity. However, the 470–490 loop, which contains the RBM, shows elevated RMSF values, 
indicating increased local flexibility upon antibody binding. This redistribution of rigidity and 
mobility suggests that group F1 antibodies induce allosteric effects by stabilizing the central RBD 
core while promoting open conformations favorable for epitope exposure (Figure 9).  

We first analyzed the distribution of the SPC and Z-score ASPL parameter for class 4 group F1 
CR3022, EY6A and COVA1-16 antibodies (Figure 9A,B). The high centrality RBD sites for CR3022 
include core residues 431,380,396,377,423,436,374,381,355,392,398. Among sites with appreciable Z-
Score ASPL values are also RBD positions involved in ACE2 binding such as RBD sites 
451,495,497,439,443,506 (Figure 9A,B). A number of mediating network positions for EY6A included 
RBD core residues 365,338, 342,369, 400,410,407 along with residues closer the ACE2 binding site 
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(495,453, 493,506). For COVA1-16 antibody, the high centrality positions also include RBD core 
residues 414, 418, 355,436, 396,341,338,379, 393, 397 as well as some residues located near ACE2 
binding site ( residues 493, 406, 495).  Across all three antibodies, the central RBD core emerges as a 
highly connected hub in the residue interaction network. For CR3022, high-centrality residues 
include 431, 380, 396, 377, 423, 436, 374, 381, 355, 392, and 398 — many of which are deeply conserved 
and structurally critical. These positions form a rigid scaffold that underpins the overall stability of 
the RBD and serves as a conduit for allosteric signals originating from the cryptic epitope. Similarly, 
EY6A and COVA1-16 also highlight core residues as key mediators of network connectivity. EY6A 
engages residues such as 365, 338, 342, 369, 400, 410, and 407, while COVA1-16 identifies 414, 418, 
355, 436, 396, 341, 338, 379, 393, and 397 as high-centrality nodes (Figure 9A,B). Notably, several of 
these residues overlap with those highlighted by CR3022, reinforcing the idea that a shared structural 
framework exists across group F1 antibodies, even if each antibody approaches it with slight 
variations in orientation or contact profile. Importantly, all three antibodies appear to influence 
residues near the ACE2 interface, including 451, 495, 497, 439, 443, and 506, through indirect allosteric 
coupling rather than direct steric interference. This suggests that despite not directly overlapping 
with the ACE2-binding motif, group F1 antibodies can still exert functional consequences on receptor 
engagement, mediated via long-range dynamic reorganization of the RBD. Structural mapping of the 
high centrality sites in the CR3022 complex (Figure 9C) and COVA1-16 complex (Figure 9D) 
displayed a dense interaction network that produced rigidification of the RBD central core engaging 
“the right shoulder” of the RBD [107].  

 

Figure 9. The  ensemble-averaged SPC centrality (A) and the average Z-score of ASPL over mutational scan (B) 
for the RBD residues for the class 4 group F1 antibody complexes : CR3022 with RBD, pdb id 6YM0 (in orange 
filled bars), EY6A with RBD, pdb id 7ZF3 (in magenta filled bars) and  COVA1-16 with RBD, pdb id 7JMW ( in 
green filled bars). (C) Structural mapping of allosteric network centers for class 4 group F1 CR3022 antibody 
with RBD. (D) Structural mapping of allosteric network sites for class 4 group F1 COVA1-16 antibody with RBD. 
The heavy chain in orange ribbons, the light chain in red ribbons. The binding epitope residues are shown in 
blue surface, and binding hotspots are in orange and allosteric residue interaction network with high SPC and 
Z-score ASPL values in wheat-colored spheres. 

An intriguing and consistent finding across all three antibodies is the lack of high-centrality 
nodes in the “left shoulder” of the RBD ( residues 450-494) [107] including flexible RBM region. This 
segment, known for its conformational variability, appears to be only weakly integrated into the core 
allosteric network, suggesting that its dynamic behavior is largely independent of the structured core. 
In other words, the allosteric RBD network is weakly coupled to stochastic movements of 450-495 
region that reflects the increased mobility of this region. These findings are consistent with the 
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dynamic analysis showing that group F1 antibodies can induce stabilization of the central RBD core 
coupled with the increased flexibility in the 470–490 loop, thus leading to partial redistribution of the 
rigidity-flexibility patterns. The increased variations in the RBM regions can ensure highly open RBD 
conformation in which the cryptic site is available for binding  thus enabling allosteric interference 
with the efficient ACE2 binding. In essence, the allosteric signal propagates through the rigid core, 
subtly reshaping the dynamical landscape of the entire RBD, and thereby influencing viral entry 
potential from a distance.  

One of the most striking findings from this comparative analysis is the common effect these 
antibodies have on RBD flexibility. The data consistently show that antibody binding stabilizes the 
rigid RBD core while increasing mobility in the RBM loop region. The increased conformational 
diversity in this region may disrupt the precise alignment required for efficient ACE2 binding, subtly 
altering the energetic landscape without direct competition. This mechanism aligns well with 
experimental observations from surface plasmon resonance (SPR) and bio-layer interferometry (BLI) 
studies showing that CR3022 binding slows ACE2 association and accelerates dissociation via 
allosteric modulation rather than physical occlusion [57].  

While the overall dynamic footprint and network topology are broadly similar across the three 
antibodies, minor differences emerge in the specific residues involved and their relative contributions 
to network integrity. EY6A shows notable involvement of residues 365, 338, 342, and 407, which are 
slightly more peripheral compared to the CR3022-centric core. It also interacts more strongly with 
positions near the ACE2 interface, such as 495, 453, 493, and 506, potentially enhancing its modulatory 
influence over receptor binding dynamics. COVA1-16, in contrast, engages a broader set of core 
residues, including 414, 418, 393, and 397, which may reflect a more distributed mode of network 
interaction. Its mutational sensitivity profile includes residues at the edge of the RBM, such as 406 
and 493, suggesting that COVA1-16 may be more sensitive to mutations affecting the transition 
between open and closed RBD states. Despite these small variations, the overall architecture of the 
allosteric network remains highly conserved, supporting the hypothesis that group F1 antibodies 
operate through a common functional mechanism, albeit with fine-tuned differences in network 
coupling and residue-specific interactions. 

Despite not overlapping with the ACE2-binding motif, all three group F1 antibodies engage 
residues that are topologically linked to the receptor interface through the global interaction network. 
Mutational profiling of allostery confirms that disruptions in this communication pathway — 
especially at peripheral positions — can compromise both antibody binding and ACE2 engagement, 
underscoring the functional importance of long-range signaling in the RBD. This supports the idea 
that allostery is not a secondary or marginal effect, but rather a central mechanism of neutralization 
for class 4 antibodies. Binding at one site (the cryptic epitope) influences function at another (ACE2 
interface), demonstrating the non-local nature of immune recognition and interference. Hence, the 
network-based allosteric analysis reveals that group F1 class 4 antibodies leverage a modular and 
evolutionarily preserved interaction framework. Their neutralization strategy relies on dynamic 
modulation rather than direct steric blocking, reshaping the conformational ensemble of the RBD to 
disfavor ACE2 engagement. While this mechanism provides robustness against escape at core 
residues, it also introduces vulnerabilities at the periphery of the binding epitopes. Each antibody 
engages a distinct subset of network hubs, yet all converge on a common dynamic outcome — 
interference with the efficiency of ACE2 engagement through conformational and kinetic 
modulation. The subtle differences in residue-level network contributions suggest that each antibody 
may fine-tune the allosteric signal in distinct ways, possibly influencing their susceptibility to escape 
mutations or their efficacy in different spike conformations. These distinctions, though minor, could 
become relevant in therapeutic contexts, where small shifts in binding affinity or conformational 
preference might determine neutralization outcomes in evolving variants.  

Network analysis of group F2 antibody DH1047 revealed redistribution of the residue 
interaction network, with increasing localization around key positions involved in receptor binding. 
The high centrality residues identified for DH1047 include RBD ore elements (residues 393, 480, 362, 
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343, 331) as well as some ACE2-proximal residues (453, 454, 456, 457, 503, 507, 508) (Figure 10A,B). 
This dual involvement suggests that DH1047 engages both the conserved structural scaffold and 
functionally relevant regions, allowing it to exert both global conformational effects and local 
interference with ACE2 engagement. Structural mapping further supports this hybrid mechanism, 
showing that the allosteric signal now propagates more directly from the cryptic site toward the 
ACE2-binding motif, forming a more focused communication pathway compared to group F1 
antibodies (Figure 10C). However, this increased proximity to the ACE2 interface also introduces 
new escape vulnerabilities, particularly at T376, K378, and R408, where mutations such as T376A and 
R408S — observed in Omicron BA.2 — severely compromise binding. These findings highlight a 
trade-off between enhanced potency and increased sensitivity to antigenic drift, positioning group 
F2 antibodies as an intermediate stage in the mechanistic evolution of class 4 antibodies.  

Group F3 antibody S2X259 represents the most advanced adaptation in this trajectory, engaging 
the RBD through a highly localized network that overlaps extensively with the ACE2 footprint with 
the high centrality positions (453, 454, 457, 467, 493) that are overlap with ACE2 binding interface 
(Figure 10A,B). S2X259 forms more localized and direct communication pathway from the cryptic 
site to the receptor interface (Figure 10D), enabling dual modes of action : direct steric interference 
with ACE2 via overlapping contacts and allosteric reinforcement by stabilizing RBD conformations 
incompatible with efficient receptor engagement. 
 

 

Figure 10. The  ensemble-averaged SPC centrality (A) and the average Z-score of ASPL over mutational scan 
(B) for the RBD residues for class 4 group F2 antibody complex DH1047 with RBD, pdb id 8DTK (in orange filled 
bars) and group F3 antibody complex  S2X259 with RBD, pdb id 7RAL ( in magenta filled bars). (C) Structural 
mapping of allosteric network sites for class 4 group F2 antibody complex DH1047 with RBD, pdb id 8DTK.  
(D) Structural mapping of allosteric network sites for the class 4 group F3 antibody complex S2X259 with RBD, 
pdb id 7RAL The heavy chain in orange ribbons, the light chain in red ribbons. The binding epitope residues are 
shown in blue surface, and binding hotspots are in orange and allosteric residue interaction network with high 
SPC and Z-score ASPL values in wheat-colored spheres. 

The dynamic network analysis reveals a clear evolutionary progression among class 4 
antibodies, marked by increasingly focused allosteric signaling pathways that link the cryptic epitope 
— located deep within the RBD core — to the ACE2-binding motif on the opposite side of the domain 
(Figures 9,10, Table 2). This progression reflects a refinement of functional influence, transitioning 
from indirect allostery (F1) to hybrid mechanisms involving both conformational modulation and 
partial steric hindrance (F2), and finally to direct receptor competition (F3). These shifts are not only 
structural but also network-determined, highlighting how residue interaction patterns shape 
neutralization efficacy and escape vulnerability. 
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Table 2. Comparative Network Architecture for Groups F1,: F2 and F3 Antibodies: From Broad Modulation to 
Targeted Interference. 

Feature Group F1  Group F2  Group F3 

Network 

Localization  

Broad, diffuse Intermediate, partially 

localized 

Highly localized 

ACE2 Coupling  Weak, indirect Moderate, hybrid Strong, direct 

Key Residues  Core β-sheet (e.g., 

355–380, 431, 436) 

Core + emerging ACE2 

sites (T376, R408, V503) 

ACE2-overlapping 

residues (D405, R408, 

G504, Y508) 

Escape 

Vulnerability  

Low Moderate Moderate 

Neutralization 

Mechanism  

Indirect allostery Hybrid (dynamic + 

partial steric) 

Direct ACE2 competition + 

allosteric stabilization 

4. Discussion 

The molecular mechanisms underlying antibody recognition of the RBD reveal a modular and 
progressive adaptation among class 4 antibodies — particularly across groups F1 (CR3022, EY6A, 
COVA1-16), group F2 (DH1047), and group F3 (S2X259) — in how they engage a deeply conserved 
epitope and modulate its functional consequences. While these antibodies share a common structural 
scaffold and conformational dependency, they exhibit divergent neutralization mechanisms, ranging 
from indirect allostery to direct steric competition with ACE2. This mechanistic continuum reflects 
an evolutionary trajectory in immune recognition, shaped by both structural constraints and selective 
pressures exerted during viral adaptation. Class 4 antibodies are unified by their targeting of a 
cryptic, hydrophobic core within the RBD, accessible only when at least two RBDs adopt the "up" 
conformation. This requirement introduces a conformational barrier to binding, which explains their 
low intrinsic potency despite broad cross-reactivity across sarbecoviruses. The structural mapping 
and mutational scanning data support this model, showing that escape mutations primarily affect 
peripheral residues, such as S383–386, T376, and R408, rather than the deeply embedded core. These 
findings reinforce the idea that conservation and functionally critical roles protect the central epitope 
from antigenic drift, while immunogenic edge regions remain mutable under selective pressure.  

Dynamic simulations further illustrate how antibody binding alters the conformational 
landscape of the RBD, redistributing flexibility between the rigid β-sheet core and the dynamically 
disordered RBM loop (~470–490). In group F1 antibodies, this redistribution enhances epitope 
exposure but also subtly perturbs the energetic and kinetic landscape of ACE2 engagement, 
consistent with experimental observations that CR3022 slows ACE2 association and accelerates 
dissociation, without direct physical overlap. This mechanism aligns with the hallmark of allosteric 
regulation, where binding at one site influences activity at another through long-range 
communication pathways embedded in the RBD structure. In contrast, group F2 antibody DH1047 
exhibits a hybrid mode of action, extending its interaction toward the ACE2 interface and engaging 
key receptor-contacting residues such as T376, R408, V503, and Y508. This shift allows for partial 
steric hindrance, enhancing neutralization potency while still retaining significant allosteric 
influence. MM-GBSA and mutational profiling confirm that substitutions T376A and R408S, 
observed in Omicron BA.2, severely compromise DH1047 binding, highlighting the growing trade-
off between breadth and escape resistance as antibodies evolve closer to the host receptor interface. 
Group F3 antibody S2X259 represents the most advanced stage of this progression, engaging the RBD 
through a highly localized network that overlaps extensively with the ACE2 footprint. This 
progression reflects a broader theme: neutralization strength correlates with proximity to the ACE2 
interface but so does escape susceptibility. As antibodies refine their binding modes from indirect 
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modulation to direct competition, they gain potency but lose resilience to antigenic drift. Crucially, 
our dynamic network modeling identifies a central “allosteric ring” embedded in the RBD core — a 
conserved structural motif shared across all class 4 complexes — with antibody-specific extensions 
propagating toward the ACE2 interface. This modular architecture supports a model in which 
neutralization strategies evolve via progressive refinement of peripheral network connections, rather 
than complete redesign of the epitope itself. This principle aligns with broader findings in protein 
allostery, where functional diversification occurs through modulation of network edges, while 
preserving the integrity of the core.  

The results highlight a trade-off between breadth and potency. Group F1 antibodies (CR3022, 
EY6A, COVA1-16) offer broad cross-reactivity and strong resistance to escape mutations, making 
them ideal candidates for targeting diverse sarbecoviruses. Group F2 antibodies (DH1047) strike a 
functional balance, engaging both the conserved core and emerging contacts near the ACE2 interface, 
thereby enhancing neutralization while retaining moderate conservation. Group F3 antibodies 
(S2X259) achieve the highest neutralization potency by directly competing with ACE2, though at the 
cost of increased escape susceptibility, particularly under pressure from Omicron BA.2 variant where 
mutations such as T376A and R408S abolish binding. 

Therapeutically, these results suggest that no single class 4 antibody is optimal in isolation. 
Rather, rational combinations — especially those pairing group F1 antibodies (for stability and 
breadth) with group F3 antibodies (for potency and direct blocking) — may offer the best balance of 
breadth, efficacy, and durability. Group F2 antibodies such as DH1047 could act as intermediaries, 
reinforcing both dynamic modulation and receptor interference without full overlapping. From a 
vaccine design perspective, the discovery of a structurally invariant yet dynamically influential core 
suggests that future immunogens should aim to stabilize open conformations of the RBD, thereby 
promoting recognition of cryptic epitopes that are otherwise inaccessible to the immune system. This 
would require innovative antigen design strategies that mimic the conformational transitions 
necessary for F1-class antibody engagement.  Finally, the integration of mutational scanning, 
binding free energy decomposition, and network centrality metrics highlights the importance of 
considering not just direct contacts, but also network-level effects and second-order conformational 
changes when assessing antibody function.  

5. Conclusions 

This study provides a comprehensive mechanistic framework for understanding how class 4 
antibodies modulate the RBD conformational dynamics and neutralize the virus through indirect or 
direct interference with ACE2 binding. By integrating structural analysis, MD simulations, binding 
free energy decomposition, and network-based allosteric modeling, we uncover a progressive 
evolution in antibody function — from classic allostery (group F1) to hybrid mechanisms involving 
both dynamic modulation and partial steric hindrance (group F2), and finally to direct competitive 
inhibition (group F3).  

The agreement between DMS experiments, mutational scanning and MM-GBSA binding free 
energy calculations underscores the accuracy of computational methods in predicting residue-level 
contributions to antibody recognition. Importantly, dynamic network analysis reveals a central 
“allosteric ring” embedded in the RBD core, serving as a conserved communication hub across all 
class 4 complexes. Antibody-specific extensions from this core propagate toward the ACE2 interface, 
forming long-range signaling pathways that influence viral entry without direct physical 
overlapping. These insights reinforce the idea that neutralization need not rely on direct blocking, 
but can emerge through conformational redistribution and kinetic modulation, offering a non-
canonical yet potent mechanism of action. Together, these observations support a modular model of 
RBD allostery, where neutralization strategies evolve via refinement of peripheral network 
connections, rather than complete redesign of the epitope itself. This evolutionary logic aligns with 
fundamental principles of protein allostery, reinforcing that functionally distant sites can exert 
meaningful influence through network-level interactions.  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 July 2025 doi:10.20944/preprints202507.1050.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1050.v1
http://creativecommons.org/licenses/by/4.0/


 26 of 34 

 

Our findings emphasize the importance of rational antibody cocktails that combine group F1 
(for breadth and stability) with group F3 (for direct receptor competition), using group F2 antibodies 
as intermediaries to bridge these extremes.  

Together, the findings of this study support a modular model of antibody-induced allostery 
where neutralization strategies evolve via refinement of peripheral network connections, rather than 
complete redesign of the epitope itself. This evolutionary logic aligns with fundamental principles of 
protein allostery, reinforcing that functionally distant sites can exert meaningful influence through 
network-level interactions . 

Supplementary Materials: The following supporting information can be downloaded at the website 
of this paper posted on Preprints.org. Table S1 lists the binding epitope residues and contacts with 
the RBD for class 4 group F1 antibody CR3022. Table S2 lists the binding epitope residues and contacts 
with the RBD for class 4 group F1 antibody EY6A. Table S3 lists the binding epitope residues and 
contacts with the RBD for class 4 group F1 antibody COVA1-16. Table S4 lists the binding epitope 
residues and contacts with the RBD for class 4 group F2 antibody DH1047. Table S5 lists the binding 
epitope residues and contacts with the RBD for class 4 group F3 antibody S2X259. Table S6 lists the 
binding epitope residues and contacts with the RBD for SA55.  
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