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Abstract: The DNDC-Rice model effectively simulates the yield and greenhouse gas emissions within
paddy system, while its performance under upland conditions remains unclear. This study validated
the model using data from a long-term cover crop experiment (fallow [FA] and rye [RY]) in a soybean
field, evaluating its limitations in upland systems simulation. The model underestimated water-filled
pore space (WFPS) and nitrous oxide (N20) flux while overestimating soybean biomass, yield, and
carbon dioxide (CO2) flux. The underestimation of cumulative N2O flux (25.6% in FA and 5.1% in RY)
was attributed to both underestimated WEPS and algorithm’s limitations in simulating N20 emission
pulses. Overestimated soybean growth increased respiration, leading to the overestimation of CO:
flux. Although the model captured trends in soil organic carbon (SOC) stock, the simulated annual
values differed from observations (-9.9% to +10.1%), potentially due to sampling errors. Both
observed and simulated results showed that RY increased N20 emissions and SOC stock compared
to FA. However, enhanced SOC sequestration under RY offset the increased N20 emissions, resulting
in a lower net global warming potential than FA. These findings indicate that the DNDC-Rice model
requires improvements in its nitrogen cycling algorithm and crop growth sub-models to improve
predictions for upland systems.

Keywords: DNDC-Rice; greenhouse gas; soil organic carbon; cover crop

1. Introduction

Agricultural production is a significant source of greenhouse gas (GHG) emissions, which are
key drivers of climate change [1]. Extreme climate events, in turn, reduce agricultural yields, thereby
threatening global food security [2]. Agricultural soils can function as either sources or sinks of GHGs,
depending on various conditions [3]. Implementing effective agricultural management practices to
reduce GHG emissions and enhance carbon sequestration is a crucial strategy for mitigating climate
change at the agricultural level.

In recent years, conservation agricultural management practices have rapidly spread due to their
ability to enhance ecosystem services and promote sustainable agricultural development [4]. Cover
crop management, a typical and historic conservation agriculture method, massive studies have
confirmed its positive effect on mitigating soil erosion [5], improving soil structure and water-stable
aggregates [6,7], enhancing soil fertility [8] and reducing weeds infestation [9,10]. For example, a
cover crop experiment conducted in Japan demonstrated that a rye cover crop significantly improved
soil health within a soybean cropping system [11]. However, the impact of cover crops on GHG
emissions and soil carbon sequestration remains contentious. Some studies have reported that cover
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crops can reduce nitrous oxide (N20) emissions by scavenging excess NOs-N in the soil [12,13]. The
biomass remaining after cover crop termination serves as a carbon source, contributing to increased
soil organic carbon (SOC) stocks [14,15]. However, the release of organic carbon and nitrogen during
the decomposition of cover crop residues may also result in elevated N20 emissions [16,17]. These
increased N20 emissions, in turn, could potentially offset the climate change mitigation benefits
associated with the enhanced SOC stocks [18,19]. The potential of cover crops to mitigate climate
change varies based on factors such as site characteristics, agronomic practices, and cover crop
species [18,20]. Consequently, evaluating the effect of cover crops on climate change requires
incorporating context-specific considerations.

Although field experiments can provide direct observations of GHG emissions and SOC stock
at a specific point in time, they are difficult to use for continuous monitoring of intermediate
processes, such as the carbon-nitrogen-water-crop balances [21]. Additionally, field experiments are
resource-intensive and time-consuming due to the necessity of conducting extensive repeated
measurements [22]. A well-calibrated model has the capacity to simulate the physical, chemical, and
microbiological processes in soil using mathematical principles and computational power to calculate
soil GHG emissions [23]. Simulation models are diverse, varying in complexity from simple empirical
estimates based on statistical analysis to complex process-based biogeochemical models [23,24]. The
DeN:itrification-Decomposition (DNDC) model, a process-based model, focus on the carbon and
nitrogen biogeochemistry in agro-ecosystem [25]. By integrating classical physic, chemistry and
biology laws, the model is capable of parameterizing specific geochemical or biochemical processes,
such as simulating and quantifying the GHG emissions, as well as carbon and nitrogen dynamics in
soil [26]. Currently, the DNDC model is widely adopted to estimate and compare the GHG mitigation
potential across diverse agricultural management scenarios at regional and national scales [27,28].
Moreover, the DNDC model has been modified numerous times and integrated with various sub-
models to produce different versions to meet the specific needs of different regions, agronomic
management and crops. For instance, DNDC-Rice is a revised version specifically designed for rice
cultivation [29]. The DNDC-Rice model significantly enhances the ability to estimate greenhouse gas
emissions from paddy fields and has been validated using GHG data from paddy fields across Asia,
including Japan [30], India [31], and Thailand [32]. It demonstrates high accuracy and performance
in simulating and predicting greenhouse gas emissions from paddy fields under different irrigation
management scenarios [31].

In rice production systems, alongside the prevalent practice of continuous rice monoculture, the
rotation of paddy with upland crops is also commonly employed [33]. Numerous studies have
reported that the DNDC-Rice model is a powerful tool for accurately estimating soil GHG emissions
in the continuous rice monoculture system [28,34]. In rice systems with paddy-upland rotation, it is
impractical to use different versions of the DNDC model to simulate and predict the paddy and
upland periods separately. However, field validation of the DNDC-Rice model for N2O emissions in
upland cropping systems remains limited. Furthermore, previous studies have primarily focused on
estimating GHG emissions, while field validations concerning the dynamics of carbon sequestration
are still scarce.

Thus, we conducted a field validation of the DNDC-Rice using data from a long-term soybean-
cover crop cropping system. This study aims to address the gap in the validation of the DNDC-Rice
model for upland systems, thereby advancing its application in simulating paddy-upland rotation
systems. Specifically, the objectives of this study were to: (1) evaluate the performance of the DNDC-
Rice model in simulating N2O emissions and soil organic carbon stock dynamics in an upland
cropping system with a cover crop; and (2) discuss the strategies to improve the accuracy of the
predictions.
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2. Materials and Methods
2.1. The DNDC-Rice Model

The DNDC model is a process based model to simulate greenhouse gases, such as nitrous oxide,
carbon dioxide and methane, from agricultural ecosystems [26] by focusing on the carbon and
nitrogen biogeochemistry in agro-ecosystem [25]. DNDC consists of six sub-models divided among
two components. The first component consists of soil climate, plant growth, and decomposition sub-
models. These sub-models are driven by ecological drivers (i.e. climate, soil, vegetation, and human
activity) and predict soil environmental factors (e.g. temperature, moisture, pH, substrate
concentrations). The second component consists of denitrification, nitrification, and fermentation
sub-models. These sub-models predict gas fluxes (CO2, CHs, NHs, NO, N20, and N:2) through
denitrification, nitrification, and CHs production and oxidation processes [26,35,36].

DNDC-Rice is a revised DNDC model to simulate CH4 emission from rice paddies [29,30]. The
revised model quantifies the production of electron donors [Hz and dissolved organic carbon (DOC)]
by decomposition and rice root exudation, and simulates CHs production and other reductive
reactions based on the availability of electron donors and acceptors (NOs-, Mn*, Fe¥, and 5O+*") under
anaerobic soil processes. Rice growth process and methane emission through rice by a diffusion
routine were also modified in DNDC-Rice.

In this study, we used DNDC-Rice model to simulate a soybean system with rye cover crop
management and to improve the simulation results by modifying the source codes. DNDC-Rice
simulation was conducted for the period of 1987-2022 with the input of measured soil properties,
daily meteorological data and the field managements at the experimental site. Carbon input from
plant biomass to the soil was simulated as application of straw or green manure based on measured
biomass of soybean residue, rye and natural weed.

2.2. Modification and Initialization of the Model

At first, the maximum tillage depth was changed: the maximum tillage depth in DNDC-Rice
was 20 cm depth, and it was changed to 30 cm same as field practice. During the validation, it was
found that DNDC-Rice simulated soil carbon decomposition too fast and tillage strongly affected to
soil carbon decomposition. Therefore, tillage factor was changed from the default of 1.5 to 1.0.
Deepest tilled layer number also modified. In the DNDC, the deepest tilled layer was set to be 3 when
it was less than 3, but it was modified to be 1 when it was less than 1 to decrease tillage effect to SOC
decomposition. We also modified temperature limit, T_limit, which was the based degree to calculate
thermal degree days (TDD). T_limit for rye was decreased from 10 to 4.4 based on Mirsky et.al [37]
to improve the growth.

In simulating nitrification process in soil, DNDC-Rice assumes that fixed portion of nitrified N
is lost as N20O and NO [26]. After validation of SOC, crop growth, and CO: emission, these factors for
nitrification-induced N20 and NO production were changed from 0.015 and 0.0025 to 0.00015 and
0.006, respectively, to minimize the RMSE of simulated daily N20 emissions from the RY system .

2.3. Experiment Site

We used a long-term cover crop experiment data, initiated in 2003, at the farm of the Center for
International Field Agriculture Research and Education, Ibaraki University, Japan. The site lacates in
a humid subtropical climate, where the average annual precipitation was 1373 mm and the mean
daily temperature was 14.5°C throughout the experimental period (2003-2021) (Figure 1). According
to the World Reference Base for Soil Resources, the soil in this region is classified as a typical Andosol.
Further details about the site description and soil parameters can be found in Higashi et al. [38].
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Figure 1. Average monthly precipitation and air temperature from 2008 to 2022.

2.4. Experiment Design and Field Management

In this experimental field, experiments have been concurrently conducted, employing a range
of tillage methods and fertilization management practices. In the present study, the field data were
collected from the sub-plot that adopted moldboard plowing without fertilization. Tillage was
implemented in the summer and autumn using a moldboard plow to a depth of 30 cm. The main
crop in the field experiment was upland rice from 2003 to 2007, after which it was replaced by soybean
in 2008. In this study, two cover crop management practices [fallow (FA) and rye (RY)] were
compared within the soybean system, with four replications for each treatment. Soybean (cv.
Sachiyuta) was planted between July and November at a seeding density of 60 kg ha—1. During the
cover crop season (November to June), rye (cv. Ryokusei) was sown in the RY plots at a seeding rate
of 100 kg ha—1, whereas the FA plots received no artificial intervention, allowing weeds to grow
naturally (Table 1). All of main crop residues and cover crop biomass was plowed into the soil.
Further details on tillage, crops, and management practices are provided in Gong et al., Higashi et al
and Huang et. al. [38—40].

Table 1. Field management schedule for the 2020 and 2021 cropping years. Dates are described as

Day/Month/Year.
Management 2020 2021

Summer tillage 2020/6/8 2021/6/14
Soybean sowing 2020/6/30 2021/7/20
Soybean harvest 2020/11/5 2021/11/2
Autumn tillage 2020/11/6 2021/11/3

Cover crop sowing 2020/11/9 2021/11/3

Cover crop harvesting 2021/6/8 2022/5/30

2.5. Soil and Crop Measurement

Soybean samples were collected from the center of each plot using a 0.6 m? quadrat on the day
of harvest. Biomass was determined by weighing the oven-dried samples. The oven-dried samples
were then threshed, and the grains were weighed for yield analysis. Aboveground biomass from both
rye cover crops in RY plots and natural weeds in FA plots was collected prior to summer tillage using
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a 0.25 m? quadrat. These plant materials were oven-dried to constant mass and weighed to
determine dry biomass.

Soil core samples were taken from each plot at a depth of 30 cm in October each year for the
measurement of SOC. The samples were dried, ground, and analyzed for SOC content using a C/N
analyzer. SOC stock was subsequently determined based on SOC content, depth, and soil bulk
density using the soil mass equivalent method [41]. Soil temperature at a depth of 0-5 cm was
continuously monitored from 2020 to 2021 using soil temperature sensors. Soil volumetric water
content was measured during each gas samples collection to determine the water-filled pore space
(WEDPS) at a depth of 5 cm. More details regarding the measurement and calculation processes for
soybean and soil samples can be found in Gong et al., Higashi et al and Huang et. al. [38—40].

2.6. Greenhouse Gas Measurement

N:0 and CO: emissions were monitored from June 2020 to May 2022. Weekly gas samples were
collected using the static closed chamber method and analyzed with a gas chromatograph to quantify
the concentrations of N20 and CO:. Daily fluxes were determined using a concentration-time linear
function, while cumulative emissions were calculated through linear interpolation. Further details on
the collection, measurement and calculation of gas samples are shown in Huang et al and Ratih et al
[40,42].

The net global warming potential (GWP) in agricultural systems consists of greenhouse gas
emissions and variation in SOC stock (ASOC). The calculation of the net GWP for the period 2020-
2021 is as follows:

GWP2020/2021(602 equivalent kg ha™! year‘l) = 265 X cumulative N,0 emission,gyg 2021 (D
soc StOCk2021 —-S0ocC StCOk2019 % 44 (2)
2 12

_ GWPyppp + GW Py

Net GWPy50-201 (CO, equivalent kg ha™! year™") = > — AS0C 3)

where 265 represents the GWP indicator for N20 conversion to CO2 over a 100-year period.;

AS0C (€O, equivalent kg ha™! year™!) =

44/12 denotes the conversion factor for converting C to COs.

2.7. Statistical Analysis

The simulated results, including daily soil temperature, daily water-filled pore space (WFPS),
daily N20 flux, daily CO: flux, SOC stock, soybean biomass, and soybean yield, were assessed using
the root mean square error (RMSE) calculated as follows:

L — B)?

RMSE = — 4)

where ai and i denote the simulated and observed values of parameter i; and N denotes the
number of samples. The normalized RMSE (nRMSE) was also used in this study to evaluate the

accuracy of the model simulations and was calculated as follows:

RMSE
nRMSE (%) = —— X 100 (5)

where f is the average of the observed values.

3. Results

3.1. Soil Temperature and Water-Filled Pore Space

The DNDC-Rice model effectively estimated the daily soil temperature at a depth of 0-5 cm for
both the FA and RY system during the experimental period, with minimal difference between
observed and simulated results (Figure 2). The nRMSE of daily soil temperature in FA system was
10.7%, while in RY system was 11.4% (Table 2). The mean simulated soil temperature was marginally
higher than the mean observed temperature, with an increase of 2.1% in FA and 1.6% in RY. Overall,
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the model accurately captured the seasonal fluctuations in soil temperature throughout the year.
However, it consistently tended to overestimate soil temperature during the winter months. Field
observations across different systems revealed that the mean daily soil temperature in the RY system
was 1.7% higher than in the FA system. Similarly, the model replicated this difference, showing a

1.2% higher simulated value for the RY system compared to the FA system.
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Figure 2. Comparisons between observed and simulated daily soil temperature under fallow (A) and rye (B)

system during the 2020 and 2021 cropping year.

Table 2. Observed and simulated mean soil temperature, water-filled pore space (WFPS), daily N20O emission
and daily CO2 emission during the 2020 and 2021 cropping year. FA: fallow; RY: rye; SD: standard deviation;
nRMSE: normalized root mean square error.

Variables Units Treatment n Observed value Simulated value nRMSE (%)
Mean SD Mean SD

Soil temperature °C FA 678 14.98 0.34 15.29 0.31 10.69
RY 682 15.24 0.34 15.48 0.31 11.39
WEPS % FA 63 32.15 1.39 30.17 0.98 42.67
RY 63 33.37 1.18 32.56 1.13 41.90
Daily N20 emission kg N ha! FA 62 1.28 0.17 0.91 0.06 105.16
RY 63 1.69 0.21 1.63 0.13 94.93
Daily CO:z emission kg Cha™ FA 61 9.07 0.77 10.07 0.99 60.16
RY 61 14.55 1.26 25.77 1.90 101.31

The DNDC-Rice model successfully simulated the trend of daily WFPS (0-5 cm), although the
simulated values were underestimated compared with observed WEPS on average (Figure 3). In the
FA system, the mean simulated WFPS was 6.2% lower than the mean observed value, while in the
RY system, it showed a 2.5% reduction compared to the mean observed WFPS (Table 2). For all
cropping systems, the model overestimated the daily WFPS during winter-spring season but
underestimated it during summer-autumn season. In this study, the nRMSE of WEPS in FA system
was 42.7%, while in the RY system was 41.9%. The observed mean daily WFPS in the FA system was
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3.7% lower compared to the RY system, and the model also captured this trend, with the simulated

value for the FA system being 7.3% lower than that for the RY system.
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Figure 3. Observed and simulated daily water-filled pore space (WFPS) under fallow (A) and rye (B) system
during the 2020 and 2021 cropping year.

3.2. Crop Productivity

In order to validate the model performance on simulating crop productivity, we calculated the
average biomass and yield of soybean from 2008 to 2021 compared with simulated values (Table 3).
The DNDC-Rice model generally simulated soybean yields accurately in both the FA and RY systems,
despite a slight overestimation of the mean simulated values. In the FA system, the model
overestimated the mean soybean yield by 3.4%, with a nRMSE of 17.4%. Similarly, in the RY system,
the average simulated soybean yield was 12.0% higher compared to observed value, with an nRMSE
of 17.2%. On the other hand, DNDC-Rice model overestimated the soybean biomass for both the
cropping system. Specifically, the simulated soybean biomass for FA was 15.1% higher than the
observed value, whereas for RY it was 18.4% higher. The nRMSE for soybean biomass was 25.5% for
FA and 23.5% for RY.

Based on field observations, RY tended to reduce the biomass and yield of soybean, resulting in
a 3.2% decrease in mean biomass and an 8.8% decrease in mean yield compared to FA. In contrast,
the difference in simulated biomass and yield between FA and RY was minimal, with FA showing
only a 0.5% increase.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Table 3. Observed and simulated mean soil organic carbon (SOC) stock, soybean biomass and soybean yield

from 2008 to 2021. FA: fallow; RY: rye; SD: standard deviation; nRMSE: normalized root mean square error.

Variables Units Treatment n Observed value Simulated value nRMSE (%)
Mean SD Mean SD

Soybean biomass Mg C hat FA 13 3.23 0.23 3.72 0.16 25.52
RY 13 3.13 0.18 3.70 0.16 23.52
Soybean yield Mg Cha! FA 13 1.35 0.11 1.39 0.06 17.44
RY 13 1.24 0.10 1.38 0.06 17.21
SOC stock Mg C hat FA 13 80.41 0.88 78.76 0.05 5.38
RY 13 88.48 1.38 90.43 1.34 4.95

3.3. Soil Organic Carbon and Carbon Dioxide Emission

In the present study, the DNDC-Rice model effectively simulated the variation in SOC stock
from 2008 to 2021 (Figure 4 and Table 3). In FA system, the observed and simulated average SOC
stock were 80.4 Mg C ha' and 78.8 Mg C ha™!, with a nRMSE of 5.4%. In the RY system, the nRMSE
for average SOC stock was 5.0%, with the simulated value (90.4 Mg C ha™) being 2.2% higher than
the observed value (88.5 Mg C ha™). Additionally, both the observed and simulated SOC stocks in
RY were higher than those in FA, with increases of 10.0% and 14.8%, respectively.
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Figure 4. Observed and simulated SOC stock under fallow (FA) and rye (RY) system from 2008 to 2021.

During field observations, surface vegetation within the chamber area was carefully removed to
exclude photosynthetic CO:z uptake. Therefore, the observed CO:z emission presumably consisted of
soil respiration and root respiration, and was compared with simulated CO: emissions as the sum
of soil respiration and root respiration. The DNDC-Rice model reasonably simulated the trend of
daily CO:z emissions across all cropping systems, although it tended to overestimate the actual daily
value (Figure 5). The mean simulated daily CO: emissions for FA system was 11.1% higher than the
observed value, with a nRMSE of 60.2%. In RY system, the model overestimated the mean daily CO2
by 77.1%, resulting in a nRMSE of 101.3% (Table 2). Additionally, the simulated daily CO2 flux
increased rapidly following each tillage operation.
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Figure 5. Observed and simulated daily CO2 emission under fallow (A) and rye (B) system during the 2020 and
2021 cropping year. The gray vertical line, perpendicular to the x-axis, indicates the date of tillage
implementation.

Regarding cumulative CO:z emissions, the model's performance exhibited seasonal variation in
the FA system (Table 4). Specifically, during the soybean season, the model overestimated cumulative
COz emissions by 42.4% in 2020 and 27.3% in 2021. However, during the cover crop season, the model
underestimated cumulative CO:z emissions, with reductions of 21.3% in 2020 and 53.0% in 2021. In
contrast, for the RY system, the model consistently overestimated cumulative CO2 emissions across
all seasons, resulting in an average overestimation of 75.5%. Field observations revealed that the FA
system exhibited lower daily CO:z emissions and total cumulative CO2 emissions, reducing 38% and
34.2%, respectively, compared to the RY system. The model also captured this trend, amplifying the
difference, with daily CO2 emissions and total cumulative COz emissions in the FA system being
60.9% and 62.0% lower, respectively, than those in the RY system.

Table 4. Observed and simulated cumulative CO2 emission in each crop season under different cropping system
from 2020 to 2021. FA: fallow; RY: rye.

Observed Simulated
Variable Treatment
kg C ha!
2020 Soybean season FA 1701.37 2422.93
RY 2869.44 4979.66
2020 Cover crop season FA 951.51 748.77
RY 1485.84 3133.97
2021 Soybean season FA 1421.41 1809.51
RY 1841.09 3999.32
2021 Cover crop season FA 1554.02 730.55
RY 2360.57 2905.00
Total cumulation FA 5628.32 5711.76

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.0015.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2025 d0i:10.20944/preprints202506.0015.v1

10 of 18

RY 8556.94 15017.95

3.4. Soil Nitrous Oxide Emission

In both the FA and RY systems, the DNDC-Rice model effectively captured the seasonal
variation trends of daily N20 emissions throughout the experimental period (Figure 6). However, the
model exhibited a poor fit of daily N2O emission between the simulated and observed value, with
the high nRMSE value (105.2% in FA and 94.9% in RY) (Table 2). Compared to mean observed daily
N:0 emission, the simulated value decreased by 28.9% in the FA system, while in the RY system, the
reduction was 3.5%. The model consistently underestimated the cumulative N2O emissions for the
FA system across all crop seasons (Table 5). In the case of the MP system, the cumulative N20
emissions were underestimated during the soybean season, but overestimated during the cover crop
season. Overall, the simulated total N2O emissions were 25.6% lower than the observed values for
the FA system and 5.1% lower for the RY system. Moreover, both the simulated and observed values
indicated that the daily N2O flux and total N2O emissions under the FA system were lower than those
under the RY system, with reductions ranging from 24.3% to 62.0%.
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Figure 6. Observed and simulated daily N20O emission under fallow (A) and rye (B) system during the 2020 and
2021 cropping year. The gray vertical line, perpendicular to the x-axis, indicates the date of tillage

implementation.
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Table 5. Observed and simulated cumulative N2O emission in each crop season under different cropping
systems from 2020 to 2021. FA: fallow; RY: rye.

Observed Simulated
Variable Treatment
kg N ha™!
2020 Soybean season FA 231.73 142.80
RY 335.18 300.30
2020 Cover crop season FA 150.08 152.20
RY 126.26 166.90
2021 Soybean season FA 165.64 92.60
RY 255.25 267.30
2021 Cover crop season FA 164.90 142.70
RY 224.70 158.70
Total cumulation FA 712.36 530.30
RY 941.38 893.20

3.5. Global Warming Potential

The net GWP of different cropping systems was assessed and analyzed based on the GWP of
N20 and net CO: retention for the period from 2020 to 2021 (Table 6). The simulated N20O GWP for
FA and RY were 20.6% and 2.3% lower, respectively, compared to field observation. Moreover, RY
exhibited a higher N2O GWP than FA, with observed values showing a 35.9% increase and simulated
values a 67.2% increase. For net COz retention, the observed value for FA and RY were —7895.25 and
—2833.60 kg CO:2 eq ha! year™!, whereas the simulated values were 168.82 and 901.60 kg CO2 eq ha™
year. Based on field observation, the net GWP for FA and RY were 8057.58 and 3054.14 kg CO: eq
ha year-!. However, the model simulated minus net GWP values for both FA (-39.96 kg CO2 eq ha™
year™) and RY (-686.07 kg CO:2 eq ha! year).

Table 6. Observed and simulated global warming potential (GWP) under different cropping systems during the
2020 and 2021 cropping year. FA: fallow; RY: rye; ASOC: change of soil organic carbon stock.

Observed Simulated
Variable Treatment
kg C ha year!

N0 GWP FA 162.33 128.86
RY 220.53 215.52
ASOC FA -7895.25 168.82
RY -2833.60 901.60
Net GWP FA 8057.58 -39.96
RY 3054.14 -686.07

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.0015.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2025 d0i:10.20944/preprints202506.0015.v1

12 of 18

4. Discussion
4.1. Simulation of Soil Temperature, Water-Filled Pore Space and Crop Growth

Soil temperature and WEPS are vital factors influencing crop growth [43,44]. Simultaneously,
those significantly affect N2O emissions and the decomposition or sequestration of SOC [45,46]. Thus,
accurate estimation of soil temperature and WFPS by the DNDC-Rice model is a critical prerequisite
for reliably simulating N20 emissions and SOC stock dynamics. In some versions of the DNDC
model, soil surface temperature is assumed to be equal to the daily average air temperature, as the
soil temperature profile is calculated based on a heat flux model [22,36]. In contrast, DNDC-Rice
integrates a micrometeorological model, enhancing the accuracy of soil temperature profile
estimation [29]. Our study findings indicate that DNDC-Rice effectively simulated the soil
temperature (0-5 cm) in both FA and RY system, achieving a nRMSE below 12%, which is comparable
to or better than results reported in previous studies for upland cropping systems [47,48]. In our
study, the simulated WFPS successfully captured the temporal trends of the observed WEFPS,
consistent with previous findings [48,49]. However, discrepancies were noted in the dynamic values
between the observed and simulated WEPS. The observed WFPS was measured manually on gas
sampling days, making it susceptible to human error and limited by discontinuous observation
periods. The non-continuous observation may have overlooked critical rainfall or drought events,
potentially missing the peaks and troughs in WFPS dynamics. Unlike the observed WFPS, which
represents point measurements, the simulated WFPS is continuous, calculated at daily time steps,
and represents site-averaged values [50,51]. Therefore, owing to the influence of soil heterogeneity,
the simulated WFPS values may not align with the observed values. Additionally, a previous study
reported that the DNDC-Rice model overestimated water loss through evapotranspiration [52],
resulting in an underestimation of soil water content, which is consistent with our results.

Several studies conducted in rice systems have reported that DNDC-Rice tends to overestimate
rice straw biomass [52,53]. Similarly, our findings showed that simulated biomass and yield of
soybean were higher than the observed values. The crop growth sub-model of DNDC-Rice integrates
a crop carbon metabolism model, resulting in simulated crop growth being influenced by nitrogen
availability and carbon allocation [29]. The DNDC-Rice model incorporates specific growth functions,
calibrated for different rice varieties, to simulate rice growth [31], while it still lacks specific growth
functions for other dryland crops, such as soybean and rye. In the empirical crop growth sub-model,
plant growth and the allocation ratio of absorbed nitrogen (N) are calculated based on TDD, while N
uptake is regulated by TDD and the availability of soil N. It is well established that soybean is capable
of absorbing and transporting substantial amounts of N through biological N fixation, providing N
for utilization by all parts of the plant [54] and nitrogen fixation is, of course, assumed in DNDC-Rice.
Nitrogen fixation rate can be set for each crop as a constant in DNDC-Rice. However, it doesn’t vary
with environmental factors and crop growth. In field conditions, nitrogen fixation increases or
decreases as rhizobia increase or decrease, but DNDC-Rice does not predict such temporal variability.
Due to the absence of accurate simulation of biological nitrogen fixation in soybean, the DNDC-Rice
model may inaccurately estimate nitrogen uptake, leading to incorrect simulations of soybean
biomass and yield. Therefore, it is essential to develop and calibrate the relevant modules to improve
the DNDC-Rice model.

4.2. Simulation of Greenhouse Gas Emission and Soil Organic Carbon Stock

While the trend of daily CO: flux simulated by the DNDC-Rice model was similar to the
observed data, both the daily fluxes and cumulative fluxes were overestimated. Due to the physical
disturbance of the soil surface, tillage events often produce a temporary burst of soil COz emission
[55]. Following tillage, the DNDC-Rice model exhibited an immediate response, rapidly increasing
the simulated daily soil CO: flux (Figure 5). In the model, daily CO: flux is regulated by the tillage
factor. To prevent an excessive increase in CO:z emissions induced by tillage, this study reduced the
tillage factor in the model. In contrast, the observed daily CO:2 flux during the same period showed
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no significant changes, possibly due to the limitations of discontinuous field sampling, which may
have failed to capture the emission peaks induced by tillage events. Consequently, for a period
following the tillage event, the simulated daily soil CO2 emissions were always higher than the
observed values. Soil respiration is divided into autotrophic respiration, primarily driven by plant
roots, and heterotrophic respiration, which is mainly driven by microorganisms [56]. In this study,
the DNDC-Rice model overestimated soybean biomass, which is associated with a well-developed
underground root system. Furthermore, the biomass distribution among various organs during crop
growth simulation is determined by the ratios of grain, shoot, and root specified in the crop parameter
settings of the DNDC-Rice model. An excessively high root allocation ratio may result in an
overestimation of the simulated root biomass. This likely led to an overestimation of root autotrophic
respiration during the simulation, resulting in an excessively high CO: flux. Another main source for
the soil CO2 flux is the soil heterotrophic respiration, which is linked to the sequestration and
decomposition of SOC [57]. In the field experiment, both autotrophic and heterotrophic respiration
of soil occurred throughout the cover crop season (from November to June) in both the FA and RY
systems. Compared to natural weeds in the FA system, the cultivation of cover crops within the RY
system contributed to a higher root biomass, thereby enhancing soil autotrophic respiration and
resulting in higher CO:z emissions. In DNDC-Rice, weeding dates and the degree of weed growth can
be set in three levels (no, moderate, and serious), but we did not set it. Instead, weed biomass input
was set as green manure input to reproduce accurate carbon input. The absence of weed growth
process would cause the poor accuracy of soil autotrophic respiration during the cover crop season
in the FA system. As a result, the simulated CO: emissions for the cover crop season in the FA system
were lower than the observed values, thereby exacerbating the discrepancy in CO: emissions
estimation between the FA and RY systems in estimation. Therefore, it must be crucial to improve
the accuracy of weed growth process CO: emission

Some studies have documented that cover crops have the potential to enhance SOC stocks
[58,59]. The biomass carbon from cover crop residues supplies nutrients and energy to soil
microorganisms, a portion of which is subsequently converted into microbial carbon, thereby
contributing to an increase in SOC stocks and enhancing carbon sequestration [60]. The observed
SOC stock in the RY system was higher than that in the FA system, and the DNDC-Rice model
reproduced these results, although the discrepancy was amplified. These results demonstrate the
DNDC-Rice model's capability to accurately simulate the cover crop-induced SOC enhancement. The
amplified difference between the FA and RY systems may also be attributed to the absence of natural
weed growth calculation mentioned above, which prevented the DNDC-Rice model from accurately
simulating the contribution of weed biomass to the soil carbon pool in the FA system. Overall, the
simulated variation in SOC stock closely followed the observed trend over the period from 2008 to
2021. However, the model could not reproduce the interannual variability observed in the field. In
the DNDC model, SOC is automatically allocated to litter, labile humus (humad), and recalcitrant
humus pools in fixed proportion [36], and this same algorithm is also employed in the DNDC-Rice
model. However, whether the proportion set within the model aligns with the observed data remains
uncertain, as we did not conduct a carbon composition analysis of the field soil. We speculate that
inconsistent allocation proportion and pathways of SOC may be one of the factors contributing to the
discrepancies between the model simulations and field observations. Moreover, in DNDC-Rice, SOC
stock was calculated on a daily time step using predefined equations. During the estimation process,
the soil bulk density remained consistently aligned with the initial settings. In contrast, observed data
were gained through manual sampling and measurement at fixed annual time points, which may
introduce considerable sampling errors and increase uncertainty.

In the present study, DNDC-Rice model effectively reproduced the cover crop-induced
divergence in N20 emissions (FA < RY). The reproduction of elevated N20O emissions in RY systems
likely reflects model's effective parameterization of cover crop decomposition dynamics, particularly
the enhanced denitrification potential from increased biomass carbon and soil moisture retention.
Although the DNDC-Rice model effectively captured the seasonal variation in N20 fluxes, it
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significantly underestimated the cumulative fluxes. N2O emissions from soil are commonly released
into the atmosphere in a pulsed manner [61], with peak emissions persisting for no more than a few
weeks [62]. Meanwhile, in cropping systems, peak N20 emission events typically account for 50-90%
of the annual emissions [63,64]. However, previous studies have identified limitations in the DNDC-
Rice model, which fails to accurately predict the timing and magnitude of high N20 emission pulses
[52]. Our findings showed that the simulated daily N20 fluxes were lower than the observed values
during peak N20 emission events, leading to an underestimation of cumulative N20 fluxes.
Additionally, we observed that the periods of underestimation in daily N2O fluxes roughly coincided
with those of underestimation in WFPS. WEFPS is a key driver in the model's simulation of nitrification
and denitrification processes, with a profound impact on the prediction of N20O emissions [65].
Therefore, the discrepancy between the simulated daily N20O fluxes and observed values is likely due
to the underestimation of WFPS. Therefore, improving the accuracy of WFPS simulations, as well as
modifying the equations governing soil nitrogen dynamics to better simulate N20O emission pulse
events, will be key directions for enhancing the DNDC-Rice model's accuracy in predicting N20O
emissions.

Net GWP is derived from the GWP of N20 and changes in SOC stock in this study and the
substantial interannual variability in observed SOC values also contributes to unavoidable errors in
net GWP calculations. Field observations indicated a reduction in SOC stock during the period from
2019 to 2021. In contrast, the DNDC-Rice model, which fits a time-dependent curve for SOC stock
based on long-term observational data (2008-2021), simulated an increase in SOC stock during the
2019-2021 period, contradicting the observed results. This inconsistent SOC variation resulted in a
discrepancy between the observed and simulated net GWP values. Given the noticeable interannual
variation in the observed SOC stock, comparing the observed and simulated net GWP over longer
time intervals would be more reasonable.

5. Conclusions

This study conducted a field validation of the DNDC-Rice model using data on crop
productivity, soil parameters, and GHG fluxes from a soybean system incorporating two cover crop
management practices, to evaluate its simulation performance within the context of an upland
cropping system. The model accurately simulated soil temperature, but it underestimated WFPS and
N20 emissions. In contrast, the simulated values for CO:z emissions, soybean biomass, and yield were
overestimated. While the model successfully captured the long-term variation in SOC stock, the
annual SOC values were frequently either underestimated or overestimated. Moreover, the DNDC-
Rice model could reproduce the differences between RY and FA in terms of crop yield, GHG
emissions and SOC stock, although these differences may be exaggerated or diminished due to
discrepancies between the simulated and observed values. These findings indicated that further
refinements are needed to improve the model's accuracy in estimation. Due to algorithmic
limitations, the model failed to accurately simulate the growth of soybean and N20 emission pulse
events. Therefore, the crop growth sub-model for upland systems and the N dynamics equations in
the DNDC-Rice model required further refinement.
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