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Abstract: The DNDC-Rice model effectively simulates the yield and greenhouse gas emissions within 

paddy system, while its performance under upland conditions remains unclear. This study validated 

the model using data from a long-term cover crop experiment (fallow [FA] and rye [RY]) in a soybean 

field, evaluating its limitations in upland systems simulation. The model underestimated water-filled 

pore space (WFPS) and nitrous oxide (N2O) flux while overestimating soybean biomass, yield, and 

carbon dioxide (CO2) flux. The underestimation of cumulative N2O flux (25.6% in FA and 5.1% in RY) 

was attributed to both underestimated WFPS and algorithm’s limitations in simulating N2O emission 

pulses. Overestimated soybean growth increased respiration, leading to the overestimation of CO2 

flux. Although the model captured trends in soil organic carbon (SOC) stock, the simulated annual 

values differed from observations (-9.9% to +10.1%), potentially due to sampling errors. Both 

observed and simulated results showed that RY increased N2O emissions and SOC stock compared 

to FA. However, enhanced SOC sequestration under RY offset the increased N2O emissions, resulting 

in a lower net global warming potential than FA. These findings indicate that the DNDC-Rice model 

requires improvements in its nitrogen cycling algorithm and crop growth sub-models to improve 

predictions for upland systems. 

Keywords: DNDC-Rice; greenhouse gas; soil organic carbon; cover crop 

 

1. Introduction 

Agricultural production is a significant source of greenhouse gas (GHG) emissions, which are 

key drivers of climate change [1]. Extreme climate events, in turn, reduce agricultural yields, thereby 

threatening global food security [2]. Agricultural soils can function as either sources or sinks of GHGs, 

depending on various conditions [3]. Implementing effective agricultural management practices to 

reduce GHG emissions and enhance carbon sequestration is a crucial strategy for mitigating climate 

change at the agricultural level. 

In recent years, conservation agricultural management practices have rapidly spread due to their 

ability to enhance ecosystem services and promote sustainable agricultural development [4]. Cover 

crop management, a typical and historic conservation agriculture method, massive studies have 

confirmed its positive effect on mitigating soil erosion [5], improving soil structure and water-stable 

aggregates [6,7], enhancing soil fertility [8] and reducing weeds infestation [9,10]. For example, a 

cover crop experiment conducted in Japan demonstrated that a rye cover crop significantly improved 

soil health within a soybean cropping system [11]. However, the impact of cover crops on GHG 

emissions and soil carbon sequestration remains contentious. Some studies have reported that cover 
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crops can reduce nitrous oxide (N2O) emissions by scavenging excess NO3-N in the soil [12,13]. The 

biomass remaining after cover crop termination serves as a carbon source, contributing to increased 

soil organic carbon (SOC) stocks [14,15]. However, the release of organic carbon and nitrogen during 

the decomposition of cover crop residues may also result in elevated N2O emissions [16,17]. These 

increased N2O emissions, in turn, could potentially offset the climate change mitigation benefits 

associated with the enhanced SOC stocks [18,19]. The potential of cover crops to mitigate climate 

change varies based on factors such as site characteristics, agronomic practices, and cover crop 

species [18,20]. Consequently, evaluating the effect of cover crops on climate change requires 

incorporating context-specific considerations. 

Although field experiments can provide direct observations of GHG emissions and SOC stock 

at a specific point in time, they are difficult to use for continuous monitoring of intermediate 

processes, such as the carbon-nitrogen-water-crop balances [21]. Additionally, field experiments are 

resource-intensive and time-consuming due to the necessity of conducting extensive repeated 

measurements [22]. A well-calibrated model has the capacity to simulate the physical, chemical, and 

microbiological processes in soil using mathematical principles and computational power to calculate 

soil GHG emissions [23]. Simulation models are diverse, varying in complexity from simple empirical 

estimates based on statistical analysis to complex process-based biogeochemical models [23,24]. The 

DeNitrification-Decomposition (DNDC) model, a process-based model, focus on the carbon and 

nitrogen biogeochemistry in agro-ecosystem [25]. By integrating classical physic, chemistry and 

biology laws, the model is capable of parameterizing specific geochemical or biochemical processes, 

such as simulating and quantifying the GHG emissions, as well as carbon and nitrogen dynamics in 

soil [26]. Currently, the DNDC model is widely adopted to estimate and compare the GHG mitigation 

potential across diverse agricultural management scenarios at regional and national scales [27,28]. 

Moreover, the DNDC model has been modified numerous times and integrated with various sub-

models to produce different versions to meet the specific needs of different regions, agronomic 

management and crops. For instance, DNDC-Rice is a revised version specifically designed for rice 

cultivation [29]. The DNDC-Rice model significantly enhances the ability to estimate greenhouse gas 

emissions from paddy fields and has been validated using GHG data from paddy fields across Asia, 

including Japan [30], India [31], and Thailand [32]. It demonstrates high accuracy and performance 

in simulating and predicting greenhouse gas emissions from paddy fields under different irrigation 

management scenarios [31]. 

In rice production systems, alongside the prevalent practice of continuous rice monoculture, the 

rotation of paddy with upland crops is also commonly employed [33]. Numerous studies have 

reported that the DNDC-Rice model is a powerful tool for accurately estimating soil GHG emissions 

in the continuous rice monoculture system [28,34]. In rice systems with paddy-upland rotation, it is 

impractical to use different versions of the DNDC model to simulate and predict the paddy and 

upland periods separately. However, field validation of the DNDC-Rice model for N2O emissions in 

upland cropping systems remains limited. Furthermore, previous studies have primarily focused on 

estimating GHG emissions, while field validations concerning the dynamics of carbon sequestration 

are still scarce. 

Thus, we conducted a field validation of the DNDC-Rice using data from a long-term soybean-

cover crop cropping system. This study aims to address the gap in the validation of the DNDC-Rice 

model for upland systems, thereby advancing its application in simulating paddy-upland rotation 

systems. Specifically, the objectives of this study were to: (1) evaluate the performance of the DNDC-

Rice model in simulating N2O emissions and soil organic carbon stock dynamics in an upland 

cropping system with a cover crop; and (2) discuss the strategies to improve the accuracy of the 

predictions. 
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2. Materials and Methods 

2.1. The DNDC-Rice Model 

The DNDC model is a process based model to simulate greenhouse gases, such as nitrous oxide, 

carbon dioxide and methane, from agricultural ecosystems [26] by focusing on the carbon and 

nitrogen biogeochemistry in agro-ecosystem [25]. DNDC consists of six sub-models divided among 

two components. The first component consists of soil climate, plant growth, and decomposition sub-

models. These sub-models are driven by ecological drivers (i.e. climate, soil, vegetation, and human 

activity) and predict soil environmental factors (e.g. temperature, moisture, pH, substrate 

concentrations). The second component consists of denitrification, nitrification, and fermentation 

sub-models. These sub-models predict gas fluxes (CO2, CH4, NH3, NO, N2O, and N2) through 

denitrification, nitrification, and CH4 production and oxidation processes [26,35,36].  

DNDC-Rice is a revised DNDC model to simulate CH4 emission from rice paddies [29,30]. The 

revised model quantifies the production of electron donors [H2 and dissolved organic carbon (DOC)] 

by decomposition and rice root exudation, and simulates CH4 production and other reductive 

reactions based on the availability of electron donors and acceptors (NO3−, Mn4+, Fe3+, and SO42−) under 

anaerobic soil processes. Rice growth process and methane emission through rice by a diffusion 

routine were also modified in DNDC-Rice. 

In this study, we used DNDC-Rice model to simulate a soybean system with rye cover crop 

management and to improve the simulation results by modifying the source codes. DNDC-Rice 

simulation was conducted for the period of 1987-2022 with the input of measured soil properties, 

daily meteorological data and the field managements at the experimental site. Carbon input from 

plant biomass to the soil was simulated as application of straw or green manure based on measured 

biomass of soybean residue, rye and natural weed.  

2.2. Modification and Initialization of the Model 

At first, the maximum tillage depth was changed: the maximum tillage depth in DNDC-Rice 

was 20 cm depth, and it was changed to 30 cm same as field practice. During the validation, it was 

found that DNDC-Rice simulated soil carbon decomposition too fast and tillage strongly affected to 

soil carbon decomposition. Therefore, tillage factor was changed from the default of 1.5 to 1.0. 

Deepest tilled layer number also modified. In the DNDC, the deepest tilled layer was set to be 3 when 

it was less than 3, but it was modified to be 1 when it was less than 1 to decrease tillage effect to SOC 

decomposition. We also modified temperature limit, T_limit, which was the based degree to calculate 

thermal degree days (TDD). T_limit for rye was decreased from 10 to 4.4 based on Mirsky et.al [37] 

to improve the growth.  

In simulating nitrification process in soil, DNDC-Rice assumes that fixed portion of nitrified N 

is lost as N2O and NO [26]. After validation of SOC, crop growth, and CO2 emission, these factors for 

nitrification-induced N2O and NO production were changed from 0.015 and 0.0025 to 0.00015 and 

0.006, respectively, to minimize the RMSE of simulated daily N2O emissions from the RY system .  

2.3. Experiment Site 

We used a long-term cover crop experiment data, initiated in 2003, at the farm of the Center for 

International Field Agriculture Research and Education, Ibaraki University, Japan. The site lacates in 

a humid subtropical climate, where the average annual precipitation was 1373 mm and the mean 

daily temperature was 14.5°C throughout the experimental period (2003–2021) (Figure 1). According 

to the World Reference Base for Soil Resources, the soil in this region is classified as a typical Andosol. 

Further details about the site description and soil parameters can be found in Higashi et al. [38]. 
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Figure 1. Average monthly precipitation and air temperature from 2008 to 2022. 

2.4. Experiment Design and Field Management 

In this experimental field, experiments have been concurrently conducted, employing a range 

of tillage methods and fertilization management practices. In the present study, the field data were 

collected from the sub-plot that adopted moldboard plowing without fertilization. Tillage was 

implemented in the summer and autumn using a moldboard plow to a depth of 30 cm. The main 

crop in the field experiment was upland rice from 2003 to 2007, after which it was replaced by soybean 

in 2008. In this study, two cover crop management practices [fallow (FA) and rye (RY)] were 

compared within the soybean system, with four replications for each treatment. Soybean (cv. 

Sachiyuta) was planted between July and November at a seeding density of 60 kg ha−1. During the 

cover crop season (November to June), rye (cv. Ryokusei) was sown in the RY plots at a seeding rate 

of 100 kg ha−1, whereas the FA plots received no artificial intervention, allowing weeds to grow 

naturally (Table 1). All of main crop residues and cover crop biomass was plowed into the soil. 

Further details on tillage, crops, and management practices are provided in Gong et al., Higashi et al 

and Huang et. al. [38–40]. 

Table 1. Field management schedule for the 2020 and 2021 cropping years. Dates are described as 

Day/Month/Year. 

Management 2020 2021 

Summer tillage 2020/6/8 2021/6/14 

Soybean sowing 2020/6/30 2021/7/20 

Soybean harvest 2020/11/5 2021/11/2 

Autumn tillage 2020/11/6 2021/11/3 

Cover crop sowing 2020/11/9 2021/11/3 

Cover crop harvesting 2021/6/8 2022/5/30 

2.5. Soil and Crop Measurement 

Soybean samples were collected from the center of each plot using a 0.6 m2 quadrat on the day 

of harvest. Biomass was determined by weighing the oven-dried samples. The oven-dried samples 

were then threshed, and the grains were weighed for yield analysis. Aboveground biomass from both 

rye cover crops in RY plots and natural weeds in FA plots was collected prior to summer tillage using 
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a 0.25 m2 quadrat.  These plant materials were oven-dried to constant mass and weighed to 

determine dry biomass.  

Soil core samples were taken from each plot at a depth of 30 cm in October each year for the 

measurement of SOC. The samples were dried, ground, and analyzed for SOC content using a C/N 

analyzer. SOC stock was subsequently determined based on SOC content, depth, and soil bulk 

density using the soil mass equivalent method [41]. Soil temperature at a depth of 0-5 cm was 

continuously monitored from 2020 to 2021 using soil temperature sensors. Soil volumetric water 

content was measured during each gas samples collection to determine the water-filled pore space 

(WFPS) at a depth of 5 cm. More details regarding the measurement and calculation processes for 

soybean and soil samples can be found in Gong et al., Higashi et al and Huang et. al. [38–40]. 

2.6. Greenhouse Gas Measurement 

N2O and CO2 emissions were monitored from June 2020 to May 2022. Weekly gas samples were 

collected using the static closed chamber method and analyzed with a gas chromatograph to quantify 

the concentrations of N2O and CO2. Daily fluxes were determined using a concentration-time linear 

function, while cumulative emissions were calculated through linear interpolation. Further details on 

the collection, measurement and calculation of gas samples are shown in Huang et al and Ratih et al 

[40,42]. 

The net global warming potential (GWP) in agricultural systems consists of greenhouse gas 

emissions and variation in SOC stock (ΔSOC). The calculation of the net GWP for the period 2020-

2021 is as follows: 

𝐺𝑊𝑃2020 2021⁄ (𝐶𝑂2 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑘𝑔 ℎ𝑎−1 𝑦𝑒𝑎𝑟−1)  =  265 ×  𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑁2𝑂 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛2020 2021⁄ (1) 

𝛥𝑆𝑂𝐶 (𝐶𝑂2 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑘𝑔 ℎ𝑎−1 𝑦𝑒𝑎𝑟−1) =  
𝑆𝑂𝐶 𝑠𝑡𝑜𝑐𝑘2021  − 𝑆𝑂𝐶 𝑠𝑡𝑐𝑜𝑘2019

2
 ×

44

12
(2) 

𝑁𝑒𝑡 𝐺𝑊𝑃2020−2021 (𝐶𝑂2 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑘𝑔 ℎ𝑎−1 𝑦𝑒𝑎𝑟−1) =  
𝐺𝑊𝑃2020  +  𝐺𝑊𝑃2021

2
 −  𝛥𝑆𝑂𝐶 (3) 

where 265 represents the GWP indicator for N2O conversion to CO2 over a 100-year period.; 

44/12 denotes the conversion factor for converting C to CO2. 

2.7. Statistical Analysis 

The simulated results, including daily soil temperature, daily water-filled pore space (WFPS), 

daily N2O flux, daily CO2 flux, SOC stock, soybean biomass, and soybean yield, were assessed using 

the root mean square error (RMSE) calculated as follows: 

𝑅𝑀𝑆𝐸 =  √
∑(𝛼𝑖 − 𝛽𝑖)2

𝑁
(4) 

where αi and βi denote the simulated and observed values of parameter i; and N denotes the 

number of samples. The normalized RMSE (nRMSE) was also used in this study to evaluate the 

accuracy of the model simulations and was calculated as follows: 

𝑛𝑅𝑀𝑆𝐸 (%) =  
𝑅𝑀𝑆𝐸

𝛽̅
 × 100 (5) 

where 𝛽̅ is the average of the observed values. 

3. Results 

3.1. Soil Temperature and Water-Filled Pore Space 

The DNDC-Rice model effectively estimated the daily soil temperature at a depth of 0-5 cm for 

both the FA and RY system during the experimental period, with minimal difference between 

observed and simulated results (Figure 2). The nRMSE of daily soil temperature in FA system was 

10.7%, while in RY system was 11.4% (Table 2). The mean simulated soil temperature was marginally 

higher than the mean observed temperature, with an increase of 2.1% in FA and 1.6% in RY. Overall, 
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the model accurately captured the seasonal fluctuations in soil temperature throughout the year. 

However, it consistently tended to overestimate soil temperature during the winter months. Field 

observations across different systems revealed that the mean daily soil temperature in the RY system 

was 1.7% higher than in the FA system. Similarly, the model replicated this difference, showing a 

1.2% higher simulated value for the RY system compared to the FA system. 

 

Figure 2. Comparisons between observed and simulated daily soil temperature under fallow (A) and rye (B) 

system during the 2020 and 2021 cropping year. 

Table 2. Observed and simulated mean soil temperature, water-filled pore space (WFPS), daily N2O emission 

and daily CO2 emission during the 2020 and 2021 cropping year. FA: fallow; RY: rye; SD: standard deviation; 

nRMSE: normalized root mean square error. 

Variables Units Treatment n Observed value Simulated value nRMSE (%) 

        Mean SD Mean SD   

Soil temperature °C FA 678 14.98 0.34 15.29 0.31 10.69 

    RY 682 15.24 0.34 15.48 0.31 11.39 

WFPS % FA 63 32.15 1.39 30.17 0.98 42.67 

    RY 63 33.37 1.18 32.56 1.13 41.90 

Daily N2O emission kg N ha−1 FA 62 1.28 0.17 0.91 0.06 105.16 

    RY 63 1.69 0.21 1.63 0.13 94.93 

Daily CO2 emission kg C ha−1 FA 61 9.07 0.77 10.07 0.99 60.16 

    RY 61 14.55 1.26 25.77 1.90 101.31 

The DNDC-Rice model successfully simulated the trend of daily WFPS (0-5 cm), although the 

simulated values were underestimated compared with observed WFPS on average (Figure 3). In the 

FA system, the mean simulated WFPS was 6.2% lower than the mean observed value, while in the 

RY system, it showed a 2.5% reduction compared to the mean observed WFPS (Table 2). For all 

cropping systems, the model overestimated the daily WFPS during winter-spring season but 

underestimated it during summer-autumn season. In this study, the nRMSE of WFPS in FA system 

was 42.7%, while in the RY system was 41.9%. The observed mean daily WFPS in the FA system was 
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3.7% lower compared to the RY system, and the model also captured this trend, with the simulated 

value for the FA system being 7.3% lower than that for the RY system. 

 

Figure 3. Observed and simulated daily water-filled pore space (WFPS) under fallow (A) and rye (B) system 

during the 2020 and 2021 cropping year. 

3.2. Crop Productivity 

In order to validate the model performance on simulating crop productivity, we calculated the 

average biomass and yield of soybean from 2008 to 2021 compared with simulated values (Table 3). 

The DNDC-Rice model generally simulated soybean yields accurately in both the FA and RY systems, 

despite a slight overestimation of the mean simulated values. In the FA system, the model 

overestimated the mean soybean yield by 3.4%, with a nRMSE of 17.4%. Similarly, in the RY system, 

the average simulated soybean yield was 12.0% higher compared to observed value, with an nRMSE 

of 17.2%. On the other hand, DNDC-Rice model overestimated the soybean biomass for both the 

cropping system. Specifically, the simulated soybean biomass for FA was 15.1% higher than the 

observed value, whereas for RY it was 18.4% higher. The nRMSE for soybean biomass was 25.5% for 

FA and 23.5% for RY. 

Based on field observations, RY tended to reduce the biomass and yield of soybean, resulting in 

a 3.2% decrease in mean biomass and an 8.8% decrease in mean yield compared to FA. In contrast, 

the difference in simulated biomass and yield between FA and RY was minimal, with FA showing 

only a 0.5% increase. 
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Table 3. Observed and simulated mean soil organic carbon (SOC) stock, soybean biomass and soybean yield 

from 2008 to 2021. FA: fallow; RY: rye; SD: standard deviation; nRMSE: normalized root mean square error. 

Variables Units Treatment n Observed value Simulated value nRMSE (%) 

        Mean SD Mean SD   

Soybean biomass Mg C ha−1 FA 13 3.23 0.23 3.72 0.16 25.52 

    RY 13 3.13 0.18 3.70 0.16 23.52 

Soybean yield Mg C ha−1 FA 13 1.35 0.11 1.39 0.06 17.44 

    RY 13 1.24 0.10 1.38 0.06 17.21 

SOC stock Mg C ha−1 FA 13 80.41 0.88 78.76 0.05 5.38 

    RY 13 88.48 1.38 90.43 1.34 4.95 

3.3. Soil Organic Carbon and Carbon Dioxide Emission 

In the present study, the DNDC-Rice model effectively simulated the variation in SOC stock 

from 2008 to 2021 (Figure 4 and Table 3). In FA system, the observed and simulated average SOC 

stock were 80.4 Mg C ha−1 and 78.8 Mg C ha−1, with a nRMSE of 5.4%. In the RY system, the nRMSE 

for average SOC stock was 5.0%, with the simulated value (90.4 Mg C ha−1) being 2.2% higher than 

the observed value (88.5 Mg C ha−1). Additionally, both the observed and simulated SOC stocks in 

RY were higher than those in FA, with increases of 10.0% and 14.8%, respectively. 

 

Figure 4. Observed and simulated SOC stock under fallow (FA) and rye (RY) system from 2008 to 2021. 

During field observations, surface vegetation within the chamber area was carefully removed to 

exclude photosynthetic CO2 uptake. Therefore, the observed CO2 emission presumably consisted of 

soil respiration and root respiration, and was compared with  simulated CO2 emissions as the sum 

of soil respiration and root respiration. The DNDC-Rice model reasonably simulated the trend of 

daily CO2 emissions across all cropping systems, although it tended to overestimate the actual daily 

value (Figure 5). The mean simulated daily CO2 emissions for FA system was 11.1% higher than the 

observed value, with a nRMSE of 60.2%. In RY system, the model overestimated the mean daily CO2 

by 77.1%, resulting in a nRMSE of 101.3% (Table 2). Additionally, the simulated daily CO2 flux 

increased rapidly following each tillage operation. 
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Figure 5. Observed and simulated daily CO2 emission under fallow (A) and rye (B) system during the 2020 and 

2021 cropping year. The gray vertical line, perpendicular to the x-axis, indicates the date of tillage 

implementation. 

Regarding cumulative CO2 emissions, the model's performance exhibited seasonal variation in 

the FA system (Table 4). Specifically, during the soybean season, the model overestimated cumulative 

CO2 emissions by 42.4% in 2020 and 27.3% in 2021. However, during the cover crop season, the model 

underestimated cumulative CO2 emissions, with reductions of 21.3% in 2020 and 53.0% in 2021. In 

contrast, for the RY system, the model consistently overestimated cumulative CO2 emissions across 

all seasons, resulting in an average overestimation of 75.5%. Field observations revealed that the FA 

system exhibited lower daily CO2 emissions and total cumulative CO2 emissions, reducing 38% and 

34.2%, respectively, compared to the RY system. The model also captured this trend, amplifying the 

difference, with daily CO2 emissions and total cumulative CO2 emissions in the FA system being 

60.9% and 62.0% lower, respectively, than those in the RY system. 

Table 4. Observed and simulated cumulative CO2 emission in each crop season under different cropping system 

from 2020 to 2021. FA: fallow; RY: rye. 

Variable Treatment 
Observed Simulated 

kg C ha−1 

2020 Soybean season FA 1701.37 2422.93 

  RY 2869.44 4979.66 

2020 Cover crop season FA 951.51 748.77 

  RY 1485.84 3133.97 

2021 Soybean season FA 1421.41 1809.51 

  RY 1841.09 3999.32 

2021 Cover crop season FA 1554.02 730.55 

  RY 2360.57 2905.00 

Total cumulation FA 5628.32 5711.76 
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  RY 8556.94 15017.95 

3.4. Soil Nitrous Oxide Emission 

In both the FA and RY systems, the DNDC-Rice model effectively captured the seasonal 

variation trends of daily N2O emissions throughout the experimental period (Figure 6). However, the 

model exhibited a poor fit of daily N2O emission between the simulated and observed value, with 

the high nRMSE value (105.2% in FA and 94.9% in RY) (Table 2). Compared to mean observed daily 

N2O emission, the simulated value decreased by 28.9% in the FA system, while in the RY system, the 

reduction was 3.5%. The model consistently underestimated the cumulative N2O emissions for the 

FA system across all crop seasons (Table 5). In the case of the MP system, the cumulative N2O 

emissions were underestimated during the soybean season, but overestimated during the cover crop 

season. Overall, the simulated total N2O emissions were 25.6% lower than the observed values for 

the FA system and 5.1% lower for the RY system. Moreover, both the simulated and observed values 

indicated that the daily N2O flux and total N2O emissions under the FA system were lower than those 

under the RY system, with reductions ranging from 24.3% to 62.0%. 

 

Figure 6. Observed and simulated daily N2O emission under fallow (A) and rye (B) system during the 2020 and 

2021 cropping year. The gray vertical line, perpendicular to the x-axis, indicates the date of tillage 

implementation. 
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Table 5. Observed and simulated cumulative N2O emission in each crop season under different cropping 

systems from 2020 to 2021. FA: fallow; RY: rye. 

Variable Treatment 
Observed Simulated 

kg N ha−1 

2020 Soybean season FA 231.73 142.80 

  RY 335.18 300.30 

2020 Cover crop season FA 150.08 152.20 

  RY 126.26 166.90 

2021 Soybean season FA 165.64 92.60 

  RY 255.25 267.30 

2021 Cover crop season FA 164.90 142.70 

  RY 224.70 158.70 

Total cumulation FA 712.36 530.30 

  RY 941.38 893.20 

3.5. Global Warming Potential 

The net GWP of different cropping systems was assessed and analyzed based on the GWP of 

N2O and net CO2 retention for the period from 2020 to 2021 (Table 6). The simulated N2O GWP for 

FA and RY were 20.6% and 2.3% lower, respectively, compared to field observation. Moreover, RY 

exhibited a higher N2O GWP than FA, with observed values showing a 35.9% increase and simulated 

values a 67.2% increase. For net CO2 retention, the observed value for FA and RY were −7895.25 and 

−2833.60 kg CO2 eq ha−1 year−1, whereas the simulated values were 168.82 and 901.60 kg CO2 eq ha−1 

year−1. Based on field observation, the net GWP for FA and RY were 8057.58 and 3054.14 kg CO2 eq 

ha−1 year−1. However, the model simulated minus net GWP values for both FA (−39.96 kg CO2 eq ha−1 

year−1) and RY (−686.07 kg CO2 eq ha−1 year−1). 

Table 6. Observed and simulated global warming potential (GWP) under different cropping systems during the 

2020 and 2021 cropping year. FA: fallow; RY: rye; ΔSOC: change of soil organic carbon stock. 

Variable Treatment 
Observed Simulated 

kg C ha−1 year−1 

N2O GWP FA 162.33 128.86 

  RY 220.53 215.52 

ΔSOC FA -7895.25 168.82 

  RY -2833.60 901.60 

Net GWP FA 8057.58 -39.96 

  RY 3054.14 -686.07 

  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 June 2025 doi:10.20944/preprints202506.0015.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0015.v1
http://creativecommons.org/licenses/by/4.0/


 12 of 18 

 

4. Discussion 

4.1. Simulation of Soil Temperature, Water-Filled Pore Space and Crop Growth 

Soil temperature and WFPS are vital factors influencing crop growth [43,44]. Simultaneously, 

those significantly affect N2O emissions and the decomposition or sequestration of SOC [45,46]. Thus, 

accurate estimation of soil temperature and WFPS by the DNDC-Rice model is a critical prerequisite 

for reliably simulating N2O emissions and SOC stock dynamics. In some versions of the DNDC 

model, soil surface temperature is assumed to be equal to the daily average air temperature, as the 

soil temperature profile is calculated based on a heat flux model [22,36]. In contrast, DNDC-Rice 

integrates a micrometeorological model, enhancing the accuracy of soil temperature profile 

estimation [29]. Our study findings indicate that DNDC-Rice effectively simulated the soil 

temperature (0-5 cm) in both FA and RY system, achieving a nRMSE below 12%, which is comparable 

to or better than results reported in previous studies for upland cropping systems [47,48]. In our 

study, the simulated WFPS successfully captured the temporal trends of the observed WFPS, 

consistent with previous findings [48,49]. However, discrepancies were noted in the dynamic values 

between the observed and simulated WFPS. The observed WFPS was measured manually on gas 

sampling days, making it susceptible to human error and limited by discontinuous observation 

periods. The non-continuous observation may have overlooked critical rainfall or drought events, 

potentially missing the peaks and troughs in WFPS dynamics. Unlike the observed WFPS, which 

represents point measurements, the simulated WFPS is continuous, calculated at daily time steps, 

and represents site-averaged values [50,51]. Therefore, owing to the influence of soil heterogeneity, 

the simulated WFPS values may not align with the observed values. Additionally, a previous study 

reported that the DNDC-Rice model overestimated water loss through evapotranspiration [52], 

resulting in an underestimation of soil water content, which is consistent with our results. 

Several studies conducted in rice systems have reported that DNDC-Rice tends to overestimate 

rice straw biomass [52,53]. Similarly, our findings showed that simulated biomass and yield of 

soybean were higher than the observed values. The crop growth sub-model of DNDC-Rice integrates 

a crop carbon metabolism model, resulting in simulated crop growth being influenced by nitrogen 

availability and carbon allocation [29]. The DNDC-Rice model incorporates specific growth functions, 

calibrated for different rice varieties, to simulate rice growth [31], while it still lacks specific growth 

functions for other dryland crops, such as soybean and rye. In the empirical crop growth sub-model, 

plant growth and the allocation ratio of absorbed nitrogen (N) are calculated based on TDD, while N 

uptake is regulated by TDD and the availability of soil N. It is well established that soybean is capable 

of absorbing and transporting substantial amounts of N through biological N fixation, providing N 

for utilization by all parts of the plant [54] and nitrogen fixation is, of course, assumed in DNDC-Rice. 

Nitrogen fixation rate can be set for each crop as a constant in DNDC-Rice. However, it doesn’t vary 

with environmental factors and crop growth. In field conditions, nitrogen fixation increases or 

decreases as rhizobia increase or decrease, but DNDC-Rice does not predict such temporal variability. 

Due to the absence of accurate simulation of biological nitrogen fixation in soybean, the DNDC-Rice 

model may inaccurately estimate nitrogen uptake, leading to incorrect simulations of soybean 

biomass and yield. Therefore, it is essential to develop and calibrate the relevant modules to improve 

the DNDC-Rice model. 

4.2. Simulation of Greenhouse Gas Emission and Soil Organic Carbon Stock 

While the trend of daily CO2 flux simulated by the DNDC-Rice model was similar to the 

observed data, both the daily fluxes and cumulative fluxes were overestimated. Due to the physical 

disturbance of the soil surface, tillage events often produce a temporary burst of soil CO2 emission 

[55]. Following tillage, the DNDC-Rice model exhibited an immediate response, rapidly increasing 

the simulated daily soil CO2 flux (Figure 5). In the model, daily CO2 flux is regulated by the tillage 

factor. To prevent an excessive increase in CO2 emissions induced by tillage, this study reduced the 

tillage factor in the model. In contrast, the observed daily CO2 flux during the same period showed 
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no significant changes, possibly due to the limitations of discontinuous field sampling, which may 

have failed to capture the emission peaks induced by tillage events. Consequently, for a period 

following the tillage event, the simulated daily soil CO2 emissions were always higher than the 

observed values. Soil respiration is divided into autotrophic respiration, primarily driven by plant 

roots, and heterotrophic respiration, which is mainly driven by microorganisms [56]. In this study, 

the DNDC-Rice model overestimated soybean biomass, which is associated with a well-developed 

underground root system. Furthermore, the biomass distribution among various organs during crop 

growth simulation is determined by the ratios of grain, shoot, and root specified in the crop parameter 

settings of the DNDC-Rice model. An excessively high root allocation ratio may result in an 

overestimation of the simulated root biomass. This likely led to an overestimation of root autotrophic 

respiration during the simulation, resulting in an excessively high CO2 flux. Another main source for 

the soil CO2 flux is the soil heterotrophic respiration, which is linked to the sequestration and 

decomposition of SOC [57]. In the field experiment, both autotrophic and heterotrophic respiration 

of soil occurred throughout the cover crop season (from November to June) in both the FA and RY 

systems. Compared to natural weeds in the FA system, the cultivation of cover crops within the RY 

system contributed to a higher root biomass, thereby enhancing soil autotrophic respiration and 

resulting in higher CO2 emissions. In DNDC-Rice, weeding dates and the degree of weed growth can 

be set in three levels (no, moderate, and serious), but we did not set it. Instead, weed biomass input 

was set as green manure input to reproduce accurate carbon input. The absence of weed growth 

process would cause the poor accuracy of soil autotrophic respiration during the cover crop season 

in the FA system. As a result, the simulated CO2 emissions for the cover crop season in the FA system 

were lower than the observed values, thereby exacerbating the discrepancy in CO2 emissions 

estimation between the FA and RY systems in estimation. Therefore, it must be crucial to improve 

the accuracy of weed growth process CO2 emission  

Some studies have documented that cover crops have the potential to enhance SOC stocks 

[58,59]. The biomass carbon from cover crop residues supplies nutrients and energy to soil 

microorganisms, a portion of which is subsequently converted into microbial carbon, thereby 

contributing to an increase in SOC stocks and enhancing carbon sequestration [60]. The observed 

SOC stock in the RY system was higher than that in the FA system, and the DNDC-Rice model 

reproduced these results, although the discrepancy was amplified. These results demonstrate the 

DNDC-Rice model's capability to accurately simulate the cover crop-induced SOC enhancement. The 

amplified difference between the FA and RY systems may also be attributed to the absence of natural 

weed growth calculation mentioned above, which prevented the DNDC-Rice model from accurately 

simulating the contribution of weed biomass to the soil carbon pool in the FA system. Overall, the 

simulated variation in SOC stock closely followed the observed trend over the period from 2008 to 

2021. However, the model could not reproduce the interannual variability observed in the field. In 

the DNDC model, SOC is automatically allocated to litter, labile humus (humad), and recalcitrant 

humus pools in fixed proportion [36], and this same algorithm is also employed in the DNDC-Rice 

model. However, whether the proportion set within the model aligns with the observed data remains 

uncertain, as we did not conduct a carbon composition analysis of the field soil. We speculate that 

inconsistent allocation proportion and pathways of SOC may be one of the factors contributing to the 

discrepancies between the model simulations and field observations. Moreover, in DNDC-Rice, SOC 

stock was calculated on a daily time step using predefined equations. During the estimation process, 

the soil bulk density remained consistently aligned with the initial settings. In contrast, observed data 

were gained through manual sampling and measurement at fixed annual time points, which may 

introduce considerable sampling errors and increase uncertainty. 

In the present study, DNDC-Rice model effectively reproduced the cover crop-induced 

divergence in N2O emissions (FA < RY). The reproduction of elevated N2O emissions in RY systems 

likely reflects model's effective parameterization of cover crop decomposition dynamics, particularly 

the enhanced denitrification potential from increased biomass carbon and soil moisture retention. 

Although the DNDC-Rice model effectively captured the seasonal variation in N2O fluxes, it 
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significantly underestimated the cumulative fluxes. N2O emissions from soil are commonly released 

into the atmosphere in a pulsed manner [61], with peak emissions persisting for no more than a few 

weeks [62]. Meanwhile, in cropping systems, peak N2O emission events typically account for 50–90% 

of the annual emissions [63,64]. However, previous studies have identified limitations in the DNDC-

Rice model, which fails to accurately predict the timing and magnitude of high N2O emission pulses 

[52]. Our findings showed that the simulated daily N2O fluxes were lower than the observed values 

during peak N2O emission events, leading to an underestimation of cumulative N2O fluxes. 

Additionally, we observed that the periods of underestimation in daily N2O fluxes roughly coincided 

with those of underestimation in WFPS. WFPS is a key driver in the model's simulation of nitrification 

and denitrification processes, with a profound impact on the prediction of N2O emissions [65]. 

Therefore, the discrepancy between the simulated daily N2O fluxes and observed values is likely due 

to the underestimation of WFPS. Therefore, improving the accuracy of WFPS simulations, as well as 

modifying the equations governing soil nitrogen dynamics to better simulate N2O emission pulse 

events, will be key directions for enhancing the DNDC-Rice model's accuracy in predicting N2O 

emissions. 

Net GWP is derived from the GWP of N2O and changes in SOC stock in this study and the 

substantial interannual variability in observed SOC values also contributes to unavoidable errors in 

net GWP calculations. Field observations indicated a reduction in SOC stock during the period from 

2019 to 2021. In contrast, the DNDC-Rice model, which fits a time-dependent curve for SOC stock 

based on long-term observational data (2008-2021), simulated an increase in SOC stock during the 

2019-2021 period, contradicting the observed results. This inconsistent SOC variation resulted in a 

discrepancy between the observed and simulated net GWP values. Given the noticeable interannual 

variation in the observed SOC stock, comparing the observed and simulated net GWP over longer 

time intervals would be more reasonable. 

5. Conclusions 

This study conducted a field validation of the DNDC-Rice model using data on crop 

productivity, soil parameters, and GHG fluxes from a soybean system incorporating two cover crop 

management practices, to evaluate its simulation performance within the context of an upland 

cropping system. The model accurately simulated soil temperature, but it underestimated WFPS and 

N2O emissions. In contrast, the simulated values for CO2 emissions, soybean biomass, and yield were 

overestimated. While the model successfully captured the long-term variation in SOC stock, the 

annual SOC values were frequently either underestimated or overestimated. Moreover, the DNDC-

Rice model could reproduce the differences between RY and FA in terms of crop yield, GHG 

emissions and SOC stock, although these differences may be exaggerated or diminished due to 

discrepancies between the simulated and observed values. These findings indicated that further 

refinements are needed to improve the model's accuracy in estimation. Due to algorithmic 

limitations, the model failed to accurately simulate the growth of soybean and N2O emission pulse 

events. Therefore, the crop growth sub-model for upland systems and the N dynamics equations in 

the DNDC-Rice model required further refinement. 
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