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Abstract

In our study, we examine how the temporal window shift—the step between consecutive analysis
windows—affects EEG-based cognitive fatigue detection while keeping the window length fixed.
Using a reference workload dataset and a pipeline that includes preprocessing and feature extraction,
we vary the shift to control segment overlap and, consequently, the number and independence of
training samples. We evaluate six machine-learning models (Decision Tree, Random Forest, SVM,
kNN, MLP, and a transformer). Across models, smaller shifts generally increase accuracy and F1
score, consistent with the larger sample count; however, they also reduce sample independence and
can inflate performance if evaluation splits are not sufficiently stringent. Class-wise analyses reveal
persistent confusion for the moderate-fatigue class, the severity of which depends on the chosen
shift. We discuss the methodological trade-offs, provide practical recommendations for choosing
and reporting shift parameters, and argue that temporal segmentation decisions should be treated
as first-class design choices in EEG classification. Our findings highlight the need for transparent
reporting of window length, shift/overlap, and subject-wise evaluation protocols to ensure reliable
and reproducible results in cognitive fatigue detection.

Keywords: EEG; cognitive fatigue; window shift; overlapping windows; temporal segmentation;
machine learning; evaluation protocol

1. Introduction
Reliable detection of cognitive fatigue from EEG is a long-standing goal in neuroergonomics

and human factors, with immediate relevance to safety-critical contexts such as aviation, rail, and
industrial process control. Despite clear progress in signal processing and machine learning for EEG, a
persistent source of variability in reported performance stems from seemingly minor segmentation
choices, especially the temporal window shift, defined as the step size between consecutive analysis
windows. Because the shift simultaneously determines the degree of overlap between adjacent samples
and the effective number and independence of training instances, it is a powerful—yet often under-
documented—design lever that can inflate accuracy, change class confusions, and obscure what the
models truly learn from brain signals. In this work, the term “cognitive fatigue” is used as a proxy
operationalized via self-reported mental workload ratings from the STEW dataset.

In preliminary analyses conducted for this study on the STEW reference dataset [1,2], we observed
that reducing the temporal window shift, while keeping the window length fixed, systematically
improved performance across classical models and an illustrative lightweight transformer. As the shift
decreased, the number of segments increased and classification metrics rose, but the confusion pattern
also changed—especially for the moderate fatigue level, which remained the hardest class. These
observations motivated the present study to isolate and quantify the impact of temporal window shift
on EEG-based cognitive-fatigue classification under a controlled pipeline.
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Recent studies underscore the importance of this problem. In particular, reported advantages of
certain models or feature sets can be confounded by evaluation protocols and segmentation choices.
Brookshire et al. [3] showed that allowing segment-level leakage—meaning segments from the same
subject appear in both training and test—can substantially inflate deep-learning accuracy in trans-
lational EEG. When the evaluation is enforced at the subject level, the reported performance drops
markedly, revealing that the initial gains reflected the split rather than genuine generalization. Lee
et al. [4] reached a similar conclusion in psychiatric EEG by contrasting subject-wise and trial-wise
cross-validation under cropping-based augmentation. Their analysis demonstrated that inappropriate
cross-validation produces optimistic metrics that do not carry over to unseen subjects, especially when
overlapping segments from the same recording session are distributed across folds. Beyond leakage,
Del Pup et al. [5] systematically varied data partitioning for cross-subject EEG deep learning and
concluded that validation must be subject-based—and preferably nested—to avoid overestimation
and to obtain stable performance estimates across architectures. Taken together, these findings indicate
that segmentation and data-splitting choices are not bookkeeping details. They shape reported perfor-
mance, influence class-wise behavior, and can change which models are ultimately judged superior
under different protocols.

Several studies now examine overlap/shift directly. Falih et al. [6] studied sliding-window
overlap ratios in EEG-based ASD diagnosis and found significant performance changes attributable
purely to the degree of window overlap, which indicates that overlap (and, by extension, shift) is not a
neutral parameter in the pipeline. In brain–computer interface and affective EEG, numerous pipelines
employ overlapping windows as a matter of practice to densify samples and capture transitions, but
only a fraction quantify the effect of step size itself on reported metrics or on class-wise behavior.
Examples include overlapping-window designs for fatigue or affect models in which performance
peaks at specific (length, step) combinations, underscoring that temporal sampling density functions
as a practical control variable in both offline and online settings [7].

To avoid confounding effects of segmentation density with temporal content, we keep the window
length fixed, because window duration itself is known to shape both discriminative power and class
balance. Very short windows can miss slow trends relevant to fatigue, whereas very long windows
can mix heterogeneous states within a single segment and blur class boundaries. Prior studies report
performance changes driven by window length and task: accuracy varies with the chosen duration in
epilepsy detection, with optimal ranges depending on the feature set and classifier [8]; in affective EEG,
boredom classification improves at sub-second epochs, indicating that shorter windows emphasize
transient dynamics [9]; and in cognitive workload classification, window length and step are jointly
specified (e.g., 6-s windows with a 4-s step on STEW), further illustrating that step size is an explicit
design choice with measurable effects [10]. By holding length constant, any change in the number
of segments and in sample redundancy arises from the shift alone, which allows us to attribute
downstream differences in accuracy and F1 to the step size rather than to altered temporal context.

The contribution of this work is to establish temporal shift as a first-order methodological factor
in EEG-based classification of cognitive fatigue: small shifts densify observations and tend to improve
metrics but also increase temporal redundancy and the risk of optimistic estimates unless evaluation
rigor explicitly guards against leakage. Conversely, large shifts produce more independent segments
but lower data volume, which can hinder learning—especially for models requiring many examples.
Both regimes may be defensible depending on the scientific question (e.g., within-subject tracking vs.
cross-subject generalization), but they must be reported and justified. Our objectives are therefore
twofold: (i) to quantify the sensitivity of model performance and class-wise confusion to the shift
parameter at fixed window length, and (ii) to distill practical recommendations for choosing and
reporting window length, shift/overlap, and subject-wise evaluation protocols so that results are
reproducible and comparable across labs. In line with these objectives, we explicitly state our evaluation
assumptions (subject-wise splits), fix the feature-extraction pipeline across models, and vary only the
step size to probe how segmentation density affects accuracy, F1, and class-specific errors.
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To make these aims concrete, we formulate the following research questions:

RQ1: Shift–performance sensitivity: When the window length is fixed, how does varying the temporal
window shift influence overall accuracy and macro-F1 across the six models considered?

RQ2: Class-wise effects: How does the shift alter per-class precision and recall, and the structure
of confusions, with particular attention to the moderate-fatigue level and across-participant
variability?

RQ3: Data volume versus independence: How does the shift modulate the effective sample count and
temporal redundancy, and to what extent do these factors mediate the observed performance
differences?

RQ4: Model dependence: Are the effects of shift consistent across classical learners and a lightweight
transformer, or do interactions between model capacity and shift emerge under the same
segmentation and features?

These questions are addressed in Sections 4.1-4.4, respectively, and revisited in Section 4 to derive
practical recommendations for reporting window length, shift/overlap, and evaluation protocols.

The remainder of the paper is organized as follows. Section 2 reviews the most relevant literature
on EEG-based fatigue detection and classification techniques. Section 3 describes our materials and
methods, beginning with the STEW dataset’s key characteristics and then detailing preprocessing and
the definition of temporal window shift and overlap. Section 4 presents the experimental results across
six models and multiple shift values, including class-wise analyses, and discusses methodological
implications, limitations, and recommendations. Finally, in Section 5, we summarize the conclusions,
highlight practical implications for real-time fatigue monitoring, and outline future research.

2. Related Work
Research on EEG-based cognitive fatigue and workload spans engineered-feature pipelines

with classical classifiers and end-to-end deep neural architectures. Early and still widely used ap-
proaches extract spectral and non-linear descriptors from fixed-length windows (e.g., band power,
entropy, higher-order statistics) and apply k-nearest neighbours, support vector machines, decision
trees, random forests, or shallow multilayer perceptrons. Such pipelines remain competitive on
small-to-medium datasets and provide stable baselines when the main focus of the experiment is
on methodological aspects rather than model architecture, especially when subject-wise evaluation
is adopted and reporting is standardized [11–13]. Recent application-oriented reviews also empha-
size practical constraints in deploying fatigue/workload systems and the continued relevance of
lightweight models under limited data and operational requirements [14,15].

Over the last decade, deep learning has become a default family in many EEG applications. Com-
pact convolutional networks capture spatial–spectral structure, while recurrent and hybrid CNN–LSTM
models target temporal dependencies. Transformer-based models have more recently been explored
for EEG either on raw time series or after time–frequency projection, often with convolutional front-
ends that constrain local patterns before attention layers. Recent surveys and domain-specific reviews
synthesize these developments and note both promise and sensitivity to data volume, label quality, and
regularization choices [16,17]. Empirical studies illustrate the range of designs, from pure transformer
classifiers and ensembles through CNN–transformer hybrids to attention mechanisms tailored to
EEG structure [18–22]. Under strict cross-subject regimes and limited data, advantages over strong
classical baselines are less universal and often depend on careful optimization, data augmentation, or
adaptation strategies [23].

Beyond model families, reported performance in cognitive fatigue and workload studies reflects
the chosen generalization regime. Within-subject designs typically yield higher scores and are common
in adaptive or online scenarios, whereas cross-subject designs probe robustness to new individuals and
provide a closer proxy for deployment. Recent work on reproducible workload classification highlights
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the importance of explicitly stating the evaluation regime, repetitions/seeds, and consistent metrics,
including macro-F1 and class-wise precision/recall to expose behaviour on minority or borderline
classes [13]. Survey articles likewise point to variability arising from differences in preprocessing,
feature sets, and split strategies, reinforcing the need for transparent methodological reporting [11].

Window-based segmentation remains a shared prerequisite across most pipelines, irrespective of
model capacity. Reported window lengths for cognitive workload and vigilance vary from sub-second
to several seconds depending on the feature set and temporal granularity targeted by the task; step
sizes are typically chosen to balance temporal coverage with sample density, particularly in streaming
or quasi-online settings. Nevertheless, while many papers disclose the window length, fewer provide
a systematic account of how the step size is selected relative to study goals (within-subject tracking
versus cross-subject generalization) and data constraints, which motivates treating the step as an
explicit experimental factor and reporting it alongside other hyperparameters [11,13].

Finally, comparative studies that include both classical and deep learners suggest a pragmatic
division of labour: when labelled data are limited and cross-subject robustness is the priority, well-
designed feature pipelines with classical classifiers offer competitive and stable baselines; with larger,
diverse datasets or effective augmentation, deep architectures—particularly CNNs and hybrids, and
in some settings transformers—can deliver additional gains [16,17,23]. Positioning temporal window
shift as the main controlled factor in this study leverages that landscape and keeps architectural choices
secondary to the central question of segmentation and its impact on performance and class behaviour.

3. Materials and Methods
3.1. Dataset Characteristics

The study utilized the Simultaneous Task EEG Workload (STEW) dataset, an open-access resource
designed for research on mental workload using electroencephalography (EEG) signals [1,2]. The
release comprises EEG recordings from 48 participants (50 recruited; 2 excluded in the release), each
undergoing a resting-state session with eyes open and a SIMKAP multitasking session [1]. EEG was
acquired with an Emotiv EPOC headset at 128 Hz (16-bit), using 14 electrodes positioned according
to the international 10–20 system (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4). The
electrode montage is shown in Figure 1.

Figure 1. Electrode positions (10–20 system) used in STEW [1].

Each participant completed two sessions: a resting-state recording and the SIMKAP multitasking
test, a standardized assessment of multitasking performance [1]. For both sessions, approximately
3 minutes of EEG were recorded; following the dataset protocol, the first and last 15 seconds are
discarded, yielding 2.5 minutes of usable data per condition.

Following each session, participants self-reported perceived mental workload on a 9-point Likert
scale [24], where 1 indicates minimal workload and 9 indicates maximal workload. Consistent with
the dataset convention, ratings 1–3, 4–6, and 7–9 are mapped to low, moderate, and high workload,
respectively, and serve as the three target classes in this study. Because labels are provided per
recording segment, window-level samples inherit the segment label (the windowing procedure is
detailed in Section 3.3).
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3.2. Processing Pipeline

The processing pipeline comprises four preprocessing stages (Figure 2): (i) band-pass filtering,
(ii) artifact handling using Independent Component Analysis (ICA), (iii) window-level statistical
feature extraction on the analysis windows defined in Section 3.3, and (iv) normalization aligned with
the evaluation protocol. Model training is performed subsequently on the resulting feature vectors.
Segmentation parameters (window length L and temporal shift S) are specified in Section 3.3.

Figure 2. Processing pipeline.

3.2.1. Bandpass Filtering

Raw EEG is band-pass filtered to retain task-relevant activity while suppressing slow drifts and
high-frequency noise. Bandpass filtering selectively allows frequencies within a specified range to
pass while weakening those outside the band. It may combine high-pass and low-pass filtering in a
single operation, isolating desired components and suppressing unwanted noise and drift. Common
design approaches include infinite impulse response (IIR) filters such as Butterworth and Chebyshev
and Finite Impulse Response (FIR) filters, each with distinct frequency response and computational
complexity trade-offs. Butterworth filters offer a maximally flat passband to preserve amplitude fidelity
within the target range, avoiding ripples that could distort signal amplitude within targeted bands
and making them popular in biomedical signal processing. Chebyshev filters achieve steeper roll-off
at the expense of passband ripple, suitable when rapid attenuation of adjacent bands is required. FIR
filters can be designed to show an exactly linear phase, ensuring no phase distortion of time-domain
waveforms, although they typically require higher filter order and greater computation. Digital
implementations often utilize zero-phase filtering, such as forward-reverse filtering, to avoid phase
shifts that can distort event-related potentials [25].

In EEG applications, bandpass filtering isolates neural oscillations by removing artifacts from
muscle activity, eye movements, and power-line interference. Proper cutoff selection depends on the
signal characteristics and application needs, with typical EEG bandpass settings ranging from 0.5–1
Hz for high-pass to 30–70 Hz for low-pass filtering, often followed by notch filters at 50/60Hz [26].

Our study employed a fifth-order Butterworth bandpass filter with a 0.5 Hz low-cut and 50
Hz high-cut, implemented via zero-phase forward–reverse filtering. Setting the low cut at 0.5 Hz
effectively removes slow, non-neural drifts (e.g., galvanic skin responses or electrode polarization)
without distorting event-related potentials since higher cutoffs (> 0.5 Hz) have been shown to produce
waveform distortions and attenuate critical low-frequency components. The high cut at 50 Hz excludes
power-line interference (50 Hz in Europe) and other high-frequency artifacts while preserving beta and
gamma rhythms up to ∼ 45 Hz, which are implicated in attention and fatigue processes. A fifth-order
design achieves a steep roll-off (≈ 30 dB/octave), balancing artifact suppression against minimal
signal phase distortion. These settings match common configurations reported in recent cognitive
workload and feature-extraction studies [10,12].

3.2.2. Artifact Handling Using Independent Component Analysis

Independent Component Analysis (ICA) decomposes multichannel signals into statistically
independent components by maximizing non-Gaussianity (e.g., via kurtosis or negentropy). It is
a blind source separation technique designed to recover individual sources from observed linear
mixtures without prior knowledge of the mixing process. By leveraging higher-order statistics, ICA
aims to recover latent sources with minimal assumptions about their temporal structure [27].
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In EEG signal processing, ICA is widely employed to isolate and remove artifacts without explicit
reference channels. Popular implementations such as FastICA and Infomax use fixed-point iteration or
information-maximization criteria to achieve stable convergence and reliable decompositions. After
decomposition, components are inspected through their spatial topographies and temporal–spectral
profiles to identify artifact-related sources (e.g., ocular components with frontal dominance and low-
frequency power; myogenic components with broadband high-frequency content) for rejection or
correction. Recent developments integrate ICA with machine-learning classifiers that label components
(e.g., using annotated resources such as the EPIC EEG Independent Component dataset) or combine
ICA with sequence models for automatic artifact estimation [28].

We applied FastICA with the number of components set equal to the number of EEG channels (14),
ensuring a full-rank decomposition and maximal separation capacity. Components were marked for
removal using a predefined decision rule based on (i) scalp maps, (ii) power spectral density, and (iii)
time-course inspection for event-locked or burst-like artifacts. Signals were subsequently re-referenced
to the common average to reduce bias from any single electrode. In line with recent evidence that
ICA-based artifact removal does not universally improve downstream decoding, particularly in deep
models or when artifacts are weak or nonstationary, we applied removals conservatively and only to
components meeting strict criteria [29,30].

3.2.3. Wavelet-Based Feature Extraction

Wavelet transforms (discrete - DWT and continuous - CWT) decompose signals into scaled
and shifted versions of a prototype function, enabling simultaneous time-frequency analysis of non-
stationary data. Wavelets can capture transient features such as sudden shifts or oscillatory bursts by
adapting time resolution at high frequencies and frequency resolution at low frequencies. In DWT,
the signal undergoes successive high- and low-pass filtering with downsampling to produce detail
(i.e., high-frequency) and approximation (i.e., low-frequency) coefficients at each level, facilitating
multi-scale representation. CWTs compute coefficients over a continuum of scales and translations,
yielding redundant, highly detailed time-frequency maps useful for visual analysis but at greater
computational cost. Wavelet families (e.g., Daubechies, Symlet, or Coiflet) are selected based on
properties like compact support, regularity, and vanishing moments, which influence the transform’s
sensitivity to features of interest [31].

In EEG preprocessing, wavelet transforms serve multiple purposes: noise and artifact reduction
via thresholding of coefficients, extraction of band-specific power dynamics, and detection of event-
related potentials or pathological spikes. Empirical wavelet transforms adapt filter shapes to the
signal’s spectral content, improving artifact segmentation in challenging contexts like motion artifacts
or muscle noise [12,32,33].

3.2.4. Statistical Feature Extraction

We extracted a time-domain statistical feature set per channel that is suitable for cross-subject
EEG classification and efficient enough for potential real-time use. Following established practice
in recent EEG workload/fatigue pipelines, time-domain descriptors are used to capture waveform
morphology and variability within each analysis window, offering robust baselines under limited data
and heterogeneous subjects [11,12,32].

Specifically, each preprocessed EEG window was converted into a 13-dimensional statistical
vector per channel comprising:

• Central tendency and dispersion: mean, standard deviation, variance.
• Range and energy-related measures: peak-to-peak amplitude (ptp), minimum, maximum, mean-

square, root-mean-square (RMS).
• Indices of extrema: index of the minimum, index of the maximum (useful to indicate within-window

timing of salient excursions).
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• Shape descriptors: skewness and kurtosis (higher-order moments summarizing asymmetry and tail
heaviness).

• Absolute successive differences: a simple variability proxy sensitive to short-lived fluctuations within
the window.

These statistics assume approximate stationarity at the window scale but are sensitive to transient
dynamical changes in EEG that accompany shifts in perceived cognitive workload or fatigue. Their
low computational cost and interpretability make them attractive for streaming or embedded settings,
a point emphasized in recent surveys and methodological reviews [12,32]. In parallel to these time-
domain descriptors, wavelet-based subband features (discrete wavelet transform with Daubechies-4
and a 5-level decomposition) were computed in a separate step (see Section 3.2, Wavelet Transforma-
tion), and the statistical set described here is therefore complementary.

Per-channel statistical vectors were concatenated across all 14 channels, forming a 13× 14 = 182-
dimensional statistical feature vector for each window. Concatenation preserves spatial detail while
keeping the representation compact and consistent across subjects. To prevent information leakage,
feature scaling was performed with z-scores fitted exclusively on the training portion of each subject-
wise split (mean removal and variance scaling per feature) and then applied to the corresponding
test portion. This leakage-aware normalization follows recent recommendations for reproducible
EEG workload classification and ensures that reported performance reflects generalization rather than
distributional hints from the test data [13]. No per-window label smoothing was used; windows
inherit the segment-level labels defined in 3.1.

3.3. Windowing and Temporal Shift

We segment each continuous EEG recording into fixed-length windows and assign to every
window the segment-level label (low, moderate, high) derived from the 9-point self-report (1–3, 4–6,
7–9; see Section 3.1). The window length is fixed at L = 512 samples (4 s at 128 Hz). We chose L = 4 s
to stabilize the window-level statistics. This duration provides enough samples to yield reliable
time-domain descriptors (e.g., RMS, kurtosis) and to span multiple cycles of theta/alpha rhythms
relevant to workload, while remaining short enough to track within-session fluctuations without
mixing heterogeneous states. Prior work shows that classification is sensitive to window duration and
commonly adopts windows of a few seconds for cognitive workload. Our choice follows this practice
and improves comparability with recent STEW-based studies [8–10].

Temporal shift S - the experimental factor - denotes the step between the start times of consecutive
windows. The overlap ratio between adjacent windows is expressed by Eq. 1.

overlap ratio = 1 − S
L

. (1)

We evaluate S ∈ {32, 64, 128} samples corresponding to 0.25 s, 0.50 s, and 1.00 s shifts, which by
Eq. 1 implies overlap ratios of 93.75%, 87.50%, and 75.00%, respectively. This design reflects common
practice in EEG classification where window length and step are specified jointly [10], and it allows us
to examine how denser sampling (smaller S) affects both performance and class-wise behavior under
subject-wise evaluation [3–5]. Prior work has shown that overlap can substantially alter reported
metrics even when the model and features are unchanged [6].

For a recording of duration T seconds, the number of windows equals

Nwin(T; L, S) =

⌊
T − L

fs
S
fs

⌋
+ 1, (2)

with fs = 128 Hz. In STEW dataset, each condition lasts approximately T ≈ 150 s [1,2]. Using
Eq. 2, this yields Nwin = 585 windows per recording for S=32 samples, 293 for S=64, and 147 for
S=128. We process 90 subject–session recordings with segment-level labels distributed as: low n=42,

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 September 2025 doi:10.20944/preprints202509.0146.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.0146.v1
http://creativecommons.org/licenses/by/4.0/


8 of 19

moderate n=23, high n=25. Six recordings from the 96 available were excluded due to failed quality
control (excessive artifacts) and/or missing workload ratings. Because T and L are fixed, per-class
window counts equal n × Nwin for a given S.

Table 1. Windows per recording and totals across N=90 recordings, for each shift S.

No of samples S (shift) Shift (in s) Overlap (%) Windows per recording Total windows

128 1.00 75.00 147 13 230
64 0.50 87.50 293 26 370
32 0.25 93.75 585 52 650

Table 2. Windows per class (low, moderate, high) by shift S.

No of samples S (shift) Low (N=42) Moderate (N=23) High (N=25) Total (N=90)

128 6 174 3 381 3 675 13 230
64 12 306 6 739 7 325 26 370
32 24 570 13 455 14 625 52 650

Reducing S increases the number of windows available for training and testing, but it also
increases temporal redundancy because adjacent windows share a large proportion of samples (75–94%
here). This redundancy may induce autocorrelation between neighboring windows, so the additional
examples are not independent observations. Throughout this study we use subject-wise evaluation,
which prevents windows from the same subject appearing in both the training and the test sets. Even
with that safeguard, within-subject clustering remains and can raise performance when S is small
because the model sees many highly similar windows from the same recording. The implication is
that improvements observed at small S should be interpreted as the effect of denser sampling rather
than evidence that the underlying task became easier. This interpretation aligns with recent analyses
showing that segmentation and splitting choices can inflate or reshape reported metrics if they are not
specified carefully [3–5]. We therefore treat S as a tuned and reported design choice to make results
reproducible and comparable across studies [6,10].

3.4. Classifier Models

We evaluate five classical machine learning models - decision tree (DT), random forest (RF),
k-nearest neighbors (kNN), support vector machine (SVM), and multilayer perceptron (MLP) - and a
transformer-based deep network. All the methods were described in subsequent sections.

3.4.1. Traditional Machine Learning Models

Decision Trees (DTs) are non-parametric models that recursively partition the feature space into
homogenous subsets by selecting feature thresholds that maximize class purity, typically via Gini
impurity or information gain. At each node, the best split is chosen to minimize impurity in child
nodes, yielding an interpretable tree of decision rules. This model can capture complex nonlinear
patterns without requiring feature scaling, but individual trees often overfit small datasets [34]. We
used the Gini criterion and no maximum depth in our experiments, allowing the tree to grow fully
to capture subtle fatigue-related distinctions in our 13-dimensional feature set. The unbounded
configuration follows EEG studies showing that fully grown trees can excel when combined with
ensemble methods [35].
Random Forest (RF) mitigates decision trees’ variance by training an ensemble of trees on bootstrapped
subsets of the data and random feature subsets at each split, then aggregating predictions via majority
voting. Random forests have repeatedly achieved top performance in EEG-based fatigue and workload
detection tasks [34]. We implemented a random forest classifier with 100 trees, Gini impurity, and the
size of the subsets of features to consider when splitting a node equal to the square root of the total
features.
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k-Nearest Neighbors (kNN) is an instance-based classifier that assigns a class to a new sample based on
the majority label among its k closest neighbors in feature space, measured by Euclidean distance. kNN
makes minimal assumptions about data distributions, but it can be sensitive to noise and irrelevant
features. Prior EEG studies have shown that kNN with small k values tends to perform well on
statistical feature vectors. Accordingly, we set k=5 and used Euclidean distance, following benchmarks
demonstrating that this choice optimally balances bias and variance on similar datasets [36].
Support Vector Machines (SVMs) seek hyperplanes that maximize the margin between classes in a
high-dimensional space, with kernel functions enabling nonlinear decision boundaries. The Radial
Basis Function (RBF) kernel is particularly well-suited for EEG features, capturing complex patterns
without explicit feature transformations. SVMs have achieved strong performance in workload and
fatigue classification when tuned with appropriate regularization (’C’) and kernel bandwidth (’gamma’)
parameters [10]. We used an RBF kernel with default settings (C=1.0, gamma=’scale’), offering a robust
starting point that balances margin maximization and computational tractability.
Multilayer Perceptron (MLP) networks are feed-forward neural models with one or more hidden
layers, enabling the learning of complex, nonlinear mappings via backpropagation and gradient-based
optimization. Despite their "black-box" nature, shallow MLPs (one hidden layer) have proven effective
on engineered EEG features, providing a balance between model capacity and overfitting risk. We
configured an MLP with a single hidden layer of 100 neurons, ReLU activation, and a softmax output
layer. We trained MLP using the Adam optimizer (learning rate 0.001) for up to 200 epochs with early
stopping (patience 20). This setup reflects established EEG benchmarks and leverages dropout (rate
0.5) to regularize the network [37].

3.4.2. Transformer Model

Transformer networks employ self-attention mechanisms to model pairwise interactions across
sequence elements, capturing long-range dependencies more effectively than recurrent architectures.
An encoder block comprises multi-head self-attention, residual connections, layer normalization, and
position-wise feed-forward sublayers, enabling parallel processing of sequence tokens with minimal
inductive bias. Recent reviews highlight transformers’ ability to learn hierarchical representations
from raw EEG data with reduced reliance on manual feature engineering [38].

In our implementation (Figure 3), the model begins with an embedding layer projecting the 13-
dimensional feature vectors into a 32-dimensional space, followed by a multi-head attention module
with four heads and key dimension 32, and a point-wise feed-forward network of width 64 with ReLU
activations. Dropout (rate 0.1) is applied after attention and feed-forward layers to prevent overfitting.
We trained the network using Adam (learning rate 1x10−3) and categorical cross-entropy loss for up
to 100 epochs with early stopping (patience 10), following hyperparameter settings validated in EEG
transformer studies [39]. Our architecture balances expressivity and computational cost, aiming to
leverage global context modeling for fatigue detection while mitigating data scarcity challenges.
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Figure 3. The architecture of the proposed transformer neural network model.

3.5. Evaluation

All models were trained and evaluated using a hold-out protocol. The data were randomly split
into training (75%) and test (25%) sets using a subject-wise splitting protocol with a fixed random
seed to ensure that data from each participant appears exclusively in one set, preventing data leakage.
Preprocessing and feature scaling followed the pipeline in Sections 3.2–3.3. In particular, z-score
parameters were estimated on the training portion and then applied to the test portion. For each
temporal shift S ∈ {32, 64, 128} and for each model, training was performed on the training set and all
metrics were computed on the held-out test set.

We report standard multi-class metrics. Overall accuracy is the fraction of correctly classified
windows in the test set:

Accuracy =
#{ŷi = yi}

Ntest
. (3)

Per-class precision, recall, and F1-score are derived from the confusion matrix for the three classes (low,
moderate, high). For class c,

Precisionc =
TPc

TPc + FPc
,

Recallc =
TPc

TPc + FNc
,

F1c =
2 Precisionc · Recallc

Precisionc + Recallc
.

(4)

Macro-averaged precision, recall, and F1 are obtained by averaging the per-class values:

Macro-Precision = 1
3 ∑

c∈{low, moderate, high}
Precisionc,

Macro-Recall = 1
3 ∑

c∈{low, moderate, high}
Recallc,

Macro-F1 = 1
3 ∑

c∈{low, moderate, high}
F1c.

(5)

For each configuration (model, S), we present: (i) overall accuracy (Eq. 3), (ii) macro-averaged
precision, recall, and F1 (Eq. 5), (iii) the per-class precision/recall/F1 (Eq. 4), and (iv) the 3× 3 confusion
matrix. This set jointly captures both aggregate performance and the behavior on individual classes,
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which is important given the class distribution reported in Section 3.3. Results are reported separately
for each temporal shift S to make the effect of segmentation density directly comparable across models.

4. Results and Discussion
4.1. Effect of Temporal Shift on Aggregate Metrics (RQ1)

Figure 4 plots accuracy (left) and macro-F1 (right) as a function of temporal shift S for each of the
six models (one panel per model). Across models, both accuracy and macro-F1 improve as the shift
decreases from 1.00 s to 0.25 s. The trend is visible for all six classifiers and is monotonic in most cases.
This pattern is consistent with the change in effective sample count introduced by S (Section 3.3): at
fixed L and recording duration, reducing S increases the number of windows per recording (from 147
at S=128 to 585 at S=32), and therefore increases the number of training and test examples used by
the models. Because windows created with small S share a large portion of samples, the additional
examples are temporally denser rather than independent, but they still yield higher aggregate scores
on the held-out test set.

Figure 4. Accuracy and macro-F1 versus temporal shift S.

The macro-F1 curves generally follow the same direction as accuracy, indicating that the improve-
ment with smaller S is not confined to a single class. The following Section 4.2 analyzes class-wise
behavior in detail and shows how shifts in S alter the confusion structure. Here, at the aggregate
level, the main observation is that using a smaller shift produces higher accuracy and macro-F1 for all
evaluated classifiers under the same preprocessing and features. When comparing models or reporting
baselines, it is therefore important to keep S fixed; otherwise, differences in performance may reflect
segmentation density rather than properties of the classifiers.

4.2. Class-Wise Effects (RQ2)

We analyzed how temporal shift S affected each class (low, moderate, high) when the window
length was fixed. Figures 5-10 show the per-class F1 results for the models across the three shifts. Across
the six classifiers, the grouped bar charts show the same overall tendency: per-class F1 increases as the
shift S decreases. The effect is most pronounced for Random Forest, kNN, and Decision Tree (clear
gains from S=128 to 64, followed by smaller but positive steps at S=32). The MLP and the transformer
also improve across all three classes, with the moderate class remaining the lowest at each S. The SVC
is the outlier: its gains are modest and mostly appear at S=32, and class separation—especially for the
moderate label—remains limited. These trends align with the confusion matrices, where decreasing S
raises the diagonal counts and reduces moderate–neighbor errors.
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Figure 5. Per-class F1 for the Decision Tree model for different time window shifts.

Figure 6. Per-class F1 for the Random Forest model for different time window shifts.

Figure 7. Per-class F1 for the SVC model for different time window shifts.

Figure 8. Per-class F1 for the kNN model for different time window shifts.
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Figure 9. Per-class F1 for the MLP model for different time window shifts.

Figure 10. Per-class F1 for the transformer model for different time window shifts.

The confusion matrices (Figures 11-16) corroborate these trends. For the Random Forest (Fig-
ure 12), off-diagonal mass concentrates around confusions between moderate and its neighbors at
S=128; as S decreases to 64 and 32, diagonal counts rise and moderate–neighbor confusions shrink.
Analogous patterns appear for Decision Tree and kNN (Figures 11 and 13). The MLP and the trans-
former improve with smaller S, yet retain more residual moderate–neighbor confusions (Figures 15
and 16). The SVC stands out with weaker class separation overall, particularly at S=32 (Figure 14).

Figure 11. Confusion matrices for the DecisionTree model for different time window shifts.
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Figure 12. Confusion matrices for the RandomForest model for different time window shifts.

Figure 13. Confusion matrices for the kNN model for different time window shifts.

Figure 14. Confusion matrices for the SVC model for different time window shifts.

Figure 15. Confusion matrices for the MLP model for different time window shifts.
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Figure 16. Confusion matrices for the transformer model for different time window shifts.

Taken together, the class-wise view makes clear that the choice of S changes not only aggregate
scores but also the distribution of errors — chiefly by reducing moderate–neighbor confusions as
sampling becomes denser. Reporting per-class metrics and confusion matrices alongside aggregate
numbers helps attribute improvements to segmentation settings versus model properties.

4.3. Data Volume and Sample Independence (RQ3)

With fixed window length, the temporal shift S determines both the overlap between adjacent
windows and how many windows are produced from the same recording (see Section 3.3). On the
held-out test split, the total number of windows grows from 3308 at S=128 to 6593 at S=64 and to 13163
at S=32. Class totals scale accordingly: low 1528 → 3064 → 6188, moderate 863 → 1707 → 3346, and
high 917 → 1822 → 3629. Thus, halving S approximately doubles the number of available windows
while leaving the class mix essentially unchanged.

The aggregate gains reported in Sections 4.1–4.2 are therefore naturally linked to denser sampling:
smaller S supplies more training and evaluation examples without altering labels or features. These
extra examples are not independent, however. At fixed L, adjacent windows share a large fraction of
samples, which increases within-subject autocorrelation at the window level. Under the subject-wise
split used here, this densification does not create train–test leakage across participants, but higher
scores at smaller S should be interpreted as benefits of finer temporal sampling rather than evidence
that models receive fundamentally new, independent observations.

Practically, the choice of S should match the study goal and be reported alongside L. For re-
sponsive tracking or when models stabilize only with many examples, smaller S is advantageous
because it increases sample count at both training and test. For conservative benchmarking or when
independence of observations is paramount, larger S reduces temporal redundancy and tightens
the effective sample size, at the cost of some performance. In all cases, S must be kept fixed when
comparing classifiers so that differences in metrics reflect model properties rather than segmentation
density.

4.4. Model Dependence (RQ4)

This section contrasts how the six classifiers respond to the temporal shift S under the same
preprocessing and feature set. Table 3 compiles accuracy and macro-averaged precision, recall, and F1
for S ∈ {128, 64, 32}.

Across architectures, the direction of the effect is consistent: smaller S improves aggregate metrics.
The magnitude, however, is model-dependent. Tree-based learners (Decision Tree, Random Forest)
and kNN show the largest, nearly monotonic gains, reaching near-ceiling performance at S=32. The
MLP and the transformer also benefit from denser sampling across all classes, yet remain below the
tree-based baselines at each S. The SVC configuration used here exhibits the weakest improvements
and limited class separation even at S=32. These differences align with the class-wise analyses in
Section 4.2, where the moderate class remains the most challenging for all models but improves as S
decreases.
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From a computational standpoint, reducing S multiplies the number of window-level examples
(Section 4.3), which increases training and evaluation cost. The impact is model-specific: kNN scales
prediction cost with the size of the training set; tree ensembles increase fit time with the number of
samples and trees; neural models (MLP, transformer) require more updates per epoch. In practice,
selecting S therefore trades off accuracy gains from denser sampling against computational budget.
Comparisons between models should keep (L, S) fixed so that differences in metrics reflect model
properties rather than segmentation density.

Table 3. Performance of classification models across temporal shifts (L=512 samples).

Shift = 128 Shift = 64 Shift = 32

Model Acc Prec Rec F1 Acc Prec Rec F1 Acc Prec Rec F1

Decision Tree 0.88 0.87 0.87 0.87 0.93 0.93 0.93 0.93 0.97 0.97 0.97 0.97
Random Forest 0.97 0.98 0.97 0.97 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
SVC 0.46 0.72 0.34 0.22 0.47 0.77 0.34 0.23 0.47 0.56 0.36 0.31
kNN 0.90 0.89 0.89 0.89 0.96 0.96 0.95 0.96 0.98 0.98 0.98 0.98
MLP 0.62 0.60 0.58 0.57 0.74 0.73 0.72 0.71 0.80 0.78 0.78 0.78
Transformer 0.64 0.61 0.58 0.58 0.73 0.72 0.69 0.69 0.77 0.76 0.74 0.74

5. Conclusions
This study examined the role of the temporal window shift S in EEG classification of cognitive

fatigue (operationalized here via mental workload ratings in the STEW dataset) under a fixed window
length and a subject-wise evaluation protocol. Across six classifiers, smaller shifts—thus denser
segmentation—consistently increased aggregate metrics (accuracy and macro-F1), with the strongest
improvements for tree-based models and k-NN and clear, though smaller, gains for the MLP and
the transformer. Class-wise analyses showed that the moderate label remained the most difficult at
all S, yet its confusion with neighboring classes diminished as S decreased. These patterns indicate
that segmentation density is a consequential design choice that should be controlled and reported
alongside model details and the evaluation regime.

Based on these findings, we recommend that future EEG workload/fatigue studies: (i) report
both window length L and shift S (and the implied overlap ratio) together with the evaluation protocol;
(ii) keep (L, S) fixed when comparing models so that differences reflect model properties rather than
data densification; (iii) accompany aggregate metrics with per-class scores and confusion matrices to
expose how class-wise errors change with segmentation; and (iv) when applicable, state the number of
repetitions/seeds and summarize variability across runs or subjects. These practices should improve
reproducibility and make cross-paper comparisons more reliable.

Choosing S should follow the study goal. When responsiveness and data volume are critical—for
example, to stabilize training of models that benefit from many examples—smaller S is advantageous
because it increases the number of windows without altering labels. When independence of observa-
tions and computational economy are priorities, larger S reduces temporal redundancy and tightens
the effective sample size, with an expected trade-off in aggregate scores. In all cases, (L, S) should be
disclosed and justified.

This work has several limitations. It analyzes a single dataset, a single window length, and a
fixed feature-extraction pipeline; it does not include repeated runs or statistical testing, and all results
are offline. Labels derive from self-reported workload levels, which may introduce subjectivity, and
we did not explore architecture-specific tuning beyond standard configurations. These constraints
delimit the scope of our conclusions but do not affect the central observation that the shift parameter
materially shapes reported performance. These limitations motivate several avenues for future work.

Future work will extend the analysis across datasets and tasks, probe a broader grid of (L, S)
combinations (including longer and shorter windows), and incorporate repeated evaluations with
statistical testing. It will also examine architectures tailored to EEG sequences (e.g., convolutional
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and recurrent variants and transformer hybrids) under the same shift-controlled protocol, quantify
effective sample size under overlap, and evaluate online settings where latency and computational
budget interact directly with the choice of S.
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