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Abstract: Designing gas turbine combustors that operate effectively with turbomachinery 
components over a wide range of operating conditions is a challenging task, requiring detailed 3D 
computational fluid dynamics (CFD) analysis, which is computationally intensive. To alleviate this, 
surrogate models of the different sub-components like the pre-diffuser, combustion zone, dilution 
zone and transition ducting can be employed. These component-level models can then be integrated 
with surrogate models of turbomachinery components to enable comprehensive whole-engine multi-
point optimization. This paper presents the development of a data-driven surrogate model for conical 
air pre-diffusers that can be utilized to perform design optimization, what-if analysis, and be 
integrated within larger system-level simulation models. The surrogate model is developed within 
the spectral graph convolution neural network (GCN) framework to predict the 2D symmetry plane 
velocity, temperature and pressure distributions. The model is trained on CFD simulation data 
encompassing diffusers with diverse geometric parameters, including a wide range of aspect ratios, 
diffuser lengths, and inlet diameters, as well as various combinations of boundary conditions. As 
input, the surrogate model receives graphs representing the symmetry plane meshes, along with 
vectorized boundary condition values for each training sample. Different layer architectures are 
investigated to share information between the GCN and fully connected layers that process the graph 
and boundary condition data respectively. The best-performing surrogate model achieves high 
predictive accuracy, with normalized mean absolute percentage errors below 1% for pressure and 
temperature, and below 3.9% for velocity. 

Keywords: deep learning; graph convolutional networks; conical diffusers; computational fluid 
dynamics 
 

1. Introduction 

Optimization of combustors is one of the more challenging aspects of gas turbine design [1]. 
Successful combustor designs should ensure high combustion efficiency, low pollutant emissions and 
adequate lean blowout and extinction margins. These design requirements often conflict with one 
another, making development and optimization of combustors operating over a wide range 
particularly difficult [2]. Moreover, the high computational expense of 3D combustion computational 
fluid dynamics (CFD) simulations further prohibits effective design and optimization across multiple 
operating conditions. Multi-fidelity surrogate modelling of gas turbine combustor components has 
been demonstrated to be an effective approach to enable timely optimization of combustors [3]. These 
data-driven surrogate models can be trained on CFD simulation results, experimental data [2], reactor 
network simulation results [1] or analytical model results. A particularly exciting strategy involves 
developing separate surrogate models of varying complexities for individual combustor components 
such as the pre-diffuser, combustion zone, dilution zone and transition ducting. These component-
level models can then be integrated with surrogate models of turbomachinery components [4], 
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enabling truly comprehensive whole-engine multi-point optimization across a wide range of 
operating conditions. 

Within gas turbine combustors, pre-diffusers play an essential role in combustion performance 
by efficiently decelerating compressor discharge flow to appropriate velocities without incurring any 
unnecessary entropy generation. As compressor discharge velocities increase and combustor design 
requirements grow more challenging, the performance of the pre-diffuser becomes increasingly 
critical to overall system efficiency [5]. The present work presents a data-driven surrogate modelling 
approach for conical pre-diffusers, which can be utilized to perform design optimization, what-if 
analysis, and be integrated within larger system-level simulation models. The spectral graph 
convolution neural network framework [6], which processes graph data, is utilized along with CFD 
simulation results to develop the surrogate model. This geometric deep learning framework maps 
input graph node features, such as spatial coordinates, along with non-graph data, such as boundary 
conditions, to corresponding flow field variables at the graph nodes. Furthermore, this geometric 
deep learning framework can train on multiple graphs (which represents different diffuser 
geometries), allowing it to process and learn the effects of both geometric variations and varying 
boundary conditions on resultant flow field variables [7]. This capability enables accurate prediction 
of detailed flow fields within unparameterized diffuser geometries, as opposed to traditional deep 
learning surrogate models which are limited to predicting flow fields only for specific geometric 
representations on which they were trained [8,9]. 

Over recent years many researchers have investigated the use of deep learning to develop 
surrogate models of expensive 2D and 3D CFD simulations with a range of applications such as 
virtual sensors [10], control system optimization [11], design space exploration for computationally 
efficient design optimization [12], and as part of multi-fidelity simulations (e.g., turbulence closure 
surrogate model within larger simulations [13]). These CFD-based surrogate models can be applied 
to a range of tasks, from basic predictions of global 0D post-processed results, such as area-weighted 
temperatures, to more complex reconstructions of 2D or 3D flow and temperature fields. Models with 
higher target dimensionality are computationally more expensive to train, require greater network 
capacity, and face increased risk of overfitting, thereby demanding substantially larger training 
datasets. For these reasons, many researchers have adopted sophisticated deep learning 
architectures, such as convolutional neural networks, when developing these CFD-based surrogate 
models. Herewith follows a short overview of selected recent publications. 

Wu et al. [9] developed surrogate models capable of predicting the flow fields around 2D 
aerofoils. The authors developed an integrated architecture combining a convolutional neural 
network with a generative adversarial network (GAN), establishing an accurate one-to-one mapping 
between aerodynamic parameters defining the geometry and the corresponding two-dimensional 
pressure distribution around the aerofoil. To circumvent the need for large amounts of CFD 
simulation data to train these deep learning models, Wang et al. [14] proposed a semi-supervised 
learning approach called discriminative regression fitters (DRF). The proposed approach reduces 
dataset size requirements by 70% while maintaining prediction accuracy comparable to fully 
supervised methods. The DRF utilizes the memory property of neural networks and employs a 
Gaussian mixture model (GMM) to dynamically classify pseudo-labelled data and then minimize the 
loss by updating the easy and difficult-to-train labelled entries. The approach was successfully 
demonstrated for 2D aerofoil predictions. 

Vandewiel et al. [15] developed a specialized spatial attention UNet-based surrogate model to 
predict 2D CFD simulated velocity data for flow around a small building based on wind direction, 
speed and building opening size. The researchers generated approximately 1000 training samples 
using 3D RANS simulations. Once trained the spatial attention UNet surrogate model achieved a 
mean absolute percentage error (MAPE) of 4.7% for the velocity predictions, which is a 10% increase 
in performance compared to the standard attention UNet architecture. To address the challenge of 
varying geometries, the authors fed 2D pixelated signed distance function representations of the 
building fluid volumes into the surrogate as inputs along with the boundary conditions. Wu et al. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 June 2025 doi:10.20944/preprints202506.1409.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1409.v1
http://creativecommons.org/licenses/by/4.0/


 3 of 21 

 

[16], develop a high-fidelity transient surrogate model of turbulent hydrogen combustion in a fixed 
geometry combustor. The surrogate model employs an encoder-decoder architecture with 
convolutional layers and noise injection, enabling it to forecast the evolution of combustion reactants, 
products, and gas temperatures throughout the simulated 2D domain. The researchers compared the 
accuracy of their proposed deep learning architecture against both UNet and Fourier neural operator 
models. The results indicated that the proposed model substantially outperforms the standard 
models. 

The work discussed above, like most CFD-based surrogate modelling research, was limited in 
two ways: it either developed models for fixed geometries or required geometry-aware parametric 
approaches (such as polynomial representations of aerofoil pressure and suction side profiles). To 
overcome these geometric constraints when developing surrogate models capable of outputting 2D 
or 3D flow fields, geometric deep learning can be utilized. It directly processes the spatial structure 
of the domain as graphs, which enable these models to be geometry agnostic [7]. Recent studies have 
highlighted the advantages of applying geometric deep learning to the development of CFD-based 
surrogate models. Gouttiere et al. [7], developed a surrogate model capable of predicting the flow 
and pressure field through the NASA rotor 37 axial compressor stage using CFD simulation data and 
geodesic convolutional neural networks (GCNNs). The surrogate model uses graphs created from 
STL file data of the blade, hub, shroud and circumferential pitch average surfaces as inputs along 
with the scalar valued boundary conditions such as velocity inlet and pressure outlet values. Each 
graph node contains specific spatial coordinates, and the surrogate model generates predictions for 
flow field and pressure values at these precise nodal locations along with global performance values 
such as total-to-total pressure ratio across the compressor stage. Once trained the GCNN model could 
predict various global performance values such as isentropic efficiency and pressure ratio within 1% 
accuracy compared to the ground truth CFD simulation data. Leveraging the shape-independent 
nature of their GCNN modelling approach, the researchers applied the surrogate model to perform 
local geometric shape optimizations. Through these optimizations, they demonstrated a significant 
3.25% increase in isentropic efficiency by modifying the three-dimensional blade geometry. 

Mallya et al. [17], similar to the previous study of Gouttiere et al., developed a GCNN surrogate 
model using CFD simulation data. The surrogate model was developed to predict the 3D velocity, 
pressure and temperature fields for the flow through structured and unstructured porous volumes 
of different shapes. As inputs the surrogate model receives the graphs representing the volumetric 
and surface meshes along with global parameters such as total surface area and porosity of the porous 
volume. The surrogate model consisted of parallel GCNN and fully connected (FC) layers with 
residual skip connections. The initial layers of the architecture shared information by using mean 
pooling as a mechanism to combine the GCNN layer outputs with the FC layer outputs. The authors, 
similar to Gouttiere et al. [7], did not specify exactly how the sharing of data signals is achieved 
between the GCNN and FC layers, and therefore this sharing of data signals will be investigated in 
the current work. The Mallya et al. model achieved high prediction accuracies for temperature and 
heat flux fields (90% and 70% respectively). However, the velocity field predictions were 
considerably less accurate, with average accuracy values as low as 14% for the various cases analysed. 
The model demonstrated superior accuracy in predicting global performance metrics, such as overall 
pressure drop and melt time, when compared to a conventional multilayer perceptron (MLP) 
network. This performance advantage highlights the GCNN’s capacity to effectively disentangle 
complex spatial relationships in the data. 

Feng et al. [18], used graph convolutional networks (GCNs) to develop a surrogate model 
capable of predicting the 2D temperature field for the natural convection flow around heated 
cylinders in a cylindrical container. The simulation data was generated for 400 different heated 
cylinder arrangements and surface temperature combinations using the opensource CFD package 
OpenFOAM. The researchers compared the trained GCN surrogate model accuracy with that of 
MLP- and convolutional network-based surrogate models. The GCN surrogate model produced 
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results with MAPEs in the order of 0.1% and showed approximately 85% improvements compared 
to the predictions by the MLP and convolutional network surrogate models. 

In the present work, a GCN surrogate model is developed capable of predicting the 2D 
symmetry plane velocity, temperature and pressure distributions for flows within conical air 
diffusers. The model is trained on CFD simulation data encompassing diffusers with diverse 
geometric parameters, including a wide range of aspect ratios, diffuser lengths, and inlet diameters. 
Additionally, the training incorporates various boundary condition combinations. As input the 
surrogate model receives the graphs representing the symmetry plane meshes (coordinates and 
corresponding cell volumes) along with vectorized boundary condition values for a given training 
sample. This work investigates different layer architectures used to share information between the 
GCN and fully connected (FC) layers processing the graph and boundary condition data respectively. 
Additionally, the study examines the effects of hyperparameters such as batch sizes, number of 
layers, number of neurons per layer and spatial graph densities on prediction accuracy. Graph 
densities are varied by increasing edge connectivity, allowing nodes to connect with a greater number 
of surrounding nodes. To the best of the authors’ knowledge, this is the first research that sets out to 
develop a geometric deep learning surrogate model for air flow within a conical diffuser. 
Furthermore, the work investigates unique layer architectures which will be shown to produce 
sufficiently accurate velocity, temperature and pressure predictions for a wide range of diffuser 
geometries and boundary conditions. The computer models developed in the present work used 
Python 3.12.7, PyTorch 2.7.0, PyTorch Geometric 2.7.0, scikit-learn 1.6 and SciPy 1.15.2. 

2. Materials and Methods 

Figure 1 shows the overview of the proposed GCN-based surrogate model used to predict the 
velocity, pressure and temperature fields within the conical air diffusers. The inputs to the surrogate 
model are batches of graphs and boundary conditions, where the boundary values are assumed to 
be uniform across the relevant inlet or outlet boundary plane. The graph batches consist of multiple 
graphs where each graph is a representation of a specific diffuser geometry. A graph consists of node 
features and edges. The node features are the x- and y-coordinates and cell volumes, and the edges 
are connections between the nodes. Cell volumes are included as input node features to help the 
model distinguish between small boundary layer cells and larger free stream cells. In this work, CFD 
mesh coordinates and volumes serve as node features, with connectivity determined using the K-
Nearest Neighbour (KNN) algorithm, which identifies the K nearest cells and establishes connections 
accordingly. While Delaunay triangulation represents a more direct adjacency matrix construction 
method, the KNN approach is employed for its ability to regulate graph density via the 
neighbourhood parameter selection. Boundary condition batches consist of vectors of boundary 
condition values, forming matrices where rows correspond to batch samples and columns represent 
boundary condition features. These two datasets (graph batches and boundary condition batches) are 
processed through shared network layers, utilizing both FC and GCN layers that allow data to flow 
between boundary conditions and graph representations. The graph signal then proceeds through 
GCN layers before producing the final predicted velocity, pressure, and temperature distributions. 
Both input and output datasets undergo pre-processing and normalization, as discussed later in this 
section. For instance, the predicted outputs are scaled by subtracting boundary condition values and 
then normalized using a min-max scaler, thus, creating more appropriately scaled outputs that 
facilitate efficient training. 
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Figure 1. Overview of GCN-based surrogate model. 

This section details the CFD-based data generation methodology, including the simulation 
parameters, data preprocessing techniques, and theoretical foundations of GCN and FC layers. 
Finally, the various shared layer architectures evaluated in the surrogate modelling framework will 
be discussed. 

2.1. Parameterised Diffuser Geometry and CFD Model Setup 

The air diffuser CFD simulations are performed using the ANSYS Fluent 2024 R2 software. A 
pipeline that automates geometry generation, grid generation and subsequent simulation is 
configured using the ANSYS Workbench interface. Figure 2 below shows the geometry with 
dimensions along with the mesh with boundary conditions indicated. In the figure (left), inr  [m] is 
the inlet radius of the diffuser, exr  [m] the outlet radius, 3in inl r   [m] the inlet length, 4ex exl r   
[m] the outlet length and diffl  [m] the diffuser length. The diffuser aspect ratio is defined as 

in exAR r r  and by varying ,inr AR  and diffl  an entire envelope of diffuser geometries can be 

defined within the ranges specified for the three geometrical parameters. These three parameters are 
parameterized in ANSYS and systematically varied to create multiple geometries, which are then 
used to generate a simulation database for surrogate model training. In the present work, only a ¼ of 
the diffuser geometry is simulated in 3D, to reduce computational costs across multiple simulations. 
The diffuser geometry consists of an inlet, outlet, wall and two symmetry patches. The surrogate 
model, which will be discussed in subsequent sections, predicts velocity, temperature, and pressure 
distributions along one symmetry patch. While this approach effectively generates results for a 2D 
axially symmetric plane, 3D CFD simulations were conducted to lay the groundwork for future 
research where the surrogate model will be expanded to predict complete 3D domain results. 
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Figure 2. Geometry and mesh of 1/4 conical diffuser. 

Figure 2 (right) below also shows an example of a generated mesh. To ensure the boundary layer 
region is properly resolved, five inflation layers with the smooth transition approach is applied to 
each of the generated meshes. Additionally, to ensure consistent mesh scaling across all geometries, 
body sizing with element dimensions set at 1 10 inr  is implemented to ensure a qualitatively well-
structured mesh. The present study specifically examines the capability of GCN model architectures 
to predict CFD-simulated fields, not to develop highly accurate mesh and simulation solutions. 
Consequently, mesh generation is simplified relative to real-world simulation practices. 

To simulate the steady-state turbulent flows within the diffuser geometries the Reynolds-
averaged Navier-Stokes formulations of the relevant transport equations are utilized. As some of the 
generated simulation samples could have Mach numbers exceeding a value of 0.3, compressible 
effects had to be considered. Therefore, the Coupled pressure-based solver is utilized and the density 
of the fluid is resolved using the ideal gas equation of state. The steady-state mass, momentum and 
energy balance equations solved by the CFD code are shown in equations (1), (2) and (3) respectively. 

  0i
i

u
x

 


 (1) 

   2

3
j i i

i j ij j i
i j i i j i i

u u up
u u u u

x x x x x x x
   

                           
 (2) 

  i eff
i j j

T
u E p

x x x
 

           
 (3) 

In the above equations, ix  is the spatial dimension in direction i , u  [m/s] the directional 
velocity, p  [Pa] the fluid static pressure, E  [J/kg] total energy,   [kg/m3] fluid density, T  [K] 
fluid temperature,   [kg/ms] fluid viscosity and eff  [W/mK] effective fluid conductivity. The 

fluctuating Reynold stresses j iu u    are approximated using the Boussinesq equation [19] as shown 

in equation (4) where the turbulent viscosity is in turn calculated as 2
t C k   . The turbulent 

viscosity is also used to calculated the effective thermal conductivity Preff P t tc     where   

[W/mK] is the fluid thermal conductivity and Pc  [J/kgK] the fluid specific heat. The fluid properties 
such as   and Pc  are calculated using the built-in values within Fluent 2024 R2. 

2

3
ji k

j i t t ij
j i k

uu u
u u k

x x x
    

                  
 (4) 

To close the Boussinesq equation, the turbulent kinetic energy k  [m2/s2] and turbulent kinetic 
energy dissipation rate   [m2/s3] are solved using the realizable k   turbulence model which is 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 June 2025 doi:10.20944/preprints202506.1409.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1409.v1
http://creativecommons.org/licenses/by/4.0/


 7 of 21 

 

often used for combustor CFD simulations [20]. To account for the wall effects on the turbulent flow 
the standard wall function is applied in the near-wall regions. For the simulations, the pressure term 
is discretized using the PRESTO! scheme and the momentum and energy equations are discretized 
using the second-order upwind scheme. The turbulent kinetic energy and dissipation rate are 
discretized using the first-order upwind scheme. Simulation convergence is determined based on 
reduction of scaled residual values below 1e-3 for continuity, 1e-4 for the velocity equations and 1e-
6 for the energy equation. Simulations that do not meet these criteria during the database generation 
phase are automatically rejected and excluded from the final simulation database. 

The inlet of the diffuser (see Figure 2) is set as a uniform velocity inlet type boundary condition 
with the uniform inlet temperature specified. The outlet of the domain is set to a uniform pressure 
outlet condition with the backflow temperature set to the temperature inlet value. The walls are 
specified as standard no-slip walls and the symmetry planes as symmetry boundary conditions. The 
inlet velocity inV  [m/s], outlet pressure outp  [Pa] and inlet temperature inT  [K] are parameterised 
and also varied along with the geometrical parameters in Figure 2 to create the simulation database 
for surrogate model training. 

2.2. Data Generation and Preparation 

As previously mentioned, the objective of the current work is to develop a surrogate model using 
geometric deep learning which predicts the 2D velocity, static pressure and static temperature fields 
on the symmetry plane of a conical diffuser. The inputs to the surrogate model are: a graph 
representing the diffuser symmetry plane topology and the accompanying boundary conditions. To 
train and test the surrogate model, a dataset of CFD simulation meshes and results are generated. 
These meshes, which were converted into graphs, and the associated flow field results are generated 
using the CFD methodology combined with a design of experiments (DOE) approach. The DOE 
approach systematically varied both geometrical parameters and boundary conditions to create a 
structured simulation matrix. The ranges for each parameter ( , , , ,in diff in outr AR l V p  and inT ) are 

specified and the DOE matrix populated using optimal-space filling with a min-max distance design 
type. A total of 1000DOEN   converged simulation points are created and a CFD simulation is 
performed for each one. Simulations were conducted on an 8-core PC with 32GB of RAM, requiring 
approximately 48 hours of computation time. The ranges for each input parameter are found in Table 
1 below and are typical ranges for combustor pre-diffusers taken from [21]. Upon completion of all 
the simulations, the boundary conditions input dataset (see Figure 1) used for training and testing 
the surrogate model has dimensions of 3DOEN

bcX   where the three features are the boundary 
condition values for ,in outV p  and inT  for the individual samples of the DOE matrix. The remaining 
surrogate model input data extracted from the simulation dataset are the x-, y-coordinates and cell 
volumes of the symmetry plane for each mesh generated. Therefore, the dimensions of each sample 
are , 3

,
mesh iN

mesh iX   where the subscript i  indicates the simulation index, ,mesh iN  the mesh size 

of the thi  simulation and the three features the two coordinates and cell volume. The complete mesh 
input dataset would then be a tensor of DOE meshN X

graphX   where graphX  is the graph input dataset 

tensor consisting of DOEN  entries with each entry being a matrix of mesh coordinates and volumes. 

Similarly, the output dataset for the thi  simulation case has a shape of , 3
,

mesh iN
mesh iY   with the 

output features being the magnitudes of static temperature, static pressure and fluid velocity for each 
cell. The complete output graph dataset tensor would have the dimensions DOE meshN Y

graphY  . 

Table 1. Design of experiment ranges for input parameters. 

Input parameter Min Max Units 
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Inlet radius, inr  
0.01 0.15 m 

Aspect ratio, AR  1.2 3 - 

Diffuser length, diffl  0.02 1.4 m 

Inlet velocity, inV  
30 150 m/s 

Outlet static pressure, outp  
100 500 kPa 

Inlet static temperature, inT  
298 600 K 

There are large disparities in scale between the output field variables. For example, static 
pressure values are in the order of 100000  Pa, while static temperatures are in the order of 100  
K, and fluid velocity magnitudes in the order of 10 100  m/s. Therefore, scaling is applied to 
assist the surrogate model during training. This entailed calculating the difference between the 
predicted field variable and its corresponding boundary condition value for each simulation case. 
Therefore, for each entry in the graphY  dataset the following scaling is applied to the 1000 meshY  

entries. 
*

, , ,

*
, , ,

*
, , ,

mesh i mesh i in i

mesh i mesh i out i

mesh i in i mesh i

V V V

p p p

T T T

 

 

 

 (5) 

Note in equation (5), ,mesh iV , ,mesh ip  and ,mesh iT  are the three column vectors of the ,mesh iY  

matrix for the thi  simulation case. 
To enable the GCN layers to process the graphX  dataset, additional edge connectivity matrices 

had to be defined for each simulation case. Figure 3 below shows how the CFD mesh and graphs are 
related in the current work. For the example diagram shown below, the graph is constructed by 
connecting the graph nodes corresponding to mesh cells to the nearest four nodes. The Pytorch 
Geometric library [22] requires the edge connectivity for a graph to be provided in a compact format 
as shown in the figure below with two edges used between two graph nodes. The compact 
connectivity format has a shape of ,2 edges iN

iE
  where iE  is the edge connectivity matrix for the 

thi  simulation case and ,edges iN  is the total number of edges for the specific simulation case. The iE  

matrices for the different simulation cases are constructed by first generating an adjacency matrix for 
each case using the KNN algorithm. This algorithm processes the cell x- and y-coordinates while 
setting a specified number of connections. Next the adjacency matrices are converted to the compact 
edge connectivity format using the coordinate matrix conversion in SciPy [23]. 
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Figure 3. Mesh to graph conversion. 

With the graph input, boundary condition input and output datasets specified, the final pre-
processing step implemented is the normalization of the data. In the present work min-max scalers 
[24] are utilized for all the input and output datasets and across all the simulation cases. 

2.3. Fully Connected and Graph Convolutional Neural Networks 

The surrogate model uses shared layers consisting of GCN and FC layers as well as standard 
GCN layers. For a FC layer the output signal is calculated using equation (6) [25]. 

1l l l ls h w b    (6) 

In equation (6), ls  is the summed signal from the thl  layer, 1lh   is the output signal from the 

previous FC layer, lw  is the weight matrix for the thl  layer and lb  the bias vector. For the initial 
FC layer, 3

0
batchnh x    with batchn  being the minibatch size for the training of the surrogate 

model. Several of the architectures investigated in this study incorporate residual connections. In 
these cases, the summed signal can either be directly passed to an activation function, or first 
combined with the skip connection signal before activation. ReLu [26] activation functions are used 
throughout the surrogate network models. 

GCN models perform convolutions by updating node values and aggregating information from 
nearby nodes thereby inducing relational inductive bias [25]. Therefore, GCN layers have the 
capability to process graph data that can represent a number of structures such as non-Euclidean 
CFD mesh data [27]. The calculated output signal for node n  in GCN layer l  is calculated as shown 
in equation (7) where n

ls  is the node output signal vector before activation, lB  is a bias term 

vector, lW  the weight matrix and  agg n  the aggregation operation for the specific node. Note the 

capitals used the following equations, indicates the use in the GCN layers, where in equation (6), 
lower case symbols for weight and biases matrices and vectors indicate use in FC layers. 

 1
n n
l l l l ls B W h W agg n      (7) 

In the current work the GCN layer configuration by Kipf and Welling [28] is used. For this type 
of GCN layer the aggregation operation is performed using equation (8). In this equation,  ne n  

denotes a set containing the indices of the neighbours of the thn  node and  ne m  the set for the 
thm  node. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 June 2025 doi:10.20944/preprints202506.1409.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1409.v1
http://creativecommons.org/licenses/by/4.0/


 10 of 21 

 

 
    ne ne ne

m

m m

h
agg n

n m
   (8) 

In vectorized form for the entire graph, the Kipf and Welling GCN layer output (before 
activation) is calculated using equation (9). In the equation below, lS  is the summed signal output 

for all the nodes in layer l , 1lH   is the previous GCN layer output for all the nodes, mesh meshN NA   
is the adjacency matrix for the specific graph and D  is the diagonal degree matrix. For the GCN 
layers used in the present work, self-loops were not included. 

 1/2 1/2
11T

l l l lS B W H D AD 
     (9) 

Similar to the FC layers, GCN layers are implemented both with and without residual 
connections in the tested architectures. In configurations with skip connections, the summed output 
signal from a GCN layer lS  is combined with the residual connection signal before being passed 
through the ReLU activation function creating the layer output signal lH . When residual 
connections are absent, the summed signal proceeds directly to the ReLU activation. Equation (9) is 
formulated for an single graph (corresponding to a single CFD simulation case in this work). 
However, as with FC layer calculations, mini-batching is desirable to reduce the computational 
burden during surrogate model training. To achieve this, PyTorch Geometric employs a solution 
wherein adjacency matrices are stacked diagonally (constructing a comprehensive graph containing 
multiple disconnected subgraphs), while node and target features are concatenated along the nodal 
dimension. Therefore, no changes were made to the GCN layers to enable mini-batching in the 
present work. 

At the final GCN layer of the surrogate model, numbered L , the calculated output matrix is set 
equal to the target matrix for the thi  simulation case, in other words ,

ˆ
L mesh iH Y . To ensure that the 

surrogate model correctly maps the input graph and boundary condition data to the correct output 
target data, the network parameters for the FC and GCN layers namely lw , lb , lW  and lB  for each 

layer should be optimized to minimize the selected cost function  , ,
ˆ ,mesh i mesh iJ Y Y . The selected cost 

function is the mean squared error (MSE) loss, which is calculated for the thi  simulation case as 
shown in equation (10). 

   arg

2
, , ,

, , , ,1 1
, arg

1 1 1ˆ ˆ,
2

mesh t etN i d n j n j
mesh i mesh i mesh i mesh in j

mesh i t et

J Y Y y y
N d 

     (10) 

In equation (10), arg 3t etd   is the node target vector dimension (columns corresponding to 

velocity, pressure and temperature predictions), ,
,ˆ n j

mesh iy  is the predicted node target feature at node 

n  and feature j  and ,
,

n j
mesh iy  is the actual node target values. The previous equation represents the 

loss function for a single graph. The overall loss function is the average of these individual losses 
across all training and testing cases as shown in equation (11). 

  or 

, ,1

1 ˆ ,
 or 

train testN N

tot mesh i mesh ii
train test

J J Y Y
N N 

   (11) 

To adjust the network weights and biases to minimize the selected cost function, the Adam 
optimization algorithm [29] is used. The Adam algorithm is shown below in equation (12) for the 
trainable network parameter  . At the start of the training phase, the scaling ( s ) and momentum (
m ) matrices are initialized to 0. The parameter t  tracks iteration count, while 1  (set to 0.9) 
controls momentum decay and 2  (set to 0.999) governs scaling decay. The learning rate parameter 
  is initially set to 0.001. An exponential learning rate decay is implemented, which adjusts the 
learning rate value ten times throughout the training process using the relation epoch     where 
  is the decay rate parameter which is set to a value of 0.9. 
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 (12) 

2.4. Network Architecture Designs and Training 

Multiple deep learning architectures were evaluated to determine the optimal configuration for 
the surrogate model. These architectures incorporate upsampling, residual connections, 
concatenation of layer signals, layer normalization and pooling. Most of these operations are only 
implemented for the shared layers where the FC and GCN layer outputs share information. Figure 4 
illustrates the various shared and GCN layer architectures implemented. In the following discussion 
the signals propagating from boundary condition inputs into FC layers are designated as scalar data 
signals, while those traversing into GCN layers are classified as graph input data signals. 

 

Figure 4. Tested layer architectures for the surrogate model. 

For architecture 1 (A1) the GCN and FC layers have the same amount of neurons, therefore, for 
a single graph the output dimensions for the two layers would be , ,mesh i neurons lN n  (signal G) and 

,1 neurons ln  respectively, where ,neurons ln  is the number of neurons for layer l . After passing the layer 

outputs through ReLu activation functions they are combined by applying node-based mean pooling 
to the GCN output resulting in signal P which has the same dimensions as the FC layer output. These 
two signal are then summed together creating signal S. After summation the signal S is then 
upsampled by mapping the summed features to each node in the graph (creating signal U) and 
adding this to the original GCN layer output (signal G) creating the input for the next GCN layer. 
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The summed vector signal S is the input for the next FC layer. For architecture 2 (A2), rather than 
pooling the signal G down to the FC layer output dimensionality, the latter is upsampled and added 
to signal G. Signal S is then pooled down to the original FC layer output dimensionality. Architecture 
3 (A3) is similar to A1, but rather than adding signal U to signal G, a concatenation operation is 
performed, thereby maintaining the original signal G more rigorously compared to previous 
architectures. This operation generates signal C in the shared layer. Architecture 4 (A4) has the same 
structure as A2 with the summation of signal G and U being replaced by a concatenation operation. 
The difference between architectures 5 & 7 (A5 & A7) is that for A5 there is no layer normalization 
applied. A5 is similar to A3 with the addition of skip connection signals Z and Q being added to the 
GCN and FC layer outputs respectively. As demonstrated in the subsequent results, the summation 
variant was not evaluated since the concatenation operation consistently yielded superior 
performance. Architectures 6 & 8 (A6 & A8) are similar to the A2 with the addition of residual 
connections. Again, the difference between A6 and A8 is that A6 does not have layer normalization 
applied the FC and GCN layer outputs. For the A1-A4 standard GCN layers are used with ReLu 
activation functions. For A5-A8 residual connections are used throughout the GCN layers. 

The considered architectures for the shared layer blocks are described below, with reference to 
Figure 4. For all architectures, the GCN and FC layers have the number of neurons. Therefore, for a 
single graph, the output dimensions for the two layers would be , ,mesh i neurons lN n  and ,1 neurons ln  
respectively, where ,neurons ln  is the number of neurons for layer l  

The developed geometric deep learning surrogate model has various hyperparameters such as 
layer architecture (Figure 4), number of layers, number of neurons per layer, mini-batch size and 
graph densities. In this study, a sequential tuning methodology is implemented, beginning with 
coarse grid search evaluations for each parameter setting. The best-performing configuration from 
each stage is then retained when tuning subsequent parameters, creating a sequential tuning process. 
For all steps in the sequential tuning process, the train-test data split is set to 90% training data and 
10% testing data. 

The first part of the hyperparameter tuning process evaluates the various architectures 
previously discussed using 256 neurons per hidden layer, 2 shared layers, 3 GCN layers, number of 
node connections set to 4, and mini-batch size of 8. These models are all trained for 1000 epochs. The 
best-performing architecture from this initial phase is subsequently retrained with varying network 
configurations, including different quantities of shared and GCN layers, and different hidden layer 
dimensions of 64, 128, 256, and 512 neurons. In these subsequent investigations, the training epochs 
were extended to 2000. 

The two models demonstrating the lowest testing errors were then selected to investigate mini-
batch size effects. Mini-batch sizes of 1, 4, 8, 16 and 32 were considered. Finally, using the optimal 
model from the mini-batch investigation, graph density effects were evaluated by varying the 
number of connections per node in the mesh data graph construction. This evaluation tested nodal 
connection values of 4, 8, and 16. 

In addition to the MSE metric, the normalized mean absolute percentage errors (NMAPE) are 
used to evaluate surrogate model performance for the velocity magnitude, static pressure and static 
temperature field predictions. The NMAPE is essentially the mean absolute error between the actual 
and predicted values normalized using the specific boundary condition for the case. Therefore, the 
NMAPE for field variable   (which can be velocity, pressure or temperature) for case i  can be 

estimated using equation (13). In the below equation, ˆn
i  is the predicted field variable at the 

specified node and specific case and n
i  the actual value. 

,

1, ,

ˆ
1

100
mesh i

n nN
i i

nmesh i bc i

NMAPE
N

 



    (13) 

3. Results and Discussion 
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3.1. Performance of Different Network Architectures 

Table 2 presents the training and testing MSE and NMAPE values obtained during the first 
phase of architecture evaluation. It is seen that for all evaluated architectures, the pressure and 
temperature training and testing NMAPEs are below 1%, indicating good predictive performance by 
the surrogate models. The highest NMAPEs are observed for the velocity predictions; therefore, the 
current discussions will pertain to the velocity NMAPEs and the MSE values only. 

Table 2. Training and testing error metrics for evaluated architectures (cell contours formatted per column). 

    Training Testing 

Index 
Architecture short 

description 
MSE 

V-
NMAPE 

p-
NMAPE 

T-
NMAPE 

MSE 
V-

NMAPE 
p-

NMAPE 
T-

NMAPE 

1 

Pooling of GCN layer 
output and summing with 
FC layer output. Upscaling 
summed signal for next 
GCN layer. 

6,31E-
04 

4,960% 0,172% 0,049% 
1,50E-

03 
6,250% 0,214% 0,063% 

2 

Upscaling of FC output and 
summing with GCN layer 
output. Pooling summed 
signal for next FC layer. 

3,08E-
04 

3,400% 0,110% 0,037% 
1,90E-

03 
7,500% 0,185% 0,082% 

3 
Index 1 + concatenation of 
FC and GCN signals rather 
than summing. 

2,75E-
04 

3,370% 0,099% 0,037% 
1,04E-

03 
5,100% 0,130% 0,057% 

4 
Index 2 + concatenation of 
FC and GCN signals rather 
than summing. 

3,57E-
04 

4,840% 0,138% 0,050% 
2,01E-

03 
7,790% 0,193% 0,079% 

5 
Index 3 +  residual 
connections. 

2,38E-
04 

3,020% 0,100% 0,037% 
9,65E-

04 
4,710% 0,120% 0,052% 

6 
Index 2 + residual 
connections. 

3,21E-
04 

3,59% 0,12% 0,04% 
1,44E-

03 
6,05% 0,19% 0,07% 

7 
Index 5 + layer 
normalization. 

3,09E-
04 

6,48% 0,22% 0,07% 
1,49E-

03 
7,21% 0,23% 0,08% 

8 
Index 6 + layer 
normalization. 

7,21E-
04 

11,32% 0,28% 0,10% 
1,49E-

03 
10,56% 0,27% 0,09% 

Comparing architectures A1 and A2, the results demonstrate that A2 achieved a 51% lower 
relative MSE value on the training dataset compared to A1. However, A1 exhibited superior 
generalization, with a testing MSE 21% lower than A2. Interesting changes in error metrics are 
observed when substituting the summation operation with concatenation (viz. A3 and A4). For A3 
the relative training and testing MSEs are 56% and 31% lower compared to A1, whereas for A4 it is 
increased by 16% and 6% respectively compared to A2. For these architectures, the models (A1 and 
A3) that maintain a dedicated processing pathway for scalar data signals (originating from FC layers) 
tend to perform better during testing compared to models where scalar outputs are derived from 
pooling operations on mixed graph and boundary signals only (A2 and A4). The architectures with 
dedicated pathways for the scalar data appear to better preserve the boundary condition features 
leading to improved generalization. 
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Next, residual skip connections are added to A3 and A2 resulting in A5 and A6 respectively. The 
results show that both the training and testing MSEs are reduced further with the addition of skip 
connections for both architectures. This highlights the importance of improved information flow 
through the network. Comparing A5 with A3 shows reductions of 13% and 7% for the training and 
testing errors respectively. Comparing A6 with A2 yields an increase of 4% in the training MSE, 
whereas the testing MSE shows a decrease of 24%. Interestingly, the addition of layer normalization 
to these architectures (A7 and A8) leads to considerable increases in both training and testing MSEs. 
This is most likely due to standardisation of the output layer feature distributions which attenuates 
important information content, thus diluting the signal importance. 

Figure 5 shows the training and testing MSE histories across epochs. Most noticeable is the 
erratic MSE signals of A7 and A8, showing the slowest decline in errors. During the initial 200 epochs, 
A3 has the fastest decline in MSEs of all the models and ultimately achieves the 2nd best performance 
on testing error. At approximately 200 epochs and beyond, the best performing model on testing MSE 
is A5. The results thus demonstrate that the addition of skip connections yields favourable reductions 
in both training and testing MSE metrics (although the magnitude of improvement is marginal for 
the considered case). This phenomenon likely indicates that the signal preservation benefits obtained 
by the concatenation process in A3 yields the residual connections of A5 partially redundant. Such 
findings suggest that the primary constraints on predictive performance may not reside in the signal 
propagation mechanics addressed by skip connections, but rather in alternative aspects of the model 
configuration, such as the inherent target function complexity. Nonetheless, the architecture selected 
for subsequent hyperparameter tuning is the best-performing A5 model. 

 

Figure 5. Training and testing histories as a function of epochs for different architectures. 

3.2. Hyperparameter Tuning of Selected Networks 

3.2.1. Layer Depth and Neuron Count 

Using the selected A5 architecture, various combinations of layer depths and number of neurons 
per hidden layer are tested, with the results summarised in Table 3. As mentioned, these models are 
trained for 2000 epochs with the exponential learning rate decay applied every 200 epochs. Generally, 
the results show that the lowest training and testing MSEs are found for the larger (deeper and wider 
networks), as indicated by the shading of the table cells. The relative percentage increase going from 
a combined 5-layer deep 64 neurons per hidden layer model to a 9-layer deep 512 neurons per hidden 
layer model decreases the training and testing MSEs by 58% and 26% respectively. Analysis reveals 
a 3.2% relative difference in performance metrics between the model variant with 4 shared layers 
coupled with 3 GCN layers (512 neurons) and the 4 shared layers with 5 GCN layers (512 neurons) 
model. Given this marginal discrepancy, both architectures warrant further investigation to 
determine the relationship between mini-batch sizes during the training process on the MSEs. 

Table 3. Training and testing MSEs for different numbers of network layers and hidden neurons using A5. 
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Number of neurons 
per layer 

 64 128 256 512  64 128 256 512 

Number of shared and 
GCN layers 

 Train MSE  Test MSE 

x2 shared x3 GCN  3,18E-04 2,11E-04 1,94E-04 2,03E-04  1,22E-03 9,60E-04 9,66E-04 1,03E-03 
x2 shared x5 GCN  2,26E-04 1,72E-04 1,81E-04 1,36E-04  1,01E-03 1,17E-03 1,08E-03 1,08E-03 
x4 shared x3 GCN  2,50E-04 1,91E-04 1,94E-04 1,49E-04  9,77E-04 9,80E-04 1,03E-03 9,40E-04 
x4 shared x5 GCN  2,32E-04 1,67E-04 1,54E-04 1,33E-04  9,75E-04 1,01E-03 1,00E-03 9,10E-04 

3.2.2. Mini-Batch Sizes 

Figure 6 shows the training and testing MSE values along with the velocity field prediction 
NMAPEs for the 7- and 9-layer models trained with the different mini-batch sizes. Training MSE 
values initially decrease as mini-batch size increases from 1 to 4, then increases again at larger batch 
sizes. For the 7- and 9-layer models, testing MSEs are progressively reduced as batch sizes decrease 
from 32 to 1. However, the error reduction becomes minimal when reducing batch sizes from 8 to 1, 
with no substantial changes observed in this range. For the training velocity prediction NMPAEs the 
general trend shows that smaller batch sizes are preferable. Similarly, the lowest testing velocity 
prediction NMAPEs are observed for batch sizes of 1. 

 
Figure 6. Training and testing MSEs and NMAPEs obtained for different mini-batch sizes using A5. 

Overall, for the 9-layer model, the relative reductions in testing MSE and velocity NMAPE from 
a mini-batch size of 32 to 1 are 54% and 48% respectively. The fact that the surrogate model prefers 
online learning over batch learning could be attributed to noise induced high variance gradient 
updates that help the model escape local minima. Alternatively, it could be that the smaller batch 
sizes enable the learning of subtle patterns more prominently in the testing dataset. Based on these 
findings, the best-performing model selected for the next hyperparameter tuning step is the 9-layer 
model with online learning. 

3.2.3. Nodal Connectivity 

Table 4 contains the MSE and velocity NMAPE values for the 9-layer model with online learning 
for different numbers of nodal connections. To generate graphs with increased nodal connections, 
the connectivity parameter in the KNN algorithm is adjusted to the required value. The results 
indicate that the increase in more connections based on Euclidean distance does not significantly 
improve network performance. The best-performing model remains the one with nodal connections 
set to 4. Future work could look at the potential benefits that could be achieved by using graph 
attention networks to weight the various connections, thus eliminating unnecessary connections. 
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Table 4. Training and testing MSEs and NMAPEs obtained for different number of nodal connections using 
A5. 

Number of neighbours (graph 
density) 

Training Testing 
MSE V-NMAPE MSE V-NMAPE 

4 1,67E-04 2,01% 8,80E-04 3,90% 
8 1,05E-04 1,93% 9,88E-04 4,07% 
16 1,84E-04 2,43% 9,06E-04 4,39% 

One final check that is performed, is to investigate the dependency of the surrogate model 
accuracy on training dataset size. The best-performing model defined above is retrained using the 
same testing dataset, but with training dataset sizes of 300, 600 and 900 (used in previous tuning 
steps). For the training errors, no significant decrease is observed (0.5% going from 300 to 900 training 
samples). Conversely, a substantial decrease in testing error is found. Increasing the training dataset 
size from 300 to 600 decreases the MSE value by 39% and increasing the dataset size from 600 to 900 
reduces the error by a further 15%. It is, therefore, the opinion of the authors, that further gains can 
be achieved by increasing the training dataset size for the given problem and DOE ranges used, and 
by training the model for more epochs. 

3.3. Evaluation of Best-Performing Graph Convolutional Networks 

Figure 7 shows the actual velocity values for every node in each simulation case against the 
predicted velocity values for the training (approximately 2.2 million points) and testing data 
(approximately 250 000 points). Both the training and testing results are shaded by the AR. 

 

Figure 7. Actual vs. predicted velocities (training and testing) and velocity prediction error distribution (orange 
colour in figure is the overlapping region). 

Training Testing 
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The training results reveal that several data points fall outside the 10% error band, specifically 
those corresponding to high ARs and low velocities. These conditions are interconnected, as high AR 
geometries typically generate flow separation in the diffuser, creating recirculation regions with low 
velocities in the diffuser channel. Therefore, the surrogate model appears to generate predictions with 
higher errors in cases where substantial velocity gradients are present due to flow separation. 
Similarly for the testing data, the largest errors are observed for low velocities and for cases with high 
ARs. The plots indicate that while the surrogate model exhibits some prediction limitations, the 
velocity relative percentage error distribution in Figure 7 (bot) demonstrates good overall 
performance. For the training dataset, 74% of nodal velocity predictions achieve accuracies exceeding 
90%, while for the testing dataset, 69% of the predicted nodal velocities achieve accuracies above 90%. 

Figure 8 displays the training and testing error distributions for the nodal pressure and 
temperature predictions. It is clear from the results that the surrogate model predicts these fields with 
good accuracy, with nearly all the nodal predictions having predictions accuracies above 99%. 

 

Figure 8. Training and testing pressure and temperature prediction error distributions. 

To further demonstrate the surrogate model performance, the actual and predicted contours for 
velocity magnitude, static pressure and static temperature are plotted in Figure 9. In Figure 9, three 
cases are selected from the training dataset namely, a) case with the largest AR and shortest diffuser 
length (DL) combination, b) case closest to the mean AR and DL of the training dataset, and c) case 
with the smallest AR and longest DL combination. 

Pressures Temperatures 
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Figure 9. Actual and predicted contours for training dataset. a) Largest AR with shortest DL case, b) closest to 
the mean AR and DL of the dataset case and c) smallest AR and largest DL case. 

For case a) the predicted velocity contours accurately reproduce the actual velocity contours. 
The general distribution of the pressure predictions also aligns well with the actual pressure contours, 
but minor pressure artefacts are predicted near the diffuser inlet and along the wall of the exit straight 
section which are not present in the actual data. Similar artefacts are observed for the temperature 
predictions. These artefacts could potentially be removed using physics-based regularization [27] or 
adding a smoothness promoting loss function [30]. 

For case b), which features a geometry closely approximating the mean configuration, the 
surrogate model can predict the velocity, pressure and temperature fields with good accuracy, as 
expected. Similarly, for case c), the surrogate model exhibits accurate predictive capabilities. 
Interestingly, the high frequency spatial artefacts observed in case a) are not present in cases b) and 
c). Based on these three training dataset cases, the surrogate model delivers both qualitatively and 
quantitatively accurate predictions of the flow and property fields. 

Figure 10, like the previous results, shows the actual and predicted velocity, pressure and 
temperature fields for three cases taken from the testing dataset. These three cases are selected 
similarly to the previous results (for example, case a) is selected having the geometry with the largest 

Actual Predicted 

a)
 A

R=
3.

0;
 D

L=
0.

04
 m

 
b)

 A
R=

2.
04

; D
L=

0.
37

7 
m

 
c)

 A
R=

1.
21

; D
L=

1.
32

 m
 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 June 2025 doi:10.20944/preprints202506.1409.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1409.v1
http://creativecommons.org/licenses/by/4.0/


 19 of 21 

 

AR and shortest DL combination in the testing dataset). Like the training dataset results, the surrogate 
model shows good predictive capabilities and can replicate the actual contours relatively accurately. 
In case a), velocity measurements showed a 3.62% NMAPE with a maximum error of 24.2%, while 
temperature and pressure fields demonstrated higher precision (0.052% and 0.042% NMAPEs, with 
maximum errors of 0.59% and 0.43%, respectively). For case b) the NMAPEs for velocity, temperature 
and pressure fields are 2.51%, 0.07% and 0.03% respectively, with the maximum normalized 
percentage errors being 21%, 1.01% and 0.3%. The most accurate predictions appeared in case c), with 
velocity NMAPE dropping to 1.56% (10.5% maximum error) and exceptionally low temperature and 
pressure field errors (0.046% and 0.017% NMAPEs; maximum errors of 0.256% and 0.166%). These 
findings for case c) align with expectations, as the surrogate model demonstrates higher accuracy at 
lower AR values due to the presence of smaller separation regions, which introduce prediction errors. 

 

Figure 10. Actual and predicted contours for testing dataset. a) Largest AR with shortest DL case, b) closest to 
the mean AR and DL of the dataset case and c) smallest AR and largest DL case. 

4. Conclusions 

This study details the development of a geometric deep learning-based surrogate model for 
predicting flow, pressure and temperature contours within a family of conical diffuser geometries 
using a combination of GCN and FC layers. The surrogate model can make accurate predictions 
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across a wide range of inlet radii, aspect ratios, lengths, and boundary conditions for velocity, 
pressure, and temperature. Various shared layer architectures, used to process both graph and scalar 
data signals, are evaluated. It is found that architectures that enforce dedicated processing pathways 
for the scalar data signals perform better compared to models that rely solely on pooling operations 
to create the scalar inputs for subsequent layers. Moreover, the concatenation of scalar and graph 
data signals improves predictive performance due to the enhanced signal preservation compared to 
architectures using summation operations. 

Sequential hyperparameter tuning is performed using the best-performing surrogate model 
configuration, which features a combination of residual connections and concatenation operations. 
The selected surrogate model produced reasonable predictions of the velocity magnitude, static 
pressure and static temperatures fields along the symmetry planes of the diffusers. The pressure and 
temperature predictions have NMAPEs below 1%, indicating high accuracy, with velocity 
predictions showing lower but still acceptable NMAPEs of 3.9%. Studying the individual nodal 
predictions of the entire testing dataset reveals that the main source of velocity prediction errors 
occurs for cases with large ARs in regions of low velocities. This most likely indicates the model fails 
to accurately predict the velocities in the regions of flow separation where abrupt velocity changes 
occur in the radial direction. Future work will investigate the effect of physics-based regularization 
to enhance velocity predictions in these regions. Furthermore, examination of the predicted results 
reveals that the surrogate model occasionally generates minor non-physical artefacts in the pressure 
and temperature fields. While these artefacts do not significantly impact the overall prediction 
accuracy, they represent physically unrealistic features in the solution. Therefore, future work will 
investigate the implementation of smoothness-promoting loss functions, such as Graph Laplacian 
regularization. Additionally, future work should also investigate the performance benefits when 
using more advanced graph-based network layers such as GMMs (which includes geodesic edge 
distances between nodes). 
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