Pre prints.org

Article Not peer-reviewed version

Dynamic Learning Models for Adaptive
Digital Twins: A Scalable Approach to
Real-Time Adaptability in Non-
Stationary Environments

Yusuff Giwa ~ and Taiwo Akinmuyisitan ~
Posted Date: 17 March 2025
doi: 10.20944/preprints202503.1160.v1

Keywords: digital twin; adaptive digital twins; online learning; mathematical modeling; \linebreak
convergence analysis; non-stationary environments; dynamic system adaptation; real-time \mbox{learning};
cyber-physical systems; stability analysis; Lyapunov stability theory; parameter estimation; state
\mbox{estimation;} reinforcement learning; concept drift

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.



https://sciprofiles.com/profile/4247396

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 March 2025 d0i:10.20944/preprints202503.1160.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Dynamic Learning Models for Adaptive Digital Twins:
A Scalable Approach to Real-Time Adaptability in
Non-Stationary Environments

Yusuff Adeniyi Giwa * and Taiwo Akinmuyisitan

Innovarie, Stockton-on-Tees, UK
School of Computing & IT, Arden University, London, England
Correspondence: y.giwa@innovarie.com

2

*

Highlights:

® Proposes a formal mathematical framework for adaptive digital twins, defining them as dynamically
updated virtual replicas of physical systems.

¢ Develops an online learning algorithm with step-by-step updates for the digital twin, including
convergence guarantees under appropriate conditions.

* Derives theoretical bounds on modeling error and analyzes the stability and convergence of the
adaptive twin, highlighting fundamental performance limits due to noise and model uncertainty.

* Demonstrates the approach with illustrative examples, providing rigorous proofs and cross-
validated pseudocode for reproducible implementation.

Abstract: Digital twins are virtual representations of physical assets that remain continuously
synchronized with their real-world counterparts. This paper focuses on adaptive digital twins—models
that incorporate online learning mechanisms to update their states and parameters in real time. We
present a rigorous mathematical framework for adaptive digital twins, including formal definitions
and data-driven update mechanisms. A theoretical convergence analysis establishes conditions under
which the twin’s state asymptotically tracks the physical system. We further explore theoretical
performance limits, analyzing the effects of model uncertainties, noise, and computational constraints
on accuracy. The paper follows academic best practices, providing detailed pseudocode for the
adaptation algorithm, convergence proofs via Lyapunov stability theory, and supporting figures and
tables. Our results show that, with proper design, adaptive digital twins can achieve stable and
provably convergent tracking, ensuring reliable deployment in complex cyber-physical systems.

Keywords: digital twin; adaptive digital twins; online learning; mathematical modeling;
convergence analysis; non-stationary environments; dynamic system adaptation; real-time learning;
cyber-physical systems; stability analysis; Lyapunov stability theory; parameter estimation; state
estimation; reinforcement learning; concept drift

1. Introduction

Digital twin technology has emerged as a key paradigm for integrating real-time data with high-
fidelity models of physical systems. A digital twin (DT) is generally defined as a digital model of
a specific physical asset that remains in sync with the asset throughout its lifecycle [1,2]. In other
words, a DT is a living model that is continuously updated to reflect changes in its physical counterpart.
The concept originated in the aerospace industry, where NASA introduced the idea of a “digital twin”
around 2010 as a means to improve spacecraft simulations [3,4]. One early formalization described a
digital twin as:

“an integrated multiphysics, multiscale, probabilistic simulation of an as-built vehicle that uses
physical models, sensor updates, and history to mirror the life of its corresponding flying twin” [5,6].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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This highlights that a true digital twin must be dynamically linked to data from the physical
system.

An important distinguishing feature of digital twins, as opposed to traditional offline simulations,
is adaptivity. According to a recent data science perspective, a digital twin can be viewed as an open
dynamical system with an updating mechanism, essentially a complex adaptive system that generates
simulation data indistinguishable from the physical system [7,8]. This adaptivity allows the twin
to evolve along with the real system, enabling capabilities such as real-time monitoring, predictive
diagnostics, and decision support [9,10]. However, designing such adaptive digital twins (ADT) raises
fundamental questions:

¢ How should the twin’s model update itself based on streaming data?
e  Will these updates converge to an accurate representation of the physical system?
*  What are the theoretical limits on the twin’s fidelity and stability?

In this paper, we address these questions by developing a mathematical framework for adaptive
digital twins with a focus on theoretical guarantees. We define the concept of an adaptive digital
twin rigorously and propose an algorithmic approach for online learning of the twin model. We then
analyze the convergence properties of this adaptation scheme, deriving conditions for stability and
convergence in the presence of uncertainties.

Our contributions are summarized as follows:

*  We formalize the definition of an Adaptive Digital Twin (ADT) as a digital twin endowed with
mechanisms to update its state or parameters continuously using live data. This formal definition
(Section 3) clarifies the difference between a static model and a truly adaptive twin.

*  We present a mathematical model for the coupled physical-digital system, including notation for
the physical system dynamics and the digital twin dynamics. Based on this model, we introduce
an online learning algorithm for the ADT that assimilates new observations and adjusts the twin’s
parameters in real-time (Section 4). The algorithm is described in pseudocode (Algorithm 1) with
step-by-step updates for implementation.

*  We derive theoretical results on convergence and stability. In particular, under assumptions
such as observability of the physical system and sufficient excitation in the data, we prove that
the adaptive updates drive the twin’s state to track the physical system’s state asymptotically
(Section 5). The main result (Theorem 2) provides a convergence guarantee for the parameter
estimation error. We also discuss the rate of convergence and how it depends on design parameters
(e.g., learning rates).

e  We investigate theoretical limits and trade-offs. Even with an optimal design, factors like model
mismatch, measurement noise, and time delays can impose lower bounds on the accuracy of a
digital twin. We provide analysis of these limits in Section 5.2, including an example of a scenario
where the twin cannot perfectly converge due to unobservability. A formal proposition is given
to illustrate how noise leads to an error floor in estimation.

e  Weinclude a case study illustration (Section 6) to demonstrate the application of the proposed
framework. In this illustrative example, we consider a simple physical system (a second-order
dynamic system) and show how the adaptive twin tracks it. We present a table summarizing the
effect of different adaptation rates on convergence speed and accuracy (Table 4).

The remainder of this paper is organized as follows. Section 2 reviews related work and situ-
ates our contributions in the context of existing research on digital twins. Section 3 introduces the
mathematical framework and formal definitions. Section 4 describes the adaptive twin algorithm in
detail. Section 5 presents the theoretical convergence analysis and proofs. Section 5.2 discusses the
fundamental limits and provides additional insights (including a brief discussion on computational
complexity and real-time constraints). Section 6 provides an illustrative example. Finally, Section 7
concludes the paper and outlines future research directions.
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2. Background and Related Work

The concept of digital twins has evolved rapidly in recent years, finding applications in manu-
facturing, energy systems, healthcare, and urban infrastructure. Several survey papers and reviews
(e.g., [1,3]) trace this evolution from its initial conceptualization to modern implementations. Here, we
focus on the aspects most relevant to adaptive digital twins, particularly online model updating, data
assimilation, and theoretical analyses of twin models.

2.1. Digital Twin Foundations

The term Digital Twin was popularized by NASA and the U.S. Air Force as part of vehicle health
management for aerospace systems [1]. Glaessgen and Stargel [1] outlined the digital twin paradigm
as a high-fidelity model synchronized with a physical asset, emphasizing its potential for life-cycle
monitoring. Since then, various definitions have been proposed. A common theme is the integration
of three key elements: the physical asset, its virtual model, and the data connections that ensure
synchronization. An often-cited perspective defines a digital twin as comprising a physical product, a
virtual counterpart, and real-time data flows between them.

[5] have emphasized that achieving robust digital twins at scale requires rigorous mathematical
foundations. Key challenges include model stability, uniqueness of solutions, and convergence of
coupled simulations. If the combined physical-digital system does not yield stable and convergent
behavior, the digital twin will not remain valid over time [7]. These observations motivate the need for
a strong theoretical analysis of adaptive digital twins.

2.2. Defining System Non-Stationarity

Real-world systems often exhibit non-stationary behavior due to environmental changes, ag-
ing components, and dynamic operating conditions. In an adaptive digital twin, non-stationarity
poses a fundamental challenge: the twin’s model must continuously track and update its internal
representation to match the evolving physical system.

Digital Twin's classifier model
is trained on historical data
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Figure 1. Real-time performance of a digital twin’s anomaly classification model under concept drift (distribution
shift). Initially, the model is trained on stationary data and achieves high accuracy. As the environment evolves
and data distributions shift over time, the decision boundary becomes misaligned, causing accuracy to drop
drastically (e.g., from >90% to <40%). This illustrates the need for continual adaptation in digital twins to maintain
performance under changing conditions.

To formally characterize non-stationary environments, we define them in terms of evolving
probability distributions. In a stationary setting, the system’s dynamics—such as state transition
probabilities and reward distributions in a Markov Decision Process (MDP)—are fixed over time.
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In contrast, a non-stationary environment is one where the transition function P; and/or reward
function R change over time due to evolving external conditions, control policies, or underlying
system variations.

Mathematical Definition of Non-Stationarity

At each discrete time step f, the environment can be represented as a time-dependent MDP:
M= (S,A, Py, Ry), @

where:

e  Sisthe state space,
e  Ais the action space,
e Pi(s'|s,a) is the time-dependent state transition probability,
®  R(s,a) is the time-dependent reward function.
A common approach to handling non-stationarity is to assume that variations are bounded within
a variation budget, which measures the total change over a given time horizon T.

Variation Budgets for Transition and Reward Dynamics

Reward variation budget:

T-1
B, = R ,a) — Re(s,a)l. 2
r t;sergggAI #+1(s,8) = Re(s,a)] 2)
Transition variation budget:
T-1
B, = Piiq(v]s,a) — Pe(+|s, . 3
P L SE“;S&H i+1(-[s,a) = Pe(-s,a) [ ©)

These bounds, B;, B, > 0, quantify how far the environment deviates from stationarity. If
B, = By = 0, the environment is fully stationary.

Types of Non-Stationarity

Non-stationary behavior in digital twins can be categorized based on the nature of changes in P;
and R;:

e Gradual Drift: Slow, continuous changes in system dynamics over time [11,12].

*  Piecewise-Constant Dynamics: Transition and reward functions remain constant for intervals
but shift at unknown breakpoints.

*  Adversarial or Unstructured Changes: The environment shifts arbitrarily within predefined
variation budgets [13,14].

Implications for Digital Twins
For digital twins, non-stationary environments arise due to:

¢  Component Wear and Degradation: Physical components degrade over time, leading to changes
in system parameters.

¢  Changing Operating Conditions: Variations in temperature, pressure, or load conditions affect
system behavior.

¢ Sensor Recalibration: Shifts in measurement characteristics require continuous model re-
alignment.

e  External Perturbations: Unexpected disturbances, such as environmental shocks, alter the twin’s
input-output mapping.
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Connections to Concept Drift and Non-Stationary RL

The above issues relate closely to the concept drift problem in machine learning, where the
statistical relationship between input and output data evolves over time. Concept drift is a significant
challenge in data-driven adaptive digital twins and is commonly categorized as:

¢  Gradual Drift: Sensor readings slowly change due to wear and tear.
¢ Abrupt Drift: A sensor recalibrates suddenly, altering all subsequent measurements.
*  Recurring Drift: Periodic or seasonal variations in system behavior.

Several non-stationary reinforcement learning (RL) algorithms have been proposed to address
this issue. Recent work by Cheung et al. [14] and Wei et al. [15] explores adaptive regret minimization
in environments with continuously evolving reward functions, while Finn et al. [16,17] demonstrate
meta-learning techniques that accelerate adaptation in dynamic settings.

Theoretical Guarantees for Adaptive Digital Twins

The ability of a digital twin to successfully track a non-stationary system depends on:

*  Observability: The system must provide enough information for the twin to infer its state
accurately.

*  Persistence of Excitation: The system must receive sufficiently diverse inputs to enable accurate
parameter updates.

e  Convergence of the Adaptive Update Law: Stability of parameter updates must be ensured using
Lyapunov-based stability analysis [18,19].

Formal Definition of a Non-Stationary Digital Twin

We formally define a non-stationary adaptive digital twin as one in which either the transition
dynamics P or the reward/output distribution R; is explicitly time-dependent. Equivalently, the joint
probability distribution of states, actions, and rewards:

Py(spy1, 7|5t at) (4)

is not identical for all ¢. This definition provides a rigorous foundation for analyzing digital twin
adaptation algorithms under different types of non-stationarity.

2.3. Theoretical Foundations of Adaptation

Several works have explored adaptive learning in dynamic environments, providing a foundation
for digital twin adaptation. For example [13] introduced a framework for stochastic bandits with
non-stationary rewards, analyzing regret minimization with variation budgets. Their results establish
fundamental bounds for learning in changing environments.

In reinforcement learning, [14,20] extended regret analysis to non-stationary MDPs, showing that
policy adaptation can achieve sublinear regret under certain conditions. More broadly, Padakandla [21]
surveyed various reinforcement learning approaches for dynamically varying environments, situating
adaptive digital twins within this context.

From a control-theoretic perspective, adaptive control stability has been extensively studied.
Classical works by Narendra and Annaswamy [18], along with more recent studies by Janakiraman et
al. [22], establish Lyapunov stability criteria for learning in dynamic settings. These results provide
rigorous guarantees for parameter adaptation in digital twins.

Finally, concept drift adaptation has been widely explored in the data stream mining commu-
nity. [11] surveyed techniques for detecting and handling distributional shifts, which are directly
relevant to real-time digital twin updates. Recent applied work, such as [23], demonstrates practical
implementations of adaptive twins for IoT anomaly detection.
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2.4. Meta-Learning and Rapid Adaptation

Meta-learning techniques have been proposed to accelerate adaptation in changing environments.
[16,17] formalized Model-Agnostic Meta-Learning (MAML), which allows models to quickly fine-tune
to new conditions with minimal data. [24] extended meta-learning to continuous adaptation scenarios,
further strengthening its applicability to digital twins.

Accelerating Adaptation with Meta-Learning

Traditional adaptive learning methods rely on accumulating sufficient data before updating
models, making them slow in highly dynamic environments. Meta-learning, by contrast, learns how to
adapt, allowing a model to generalize across different tasks with few gradient steps. This is particularly
beneficial for digital twins, which must operate in evolving conditions where rapid model updates are
essential.

Meta-Learning for Digital Twins in Non-Stationary Environments

In digital twins, non-stationarity arises from changing operational conditions, system wear,
and evolving user interactions. Meta-learning offers a mechanism for adapting digital twin models
efficiently by:
¢ Learning an initialization that can be rapidly fine-tuned when conditions change.

*  Reducing the number of required data points for each adaptation step.
¢ Enabling few-shot learning, where the twin can adjust based on very limited new observations.

Several meta-learning strategies have been explored for real-time adaptation:

¢  Model-Agnostic Meta-Learning (MAML): A gradient-based meta-learning approach that opti-
mizes for a parameter initialization that quickly adapts to new tasks [16].

®  Online Meta-Learning: Continuous adaptation mechanisms, such as Al-Shedivat et al. [24],
extend MAML to scenarios where tasks evolve over time rather than being drawn from a static
distribution.

* Bayesian Meta-Learning: Uncertainty-aware models that provide confidence measures on the
digital twin’s adaptation capabilities, useful in high-stakes applications.

The integration of meta-learning into digital twin frameworks enhances their robustness in:

* Industrial Maintenance: Digital twins of machines can rapidly adjust predictive maintenance
schedules as wear patterns evolve.

*  Healthcare Monitoring: Patient-specific digital twins can leverage past adaptation experiences to
predict and react to new medical conditions with minimal recalibration.

*  Autonomous Systems: Robots and self-driving cars employing digital twins can leverage meta-
learning to adapt to different terrains or environments with fewer data samples.

While meta-learning provides a promising approach for adaptive digital twins, challenges remain:

e  Computational Overhead: Many meta-learning approaches require significant computational
resources, making real-time inference challenging.

e  Task Distribution Shift: If the underlying task distribution shifts significantly, the twin’s learned
initialization may become suboptimal.

e  Stability of Adaptation: Ensuring stable updates while maintaining rapid adaptability is a key
research direction.

By integrating insights from meta-learning, we position our adaptive digital twin framework
within a broader theoretical and applied research landscape, ensuring that digital twins remain agile
and efficient in real-world deployments.
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3. Mathematical Framework for Adaptive Digital Twins

In this section, we introduce the mathematical framework that formalizes the notion of an adaptive
digital twin. We begin by describing the physical system and its digital twin model, then define the
adaptive twin concept, and finally specify the performance objectives for adaptation.

3.1. Physical System and Digital Twin Model

Consider a physical system (the physical twin) whose state at time t is denoted by x(t) € R". The
system’s evolution can be described by differential (or difference) equations:

x(t) = f(x(t),u(t),0) +w(t),  y(t) =h(x(t),0) +o(t), ©)

where u(t) represents control inputs or external forcing, y(t) € RP represents the measurable outputs,
and 6 is a vector of system parameters (constants characterizing the system’s dynamics). The terms
w(t) and v(t) represent process and measurement noise, respectively, which we model as perturbations
(e.g., zero-mean random noise). For simplicity, one may assume w and v are bounded or stochastic
with known properties.

The digital twin is a virtual model intended to mimic the physical system. We denote the twin’s
internal state as £(t) and its parameter estimate as 0(t). The twin’s model is typically of the same form
as the physical system:

£(t) = f(2(1),u(t),6(1) + L(H) (y(t) = (1)), 9(t) = h(2(1),0(1)), (6)

where 7(t) is the twin’s predicted output. In (6), we have introduced an additional term L(t) (y — 7))
which represents the adjustment or feedback update applied to the twin. Here L(t) is a gain (which
could be a matrix of appropriate dimension) possibly varying with time or state, designed to drive the
twin’s output § towards the real output y. This structure is analogous to a Luenberger observer or an
extended Kalman filter update, where y — 7 is the innovation (the discrepancy between actual and
predicted output).

If L(t) = 0, the twin evolves open-loop and (6) is just a copy of the original model (with @ in place
of 6). Non-zero L(t) implements the adaptivity: it uses measurement differences to correct the twin's
state trajectory. Additionally, the twin’s parameters 8(t) can be adjusted over time according to some
adaptation law:

B(t) = g(x(t), 2(1),0(6), y (1)), 7)

where g(+) is a function designing the parameter adaptation (possibly a gradient descent on some cost
function, or derived from adaptive control laws).

The combination of (6) and (7), along with the physical system (5), defines the overall closed-loop
behavior of the adaptive digital twin system. For clarity, Table 1 summarizes the main notation used:

Table 1. Key Notation for Physical System and Digital Twin.

Symbol Description

x(t), x(t) Physical system state and its time derivative (dynamics)

u(t) Control input or exogenous input to the physical system

y(t) Measured output of the physical system

0 Fixed parameters of the physical system (ground truth)

£(t) Digital twin’s state (state estimate or simulated state)

o(t) Digital twin’s parameter estimate (time-varying)

7(t) Digital twin’s output (predicted output)

L(t) Adaptive gain (matrix or vector) applied to state update in twin

) =y(t) —y(t) Output error (innovation signal driving adaptation)
t),v(t) Process noise and measurement noise (uncertainties)
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3.2. Definition of an Adaptive Digital Twin

We now formally define what we mean by an Adaptive Digital Twin in this context:

Definition 1 (Adaptive Digital Twin). An Adaptive Digital Twin (ADT) for a physical system is a digital

twin model that satisfies the following properties:

1.  Real-Time Data Integration: The ADT receives streaming data from the physical system (such as
measurements y(t)) in real time.

2. Dynamic Model Update: The ADT has internal mechanisms to update its state and parameters as
functions of the incoming data, as exemplified by (6) and (7). These updates occur continuously or at
discrete time intervals, and are designed to minimize the error e(t) = y(t) — §(t).

3. Feedback Loop Closure: There exists a feedback loop between the physical twin and the digital twin. The
physical twin provides data to the digital twin, and optionally, the digital twin may provide decisions or
control inputs (this paper focuses primarily on the former aspect). The key is that the digital twin is not
run in isolation but is part of a closed-loop system with its physical counterpart.

4. Convergence (Desired): The ADT is intended to achieve y(t) ~ §(t) and ideally %(t) ~ x(t) and
O(t) ~ 6 as t progresses. In other words, the twin should become an increasingly accurate mirror of the
physical system over time. We call this the convergence property, which can be made rigorous in terms
of stability and estimation error bounds.

This definition distinguishes an ADT from a static digital model by the presence of the dynamic
update mechanism. An ADT is essentially a learning system attached to a physical asset. In machine
learning terms, one might view it as performing online regression or filtering to keep a model’s
predictions aligned with reality. In control terms, it is an observer or estimator that continuously
corrects itself.

It is important to clarify that the term "adaptive" here refers to the twin’s model adapting to the
physical system, not necessarily adapting the physical system itself. In some applications, the twin
might also send control commands (making the overall system self-adaptive in operation), but our
focus is on the twin’s fidelity rather than controlling the physical system.

3.3. Objectives and Performance Metrics

The primary objective of an adaptive digital twin is to minimize the discrepancy between the
twin model and the physical system. This discrepancy can be quantified using an error signal, which
measures how accurately the twin replicates the real system’s behavior. The most commonly used
error metrics include:

e  State estimation error: Measures the difference between the estimated state of the twin and the
actual state of the physical system:

ex(t) = x(t) — (1), (8)

where x(t) represents the true system state and £(t) denotes the digital twin’s estimated state.
®  Output error: Evaluates the discrepancy between the physical system’s measured output and the
twin’s predicted output:

ey(t) = y(t) = 9(t). )

This error is particularly useful when direct state estimation is challenging, and only observable
outputs are available for comparison.

e  Parameter estimation error: Captures the deviation between the actual system parameters and
the twin’s estimated parameters:

6(t) =0—06(t), (10)
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where 6 represents the true parameters governing the physical system, and 6(t) denotes the
estimated parameters used by the twin.

These error metrics serve as key indicators of the twin’s accuracy and adaptation effectiveness. In
subsequent sections, we analyze how these errors evolve over time and establish theoretical guarantees
for their minimization under various adaptation strategies.

The performance of the ADT can be evaluated by how these errors behave over time. Specifically,
we are interested in:

e Convergence Rate: How fast do the errors go to zero (if they do)? This could be exponential
(geometric) convergence, polynomial, etc., depending on the update laws.

¢  Steady-State Error: What is the residual error in steady-state or as t — co? Ideally, the ADT
achieves zero steady-state error (perfect tracking), but due to noise or unmodeled dynamics, a
small bias or variance may remain.

*  Stability: We require that the adaptive scheme does not lead to divergent behavior. Stability here
means that the twin’s state and parameter estimates remain bounded over time (and preferably
that the error is bounded by a small value).

* Robustness: How sensitive is the ADT to disturbances (w, v) and to incorrect assumptions? A
robust ADT will continue to perform well even if, for example, the physical system changes
slightly beyond what was expected (within some margins).

To study these properties, we will set up the error dynamics equations in Section 5. These
equations will form the basis for analyzing convergence using tools like Lyapunov functions or
linearization where applicable.

Before diving into the analysis, we first present the specific adaptation algorithm that the twin
will use to update itself.

3.4. Lyapunov Stability Analysis and Parameter Update Convergence

To ensure the adaptive digital twin’s learning process remains stable (i.e., does not diverge)
while tracking a moving target, we introduce a Lyapunov stability analysis for the twin’s parameter
update dynamics. In continuous-time control systems, Lyapunov stability is established by finding
a Lyapunov function V(x)—an energy-like scalar function of the state x—that decreases over time,
ensuring the system’s state stays bounded and converges to an equilibrium.

We adopt a similar approach for the discrete-time parameter updates in our digital twin. Let
0; € R? denote the twin model’s parameters at time t, and suppose the twin updates its parameters
based on the error between twin predictions and real system observations. We view 8; as the state of a
learning process.

Definition 2 (Lyapunov Stability for Parameter Updates). The parameter update rule

Or+1 = F(01,Ct), (11)

where ¢ represents new data or feedback at time t, is Lyapunov stable if there exists a positive definite function
V() such that:
V(0i11) = V(6:) <0, (12)

with equality only at the equilibrium. This ensures that V (6;) decreases or remains constant, preventing 6 from
diverging.

A sufficient condition for stability is that the update is a contraction mapping in some norm, or
that the “error energy” is non-increasing. In practice, we construct V() as a measure of discrepancy
between the twin and the physical system.
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3.5. Lyapunov-Based Convergence for Adaptive Twin Updates

For a digital twin learning to track a non-stationary system, we analyze parameter updates
through Lyapunov’s direct method.

Theorem 1 (Stability of Adaptive Updates). Let 6; be the parameter estimate at time t following the update
rule:
011 =0+ OCVL<6t), (13)

where w is the learning rate and L(0) is a convex loss function. If w satisfies:

O<a< 2 (14)
LS

where Lg is the Lipschitz constant of VL(6), then the sequence {6} is Lyapunov stable and converges to an
optimal 6*.

Proof. Consider the Lyapunov function:

1
V(0) = 51160 — 07| (15)
Taking the difference:
1 \ .
V(Or1) = V0) = 5 (10041 = 072 = 10 = 07|12). (16)
Expanding 6,1 using the update rule:
1
V(Or1) = V(0r) = 5 (116 = 0" + VL) 2 - [0 — 0" ). (17)

Using the convexity of L(6) and the Lipschitz continuity of its gradient:

kg

V(61) - V(@) < —a(1— 2

)IVL(6:)|1%. (18)

Thus, if « satisfies the given bound, V(6;) decreases monotonically, ensuring stability. [

3.6. Boundedness and Convergence

Even if exponential convergence cannot be shown, we aim to prove boundedness: there exists a
bound B such that:
Vi<B, Vi (19)

meaning that the parameters remain within a stable region and do not diverge. This is particularly
important in the case of non-stationary systems, where the true parameters 6; may themselves evolve.

A practical condition ensuring stability is Lipschitz continuity of the update dynamics or loss
gradients. If the loss function L(6) (e.g., a mean-squared error between twin prediction and real
measurement) has a Lipschitz-continuous gradient:

IVL(61) — VL(62)|| < Lg||61 — 62|, V61,62, (20)

then a small enough learning rate guarantees stability in gradient descent.

For a convex L, choosing a step size « < 2/L¢ ensures each gradient-descent update reduces
L(#) (this follows by using V = L as a Lyapunov function). This condition is commonly used in
convergence proofs of stochastic gradient algorithms and prevents the update from overshooting and
causing divergence.
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3.7. Ensuring Stability Under a Non-Stationary Environment

When the physical system changes gradually, the twin’s adaptation must track these changes
without instability. This requires:

e A sufficiently small adaptation gain « to avoid oscillations.

* A bound on how fast the system changes (e.g., transition variation budget B, defined in Sec-
tion 2.2).

* A separation of time scales: the twin should adapt slower than rapid fluctuations but fast enough
to track long-term trends.

To further strengthen stability analysis, we use Lyapunov’s indirect method: we linearize the
error dynamics around the equilibrium and check the eigenvalues for local stability.

Proposition 1 (Global Stability of Twin Adaptation). If the adaptive update law satisfies:
001 = (I —aH)b;, (21)
where H is a positive semi-definite approximation of the Hessian of L(0) at equilibrium, then requiring:
[I—aH| <1 (22)
ensures the parameter updates remain bounded and converge to a stable region.

Sketch. We construct the Lyapunov function:

V(6;) = 6] P, (23)
for some positive definite matrix P. We then show that:
V(0i1) — V(6:) = -6/ Q6 <0, (24)
for some positive definite Q. This guarantees 8; is bounded and decays over time. [J

3.8. Summary of Stability Guarantees

By applying Lyapunov stability criteria, we establish the following constraints for stable adaptive
learning:
1. Step-size limits: Learning rate « must be small enough relative to the Lipschitz constant.
2. Data richness: Incoming observations must be persistently exciting to prevent singularities.
3. Model smoothness: A sufficiently smooth loss surface (bounded Hessian) ensures stability.
These conditions ensure the twin’s parameters 6; will not diverge and will track the non-stationary
system with bounded error.

4. Adaptive Twin Update Algorithm

In this section, we detail the algorithmic procedure that governs how the digital twin updates
its state and parameters at each step. For concreteness, we describe the adaptation in a discrete-time
form, which could correspond to a computational implementation where sensor readings and updates
happen in discrete cycles (e.g., every At seconds).

4.1. Overview of the Adaptation Strategy

The adaptive algorithm operates in a cyclical manner, continuously updating the digital twin as
new data becomes available. The process consists of the following steps:

1.  Data Acquisition: Retrieve the latest measurement y; from the physical system at time f;.
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2. Prediction: Compute the twin’s predicted output §j; based on its current state £; and parameters
ék:
Ok = f (R, O ),
where f(-) represents the twin’s model function, and uy, is the known system input.
3. Error Computation: Evaluate the prediction error:

ex = Yk — U

4.  State Update: Adjust the twin’s state £ to minimize the error. This is typically done by incorpo-
rating a correction term proportional to e:

k11 = X + Key,

where K is a gain matrix that determines the correction magnitude.
5. Parameter Update: Update the model parameters ) to reduce future errors. The update rule
depends on the chosen learning algorithm, such as:

e Gradient Descent:
d]
Ui 26,

where 7 is the learning rate and | is the loss function.

Ok1 = Ok —

®  Recursive Least Squares (RLS): A weighted least-squares approach to estimate parameters in
real-time.

6. Advance Model: Propagate the twin’s state to the next time step using the updated parameters
and the system input:

i1 = 8(Rp i, Opr1),
where g(-) governs the system’s evolution.
This cycle repeats for each new data point, ensuring continuous adaptation. The design of the

correction terms in steps (4) and (5) is critical for stability and convergence, as discussed in Section 5.

Table 2. Comparison of Learning Methods for Adaptive Digital Twins.

Learning Method Convergence Rate  Stability Guarantee ~Complexity

Online Learning O(V/T) regret Yes, under convex- O(d) per step
ity
RL (Q-Learning) O(1/v/T) asymp- No, dependsonex- O(|S|?|A|)
totic ploration
Meta-Learning Fast  adaptation Yes, in bounded Expensive pre-
(O(log T) regret) task shifts training

4.2. Pseudocode of the Adaptive Algorithm

We provide pseudocode for the adaptive update procedure in Algorithm 1. This algorithm
assumes a discrete-time sequence k = 0,1, 2, ... corresponding to times #;, and uses a fixed step size
for updates (which could be the sampling interval of the sensors).

In the pseudocode: - K is a gain (or gain matrix) that determines how strongly the state is corrected
based on the output error. This could be chosen, for example, via an observer design or even tuned
adaptively. - H(%, ;) represents the update direction for parameters given the current state and
error. This could be, for instance, the gradient of some loss function with respect to 8. A simple
example is H(%,e) = Vh(£%, 0) - e, which is the gradient descent update corresponding to minimizing
instantaneous output error (like a stochastic gradient step). - -y is a learning rate for parameter updates.
A smaller iy means slower but more stable learning; a larger v means faster adaptation but potential
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Algorithm 1 Adaptive Digital Twin Update Procedure

Require: Initial twin state £y and parameter fy; learning rate ¢ > 0; sensor data stream {1 }; model
f, h; input sequence {u;}.
Ensure: Updated twin state £; and parameter §; that track the physical system.
1. k< 0.
2: while new measurement y; is available do
3:  /* Prediction Step */

4 Compute twin output prediction: 9 = (%, 6y).

5. /* Error Computation */

6 ex < Yk — Uk

7. /* State Update (Correction) */

8 Ry X+ K(ep), // Kis observer gain matrix (could depend on ).

9. /* Parameter Update (Learning) */
10: O « O+ H(%p e10), // update law for parameters.
11:  /* System Dynamics Propagation * /
120 Rpyq < R+ AE- F(Ry g, 0), // advance state using model.
132 k< k+1.

14: end while

risk of overshooting or instability. - The propagation step uses the function f (from the model) to
advance #; in practice, one might use a more sophisticated integrator or the exact discrete model if
known.

This algorithm is a generic template. Specific implementations might replace the simple addition
updates with more complex filters or optimizers (for example, using an extended Kalman filter for
state and a recursive least squares for parameters). However, the structure remains: measure, compare,
correct, and predict forward.

Next, we turn to the analysis of this algorithm: under what conditions can we expect ¢x — 0 (or
small), and 6, — 62

4.3. Theoretical Benchmarking of Learning Methods

To contextualize our adaptive digital twin approach, we compare it with three broad learning
paradigms: Online Learning, Reinforcement Learning (RL), and Meta-Learning. These methods differ
in their theoretical convergence guarantees, stability properties, and computational complexities,
each offering advantages depending on the nature of the digital twin’s adaptation needs. Table 3
summarizes these comparisons by compiling known results from the literature and how they apply to
digital twin scenarios.

Online learning provides a powerful framework for adaptive digital twins that must operate in
non-stationary environments. Unlike batch learning methods that assume static distributions, online
learning algorithms continuously update models as new data arrives, making them well-suited for real-
time digital twin adaptation. Classical online convex optimization guarantees that if the environment
is stationary (or has limited variation), the regret of online gradient descent (OGD) grows sublinearly:

O(VT) (25)

over T rounds [25]. This ensures that the per-step error diminishes over time.

However, in highly non-stationary settings, standard online learning approaches struggle to
track changes efficiently. To address this, dynamic regret analysis extends standard regret bounds to
environments where the optimal solution shifts over time. A key result by Besbes et al. [13] shows that
for environments with bounded total variation in the data distribution, the optimal dynamic regret
scales as:

O(T?/3). (26)
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This provides a theoretical bound on how well a digital twin can track an evolving system using online
learning methods.

Reinforcement learning (RL) is another powerful framework for digital twins that interact with
their environment and optimize decisions based on feedback. However, RL methods typically assume
a stationary Markov Decision Process (MDP), which is rarely the case in real-world adaptive digital
twin applications.

Several studies have extended RL theory to non-stationary environments by analyzing dynamic
regret minimization. [14] show that under mild assumptions, policy adaptation in non-stationary
MDPs achieves regret bounds of:

O(T3/%). (27)

This result highlights that RL-based adaptive digital twins can handle evolving system dynamics but
at the cost of increased sample complexity compared to online learning.

Recent advancements in meta-RL and multi-task RL further improve adaptation speed. [15]
propose adaptive reinforcement learning algorithms that dynamically adjust learning rates based on
detected system drift, achieving adaptive regret bounds that scale logarithmically with respect to
variation in the environment.

Meta-learning methods provide an alternative approach by enabling digital twins to quickly
generalize to new conditions using prior experiences. Methods such as Model-Agnostic Meta-Learning
(MAML) [16] optimize model parameters for rapid fine-tuning, leading to regret bounds of:

O(log T). (28)

This significantly accelerates adaptation in dynamic environments compared to conventional RL and
online learning methods.

Implications for Adaptive Digital Twins

The choice of a learning paradigm for adaptive digital twins depends on the specific application
requirements:

®  Online learning is ideal for real-time monitoring applications where changes occur gradually, and
fast updates are needed with minimal computation.

¢  Reinforcement learning is useful for digital twins that interact with their environment and
optimize sequential decisions, though it requires significant data for learning.

®  Meta-learning is the best choice for scenarios requiring rapid adaptation with minimal data, such
as healthcare twins adjusting to new patient conditions.

By using insights from these theoretical results, we design adaptive digital twins that balance
computational efficiency, stability, and rapid learning.

4.4. Comparison of Learning Approaches

Online Learning: Online learning algorithms update a model sequentially with each new data
point (e.g., online gradient descent or incremental update methods). This approach is particularly
well-suited for digital twins that process streaming sensor data and require continuous adaptation.

Theoretical results from online convex optimization guarantee that if the environment is stationary
(or the data distribution is i.i.d.), the regret of online gradient descent (OGD) grows sublinearly:

O(VT) (29)

over T rounds [26]. This ensures that the per-step error vanishes as T increases, meaning the model
eventually learns the static target.

In non-stationary settings, online learning methods require forgetting mechanisms (e.g., sliding
windows, weighted losses) to adapt to evolving data. Dynamic regret analysis measures performance
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relative to a shifting target function. Besbes et al. (2014) showed that for a sequence of T rounds with

bounded total variation in the data distribution, the optimal dynamic regret is on the order of:

o(T%3)

with dependence on the variation budget [13].

(30)

Reinforcement Learning (RL): RL involves an agent interacting with an environment to learn an

optimal policy for maximizing cumulative rewards. In the digital twin context, RL is applicable when

the twin actively controls a system rather than merely modeling it.

For a finite Markov Decision Process (MDP) with stationary dynamics, algorithms like UCRL2

(Upper Confidence RL) achieve:

O(VT)

(31)

regret (up to logarithmic factors) against the optimal policy [27]. Handling non-stationary envi-

ronments in RL is challenging and requires sliding window experience replay or explicit change

detection[28].

Meta-Learning (Learning to Learn): Meta-learning trains a model on a distribution of tasks,

enabling it to adapt quickly to new tasks with minimal updates.

Meta-learning algorithms such as Model-Agnostic Meta-Learning (MAML) train a model so that

a few gradient steps suffice to generalize to new tasks. Theoretically, online meta-learning achieves:

O(logT)

(32)

regret relative to the best meta-learner in hindsight [17]. This implies that as tasks continue to arrive,

the meta-learner’s performance rapidly approaches that of an optimal fixed adaptation strategy.

4.5. Summary of Learning Method Comparisons

Table 3 presents a structured comparison of these learning approaches.

Table 3. Comparison of Learning Methods for Adaptive Digital Twins.

Learning Method

Convergence Rate

Stability Guaran-
tee

Computational
Complexity

Online Learning
OGD)

(e.g.,

Stationary: O(VT) re-
gret [26].

Non-stationary: O(T?/3) dy-
namic regret with bounded
change [13].

Yes, under convex-

ity

O(d) per update
(scalable for real-
time)

Reinforcement Learn-

ing (RL)

Stationary: O(v/T) regret
(UCRL2) [27].
Non-stationary: O(T3/4) dy-

namic regret [28].

No, depends
on exploration-
exploitation trade-
off

O(|S|?|A|) per iter-
ation. Deep RL is
costly

Meta-Learning
MAML)

(e.g.,

Fast adaptation: O(log T) re-
gret to best meta-learner in
hindsight [17].

Yes, under
bounded task
shifts

High-cost  meta-
training, but fast
adaptation  (few
updates)

5. Convergence Analysis

We now present a theoretical analysis of the adaptive twin’s convergence properties. Our focus is

on establishing conditions for convergence of the estimation error and analyzing the stability of the

adaptation process.

For analysis, it is convenient to consider the estimation error dynamics.
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Define: - State estimation error: #(t) = x(t) — £(t). - Parameter estimation error: 6(t) = 6 — 8(¢).
- Output error: e(t) = y(t) — 7(t) as before.

Using the physical and twin model Equations (5) and (6), we can derive a differential equation (or
difference equation) for ¥ and . To simplify the analysis, let us consider the case of small errors and
linearize the system around the true state and parameter. This yields (approximately):

%(t) ~ A%(t) + BA(t) — LCx(t) — L D(t), (33)
(t) ~ —yDTCT%(t), (34)

jatl

Q

where A = %, B = %, C= %, D= % evaluated at the true state and parameters (this is the Jacobian
of the system and output). The term L is the gain as in (6), which we assume here to be constant or
designed (for linear analysis). Equation (34) is one possible form, corresponding to a gradient update
H(%,e) = —DTCT# (this would come from a least-squares criterion).

The combined error dynamics can often be viewed as an augmented linear system:

() (4ore "))

The stability of this augmented system matrix will determine the convergence of the errors to zero.
Tools like Lyapunov’s indirect method (linearization) or direct Lyapunov function construction can be
applied.

5.1. Sufficient Conditions for Convergence

We first state our main theoretical result informally, then more formally.

Intuition/Theorem (informal): If the physical system is observable and identifiable from the
output y(t), and if the adaptive gains L and learning rate 7y are chosen appropriately (satisfying certain
stability criteria), then the adaptive digital twin will asymptotically synchronize with the physical
system. In particular, the output error e(t) will converge to zero and the parameter estimate 8(t) will
converge to the true parameter 6 as f — oo.

Now we give a formal statement.

Theorem 2 (Convergence of Adaptive Digital Twin). Consider the physical system (5) and the adaptive
twin model (6) with parameter update (7). Assume:

1. The pair (A, C) (linearized system matrix and output matrix) is observable, and (A, B) is controllable for
the purpose of parameter identifiability.

2. The measurement noise v(t) is zero or sufficiently small, and the system operates in a regime where
linearization is valid (or more generally, the error dynamics are input-to-state stable).

3. The observer gain L is chosen such that A — LC is Hurwitz (all eigenvalues have negative real parts). This
is the standard requirement for observer convergence when 6 is known.

4. The input u(t) provides persistent excitation so that the parameters 6 are globally identifiable, and the
adaptation gain <y is sufficiently small to ensure stability of the parameter update.

Then, for initial errors (%(0),0(0)) in some neighborhood of the origin, the estimation errors converge to zero as
t — co. In particular, y(t) — §(t) — 0, and 8(t) — 6 (thus £(t) — x(t) — 0 as well).

Sketch of Proof. The proof is based on Lyapunov stability analysis for the combined error system. We
propose a Lyapunov function candidate that includes terms for both state error and parameter error. A
typical choice is:
-3y — +Tps . LaTh
V(%,0) =% Pi+ =096,
Y

where P is a positive-definite matrix solving the Lyapunov equation (A — LC)TP + P(A — LC) = —Q
for some positive-definite Q (this P exists because A — LC is Hurwitz by assumption).
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For the parameter part, %979 is chosen so that its derivative yields terms that can cancel the cross
terms from the state dynamics when combined appropriately.
Taking the time derivative along the error dynamics:

V =#%1((A-LC)TP+P(A—LC))x +2%'P(B—LD)§ — =6TyDTCTx.

<N

The cross terms involving ' P(B — LD)8 and 8" DTCT % can be combined:
25TP(B— LD)§ —20"DTCTx = 2x7 (P(B —LD) - DC) d.

Under the given assumptions, one can show that P(B — LD) = DC (this typically requires matching
the terms by design or by the inherent structure of the problem; for instance, if L is chosen optimally in
a Kalman filter sense, these terms are orthogonal or cancel out). With this cancellation, we get:

V=—2TQ% < —Amin(Q)|| %] < 0.

Thus, V(t) is non-increasing. This implies that #(¢) and 8(t) remain bounded for all ¢ (since V is a
norm-like function on them).

Next, we invoke Barbalat’s lemma or LaSalle’s invariance principle: since V is negative semi-
definite and V is bounded below, ¥(t) approaches a limit set where V = 0. The condition V = 0 in
the above implies 7 Q% = 0, hence #(t) — 0 as t — co. If ¥(t) — 0 and the system is persistently
excited, one can further argue that 6(#) must approach 0 to keep ¥ at zero in the limit (this part is more
involved but follows standard arguments in adaptive control: with ¥ — 0, any persistent excitation in
u or x forces the parameter error dynamics = —yDTCT% to drive 0 to constant, and the only constant
that keeps §=0is6=0 given global identifiability).

Thus 6(t) — 0 as well. This establishes that (¥,6) — (0,0), i.e., the twin achieves asymptotic
accuracy in both state and parameter. [

The above proof is a high-level sketch. In practice, additional technical conditions may be needed
(e.g., to handle nonlinearities, one might require a persistency of excitation condition for parameter
convergence, as mentioned). However, it captures the essence: the combination of an observer for state
and a gradient descent for parameters can be made to converge if designed carefully.

5.2. Discussion of Theoretical Limits

The convergence theorem paints an optimistic picture, but it's important to acknowledge the
limits and caveats:

e Identifiability: If the system’s parameters are not observable through the available measurements,
the twin cannot possibly learn them. This is a fundamental limitation. For example, if two different
parameter values produce identical outputs for all inputs, no algorithm can distinguish them. This
underscores the need for careful sensor placement and input design in digital twin deployments
to maximize identifiability.

e Noisy and Non-Stationary Environments: In reality, v(t) and w(t) (noise) are not zero. One
theoretical limit is that, in the presence of persistent noise, the estimation error will generally not
converge to exactly zero, but rather to a stochastic bounded process. Tools from estimation theory
(like the Kalman filter) indicate that there will be a steady-state error covariance. We can interpret
this as the digital twin having an uncertainty in its knowledge that cannot be eliminated, only
minimized. In Section 6, we illustrate how noise variance sets a floor on the twin’s error.

* Adaptation Speed vs Stability: The parameter < (learning rate) cannot be made arbitrarily
large to speed up convergence, otherwise the system may become unstable (a form of learning
instability). This is a common issue in adaptive control: fast adaptation can cause overshoot
or even oscillatory divergence (the phenomenon of "parameter drift"). Theoretical results often
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require v to be sufficiently small. This implies a trade-off: there is a limit to how quickly the twin
can adapt if we want to maintain stability.

¢  Computational Delays: In practice, the twin’s updates are not instantaneous; there are compu-
tation and communication delays. These delays can act like additional dynamics in the loop
and can degrade stability margins. A theoretical limit here is that if the update frequency is too
low (or delay too high) relative to the system dynamics speed, the twin might lag and fail to
converge properly. While our analysis assumed continuous or synchronous updates, a more
detailed analysis would include delay differential equations.

*  Model Structure Mismatch: We assumed the twin’s model form f, h matches the physical system.
If the model form is wrong (e.g., missing nonlinear terms), the adaptation may converge to a
biased solution. There is a limit to what adaptation can do in the face of structural model errors:
it can adjust parameters within a given model structure, but if reality lies outside that structure,
the twin can at best approximate. One can sometimes compensate by making the model more
flexible (e.g., using neural networks as part of f), but that introduces the need for regularization
to avoid overfitting noise.

These limits suggest directions for further research, such as quantifying convergence in probability
under stochastic noise (instead of deterministic convergence), or developing adaptive schemes that
can handle certain classes of unmodeled dynamics robustly.

Nevertheless, within these limits, the convergence analysis provides confidence that an adaptive
digital twin can in fact work as intended: it can lock onto the physical system’s behavior and maintain
an accurate representation over time.

6. Illustrative Example

To illustrate the principles and theoretical results developed in previous sections, we present a
simple example of an adaptive digital twin in action. While this is a controlled simulation, recent
experimental research on digital twins has demonstrated similar adaptation mechanisms in real-world
applications, such as predictive maintenance in industrial systems [29], self-calibrating biomedical
twins [30], and adaptive digital twins in smart manufacturing [31].

6.1. Mathematical Model of the System

Consider a physical system governed by a second-order linear time-invariant (LTT) model, such
as a mass-spring-damper system:

#(£) +ax(t) + bx(t) = u(t), (35)

where a,b (damping and stiffness) are initially unknown parameters. The measurable output is
y(t) = x(t), representing the system’s position.

To construct a digital twin, we assume the same model structure but with estimated parameters
a,b, which are updated adaptively.

6.2. Adaptive Learning Mechanism

We employ a simple adaptive update rule:

b=-miy—19), b=-mily-9) (36)

which corresponds to a gradient descent on the instantaneous squared error %(y —1)?, assuming;

For a more rigorous derivation, an augmented state-space approach could be used.
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Additionally, we incorporate a state observer correction to refine the twin’s state estimates:
F=0+Ly—9), d=-avo-bx+ut)+L(y—19), (37)

where: - 9 is the twin’s estimate of X, - L, L are observer gains for correcting position and velocity
errors.
This structure represents an extended observer with parameter adaptation.

6.3. Simulation Setup and Results

We simulate this system with the following true parameters:

The external input is a small random excitation u(t), ensuring persistence of excitation for parameter
convergence.
The digital twin starts with significantly incorrect initial estimates:

=10, b=10.
We set the adaptation gains to:
M =7=01 L=5 L =5

Over a 10-second simulation, we observe the following:

¢ Output Synchronization: The twin’s output rapidly converges to the physical system’s output.
*  Parameter Convergence: The estimated parameters gradually approach the true values:

4~052, b~198,

demonstrating successful system identification.

¢ Error Decay: Initially, the adaptation error is large due to incorrect parameters, but it quickly
decreases as learning progresses.

6.4. Effect of Learning Rates

To examine the effect of adaptation rates, we vary the learning gains y; ; and measure key
performance metrics. Table 4 summarizes the results.

Table 4. Effect of Learning Rate on Error Convergence.

Learning Rate  Settling Overshoot Final Parameter Er-
Time (s) (%) ror

71,2 = 0.10 2.0 5% (+4%, —1%)

Y12 = 0.05 3.5 0% (+2%, +1%)

71,2 = 0.01 8.0 0% (0%, 0%)

Key observations:

¢  Faster learning rates (712 = 0.10) lead to quicker convergence but introduce small oscillations
due to noise.

¢  Lower learning rates (71, = 0.01) eliminate oscillations but converge significantly slower.

¢ A moderate rate (71, = 0.05) achieves a balance between speed and stability.
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6.5. Connection to Real-World Adaptive Digital Twins

While this simulation provides a controlled demonstration, similar principles have been observed
in real-world adaptive digital twins. Several studies have explored adaptive twin frameworks in
different application areas:

¢ Industrial Maintenance: Adaptive digital twins have been deployed in predictive maintenance
scenarios, where real-time sensor data is used to detect system degradation and update models
accordingly [29,31].

*  Biomedical Digital Twins: In personalized medicine, digital twins of physiological systems (e.g.,
cardiovascular models) adapt based on patient-specific data, improving diagnosis and treatment
planning [30].

*  Smart Manufacturing: Advanced manufacturing systems use adaptive digital twins to monitor
production processes, dynamically adjusting parameters to optimize performance under changing
conditions [31].

These findings reinforce the importance of adaptive mechanisms in digital twins, particularly
when dealing with unknown or evolving system parameters. By incorporating real-time learning
algorithms, digital twins can achieve greater accuracy, robustness, and autonomy, ensuring reliable
operation in complex cyber-physical environments.

7. Conclusion

This paper provided a rigorous study of adaptive digital twins, integrating algorithmic design
with theoretical guarantees of stability and convergence. We defined adaptive digital twins as continu-
ously learning models that evolve based on streaming data and developed a representative update
algorithm to enable real-time synchronization with a physical system. Our convergence analysis,
rooted in control theory and adaptive learning, established conditions under which the digital twin
accurately tracks the physical system. We explored fundamental performance limits, highlighting the
impact of noise, unobservable dynamics, and model mismatch on adaptation accuracy.

A key finding of our study is that combining state observer techniques with parameter adaptation
is crucial for maintaining synchronization over time. Classical conditions from control theory, such as
observability and stability of error dynamics, and adaptive system requirements, such as persistent
excitation for parameter learning, form the theoretical foundation for convergence guarantees. We
also identified a trade-off between adaptation speed and stability: slow adaptation may fail to keep up
with system changes, whereas overly aggressive updates can lead to divergence or noise amplification.
Theoretical tools, including Lyapunov analysis and eigenvalue conditions, provide structured methods
for selecting stable adaptation gains, ensuring that the twin’s updates remain bounded. Moreover, even
with a perfectly modeled system, noise and external disturbances introduce inevitable residual error.
The goal is not to eliminate error entirely but to bound it within an acceptable range. In safety-critical
applications, a conservative adaptation approach may be necessary to prevent instability, whereas in
highly dynamic environments, more aggressive adaptation may be justified despite small oscillations.

To validate our theoretical results, we presented an illustrative example demonstrating that an
adaptive digital twin can successfully synchronize with a dynamic system and estimate unknown
parameters. The simulation confirmed that under proper adaptation laws, the twin can track the
physical system with decreasing error, reinforcing the practical viability of our framework. Future
research can extend this work in several directions. First, incorporating uncertainty quantification into
adaptive digital twins—through Bayesian filtering or probabilistic models—could improve decision-
making by not only estimating states and parameters but also measuring confidence levels. Second,
expanding adaptive digital twins to networked and multi-agent settings presents new challenges,
particularly in ensuring global convergence across interconnected subsystems. Finally, integrating
advanced machine learning techniques, such as neural network function approximators, into adaptive
digital twins could enhance modeling flexibility and robustness, though bridging deep learning with
theoretical guarantees of stability remains an open problem.
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In conclusion, adaptive digital twins mark a paradigm shift toward self-evolving cyber-physical
systems, offering intelligent, continuously improving digital counterparts to physical assets. With a
strong mathematical foundation and a structured adaptation mechanism, these systems have the poten-
tial to revolutionize applications across industries—from predictive maintenance in manufacturing to
real-time health monitoring in personalized medicine. By ensuring stable, convergent learning, adap-
tive digital twins move beyond static models, becoming essential tools for optimizing performance
and decision-making in dynamically evolving environments.
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