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Abstract: Coseismic landslides are geological events in which slopes, either on the verge of instability 

or already in a fragile state, experience premature failure due to seismic shaking. On September 5, 

2022, a Ms 6.8 earthquake struck Luding County, Sichuan Province, China, triggering numerous 

landslides that caused severe casualties and property damage. This study systematically interprets 

13,717 coseismic landslides in the Luding earthquake's epicentral area, analyzing their spatial 

distribution concerning various factors, including elevation, slope gradient, slope aspect, plan 

curvature, profile curvature, surface cutting degree, topographic relief, elevation coefficient variation, 

lithology, distance to faults, epicentral distance, peak ground acceleration (PGA), distance to rivers, 

fractional vegetation cover (FVC), and distance to roads. The Analytic Hierarchy Process (AHP) was 

improved by incorporating the modified landslide relative frequency (mLRF) to address the 

subjectivity inherent in expert scoring for factor weighting. The improved AHP, combined with the 

Pearson correlation analysis, was used to identify the dominant controlling factor and assess the 

landslide susceptibility. The accuracy of the model was verified using the area under the receiver 

operating characteristic (ROC) curve (AUC). Results reveal that 34% of the study area falls into very 

high and high susceptibility zones, primarily along the Moxi segment of the Xianshuihe Fault and 

both sides of the Dadu River valley. Tianwan, Caoke, Detuo, and Moxi are at particularly high risk 

of coseismic landslides. The coefficient of elevation variation, slope aspect, and slope gradient are 

identified as the dominant controlling factors for landslide development. The reliability of the 

proposed model was evaluated by calculating the AUC, yielding a value of 0.845, demonstrating high 

reliability. This study advances coseismic landslide susceptibility assessment and provides scientific 

support for post-earthquake reconstruction in Luding. 

Keywords: 2022 Luding earthquake; Coseismic landslide susceptibility; Analytic Hierarchy Process; 

Frequency Ratio; Pearson correlation coefficient 

 

1. Introduction 

Landslides are widespread natural disasters around the world, and earthquakes are considered 

one of the main triggers of landslides. The damage caused by coseismic landslides is often more 
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severe than the direct damage caused by the earthquake itself [1]. China is situated at the junction of 

two major global seismic belts—the Pacific Ring of Fire and the Eurasian seismic belt. Due to the 

compression from the Pacific, Indian, and Philippine Sea plates, the seismic fault zones in the region 

are highly developed, making China a country prone to frequent earthquakes [2]. For example, the 

globally recognized Wenchuan earthquake (Ms 8.0) in 2008, the Yushu earthquake (Ms 7.1) in 2010, 

the Ya'an earthquake (Ms 7.0) in 2013, the Ludian earthquake (Ms 6.5) in 2014, and the Jiuzhaigou 

earthquake (Ms 7.0) in 2017 have all resulted in widespread coseismic landslides. China is 

geographically characterized by numerous mountains and hills, with mountainous areas covering 

about 70% of the country's land. This vast mountainous terrain provides abundant geographical 

conditions for coseismic landslides. In particular, the mountainous canyon regions of western China 

feature highly complex geological conditions, with densely distributed active faults and frequent 

strong earthquakes, leading to severe coseismic landslides. On September 5, 2022, at 12:52 PM, a 

magnitude 6.8 earthquake struck Luding County, Ganzi Prefecture, Sichuan Province, with the 

epicenter located at 102.08°E, 29.59°N and a focal depth of 16 km, reaching a maximum intensity of 

IX. The earthquake triggered numerous landslides, resulting in significant casualties and property 

damage. Therefore, conducting regional coseismic landslide susceptibility assessments is of great 

significance for earthquake disaster prevention, mitigation, and future urban planning in seismic 

zones. 

Coseismic landslide susceptibility assessment refers to the evaluation of the likelihood of 

landslides occurring in a specific area after an earthquake. An objective, detailed, and accurate 

coseismic landslide inventory map forms the basis of coseismic landslide susceptibility assessments 

[3,4]. Several research teams have used multi-source remote sensing satellite images or drone aerial 

images from before and after the earthquake to interpret the coseismic landslides induced by the 

Luding earthquake and have constructed corresponding coseismic landslide inventories. However, 

due to cloud cover, these coseismic landslide inventories have significantly missed the high-altitude 

mountainous areas above 2500 m on the western side of the seismogenic fault [5–8]. Shao et al. used 

cloud-free post-earthquake remote sensing images to conduct a comprehensive interpretation of 

landslides in the entire Luding earthquake-affected area [9]. They provided a more complete 

supplement to previous landslide inventories, resulting in the most comprehensive and reliable 

coseismic landslide inventory for Luding to date. Therefore, We use this updated landslide inventory 

as the fundamental data for the coseismic landslide susceptibility assessment. 

The methods for assessing coseismic landslide susceptibility can be broadly divided into three 

categories: engineering geological analysis, statistical regression models, and mechanics-based 

analysis methods. The engineering geological analysis method is a comprehensive evaluation 

approach based on an understanding of slope stability and engineering experience [10]. On the one 

hand, the historical analysis method can be used to study the developmental history of the slope and 

predict its future evolution. On the other hand, based on extensive field geological surveys, the 

structural analogy method evaluates the stability of slopes under similar geological conditions. 

Statistical regression models summarize and predict patterns based on the analysis of factors 

influencing the development of coseismic landslides. By studying the distribution patterns of past 

landslides, the relationships between landslides and factors like seismic activity, topography, 

lithology, and geological structures are explored. Susceptibility trends are extrapolated based on 

existing statistical rules or through semi-quantitative assessments using expert knowledge. For 

example, methods like the comprehensive index method [11], or quantitative assessments using 

statistical techniques such as cluster analysis [12], frequency ratio (FR) [13], information method [14], 

and weights of evidence model [15], as well as machine learning algorithms like logistic regression 

[16], artificial neural networks [17], and support vector machines [18], can also be employed. The 

third method is mechanics-based analysis, which includes pseudo-static methods [19], limited sliding 

displacement method [20–22], numerical simulations [23], and physical model testing [24–27]. These 

methods are based on the physical mechanisms of coseismic landslides and use mathematical or 

physical models to quantitatively assess slope stability under seismic conditions. 
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The development of coseismic landslides is influenced by various factors such as seismic activity, 

topography, and geological conditions, making it a multi-criteria decision-making problem. The 

Analytic Hierarchy Process (AHP), first proposed by Saaty, is a classic and powerful method used 

for multi-criteria analysis [28–31]. The AHP method has been widely applied in assessing typhoon 

damage [32], landslides [33,34], spontaneous coal combustion hazards [35], avalanches [36], flood 

hazards [37–39], and other natural disasters. The AHP method is also one of the effective approaches 

for assessing coseismic landslide susceptibility [40]. However, the traditional method has three main 

limitations: first, it relies on expert judgment for pairwise comparisons, introducing subjectivity and 

failing to quantify the weight of each factor. Second, in the absence of a disaster database, the results 

of the AHP method are expressed as a range of scores rather than the actual probability of disaster 

occurrence. Third, in seismic landslide susceptibility assessment, including more influencing factors 

does not always enhance the analysis. On the contrary, low-correlation factors may compromise the 

accuracy of the evaluation.  

In response to the aforementioned issues, this paper focuses on the landslides induced by the 

Luding Ms 6.8 earthquake. Based on remote sensing interpretation and field validation, the landslide 

inventory for the 2022 Luding earthquake was refined. On this basis, the highest point of the landslide 

scarp (the highest elevation of the landslide's back scarp) was extracted as the primary data, and the 

dataset was divided into a training set (70%) and a test set (30%). Using the FR-AHP-Pearson coupling 

algorithm, the sensitivity of each influencing factor to coseismic landslides was analyzed. Factors 

with strong autocorrelation and low sensitivity were excluded, and a coseismic landslide 

susceptibility assessment model for the Luding earthquake was constructed, leading to the 

establishment of landslide susceptibility zones. Finally, 30% of non-landslide samples and 30% of 

landslide samples were randomly selected to form a test set, and the model's accuracy was validated 

using the area under the receiver operating characteristic (ROC) curve (AUC). The findings of this 

paper provide valuable scientific guidance for post-earthquake reconstruction and the strategic 

planning of future disaster prevention and mitigation in seismic zones. 

2. Study Area 

At 12:52 PM on September 5, 2022, a Ms 6.8 earthquake occurred in Luding County, Ganzi 

Prefecture, Sichuan Province. According to data from the China Earthquake Networks Center, the 

epicenter of the Luding earthquake was located in the Hailuogou Glacier Forest Park near Moxi Town 

(102.08°E, 29.59°N), with a focal depth of approximately 16 km and a maximum seismic intensity of 

IX. This earthquake triggered numerous landslides, resulting in 93 fatalities, 25 missing persons, over 

270 injuries, and widespread damage to houses and roads [5,41]. The seismogenic fault of the 

earthquake was the Moxi segment of the Xianshuihe Fault, located on the southeastern margin of the 

Tibetan Plateau, with a left-lateral strike-slip fault mechanism [42]. In this study, the area on both 

sides of the Moxi segment of the Xianshuihe Fault, where coseismic landslides are densely distributed, 

was selected as the study area to assess landslide susceptibility. The study area covers approximately 

963.77 km². 

The study area, located in the Hengduan Mountains on the southeastern margin of the Tibetan 

Plateau, features typical alpine gorge terrain. The topography generally slopes from west to east and 

from north to south, with significant elevation changes. The highest elevation in the study area is 

4668 m at Wanglangbao, in the northwest, while the lowest elevation is 874 m, located in the lower 

reaches of the Dadu River. The average elevation is 2312 m, with a relative height difference of 3736 

m. The study area lies in a typical subtropical monsoon climate zone, influenced by the southeast 

monsoon, southwest monsoon, and cold air from the Tibetan Plateau. The annual average 

temperature is 15.5°C, and the average annual precipitation is 664.4 mm [8]. The largest river flowing 

through the study area is the Dadu River, which runs from north to south, with an overall flow 

direction of 171°. The river channel within the area is approximately 50 km long, with a vertical drop 

of about 266 m and an average slope of 5.32‰. The river is rugged and wide. The Dadu River is a 

primary tributary of the Minjiang River, joining it at the southern part of Leshan City. There are three 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 June 2025 doi:10.20944/preprints202506.0725.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0725.v1
http://creativecommons.org/licenses/by/4.0/


 4 of 25 

 

major tributaries of the Dadu River within the study area: the Moxi River, Wandong River, and 

Tianwan River, all of which are primary tributaries on the right bank of the Dadu River. 

The exposed strata in the study area, from oldest to youngest, include the Sinian, Silurian, 

Devonian, Carboniferous, Permian, Triassic, and Quaternary systems. According to the 2022 

geological cloud 1:200,000 regional vector geological map, granite has the highest proportion in the 

area and is mainly distributed on the eastern side of the seismogenic fault zone. Quartzite and marble 

of the Permian system form the second-largest lithological component in the area, predominantly 

distributed on the western side of the study area. Additionally, limestone and marble of the Permian 

system are primarily distributed near the earthquake epicenter, while limestone and slate of the 

Devonian system are mainly found in the southern and central parts of the study area, south of the 

Xianshuihe Fault. Quaternary sediments are mainly distributed along both banks of the Dadu River 

and its tributaries, including Holocene alluvial layers, Pleistocene alluvial layers, gravel, and clay. 

Other strata in the area are less widely distributed. Due to prolonged intense tectonic activity and 

weathering, the rock masses are fractured, and structural surfaces are well-developed. 

Since the Neogene, due to the uplift of the Tibetan Plateau, neotectonic movements have been 

intense. The uplift of the Tibetan Plateau is generally divided into four main stages [43]. The first 

stage is Himalayan stage (45 to 8 Ma BP), during which the Tibetan Plateau primarily underwent 

progressive northward compression and uplift, causing the overall uplift of the Sichuan-Yunnan 

block and resulting in eastward compression [44]. The second stage is Qiangtang stage (3.6 to 3.4 Ma 

BP), the Hengduan Mountains experienced significant uplift, and the plateau began to move 

eastward, leading to strong tectonic activity in the Sichuan-Yunnan region [45]. The third stage 

occurred Between 2.6 and 2.5 Ma BP, the Jinsha River-Xianshuihe Fault zone gradually transitioned 

from compressive-shear to left-lateral strike-slip [46,47]; and The fourth stage is Kunhuang stage (1.2 

to 0.5 Ma BP), the plateau experienced accelerated uplift, shaping the current tectonic and 

geomorphological features [48]. Over the past 300 years, 17 earthquakes with magnitudes greater 

than 6.5 have occurred along the Xianshuihe Fault zone. The spatially closest earthquake to this event 

was the 1786 Kangding earthquake [49], while the most recent earthquake in time was the 1973 Luhuo 

earthquake [50]. Based on the data recorded by seismic stations within 150 km of the epicenter, a peak 

ground acceleration (PGA) zoning map was generated for the study area, with values ranging from 

0.23 to 0.65g. 

The visual interpretation of landslides was performed using a human-machine interactive 

approach, based on field surveys and optical satellite imagery. The optical satellite images used in 

this study were obtained from Planet satellite data captured in July 2022 and on September 29, 2022. 

Contrasting high-resolution remote sensing images before and after the earthquake, a total of 13,717 

landslides were identified within the study area, with a total landslide area of 39.27 km². The largest 

landslide covered an area of 120,747 m², while the smallest was 16 m², with an average landslide area 

of approximately 3,451 m² [51]. The distribution of the interpreted coseismic landslides is illustrated 

in Figure 1. 

 

Figure 1. Map of the study area showing the inventoried landslides. 
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3. Materials and Methodology 

3.1. Sources of Data 

The datasets required for the landslide susceptibility assessment of the 2022 Luding earthquake 

are listed in Table 1. They include: ① a remote sensing-interpreted seismic landslide inventory 

database, ② a 30m resolution digital elevation model (DEM), ③ a 1:200,000 scale vector geological 

map, ④ a satellite imagery map at a 1:200,000 scale, and ⑤ a vector PGA distribution map of the 

2022 Luding earthquake. 

Table 1. Sources of data required for the coseismic landslide susceptibility assessment 

Data Source 
Spatial 

Resolution 

Coseismic 

landslide 

inventory 

Data collection, 

remote-sensing interpretation, 

and field survey 

-- 

Satellite 

image 

https://www.ovital.com, 

(accessed on 28 November 2022) 
1：200,000 

DEM 
https://www.gscloud.cn/, 

(accessed on 28 November 2022) 
30m 

River 

network 
Manual sketching -- 

Strata 

chronology 

https://geocloud.cgs.gov.cn, 

(accessed on 28 November 2022) 
1：200,000 

PGA 
https://data.earthquake.cn/index.html, 

(accessed on 21 May 2024) 
-- 

Fractional 

vegetation 

cover, 

(FVC） 

https://www.gscloud.cn/, 

(accessed on 14 April 2020) 
30m 

Road 

network 

https://www.usgs.gov, 

(accessed on July 2023) 
-- 

3.2. Coseismic Landslide Susceptibility Assessment Methods 

3.2.1 Analytical hierarchy process 

AHP was proposed by American operations researcher Saaty in 1973. It is a decision-making 

method that combines qualitative and quantitative analysis to solve multi-criteria problems [31]. 

AHP is widely used in landslide susceptibility assessments. The basic steps of the AHP method 

include: 

(1) Establish a hierarchical structure model, clarifying the relationships between influencing factors. The 

hierarchical structure model is established by the recursive relationships among the influencing 

factors in the criterion layer and sub-criterion layer. 

(2) Construct the judgment matrix. The judgment matrix is the core of the AHP method. It involves 

pairwise comparisons of the relative importance of influencing factors in the sub-criterion layer 

under the criterion layer, forming a judgment matrix. In traditional AHP, the relative importance of 

two factors is qualitatively expressed as equally important, slightly important, moderately important, 
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strongly important, and extremely important, and is quantified using a scale of 1, 3, 5, 7, and 9. In this 

paper, the modified Landslide Relative Frequency (mLRF) value is used to assign a quantitative index 

to each factor to construct the judgment matrix. 

(3) Conduct a consistency check. To ensure that the weight distribution obtained from the judgment 

matrix is reasonable, consistency checks are performed using equations (1) and (2). 

�� =
���� − �

� − 1
 (1)

�� = ��/�� (2)

In this equation, CI  represents the consistency index, max is the maximum eigenvalue of the 

judgment matrix, and n is the order of the matrix. If CI =0, it indicates perfect consistency in the 

matrix. Conversely, the larger the CI value, the worse the consistency of the matrix. Typically, a 

CI  value below 0.1 is generally deemed acceptable in practice. When n is greater than 3, to eliminate 

the influence of n  on CI , the average random consistency index ( RI ) is introduced, with values 

taken from Table 2. CR  is the consistency ratio, and a CR  value of less than 0.1 is generally 

required. If the CR  value is below 0.1, the matrix passes the consistency test; otherwise, the matrix 

needs to be revised. 

Table 2. Values of the random index（ RI ） 

n 1 2 3 4 5 6 7 8 9 10 11 12 

RI 0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 

n 13 14 15 

RI 1.56 1.58 1.59 

(4) Calculate the overall weight of each influencing factor. After passing the consistency test, normalize 

the weight of each influencing factor at all levels to compute the comprehensive weight value ( i ), 

and create a ranking table of the comprehensive weights of the influencing factors. 

3.2.2 Frequency ratio  

The FR statistical approach is a research approach that calculates the probability of landslides 

occurring within different classification intervals of each landslide influencing factor, thereby 

determining the correlation between the influencing factors and the location of landslides [52,53]. In 

this study, the FR method was employed to analyze the correlations between coseismic landslides 

and 15 influencing factors. The FR is defined by Equation (6). An FR value less than 1 indicates that 

the factor interval is less prone to coseismic landslides, FR > 1 indicates that the factor interval is more 

prone to coseismic landslides, and FR = 1 suggests that the result is indeterminate [54]. However, the 

single FR model overlooks the weight of each influencing factor. To address this limitation, mLRF 

was adopted to quantify the correlations, as defined in Equation (4). 

���� =
���/�

���/�
 (3)

���� = �
(���/�)�

���/�
 (4)

In the equation: i  represents the influencing factor; j  represents the classification under the 

influencing factor; ijFR  is the frequency ratio of the j th division of the i th influencing factor; 

mLFR  is the modified landslide relative frequency; ijN  is the number of landslides in the j th 

division of the i th influencing factor; N  is the total number of landslides in the study area; ijS  is 
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the number of grid cells occupied by the j th division of the i th influencing factor; and S is the 

total number of grid cells in the study area. 

3.2.3 Pearson correlation coefficient 

The Pearson correlation coefficient is a statistical measure used to assess the strength of the 

linear relationship between two continuous variables. Given two variables, X and Y, where variable 

X contains n sample observations 1 2 3( , , , ,x )nx x x   and variable Y contains n observations

1 2 3(y , , , ,y )ny y  , the Pearson correlation coefficient is defined as follows [55]: 

r =
∑ (�� − �̅)(�� − ��)�

���

�∑ (�� − �̅)��
��� �∑ (�� − ��)��

���

 (5)

The value of r ranges between [-1, 1]. The larger the r  value, the stronger the linear relationship 

between variables X and Y . When r  = 1, X  and Y  are perfectly positively correlated; when 

r  = -1, X  and Y  are perfectly negatively correlated; and when r = 0, X  and Y  are 

uncorrelated. Generally, if the correlation coefficient r  > 0.5, variables X  and Y  are considered 

to have a high correlation. 

3.3. Methodology Flow  

(1) Collect and organize data such as the DEM, remote sensing images, roads, rivers, and 

landslide information of the study area. Use the elevation raster layer as the base map, extract the 

highest elevation point from the landslide surface vector data obtained by remote sensing 

interpretation as the landslide initiation point. This will serve as the fundamental data for subsequent 

analysis. The data is then split into training and testing sets in a 7:3 ratio. 

(2) Extract 15 factors including elevation, slope gradient, slope aspect, plan curvature, profile 

curvature, surface cutting degree, topographic relief, elevation coefficient variation, lithology, 

distance to faults, epicentral distance, PGA, distance to rivers, FVC and distance to roads. Except for 

lithology, which is a discrete variable, all other factors are continuous data and are used for 

subsequent correlation analysis between influencing factors. 

(3) Use the natural breaks method in the GIS platform to classify the 15 influencing factors, apply 

the FR method to obtain the FR values for each classification, and analyze the spatial distribution 

characteristics of coseismic landslides. 

(4) Calculate the mLRF values for the 15 influencing factors, use these mLRF values as 

quantitative indicators for expert scoring in the AHP method to determine the weights of the 15 

influencing factors, and perform a correlation test between the factors using Pearson's coefficient 

method, excluding factors with strong correlation but low weight values. 

(5) After filtering the factors, the remaining factor FR layers and their filtrated weights are 

substituted into Equation (6) for weighted overlay. This yields the coseismic landslide susceptibility 

index for the study area, which is then classified using the natural breaks method to create the 

landslide susceptibility zonation map for the 2022 Luding earthquake. 

���� = � �� ∙ ��� (6)

Note: OLSI is the susceptibility index; i  is the normalized weight value of the filtrated 

influencing factors; and iFR  is the filtrated frequency ratio layer of the influencing factors. 

(6) Slope units were delineated using hydrological analysis. A number of slope units equal to 

the size of the testing set were randomly selected. The highest elevation points of the slopes (initiation 

points) are extracted, and the ROC curve is used to test the rationality of the coseismic landslide 

susceptibility zonation results, validate the accuracy of the coseismic landslide susceptibility 

assessment, and analyze the main controlling factors of coseismic landslides in the study area. 

The specific process of coseismic landslide susceptibility assessment is illustrated in Figure 2. 
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Figure 2. Technical route map for coseismic landslide susceptibility assessment in Luding. 

4. Results and Analysis  

4.1. Selection of Coseismic Landslide Influencing Factors 

When assessing susceptibility to adverse geological conditions, the selection process for 

influencing factors must be rigorous [56]. Earthquake-triggered landslides, as a highly destructive 

geological disaster, are influenced by a combination of factors, including topographical conditions, 

geological conditions, seismic motion, rivers, and human engineering activities. In terms of 

topographical conditions, elevation, slope gradient, slope aspect, plan curvature, profile curvature, 

surface cutting depth, topographic roughness, and elevation variation coefficient reflect surface 

morphology and topographic relief, which are crucial for assessing susceptibility to coseismic 

landslides. Regarding geological conditions, the lithology of strata significantly affects the formation 

and distribution of coseismic landslides. Distance to faults, epicenter distance, and PGA illustrate the 

correlation between coseismic landslides and their inducing factors. Additionally, distance to rivers 

and FVC are also important factors affecting the susceptibility to coseismic landslides. Finally, the 

terrain in the Luding area is steep, and highways are often built in valleys; excavation of roads may 

disturb the surrounding slopes. Landslides triggered by the Luding earthquake were mostly 

distributed on both sides of the roads, while slopes without road construction rarely experienced 

landslides. This indicates that human engineering activities, particularly road excavation, may play 

a critical role in exacerbating landslide occurrences. 

Based on a comprehensive consideration of the above factors, we selected the relevant 

influencing factors based on existing data, including elevation, slope gradient, slope aspect, plan 

curvature, profile curvature, surface cutting degree, topographic relief, elevation coefficient variation, 

lithology, distance to faults, epicentral distance, PGA, distance to rivers, FVC and distance to roads 

[3,57,58]. The selection of these factors aims to comprehensively reflect the various influencing factors 

of coseismic landslide occurrence, providing a scientific basis for subsequent susceptibility 

assessments of coseismic landslides. 

4.2. Analysis of the Correlation Between Influencing Factors and Coseismic Landslide Distribution 

After determining the influencing factors of coseismic landslide susceptibility, to enhance the 

reliability of subsequent correlation testing between the factors, the factors should be converted into 

continuous data wherever possible, as shown in Figure 3. The lithology, a discrete variable, was 

classified according to its actual state, while the remaining continuous data were classified using the 

reclassification tool. Secondly, a total of 13,717 coseismic landslides were identified in the study area. 

The landslide samples were split into a training set (9,602 landslides) and a testing set (4,115 

landslides) in a 7:3 ratio. Finally, using Equation (1), the frequency ratio ijFR for each classification of 

influencing factors was calculated. This metric quantifies the occurrence frequency of coseismic 
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landslides per unit area and visually reflects the susceptibility of landslides in different regions. 

Further, a statistical table of FR values for each classification of influencing factors was created (Table 

3). Spatial distribution layers of coseismic landslide susceptibility factors (Figure 3) and 

corresponding relationship curves (Figure 4) were plotted to analyze the spatial distribution patterns 

of coseismic landslides. The results are as follows: 

Table 3. Classification and FR Calculation of Influencing Factors in the Luding Study Area 

Factor Category GN PoGN/% LN PoLN/% FR 

Elevation 

(m) 

874～1350 97,195 8.77  1,426 14.85  1.69  

1350～1687 136,720 12.34  1,726 17.98  1.46  

1687～1994 162,671 14.68  1,366 14.23  0.97  

1994～2293 168,688 15.23  1,423 14.82  0.97  

2293～2593 169,076 15.26  1,220 12.71  0.83  

2593～2913 148,534 13.41  1,111 11.57  0.86  

2913～3279 115,295 10.41  916 9.54  0.92  

3279～3772 73,015 6.59  370 3.85  0.58  

3772～4668 36,607 3.30  44 0.46  0.14  

Slope 

gradient 

(°) 

0～10 47,928 4.14  106 1.10  0.27  

10～20 116,982 10.09  457 4.76  0.47  

20～30 249,684 21.54  1,501 15.63  0.73  

30～40 406,867 35.10  3,211 33.44  0.95  

40～50 267,965 23.12  3,152 32.83  1.42  

50～60 63,187 5.45  1,027 10.70  1.96  

60～70 6,353 0.55  143 1.49  2.72  

70～76.63 91 0.01  5 0.05  6.63  

Slope 

aspect 

Flat 1,476 0.13  1 0.01  0.08  

N 133,656 11.53  339 3.53  0.31  

NE 143,745 12.40  846 8.81  0.71  

E 155,501 13.42  2,052 h 1.59  

SE 161,245 13.91  2,741 28.55  2.05  

S 137,116 11.83  2,003 20.86  1.76  

SW 138,676 11.96  964 10.04  0.84  

W 139,842 12.07  479 4.99  0.41  

NW 147,800 12.75  177 1.84  0.14  

Plan 

curvature 

-23.60～-4.25 2,470 0.22  24 0.25  1.12  

-4.25～-2.41 18,271 1.65  147 1.53  0.93  

-2.41～-1.30 77,700 7.01  673 7.01  1.00  

-1.30～-0.57 181,833 16.41  1,467 15.28  0.93  

-0.57～0.17 357,933 32.31  2,842 29.60  0.92  

0.17～0.91 289,483 26.13  2,581 26.88  1.03  

0.91～1.83 134,102 12.11  1,324 13.79  1.14  

1.83～3.86 42,493 3.84  500 5.21  1.36  

3.86～23.57 3,516 0.32  44 0.46  1.44  

Profile 

curvature 

-24.10～-5.17 3,151 0.28  45 0.47  1.65  

-5.17～-2.92 21,982 1.98  330 3.44  1.73  

-2.92～-1.61 74,337 6.71  841 8.76  1.31  

-1.61～-0.67 183,253 16.54  1,741 18.13  1.10  

-0.67～0.07 302,088 27.27  2,332 24.29  0.89  

0.07～1.01 325,494 29.38  2,494 25.97  0.88  
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1.01～2.32 149,281 13.48  1,303 13.57  1.01  

2.32～4.39 41,576 3.75  446 4.64  1.24  

4.39～23.88 6,639 0.60  70 0.73  1.22  

Surface 

cutting 

degree 

(m) 

0～97.90 79,119 6.88  222 2.31  0.34  

97.90～146.85 147,439 12.82  966 10.06  0.78  

146.85～188.46 214,469 18.65  1,364 14.21  0.76  

188.46～222.73 224,425 19.51  1,533 15.97  0.82  

222.73～254.54 200,972 17.48  1,853 19.30  1.10  

254.54～288.81 152,662 13.27  1,723 17.94  1.35  

288.81～327.97 88,849 7.73  1,209 12.59  1.63  

327.97～386.71 34,814 3.03  542 5.64  1.86  

386.71～626.57 7,265 0.63  190 1.98  3.13  

Topographic 

relief 

(m)  

0～198 48,204 4.19  77 0.80  0.19  

198～286 111,878 9.73  385 4.01  0.41  

286～354 172,706 15.02  901 9.38  0.62  

354～413 205,773 17.89  1,297 13.51  0.75  

413～468 215,716 18.76  1,699 17.69  0.94  

468～525 185,284 16.11  2,015 20.99  1.30  

525～592 131,587 11.44  1,882 19.60  1.71  

592～692 63,682 5.54  972 10.12  1.83  

692～1081 15,184 1.32  374 3.90  2.95  

Elevation 

coefficient 

variation 

0～0.022 86,266 7.50  39 0.41  0.05  

0.022～0.032 195,854 17.03  507 5.28  0.31  

0.032～0.041 235,005 20.43  1,198 12.48  0.61  

0.041～0.050 209,791 18.24  1,885 19.63  1.08  

0.050～0.061 161,978 14.08  1,955 20.36  1.45  

0.061～0.072 121,916 10.60  1,645 17.13  1.62  

0.072～0.084 78,653 6.84  1,164 12.12  1.77  

0.084～0.100 43,398 3.77  780 8.12  2.15  

0.100～0.134 17,153 1.49  429 4.47  3.00  

Lithology 

Granite 588,053 52.77  3,285 34.21  0.65  

Quartzite 218,447 19.60  3,357 34.96  1.78  

Diabase 4,328 0.39  51 0.53  1.37  

Diorite 62,841 5.64  819 8.53  1.51  

Pyroxene 

Peridotite 
1,147 0.10  20 0.21  2.02  

Rhyolite Porphyry 11,391 1.02  1 0.01  0.01  

Conglomerate 34,617 3.11  156 1.62  0.52  

Sandstone 43,685 3.92  118 1.23  0.31  

Marble 45,286 4.06  742 7.73  1.90  

Limestone 80,147 7.19  743 7.74  1.08  

Dolomite 21,710 1.95  302 3.15  1.61  

Slate 2,734 0.25  8 0.08  0.34  

Distance 

to faults 

(km) 

0～1 265,559 23.96  3,569 37.17  1.55  

1～2 123,623 11.15  1,251 13.03  1.17  

2～3 94,661 8.54  1,084 11.29  1.32  

3～4 86,185 7.78  874 9.10  1.17  

4～5 86,015 7.76  925 9.63  1.24  

5～6 85,028 7.67  668 6.96  0.91  
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6～7 80,908 7.30  409 4.26  0.58  

7～8 75,844 6.84  367 3.82  0.56  

8～9 68,026 6.14  197 2.05  0.33  

9～10 54,866 4.95  213 2.22  0.45  

>10 87,594 7.90  45 0.47  0.06  

Epicentral 

distance 

(km) 

0～2 14,445 1.30  108 1.12  0.86  

2～4 43,336 3.91  317 3.30  0.84  

4～6 58,179 5.25  969 10.09  1.92  

6～8 70,309 6.34  979 10.20  1.61  

8～10 70,319 6.34  1,010 10.52  1.66  

10～12 71,046 6.41  630 6.56  1.02  

12～14 77,362 6.98  894 9.31  1.33  

14～16 84,071 7.59  632 6.58  0.87  

16～18 91,041 8.21  637 6.63  0.81  

18～20 98,106 8.85  1,048 10.91  1.23  

20～22 105,230 9.49  950 9.89  1.04  

22～24 101,305 9.14  467 4.86  0.53  

24～26 77,000 6.95  518 5.39  0.78  

26～28 67,456 6.09  220 2.29  0.38  

28～30 38,581 3.48  160 1.67  0.48  

30～32 24,355 2.20  50 0.52  0.24  

32～34 13,026 1.18  11 0.11  0.10  

34～36 3,142 0.28  2 0.02  0.07  

PGA (g) 

0.23～0.28 38,026 0.03  8 0.00  0.02  

0.28～0.32 163,975 0.15  731 0.08  0.51  

0.32～0.37 417,883 0.38  3222 0.34  0.89  

0.37～0.42 316,673 0.29  4333 0.45  1.58  

0.42～0.46 65,876 0.06  582 0.06  1.02  

0.46～0.51 39,937 0.04  258 0.03  0.75  

0.51～0.55 26,671 0.02  149 0.02  0.64  

0.55～0.60 21,544 0.02  179 0.02  0.96  

0.60～0.65 17,440 0.02  140 0.01  0.93  

Distance 

to rivers 

(m) 

0～400 148,315 13.38  2,136 22.25  1.66  

400～800 134,153 12.10  1,958 20.39  1.68  

800～1200 118,299 10.67  1,194 12.43  1.16  

1200～1600 105,732 9.54  1,141 11.88  1.25  

1600～2000 91,529 8.26  910 9.48  1.15  

2000～2400 79,834 7.20  661 6.88  0.96  

2400～2800 71,936 6.49  503 5.24  0.81  

2800～3200 64,927 5.86  365 3.80  0.65  

3200～3600 52,775 4.76  243 2.53  0.53  

3600～4000 40,134 3.62  151 1.57  0.43  

4000～4400 34,065 3.07  114 1.19  0.39  

4400～4800 29,070 2.62  52 0.54  0.21  

>4800 137,540 12.41  174 1.81  0.15  

FVC (%) 

0～9.38 67,244 6.27  149 1.55  0.25  

9.38～25.78 34,617 3.23  216 2.25  0.70  

25.78～40.23 46,581 4.34  432 4.50  1.04  

40.23～52.34 71,718 6.69  615 6.40  0.96  

52.34～62.50 114,147 10.65  1,103 11.49  1.08  
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62.50～71.88 152,996 14.27  1,555 16.19  1.13  

71.88～81.25 194,045 18.10  1,902 19.81  1.09  

81.25～91.41 210,436 19.63  1,971 20.53  1.05  

91.41～100 180,312 16.82  1,659 17.28  1.03  

Distance 

to roads 

(m) 

0～400 247,036 22.29  2,778 28.93  1.30  

400～800 146,964 13.26  1,627 16.94  1.28  

800～1200 112,597 10.16  1,082 11.27  1.11  

1200～1600 89,952 8.12  911 9.49  1.17  

1600～2000 71,538 6.45  648 6.75  1.05  

2000～2400 62,065 5.60  559 5.82  1.04  

2400～2800 53,843 4.86  546 5.69  1.17  

2800～3200 48,932 4.42  472 4.92  1.11  

3200～3600 43,076 3.89  301 3.13  0.81  

3600～4000 38,803 3.50  221 2.30  0.66  

4000～4400 34,277 3.09  197 2.05  0.66  

4400～4800 28,333 2.56  99 1.03  0.40  

4800～5200 25,066 2.26  69 0.72  0.32  

>5200 105,827 9.55  92 0.96  0.10  

Note: GN represents the number of grids, PoGN is the percentage of grid numbers; LN represents the 

number of landslides, PoLN is the percentage of landslide numbers; FR is the value of frequency ratio. 

 

Figure 3. Spatial distribution of coseismic landslide susceptibility factors (A. Elevation；B. Slope gradient；C. 

Slope aspect；D. Plan curvature；E. Profile curvature；F. Surface cu�ing degree；G. Topographic relief；H. 

Elevation coefficient variation； I. Lithology； J. Distance to faluts；K. Epicentral distance；L. PGA；M. 

Distance to rivers；N. FVC；O. Distance to roads). 
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Figure 4. Relationship between factor zoning and landslide distribution in the study area (A. Elevation；B. Slope 

gradient；C. Slope aspect；D. Plan curvature；E. Profile curvature；F. Surface cu�ing degree；G. Topographic 

relief；H. Elevation coefficient variation；I. Lithology；J. Distance to faluts；K. Epicentral distance；L. PGA；

M. Distance to rivers；N. FVC；O. Distance to roads) 

(1) Topographic Conditions: As shown in Figure 5A, within the elevation ranges of 874~1994m 

and 3279~4668m, the FR value decreases significantly with increasing elevation. In the elevation 

range of 1994~3279m, the FR value shows a slight decrease with increasing elevation, but the change 

is not pronounced. The susceptibility of coseismic landslides is strongly positively correlated with 

slope, surface dissection depth, terrain roughness, and elevation variation coefficient, with the 

highest FR values and slopes in the last two grades of these factors (Figures 5B, 5F~5H). Plan 

curvature is calculated based on slope direction, describing the terrain characteristics in the 

horizontal direction [59]. Within the plan curvature range of -23.60~0.17, the FR value slightly 

decreases as the curvature increases, while in the range of 0.17~23.57, the FR value increases with 

curvature. Profile curvature describes the complexity of the terrain [60,61]. Within the profile 

curvature range of -24.10~0.07, the FR value decreases as the curvature increases, while in the range 

of 0.07~23.88, the FR value increases with curvature. 

(2) Geological Conditions: Lithology is a crucial influencing factor, as different lithologies exhibit 

varying strengths, playing a decisive role in slope stability [62]. As shown in Figure 5E, granite 

occupies the largest proportion of the study area, accounting for 52.77% of the total area, followed by 

quartzite, which covers 19.60%. Approximately 69% of coseismic landslides occur evenly distributed 

across granite and quartzite formations. Pyroxene peridotite and marble regions show the highest FR 

values, with the greatest density of coseismic landslide development. 

(3) Seismic motion conditions: Within 5 km of the fault, the FR value slightly decreases with 

increasing distance from the fault, with FR values remaining above 1; beyond 5 km from the fault, 
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the FR value shows a clear negative correlation with the fault distance (Figure 5J, Table 3). The 

Xianshuihe Fault zone, the source fault zone of the Luding earthquake, shows a concentration of large 

landslides as depicted in Figure 5. Figure 6K demonstrates that the FR value increases with the 

epicentral distance initially and then shows reduced volatility; the FR value peaks in the 4-6 km range, 

with a maximum value of 1.92, indicating the highest density of coseismic landslide occurrences 

within 4-6 km of the fault. Analysis of PGA shows that approximately 85% of coseismic landslides 

occur within the 0.23-0.42 g PGA range, with a significant positive correlation between FR and PGA. 

The FR value is highest at 0.37-0.42 g PGA, reaching 1.58, indicating the greatest density of coseismic 

landslides. Within the 0.42-0.65 g PGA range, the FR value decreases initially and then increases with 

stronger ground motion, with the minimum FR value corresponding to the 0.51-0.55 g PGA range. 

(4) Rivers and FVC: Table 3 shows that the number of coseismic landslides and the FR values 

both exhibit a significant negative correlation with distance to rivers. Within 0-800 m of rivers, the 

number of coseismic landslides is the highest, accounting for 25.48% of the total landslides; in the 

400-800 m range, the maximum FR value is 1.68. This indicates that river erosion at the base of slopes 

plays a controlling role in the development of coseismic landslides. FVC reflects the degree of 

vegetation cover, ranging from 0 to 1, with higher FVC values indicating denser vegetation cover. 

Table 3 and Figure 5N show that, overall, the number of coseismic landslides is positively correlated 

with FVC; within the 0-40.23% FVC range, there is a clear positive correlation between FR and FVC. 

When FVC exceeds 40.23%, the FR value increases slightly with FVC, but the change is minimal; 

within the 62.50-71.88% FVC range, the FR value is highest, indicating the greatest density of 

coseismic landslides. 

(5) Human Engineering Activities: As shown in Figure 5O, within a distance of 0-2800 m from 

roads, the FR value decreases slightly with increasing distance from roads, but the change is minimal. 

When the distance from roads exceeds 2800 m, the FR value gradually decreases with increasing 

distance, and approaches zero when the distance exceeds 5200 m. The density of coseismic landslides 

is highest within the 0-400 m range from roads. 

4.3. Determination of initial weights for influence factors 

After the relationship between each influence factor and coseismic landslide susceptibility was 

established, the mLRF values for all 15 factors were calculated based on their corresponding FR raster 

layers, as described in Equation (4). The results are presented in Table 4. 

Table 4. Modified landslide relative frequency for each influence factor 

Factor Elevation 
Slope 

gradient 

Slope 

aspect 

Plan 

curvature 

Profile 

curvature 

mLRF 0.1235 0.1472 0.1476 0.1124 0.1144 

Factor 

Surface 

cutting 

degree 

Topographic 

relief 

Elevation 

coefficient 

variation 

Lithology 
Distance 

to faults 

mLRF 0.1282 0.1394 0.1554 0.1066 0.1119 

Factor 
Epicentral 

distance 
PGA 

Distance 

to rivers 
FVC 

Distance 

to roads 

mLRF 0.0664 0.1304 0.0982 0.116 0.0816 

Constructing the judgment matrix is a crucial step for determining the weights 

of influence factors. The core step in constructing the judgment matrix is to compare 

the influence factors pairwise to determine their relative importance. Traditional 

AHP methods rely on expert judgment to determine the relative importance of 

influence factors, which is highly subjective. This study uses the mLRF values of the 

influence factors to quantitatively represent their relative importance, thereby 
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effectively reducing the subjectivity of the AHP method. The pairwise comparison 

of the 15 influence factors resulted in the judgment matrix shown in Figure 5. 

 

Figure 5. Judgment matrix of influence factors (a. Elevation；b. Slope gradient；c. Slope aspect；d. 

Plan curvature；e. Profile curvature； f. Surface cu�ing degree；g. Topographic relief；h. 

Elevation coefficient variation； i. Lithology；j. Distance to faluts；k. Epicentral distance；l. 

PGA；m. Distance to rivers；n. FVC；o. Distance to roads) 

The eigenvector of the maximum eigenvalue of the judgment matrix, after normalization, can be 

used as the weight vector. The maximum eigenvalue of the judgment matrix was calculated to be 15, 

with the corresponding eigenvector being {0.264, 0.314, 0.315, 0.240, 0.244, 0.274, 0.298, 0.332, 0.228, 

0.239, 0.142, 0.278, 0.210, 0.248, 0.174}. After normalization, the weight ranking of the influence factors 

for coseismic landslides was obtained (Figure 6). The CR value of the judgment matrix, calculated 

using Equations (1) and (2), was found to be, which is well below 0.1, indicating that the weight 

allocation of the influence factors is reasonable. 

 

Figure 6. Initial weight ranking of influence factors (ECV. Elevation coefficient variation；SA. Slope 

aspect；SG. Slope gradient；TR. Topographic relief；PGA. Peak ground acceleration；SCD. 

Surface cu�ing degree； EL. Elevation； FVC. Fractional vegetation cover； PRC. Profile 

curvature；PLC. Plan curvature；DTFA. Distance to faluts；LI. Lithology；DTRI. Distance to 

rivers；DTRO. Distance to roads；ED. Epicentral distance) 

4.4. Correlation analysis of influence factors and normalization of filtrated weights  

In assessing coseismic landslide susceptibility, high autocorrelation among influence factors can 

lead to redundancy and reduce modeling accuracy [63]. Using the multi-value extraction tool on the 
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GIS platform, raster values from the 15 layers shown in Figure 4 were extracted to the attribute table 

of the landslide initiation points in the testing set. This attribute table was then imported into SPSS 

software, where Pearson correlation analysis was performed to examine the relationships between 

the 15 influence factors, as shown in Figure 7. If the correlation coefficient r satisfies |�| ≤ 0.5, the 

correlation between the two factors is considered low [64]. The results indicate that elevation has 

significant correlations with elevation variation coefficient, distance to road, PGA, and distance to 

fault. Distance to epicenter shows strong correlation with PGA, plan curvature with profile curvature, 

and surface cutting depth with terrain roughness. Based on the obtained weights in Section 3.3, 

factors with smaller weights were removed. Consequently, elevation, distance to epicenter, planar 

curvature, and surface cutting depth were excluded. Finally, the weights of the remaining factors 

were renormalized, resulting in the final influence factor weight ranking for the Luding study area 

(Figure 8). Figure 8 shows that the elevation variation coefficient is the most important influence 

factor with a weight of 0.1152, followed by slope aspect and slope degree, both with weights around 

0.11. Compared to other influence factors, distance to road is the least important factor, with a weight 

of 0.0605. 

 

Figure 7. Pearson correlation coefficient matrix (a. Elevation；b. Slope gradient；c. Slope aspect；d. Plan 

curvature；e. Profile curvature；f. Surface cu�ing degree；g. Topographic relief；h. Elevation coefficient 

variation；j. Distance to faluts；k. Epicentral distance；l. PGA；m. Distance to rivers；n. FVC；o. Distance to 

roads) 

 

Figure 8. Filtrated ranking of influence factors by weight (ECV. Elevation coefficient variation；SA. Slope aspect

；SG. Slope gradient；TR. Topographic relief；PGA. Peak ground acceleration； FVC. Fractional vegetation 

cover；PRC. Profile curvature；DTFA. Distance to faults；LI. Lithology；DTRI. Distance to rivers；DTRO. 

Distance to roads) 
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4.5. Mapping of coseismic landslide susceptibility zoning  

After the filtrated weights of the influence factors were obtained, the FR raster layers derived in 

Section 3.2, together with the weights presented in Figure 8, were applied in Equation (6). A weighted 

overlay of the filtered FR raster layers and their corresponding weights was then performed to 

compute the coseismic landslide susceptibility index for the study area. Based on the values of the 

coseismic landslide susceptibility index, the study area is classified into five categories using the 

natural breaks method: non-susceptible, low susceptibility, moderate susceptibility, high 

susceptibility, and very high susceptibility (Figure 9). 

 

Figure 9. Luding coseismic landslide susceptibility zoning map 

 

Figure 10. Luding seismic landslide susceptibility zoning statistical chart 

As shown in Figure 9, the areas of very high and high landslide susceptibility are mainly 

distributed along both sides of the Dadu River and near the Xianshuihe Fault zone. The very high 

susceptibility area accounts for 12.97% of the total study area, while the high susceptibility area 
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covers 23.84% of the study area (Figure 10). According to Figure 10, as landslide susceptibility 

increases, both the number of landslides and the FR value also increase. The landslide susceptibility 

assessment results are highly consistent with the actual distribution of coseismic landslides. 

4.6. Validation of coseismic landslide susceptibility zoning results 

The accuracy of the coseismic landslide susceptibility zoning results was evaluated using the 

Area Under the ROC Curve. The ROC curve plots the true positive rate against the false positive rate 

under various threshold values. AUC values ranges from 0.5 to 1.0, where values greater than 0.7 

indicate good model performance and values exceeding 0.9 suggest excellent predictive accuracy 

[65]. 

In this study, 30% of the landslide initiation points (4,115 in total) were randomly selected as the 

testing dataset. Slope units were extracted using the hydrological analysis method in the ArcGIS 

(Figure 2), resulting in 44,018 units across the study area. Excluding the slopes containing all landslide 

initiation point from the training and testing sets, the study area's elevation raster layer was used as 

the base map. After excluding units containing all training or testing landslides, raster center points 

with the highest elevation in each slope were extracted as landslide initiation points, yielding 30,513 

samples. For slope units lacking raster center point coverage, a total of 8,846 slope center points were 

extracted. During data preprocessing, 180 slope units near the boundary of the study area were 

identified as lacking valid raster center points and were thus excluded. The remaining 43,838 slope 

units were retained, from which 4,115 landslide initiation points were randomly selected to form the 

testing dataset for model validation. Using the multi-value extraction tool, susceptibility index values 

corresponding to the testing points were obtained. Subsequently, the ROC curve was plotted and the 

AUC value was calculated. As shown in Figure 11, the AUC value of 0.8445 demonstrates a high level 

of accuracy for the coseismic landslide susceptibility zoning model. 

 

Figure 11. The ROC curve of susceptibility assessment model in the study area 

5. Discussion 

5.1. Controlling factors of the coseismic landslides 

The high and very high susceptibility zones of landslides triggered by the Luding earthquake 

show a strong consistency with the actual distribution of coseismic landslides interpreted through 

remote sensing (Figures 10 and 11), validating the accuracy of the coseismic landslide susceptibility 

zones presented in this study. The results indicate that the elevation variation coefficient is the 

primary controlling factor for coseismic landslides. The elevation variation coefficient, which is the 
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ratio of the standard deviation of elevation to the mean elevation, reflects the degree of surface 

erosion and incision within the region. A higher elevation variation coefficient indicates more 

significant surface erosion and incision [66]. There is a clear positive correlation between the 

susceptibility of coseismic landslides and the elevation variation coefficient (Figure 4H), meaning 

that regions with more pronounced surface erosion and incision typically reflect higher tectonic 

activity, intense river downcutting, and the development of steep slopes. Additionally, it suggests 

that these slopes have experienced long-term unloading deformation, with highly developed rock 

mass fractures, resulting in poor overall rock quality and lower strength, conditions that are 

conducive to the occurrence of coseismic landslides. Furthermore, Yang et al. proposed using two 

quantitative geomorphic parameters, slope gradient and elevation variation coefficient, to identify 

active faults [67]. They discovered that in the high mountain gorge region of the Yarlung Tsangpo 

River, east of Namcha Barwa, the elevation variation coefficient map revealed discontinuous, linear 

low-value bands along active fractured fault zones. A similar phenomenon was observed in this 

study at the location of the Xianshuihe Fault zone, reinforcing the applicability of using the elevation 

variation coefficient as a quantitative geomorphic parameter to identify active faults. Additionally, 

the high elevation variation coefficient of the slopes on both sides of the Xianshuihe Fault at this 

location indicates severe slope erosion, providing material sources for the development of large 

landslides near the fault zone. This also reflects the basic fact that the rocks along the fault's fractured 

zone are less resistant to erosion than the surrounding bedrock. 

Slope aspect emerged as the second most important factor, likely due to three reasons. First, 

research on the 2008 Wenchuan earthquake found that slopes aligned with the direction of fault 

movement were more susceptible to landslides [68]. A similar pattern was observed in landslides 

triggered by the Luding earthquake, where the initial slope directions of most landslides in the 

western mountain gorge region were S, SE, and E, consistent with the SE strike-slip direction of the 

fault (Figure 3C), further supporting this observation. This reflects that the SE extension of the 

seismogenic fault was a primary cause of landslides, as seismic surface waves encountered free faces, 

where wave reflection and other effects caused tension cracks and ejection failures in the slope’s 

surface rock. Second, remote sensing images (Figure 1) show that in the western mountain gorge 

region of the study area, most coseismic landslides developed on sunward-facing slopes, with very 

few on shaded slopes. Snow cover was observed on shaded mountain tops, indicative of glacial 

geomorphology. Glaciers can play a role in moderating seismic activity and controlling landslide 

scale. Where glacier thickness approaches local slope height, glaciers can reduce the topographic 

amplification effect of seismic shaking [69]. Sunward-facing slopes, exposed to solar radiation, had 

melted snow cover, and glacier retreat exposed steeper, higher terrain, enhancing the topographic 

amplification of seismic shaking [66]. This amplification effect is most pronounced near steep slopes, 

mountain tops, and ridges [70,71]. Third, as shown in Figures 4N and 4I, in the western part of the 

study area, vegetation cover was found to be lower on shaded slopes and higher on sunward-facing 

slopes. Coseismic landslides primarily developed on hard rocks, such as quartzite and granite. Roots 

of plants can secrete organic acids that absorb minerals from rocks, altering their composition. Roots 

can infiltrate rock fissures, gradually expanding them. This process, particularly in already fractured 

rocks, can cause rock disintegration, providing ample material for coseismic landslide development. 

In summary, the role of slope aspect as the second most important factor is driven by a complex 

mechanism that integrates multiple factors influencing the development of coseismic landslides. 

Slope gradient is the third most important factor, with a clear positive correlation between the 

susceptibility to coseismic landslides and slope gradient (Figure 4C). This finding aligns with the 

distribution patterns of landslides triggered by the 2008 Wenchuan earthquake, the 2010 Yushu 

earthquake, and the 2017 Jiuzhaigou earthquake, where slope gradient also held significant weight 

in the susceptibility studies of coseismic landslides [28,70,71]. Steeper slopes are more unstable, and 

thus, have higher susceptibility to coseismic landslides. Distance to rivers is the factor with the lowest 

weight. As shown in Figure 3M, in the western part of the study area, the Hailiu River and Sala Pond 

River, two tributaries of the Dadu River, are far from the seismogenic fault. Both the elevation 
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variation coefficient and slope gradient are small, indicating gentle slopes and low topographic relief, 

which result in a sparse distribution of coseismic landslides, reducing the influence of rivers on 

landslides. The elevation variation coefficient, derived from elevation factors, reflects 

geomorphological differences. Roads and faults are located near valleys, and from the valley to the 

mountain peak, elevation increases with distance from roads and faults. Furthermore, seismic waves 

have an elevation amplification effect: the higher the elevation, the greater the PGA. Therefore, 

elevation, the elevation variation coefficient, distance to roads, PGA, and distance to faults are highly 

correlated. Seismic energy is typically concentrated near the epicenter. In the central and northern 

parts of the study area, PGA generally decreases with increasing distance from the epicenter. Plan 

curvature and profile curvature describe the terrain features in the horizontal and vertical directions. 

Coseismic landslides tend to develop on convex or concave surfaces in the horizontal direction and 

at curvature transition points in the profile (Figures 3D and 3E). Surface dissection depth and terrain 

relief describe the degree of surface erosion and topographic variation, both of which are factors 

reflecting geomorphological differences. The greater the surface dissection, the more steep and tall 

slopes develop. These slopes tend to have a long history of unloading deformation, with highly 

fractured rock masses, which promote the occurrence of coseismic landslides. Therefore, epicentral 

distance is strongly correlated with PGA, plan curvature, profile curvature, surface cutting degree, 

and topographic relief. 

5.2. Influence of the seismogenic fault 

The spatial distribution of coseismic landslides in Figure 1 reveals that the orientation of the 

Dadu River’s tributary valleys on the western side of the study area is nearly perpendicular to the 

Xianshuihe Fault. Furthermore, the "locked section" of the Xianshuihe Fault, where large landslides 

are densely concentrated, is clearly observable. This is highly consistent with the "locked section 

effect" proposed by Xu and Li based on the distribution characteristics of landslides from the 2008 

Wenchuan earthquake [72]. Earthquakes typically release accumulated energy through strong 

shaking or surface deformation, with the energy most concentrated near the seismogenic fault [1]. 

The "locked section effect" occurs when the locked section is displaced during the earthquake and 

further sheared and ruptured, releasing additional energy. This results in more intense local shaking, 

forming secondary seismic sources and leading to the concentrated development of large landslides 

[72]. Therefore, the phenomenon of densely developed large landslides induced by the Luding 

earthquake in the locked section of the Xianshuihe Fault further corroborates that the Xianshuihe 

Fault is the seismogenic fault for this event. The 1999 Chi-Chi Mw 7.6 earthquake in Taiwan, the 2005 

Kashmir Mw 7.6 earthquake in Pakistan, and the 2008 Wenchuan earthquake all exhibited the 

hanging wall effect, where more large landslides developed on the hanging wall of the thrust fault 

than on the footwall. The number of landslides on the western side of the Xianshuihe Fault is greater 

than on the eastern side [9]. This observation aligns with the fact that most aftershocks of the Luding 

earthquake occurred on the western side of the Xianshuihe Fault [73]. This is considered an indication 

of the hanging wall effect, leading to the hypothesis that the Xianshuihe Fault exhibits both strike-

slip and thrust motion. To verify this hypothesis, we conducted field investigations and discovered 

traces of thrust-fold contact between the hanging wall of the Xianshuihe Fault and the fault zone 

(Figure 12). The measured strike and dip of the fault zone were 256°∠42°. After the Luding 

earthquake, some research teams processed InSAR data and obtained coseismic surface 

displacements. The results showed a maximum uplift of approximately 15 cm on the west side of the 

Xianshuihe Fault and a maximum subsidence of 14 cm on the east side [73,74]. Furthermore, the 

results of coseismic fault modeling indicated that the deformation field in the epicentral area and to 

the north was dominated by sinistral strike-slip motion, with a minor thrust component [75,76]. In 

light of the above findings, we propose that the Moxi segment of the Xianshuihe Fault may include a 

thrust component in its kinematics. This hypothesis requires further verification by future research 

teams.  
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Figure 12. a. Location map of the Xianshuihe Fault. b. The exposed fault on the left bank of Shiyue River 

5.3. Research Prospects and Disaster Mitigation Recommendations 

Landslide inventories are crucial data for landslide susceptibility assessment, especially the 

quality of the landslide inventory [77]. The quality of a landslide inventory depends on various 

factors, such as scale, data collection, and the quality of remote sensing imagery [78]. However, most 

existing landslide inventories are incomplete, as they do not distinguish between landslide initiation 

zones and deposition zones [79]. In this study, we updated the landslide inventory for the Luding 

coseismic landslides based on remote sensing imagery and field investigations. We extracted the 

highest elevation points of the landslide polygons as the initiation zones of the coseismic landslides 

[69], using these as input for the model to improve the quality of the Luding coseismic landslide 

inventory. 

From an administrative unit perspective, the zones with the highest susceptibility to landslides 

induced by the Luding earthquake are primarily concentrated in the townships of Tianwan, Caoke, 

Detuo, and Moxi. These townships show high landslide susceptibility, and efforts should be made to 

enhance InSAR-based hazard identification and dynamic monitoring of deformed bodies to prevent 

further exacerbation of potential landslide hazards during rainfall. In the Wandong Township area, 

the fractured slope rock mass, influenced by the Xianshuihe Fault Zone, has led to a high density of 

landslides. A large number of landslide deposits have formed a small barrier dam in the upper 

reaches of the Wandong River. Although the dam has breached, a substantial amount of loose 

material remains in the riverbed, which could easily trigger debris flows during rainfall events. This 

poses a significant challenge for post-earthquake reconstruction, highlighting the need for special 

attention to the potential geological disaster chain risks in this area. In contrast to the monotonic use 

of a single method for evaluating coseismic landslide susceptibility by other scholars [28,71,80], this 

study applied the AHP-FR-Pearson coupled algorithm to assess the landslides triggered by the 

Luding earthquake. The FR method reduced the subjectivity inherent in AHP, while the Pearson 

coefficient method minimized the correlation between influencing factors. The results indicate that 

the susceptibility map obtained using the AHP-FR-Pearson coupled algorithm achieved a prediction 

accuracy of 84.45%. The database used in this study is relatively large. In future research, we plan to 

apply more complex algorithms, such as random forests and convolutional neural networks. 

6. Conclusions 

 This study applied the AHP-FR-Pearson coupled algorithm to conduct a susceptibility 

assessment of coseismic landslides triggered by the 2022 Luding Ms 6.8 earthquake, based on 

landslide initiation points data. In addition, the controlling factors affecting the spatial distribution 

of coseismic landslides were systematically analyzed. The main conclusions are as follows: 

(1) An updated landslide inventory associated with the Luding earthquake was developed, 

identifying 13,717 landslides across the study area, with a cumulative area of 39.27 km².  

(2) The study area was classified into five susceptibility levels, with very high and high 

susceptibility zones concentrated along the Dadu River and the Moxi segment of the Xianshuihe Fault. 
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Particularly, towns such as Tianwan, Caoke, Detuo, and Moxi fall within the very high susceptibility 

zone, warranting focused landslide hazard investigations. 

(3) The elevation variation coefficient, slope aspect, and slope gradient are the main controlling 

factors of coseismic landslide distribution. Coseismic landslide susceptibility is highest when the 

elevation variation coefficient is between 0.1 and 0.134, the slope aspect is southeast, and the slope 

gradient ranges from 70° to 76.63°. 

(4) The coseismic landslide susceptibility model established using the FR-AHP-Pearson models 

achieved a prediction accuracy of 0.8445, indicating high accuracy, and can be widely applied in 

coseismic landslide susceptibility assessment. 
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