

Brief Report

Not peer-reviewed version

Acute Molecular Response Post ACL Injury: Connection to Ami and Motor Control

Bartłomiej Kacprzak and Mikołaj Stańczak

Posted Date: 7 October 2024

doi: 10.20944/preprints202410.0438.v1

Keywords: anterior cruciate ligament; molecular biology; knee joint

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Brief Report

Acute Molecular Response Post ACL Innjury: Connection to AMI and Motor Control

Bartłomiej Kacprzak 1 and Mikołaj Stańczak 2,*

- ¹ Orto Med Sport, Poland
- ² AECC University College, UK
- * Correspondence: mikolajstanczak@wp.pl

Abstract: Anterior cruciate ligament (ACL) injuries are common, particularly among athletes, leading to significant functional impairment, prolonged rehabilitation, and an elevated risk of secondary complications. The ACL plays a critical role in knee stabilization, and its rupture initiates a cascade of molecular and neuromuscular changes that disrupt joint stability and motor control. One of the primary consequences of an ACL injury is the onset of Arthrogenic Muscle Inhibition (AMI), a neurological phenomenon characterized by reduced voluntary muscle activation, particularly in the quadriceps, resulting from altered afferent feedback, nociceptive inputs, and local inflammatory responses. The acute phase is dominated by pro-inflammatory cytokines such as IL-1 β , IL-6, and TNF- α , which propagate local inflammation, sensitize nociceptors, and disrupt both spinal and supraspinal motor pathways. This leads to central and peripheral sensitization, exacerbating AMI and impairing rehabilitation. As the injury progresses, an anti-inflammatory shift marked by IL-10 and IL-4 promotes tissue repair and resolution of inflammation. However, dysregulation in this transition can result in chronic inflammation and fibrosis, further complicating recovery. Understanding the temporal dynamics of these molecular mediators is essential for developing targeted interventions. This review explores the complex interplay between cytokine profiles and neuromuscular adaptations post-ACL injury, highlighting potential therapeutic targets and personalized rehabilitation strategies that could optimize functional recovery and mitigate long-term complications.

Keywords: anterior cruciate ligament; molecular biology; knee joint

Introduction

Anterior cruciate ligament (ACL) injuries are among the most common and debilitating musculoskeletal injuries, particularly in athletes and active individuals, resulting in substantial loss of function, prolonged rehabilitation, and a high risk of secondary complications. The ACL is a key stabilizer of the knee joint, preventing excessive anterior translation and rotational movements of the tibia relative to the femur. Its disruption not only compromises joint integrity but also initiates a cascade of complex pathophysiological processes that extend far beyond the local damage to the ligament itself. An ACL tear often triggers rapid joint swelling, intra-articular bleeding, and the release of a multitude of damage-associated molecular patterns (DAMPs) and pro-inflammatory cytokines that contribute to a highly reactive synovial environment. These molecular changes set off a chain reaction that impacts not only the joint capsule and surrounding soft tissues but also the neuromuscular system, resulting in widespread alterations in muscle activation patterns and motor control.

One of the most notable consequences of an ACL injury is the onset of Arthrogenic Muscle Inhibition (AMI), a neurological phenomenon that manifests as a significant reduction in voluntary muscle activation, particularly affecting the quadriceps muscle group. AMI is thought to arise from a combination of altered afferent feedback, nociceptive inputs, and local inflammatory changes within the joint, which collectively inhibit the excitability of alpha motor neurons in the spinal cord

and disrupt normal corticospinal and spinal reflex pathways. This inhibition is primarily driven by reflexive changes that are initiated almost immediately post-injury, including the downregulation of sensory feedback pathways, increased activity of inhibitory neurotransmitters, and modifications in cortical excitability. AMI leads to impaired recruitment of the quadriceps muscles, reduced force production, and difficulties in executing complex motor tasks, which significantly impede rehabilitation efforts and delay recovery. As a result, even after surgical repair and physical therapy, many individuals experience persistent muscle weakness, proprioceptive deficits, and an increased risk of secondary joint injuries, such as meniscal tears or osteoarthritis, which further complicate the recovery process.

The underlying molecular mechanisms driving these neuromuscular alterations are multifaceted and involve a dynamic interplay between pro-inflammatory and anti-inflammatory cytokines, chemokines, growth factors, and neurotrophic molecules that evolve over time. Immediately following ACL rupture, the acute inflammatory response is dominated by the release of pro-inflammatory cytokines such as interleukin-1 beta (IL-1 β), IL-6, and tumor necrosis factoralpha (TNF- α), which not only propagate local inflammation but also sensitize peripheral nociceptors, enhancing pain perception and contributing to the onset of AMI. This heightened state of nociception further disrupts motor control by altering the excitability of both spinal and supraspinal circuits, leading to increased inhibition of quadriceps activation and the development of compensatory movement patterns that further stress the knee joint. As the injury progresses into the subacute and chronic phases, a shift toward an anti-inflammatory profile, characterized by cytokines such as IL-10 and IL-4, is necessary for resolving inflammation and promoting tissue repair. However, this transition is often incomplete or dysregulated in the context of ACL injuries, leading to chronic inflammation, fibrosis, and persistent muscle inhibition.

The consequences of these molecular and neuromuscular changes are profound, as they create a vicious cycle where impaired muscle activation leads to altered joint mechanics, increased joint loading, and the potential for further joint degeneration. Understanding the precise molecular drivers of these processes is critical for developing targeted interventions that can effectively disrupt this cycle and restore normal muscle function. This review aims to provide a comprehensive analysis of the acute molecular response following ACL injury, focusing on the key inflammatory mediators, nociceptive signaling pathways, and neuromuscular changes that underlie AMI. By examining the temporal dynamics of cytokine expression and their interactions with motor control circuits, we hope to elucidate the complex pathophysiology of ACL injuries and highlight potential therapeutic targets for improving recovery outcomes. Furthermore, we explore how these molecular alterations influence rehabilitation strategies, with a particular emphasis on personalized approaches that consider individual variations in inflammatory and neuromuscular responses, ultimately aiming to optimize functional recovery and reduce the risk of long-term complications.

Molecular and Neuromuscular Changes Post ACL Injury

The molecular and neuromuscular changes that occur following an ACL injury are the result of a highly orchestrated and multifaceted response that involves inflammatory, neurochemical, and structural adaptations, all of which culminate in significant motor dysfunction. The injury initiates a cascade of immediate molecular events within the joint environment, characterized by the release of damage-associated molecular patterns (DAMPs) such as high-mobility group box 1 (HMGB1), heat shock proteins (HSPs), and mitochondrial DNA (mtDNA) from ruptured cells. These DAMPs bind to pattern recognition receptors (PRRs), including Toll-like receptors (TLRs) and NOD-like receptors (NLRs), expressed on resident synoviocytes, chondrocytes, and infiltrating immune cells. This binding activates a series of intracellular signaling pathways, such as the NF- κ B, MAPK, and JAK/STAT pathways, leading to the rapid upregulation of pro-inflammatory cytokines like interleukin-1 beta (IL-1 β), IL-6, TNF- α , and IL-8. These cytokines amplify the inflammatory response by promoting the recruitment of neutrophils and macrophages to the synovial fluid, where they release a secondary wave of inflammatory mediators, including reactive oxygen species (ROS), proteolytic enzymes like matrix metalloproteinases (MMPs), and catabolic factors that degrade the

extracellular matrix (ECM) and contribute to tissue damage. The elevated levels of IL-1 β and TNF- α also sensitize peripheral nociceptors by upregulating pro-nociceptive ion channels such as transient receptor potential vanilloid 1 (TRPV1) and acid-sensing ion channels (ASICs) on sensory neurons, lowering their activation thresholds and leading to heightened pain sensitivity—a phenomenon known as peripheral sensitization. This nociceptive input is then transmitted through group III and IV afferent fibers to the spinal cord's dorsal horn, where the sustained release of excitatory neurotransmitters, including glutamate, substance P, and calcitonin gene-related peptide (CGRP), induces central sensitization by activating NMDA receptors and upregulating brain-derived neurotrophic factor (BDNF) expression. BDNF binds to TrkB receptors on dorsal horn neurons, altering chloride homeostasis by downregulating the potassium-chloride cotransporter KCC2, which shifts GABAergic and glycinergic inhibition from hyperpolarization to depolarization, resulting in disinhibition of spinal nociceptive circuits and prolonged motor neuron inhibition. These spinal changes are mirrored by supraspinal adaptations, where increased activity in the primary motor cortex (M1), prefrontal cortex (PFC), and supplementary motor area (SMA) reflects maladaptive reorganization in response to impaired proprioceptive input and altered sensory processing. The chronic presence of pro-inflammatory cytokines and neurotrophic factors like nerve growth factor (NGF) further promotes structural changes in cortical and subcortical networks, reinforcing the inhibitory effects on motor control and leading to a state of Arthrogenic Muscle Inhibition (AMI). AMI manifests as a marked reduction in voluntary muscle activation, particularly in the quadriceps, which is critical for knee stabilization and functional recovery. This neuromuscular inhibition is driven not only by altered peripheral feedback but also by central mechanisms, including increased inhibitory neurotransmission at the spinal level and disrupted corticospinal excitability, resulting in diminished motor unit recruitment, decreased force production, and impaired muscle coordination. The net effect is a state of neuromuscular dysfunction that complicates rehabilitation and prolongs recovery, as the molecular drivers of inflammation, nociception, and neural inhibition create a selfperpetuating cycle that must be addressed through targeted therapeutic strategies aimed at restoring both molecular and neuromuscular balance (Table 1).

Table 1. The table details the complex molecular and neuromuscular changes following an ACL injury and highlights targeted rehabilitation strategies to optimize recovery. It covers the acute inflammatory response, nociceptive sensitization, cytokine-mediated muscle atrophy, and cortical reorganization, explaining how these factors disrupt motor control and contribute to Arthrogenic Muscle Inhibition (AMI). Rehabilitation interventions, such as Blood Flow Restriction (BFR) therapy, resistance training, and specialized nutritional strategies, are recommended to counteract muscle atrophy, reduce inflammation, and restore neuromuscular function. Additionally, dietary modifications incorporating anti-inflammatory and antioxidant-rich foods, along with the use of procyanidins, are suggested to support tissue repair and minimize maladaptive plasticity.

Molecular/ Cellular Event	^r Description	Key Mediators/ Pathways	Impact on Joint and Neuromuscular Function	Specific Rehabilitation Strategies and Interventions
1. Rapid Joint Swelling and Intra- articular Bleeding	The immediate response involves joint effusion, hemarthrosis, and an acute proinflammatory cascade, setting the stage for tissue damage and neuromuscular inhibition.	DAMPs (HMGB1, mtDNA), TLRs (TLR4), IL-1, IL-6, TNF-α, MMPs, ROS	- DAMPs activate TLR4 receptors on synoviocytes and macrophages, initiating the NF-κB pathway, resulting in the release of IL-1, IL-6, and TNF-α MMPs degrade ECM components (collagen, aggrecan), weakening joint structures and	Early-phase Interventions: - Cryotherapy: Reduces intra- articular pressure and blood flow, limiting hemarthrosis NSAIDs and COX-2 inhibitors: Decrease prostaglandin synthesis to reduce pain and swelling.

			increasing inflammatory signaling ROS damage synovial tissue and perpetuate the inflammatory loop, leading to hemarthrosis and pain sensitization Direct activation of nociceptors (TRPV1, ASICs) by hemoglobin breakdown products (heme, iron ions), inducing AMI.	by promoting early muscle activation Blood Flow Restriction (BFR) Training: Prevents muscle atrophy by maintaining muscle hypertrophy and strength with low-load exercises,
				reducing strain on the joint.
2. Nociceptor inflation and to Central Sensitization services	Persistent ceptive signaling from joint ammation leads to spinal and supraspinal sensitization, forcing AMI and ltering motor control.	Substance P, CGRP, IL-1β, TNF-α, Glutamate, NMDA Receptors, BDNF	glycinergic disinhibition, increasing excitability of	Pain Management and Neural Modulation: - TENS (Transcutaneous Electrical Nerve Stimulation): Reduces pain by modulating spinal and supraspinal pathways Motor Imagery and Mirror Therapy: Helps re-establish cortical patterns disrupted by pain and sensory loss Pharmacological Interventions: Gabapentin or

				maintaining muscle
-				
3. Cytokine- Mediated Muscle Atrophy	Pro-inflammatory cytokines enhance proteolysis and suppress protein synthesis, promoting muscle catabolism and atrophy.	IL-6, TNF-α, FoxO, MuRF1, Atrogin-1, mTOR Inhibition	of MuRF1 and Atrogin-1 through FoxO transcription factors TNF-α and IL-1β inhibit mTOR signaling, suppressing muscle protein synthesis and promoting muscle wasting This results in significant quadriceps muscle atrophy, impairing knee stability and increasing reinjury	mass and strength. Resistance Training and Anti-catabolic Strategies: - Early Low-Load Resistance Isometric/ Eccentric Exercise: Prevents atrophy and preserves muscle strength NMES: Activates muscle fibers to maintain muscle size and improve recruitment patterns Blood Flow Restriction (BFR) Training: Allows hypertrophic and strength gains with low mechanical loads, reducing joint stress Nutritional Support (High-Protein Diet): Incorporate high-quality proteins (e.g., lean meats, fish, plant-based proteins) to support muscle protein synthesis and reduce catabolic effects Omega-3 Fatty Acids: Reduce inflammation and preserve muscle mass by modulating
				IL-1β and TNF- α signaling.
			- IL-6 and IL-8	Rehabilitation
	Chronic		increase ROS production, inducing mitochondrial permeability	Strategies to Restore
4. Inflammatory- Induced Mitochondrial Dysfunction	inflammation disrupts mitochondrial function, leading to reduced ATP production, oxidative stress, and muscle fatigue.	IL-6, IL-8, ROS, FoxO, AMPK, mtDNA Damage	transition pore (mPTP) opening, leading to mtDNA damage Reduced ATP production affects muscle endurance, compromising contractile function and rehabilitation progress ROS-induced FoxO	Training: Enhances mitochondrial biogenesis and improves oxidative capacity High-Intensity Interval Training (HIIT): Stimulates mitochondrial adaptation and increases ATP

			activation triggers	 Antioxidant
			mitochondrial	Supplementation:
			autophagy	Procyanidins,
			(mitophagy),	resveratrol, or NAC
			contributing to	to reduce ROS and
			further muscle	enhance
			degradation.	mitochondrial
				function.
				- Nutritional Support
				(High Antioxidant
				Diet): Incorporate
				berries, green tea,
				and dark chocolate
				to boost endogenous
				antioxidant levels
				and support
				mitochondrial
				function.
				Motor Retraining
				and Cortical
				Rehabilitation:
				- Neurofeedback and
				Motor Imagery:
				Rewires cortical
				circuits by
				reinforcing correct
				movement patterns.
				- Task-specific
				Training: Focuses on
			- Elevated BDNF	re-establishing
			promotes	automatic and
			maladaptive cortical	reflexive motor
			plasticity in the M1,	
	5 1		PFC, and SMA.	control.
	Disrupted sensory		- Increased PSD-95	- Proprioceptive
	feedback leads to		and synapsin I levels	Exercises: Enhances
5. Cortical	compensatory		indicate aberrant	sensory feedback
	cortical	PDME Crmanain I		and reduces reliance
Reorganization and	reorganization,		synaptic remodeling,	on higher cortical
Maladaptive	impairing motor	PSD-95, c-Fos, NGF	disrupting	centers for
Plasticity	coordination and		sensorimotor	movement control.
	increasing risk of		integration.	- Cognitive-Motor
	_		- Excessive cortical	Training: Combines
	reinjury.		involvement in	•
			motor control leads	mental and physical
			to inefficient and	exercises to promote
			compensatory	balanced cortical
			movement patterns.	engagement (e.g
			movement patterns.	Stroboscopic
				Glasses).
				- Blood Flow
				Restriction (BFR)
				Therapy: Combined
				with motor
				retraining to enhance
				neuromuscular
				adaptation without
				increasing joint
				stress.

Transition from inflammatory 6. Anti- anti-inflammation cytokine (4 Weeks Post- environmen supports tisserepair and resolo of inflammation continuation continua	to tory IL-10, IL-4, TGF-β, t SOCS3, miR-146a ue ution	- IL-10 activates STAT3, promoting M2 macrophage polarization and reducing pro- inflammatory gene expression (SOCS3, miR-146a) IL-4 enhances ECM remodeling by upregulating arginase-1 and collagen synthesis pathways TGF-β promotes tissue repair but may induce fibrosis if dysregulated, leading to joint stiffness and scar formation.	Promoting Anti- inflammatory Environment and Tissue Repair: - Manual Therapy: Reduces fibrosis by promoting healthy collagen alignment and preventing scar tissue formation Progressive ROM Exercises: Encourages proper tissue healing and prevents adhesions IL-10 Enhancers: Use of bioactive compounds like curcumin to promote IL-10 signaling High Omega-3 Fatty Acid Intake: Modulates inflammatory response and promotes anti- inflammatory signaling pathways Antifibrotic Strategies: Monitor collagen deposition with imaging and adjust exercise protocols to prevent excess scar formation.
Procyanidin modulate inflammator 7. Influence of pathways, cen sensitization, a oxidative stre aiding neuromuscul recovery.	y ROS Scavenging, MAPK Inhibition, KCC2 Upregulation, TRPV1 Modulation	and NF-κB pathways Restoration of GABAergic inhibition via KCC2 upregulation mitigates AMI TRPV1 channel inhibition reduces nociceptive neurotransmitter release (Substance P, CGRP), decreasing	Incorporating Procyanidins in Rehabilitation: - Dietary Supplementation: Include procyanidinrich foods (grape seed extract, apples, cocoa) to enhance anti-inflammatory effects Adjunct Therapy: Combine with physical therapy to maximize pain reduction and functional recovery Nutritional Support (High Polyphenol Diet): Include green tea, dark berries, and dark chocolate to

support recovery
and reduce oxidative
stress.
- Prolonged Use:
Long-term
incorporation of
polyphenols to
maintain antiinflammatory effects
and prevent
maladaptive
plasticity.

1. Rapid Joint Swelling and Intra-Articular Bleeding

The initial response following an ACL tear involves a rapid onset of joint effusion and intraarticular bleeding, which generates a cascade of molecular events that significantly disrupt motor control by inducing neuromuscular inhibition through various biochemical pathways. The mechanical disruption caused by the injury leads to the release of damage-associated molecular patterns (DAMPs) from ruptured cells, which activate pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs) on resident synoviocytes and macrophages within the joint. This activation triggers a robust pro-inflammatory response, resulting in the release of cytokines, including interleukin-1 (IL-1), IL-6, and tumor necrosis factor-alpha (TNF- α), which rapidly amplify the local inflammatory environment. These cytokines and chemokines recruit neutrophils and macrophages into the synovial space, which further produce reactive oxygen species (ROS) and proteolytic enzymes such as matrix metalloproteinases (MMPs), exacerbating cartilage degradation and synovial irritation. The influx of inflammatory mediators into the joint fluid leads to alterations in synovial viscosity and pH, creating a hostile biochemical milieu that stimulates nociceptive neurons and sensitizes afferent fibers.

The presence of blood and plasma proteins in the synovial fluid induces hemarthrosis, which acts as a potent irritant, increasing intra-articular pressure and directly stimulating nociceptors on synovial and capsular tissues. Hemoglobin breakdown products, such as heme and iron ions, catalyze further oxidative reactions, contributing to lipid peroxidation and the formation of advanced glycation end-products (AGEs) that sustain chronic inflammation. This environment not only provokes a sustained release of pro-inflammatory cytokines but also triggers the activation of endothelial cells lining the joint capsule, promoting vascular permeability and perpetuating synovial swelling. The molecular interactions between IL-1 and TNF- α and their receptors (IL-1R and TNFR) on the surface of neurons and myocytes initiate signaling cascades that involve nuclear factor-kappa B (NF- κ B) and mitogen-activated protein kinases (MAPKs), leading to upregulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). These enzymes produce nitric oxide (NO) and prostaglandins, respectively, which further enhance local inflammation and nociception.

As a consequence, nociceptive afferent groups III and IV, which innervate the joint capsule and surrounding musculature, become hyperexcitable, transmitting persistent pain signals to the spinal cord. This ongoing nociceptive barrage initiates a phenomenon known as central sensitization, where sustained input from injured tissue leads to enhanced synaptic efficacy at the spinal cord level, mediated by increased expression of excitatory neurotransmitters such as glutamate and substance P. Concomitantly, inhibitory neurotransmitters, such as gamma-aminobutyric acid (GABA) and glycine, are downregulated, causing a shift in the balance of excitatory-inhibitory synaptic activity, ultimately leading to decreased inhibition of nociceptive signals. This imbalance in spinal neurotransmission results in widespread inhibitory effects on alpha motor neurons, particularly those innervating the vastus medialis oblique (VMO), leading to the development of AMI.

The molecular alterations at the spinal level are mirrored by supraspinal changes, as seen in the corticospinal excitability changes identified by Rice et al. (2004). These changes likely result from disrupted sensory feedback to the primary motor cortex (M1), leading to maladaptive cortical

reorganization and altered interhemispheric communication. Neuroimaging studies have shown that ACL injuries lead to increased activation of the prefrontal cortex (PFC) and supplementary motor areas (SMA), indicative of compensatory strategies to overcome impaired motor control. The disrupted proprioceptive feedback from the knee joint may lead to decreased gamma motor neuron drive, which in turn reduces muscle spindle sensitivity, diminishing the muscle's ability to respond to changes in joint position. On a molecular level, this maladaptive reorganization is associated with altered expression of brain-derived neurotrophic factor (BDNF) and changes in synaptic plasticity markers, such as synapsin I and postsynaptic density protein 95 (PSD-95), which are critical for

maintaining normal sensorimotor integration and voluntary muscle activation.

The prolonged presence of inflammatory mediators like IL-1 and TNF- α within the joint fluid also impacts satellite cell activity in the surrounding muscles, impairing their ability to proliferate and differentiate in response to injury. This disruption of satellite cell function is mediated through the inhibition of the myogenic regulatory factors MyoD and myogenin, which are essential for muscle repair and regeneration. Moreover, chronic inflammation induces the expression of transforming growth factor-beta (TGF- β), a cytokine that promotes fibrosis by upregulating connective tissue growth factor (CTGF) and increasing extracellular matrix (ECM) deposition. This fibrotic response can further compromise muscle extensibility and joint range of motion, creating a vicious cycle where impaired muscle function exacerbates joint instability, leading to recurrent inflammation and perpetuation of AMI.

At the molecular level, the presence of inflammatory cytokines like IL-6 and IL-8 also influences mitochondrial function within muscle fibers, promoting oxidative stress and the accumulation of mitochondrial DNA (mtDNA) damage. This mitochondrial dysfunction leads to a decline in adenosine triphosphate (ATP) production, reducing the energy available for sustained muscle contractions. The metabolic stress induced by cytokine signaling can trigger the activation of the ubiquitin-proteasome system (UPS), leading to increased muscle protein degradation and atrophy, particularly in the quadriceps. This process is regulated by the transcription factor Forkhead box O (FoxO), which upregulates muscle-specific E3 ubiquitin ligases, such as muscle atrophy F-box (MAFbx) and muscle ring-finger protein-1 (MuRF1), further contributing to the loss of muscle mass and function observed post-ACL injury.

2. Acute Inflammatory Response: Key Cytokines and Chemokines

The acute inflammatory response following an ACL injury is characterized by a complex and rapid activation of molecular signaling pathways involving a diverse array of pro-inflammatory cytokines, chemokines, and damage-associated molecular patterns (DAMPs), which converge to create a highly reactive biochemical environment within the synovial fluid. Immediately after the injury, the disruption of the extracellular matrix (ECM) and the rupture of local cells, including chondrocytes, synoviocytes, and endothelial cells, result in the release of intracellular components such as high-mobility group box 1 (HMGB1), ATP, and heat shock proteins (HSPs), which serve as potent DAMPs. These molecules bind to Toll-like receptors (TLRs) and receptor for advanced glycation end-products (RAGE) on synovial macrophages and fibroblasts, triggering the rapid activation of intracellular signaling cascades, including the mitogen-activated protein kinase (MAPK) and Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways. This leads to the transcriptional upregulation of key inflammatory cytokines such as interleukin-1 (IL-1), IL-6, tumor necrosis factor-alpha (TNF- α), and IL-8, which amplify the inflammatory response by promoting a paracrine signaling loop that recruits additional immune cells to the site of injury.

Interleukin-1 (IL-1) and IL-1 β are pivotal cytokines in this acute inflammatory milieu, exerting their effects primarily through the activation of the IL-1 receptor type I (IL-1R1), which is expressed on synovial fibroblasts, chondrocytes, and endothelial cells. The binding of IL-1 to IL-1R1 activates downstream adaptor proteins such as MyD88 (myeloid differentiation primary response 88) and IRAK4 (interleukin-1 receptor-associated kinase 4), which phosphorylate and activate TRAF6 (tumor necrosis factor receptor-associated factor 6). TRAF6 then mediates the activation of the IkB kinase (IKK) complex, leading to the nuclear translocation of nuclear factor-kappa B (NF-kB), a master

(

transcriptional regulator of inflammatory genes. Within the nucleus, NF- κ B binds to promoter regions of pro-inflammatory genes, including those encoding matrix metalloproteinases (MMPs), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and additional cytokines such as IL-6 and TNF- α . MMPs, particularly MMP-1 and MMP-3, degrade collagen and aggrecan within the cartilage matrix, leading to structural damage and increasing the release of cartilage breakdown products that further stimulate synovial inflammation. IL-1 also promotes the expression of aggrecanases, such as ADAMTS-4 and ADAMTS-5, which cleave proteoglycans and reduce the compressive strength of the cartilage, accelerating joint degeneration and perpetuating the inflammatory state.

Simultaneously, the elevation of IL-6 levels in the synovial fluid initiates a distinct but interrelated signaling pathway through its binding to the IL-6 receptor (IL-6R) and subsequent interaction with glycoprotein 130 (gp130). This interaction activates the JAK/STAT pathway, leading to the phosphorylation and dimerization of STAT3, which translocates into the nucleus to regulate the transcription of genes involved in acute-phase responses and muscle catabolism. IL-6 is known to upregulate the expression of muscle-specific E3 ubiquitin ligases, such as muscle RING finger 1 (MuRF1) and atrogin-1, through the activation of the transcription factor Forkhead box O (FoxO), resulting in enhanced proteolysis and muscle atrophy. The catabolic effects of IL-6 are further potentiated by its ability to activate AMP-activated protein kinase (AMPK) in muscle cells, which suppresses the mammalian target of rapamycin (mTOR) pathway, a key regulator of protein synthesis. This dual action of IL-6 on both protein degradation and inhibition of protein synthesis leads to a net loss of muscle mass, particularly in the quadriceps, which is crucial for knee stabilization and function.

Interleukin-8 (IL-8), a potent chemokine produced by activated macrophages, fibroblasts, and endothelial cells in response to IL-1 and TNF- α , plays a critical role in recruiting neutrophils and other immune cells to the injured joint. IL-8 exerts its effects primarily through binding to its G-protein-coupled receptors, CXCR1 and CXCR2, on neutrophils, which triggers intracellular signaling cascades involving phospholipase C (PLC), protein kinase C (PKC), and the MAPK pathway. This signaling cascade results in the production of ROS and the release of neutrophil extracellular traps (NETs), which contain antimicrobial proteins and DNA, contributing to further joint tissue damage. The ROS generated by neutrophils oxidize lipids, proteins, and DNA, creating a self-perpetuating cycle of oxidative stress and inflammation. Moreover, the interaction of IL-8 with its receptors on endothelial cells promotes the expression of adhesion molecules, such as E-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1), which facilitate the transendothelial migration of additional leukocytes into the synovium, further sustaining the inflammatory response.

The presence of TNF- α in the synovial fluid exacerbates these effects by binding to its receptors, TNFR1 and TNFR2, on various cell types, including synoviocytes and myocytes, initiating apoptotic and necrotic cell death pathways via the recruitment of TRADD (TNFR-associated death domain) and FADD (Fas-associated death domain) adaptor proteins. This results in the activation of caspases, particularly caspase-8 and caspase-3, which degrade cytoskeletal and nuclear proteins, leading to cell death and the release of additional DAMPs that sustain the inflammatory cycle. Furthermore, TNF- α activates NF- κ B and MAPK pathways, promoting the transcription of pro-inflammatory genes and enhancing the expression of pro-apoptotic proteins such as Bax, while simultaneously inhibiting antiapoptotic proteins like Bcl-2, thereby tipping the balance towards cell death. This extensive cellular damage and the sustained release of pro-inflammatory mediators contribute to an environment of chronic inflammation, joint tissue degradation, and persistent nociceptive activation, creating a biochemical state that disrupts normal muscle activation and significantly impairs motor control.

3. Anti-inflammatory Shift: Four Weeks Post-Surgery

During the post-surgical recovery phase following ACL injury, the synovial microenvironment undergoes a tightly regulated molecular transition characterized by a reduction in pro-inflammatory signaling and a corresponding increase in anti-inflammatory mediators that facilitate tissue repair

and regeneration. This shift is primarily driven by the orchestrated interplay between specific antiinflammatory cytokines, including interleukin-10 (IL-10) and interleukin-4 (IL-4), which modulate a broad range of intracellular signaling pathways to suppress inflammation, promote cellular proliferation, and drive tissue remodeling. IL-10, secreted predominantly by regulatory T cells (Tregs), M2 macrophages, and other immune regulatory cells, exerts its effects through binding to the IL-10 receptor (IL-10R), a complex consisting of IL-10R1 and IL-10R2 subunits. Upon ligand binding, IL-10R initiates the recruitment and activation of Janus kinases (JAK1 and TYK2), leading to the phosphorylation of the transcription factor STAT3. Phosphorylated STAT3 forms homodimers that translocate into the nucleus, where they bind to specific promoter regions of anti-inflammatory genes, upregulating the expression of suppressor of cytokine signaling (SOCS) proteins, particularly SOCS3. SOCS3 acts as a negative regulator of cytokine signaling by inhibiting JAK activity and blocking further signal transduction through the NF-κB and MAPK pathways. This inhibition of NFκB, a key pro-inflammatory transcription factor, results in a broad suppression of inflammatory gene expression, including that of IL-1 β , IL-6, TNF- α , and various chemokines such as CCL2 and CXCL8, thereby reducing the recruitment of pro-inflammatory immune cells such as neutrophils and M1 macrophages to the site of injury.

In addition to its role in suppressing inflammation, IL-10 enhances tissue repair by modulating macrophage function, promoting their polarization from a pro-inflammatory M1 phenotype to a reparative M2 phenotype. M2 macrophages secrete high levels of transforming growth factor-beta (TGF- β), a pleiotropic cytokine that binds to its receptor complex (TGF- β RI and TGF- β RII) on synovial fibroblasts and chondrocytes, initiating the phosphorylation of receptor-regulated Smad proteins (Smad2 and Smad3). These phosphorylated Smads form complexes with the common mediator Smad4, which translocate to the nucleus and regulate the transcription of genes involved in extracellular matrix (ECM) synthesis, including collagen type I (COL1A1), collagen type III (COL3A1), and fibronectin. TGF- β also induces the expression of connective tissue growth factor (CTGF), which enhances fibroblast proliferation and promotes the deposition of ECM components, thereby stabilizing the joint structure and supporting the integrity of the synovial membrane. However, the overactivation of TGF- β signaling can lead to excessive collagen deposition and fibrosis, underscoring the need for a precise balance between its anabolic and catabolic effects to ensure optimal tissue repair without pathological scarring.

Concurrently, IL-4, a cytokine primarily produced by Th2 cells, eosinophils, and mast cells, contributes to the resolution of inflammation and tissue healing by acting through the IL-4 receptor complex (IL-4R α / γ c) on target cells. The engagement of IL-4R α initiates the activation of STAT6, which drives the transcriptional program associated with M2 macrophage polarization, including upregulation of genes such as ARG1 (arginase 1), which competes with inducible nitric oxide synthase (iNOS) for the substrate L-arginine, reducing the production of pro-inflammatory nitric oxide (NO) and increasing the production of polyamines and proline, which are critical for cell proliferation and collagen synthesis. IL-4 also upregulates mannose receptor (CD206) and chitinase-like proteins, which contribute to the clearance of debris and facilitate tissue remodeling. Furthermore, IL-4 enhances the anti-inflammatory environment by inducing the secretion of IL-13, another Th2-associated cytokine that acts synergistically with IL-4 to promote the resolution of inflammation and stimulate epithelial cell proliferation and repair. The combined action of IL-4 and IL-13 results in the activation of STAT6 in fibroblasts, driving the expression of ECM components such as decorin and biglycan, which are essential for collagen fibrillogenesis and tissue tensile strength.

Moreover, IL-4 and IL-10 have direct effects on synovial fibroblasts and chondrocytes, reducing the expression of catabolic enzymes such as matrix metalloproteinase-13 (MMP-13) and aggrecanases (ADAMTS-4 and ADAMTS-5), which are typically upregulated during the acute inflammatory phase and contribute to cartilage breakdown. By inhibiting these catabolic pathways, IL-4 and IL-10 preserve cartilage integrity and promote the synthesis of proteoglycans and glycosaminoglycans, which restore the biomechanical properties of the joint. Additionally, IL-10 enhances the expression of tissue inhibitors of metalloproteinases (TIMPs), which counterbalance MMP activity and prevent

excessive matrix degradation. This modulation of ECM turnover is critical for maintaining the structural and functional stability of the joint during the reparative phase.

The anti-inflammatory shift is also regulated at the epigenetic level by microRNAs (miRNAs) and histone modifications that fine-tune cytokine gene expression. For example, miR-146a, an IL-10-induced microRNA, targets TRAF6 and IRAK1, key components of the IL-1 and TLR signaling pathways, thereby providing an additional layer of inhibition on NF-κB activation. Furthermore, IL-4 induces the expression of miR-223, which modulates macrophage polarization by targeting the M1-associated transcription factor PU.1, promoting a shift toward an M2 phenotype. Histone acetylation and methylation patterns, regulated by enzymes such as histone acetyltransferases (HATs) and histone deacetylases (HDACs), also play a role in the transcriptional regulation of cytokine genes, ensuring that the expression of pro-inflammatory mediators is suppressed while anti-inflammatory genes are upregulated. This epigenetic regulation, combined with the precise control of cytokine signaling pathways, ensures a balanced transition from inflammation to tissue repair, preventing chronic inflammation and fibrosis that could otherwise lead to joint stiffness and impaired mobility.

In summary, the anti-inflammatory shift during the post-surgical recovery phase is governed by a complex network of cytokine signaling pathways, intracellular transcriptional regulators, and epigenetic modifications that collectively resolve the acute inflammatory response, promote tissue repair, and restore joint function. This tightly regulated molecular environment is essential for achieving a functional recovery and minimizing long-term complications such as fibrosis, muscle atrophy, and impaired motor control.

4. Nociception and Pain: Impact on Motor Control

Nociceptive inputs originating from the injured ACL significantly contribute to the development and persistence of Arthrogenic Muscle Inhibition (AMI) through a complex array of molecular mechanisms that involve the activation and sensitization of both peripheral and central nociceptive pathways. The key players in this process are group III and IV afferent fibers, which are highly responsive to mechanical, thermal, and chemical stimuli released from the damaged tissue. These afferent fibers transmit noxious signals from the injured knee joint to the spinal cord's dorsal horn, where they synapse with second-order neurons and release a variety of excitatory neurotransmitters, including glutamate, substance P, and calcitonin gene-related peptide (CGRP). The release of substance P, acting through the neurokinin-1 (NK1) receptor, and CGRP via its CGRP receptors, initiates intracellular signaling cascades such as protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) pathways, leading to increased phosphorylation of NMDA (N-methyl-Daspartate) receptors on spinal neurons. This phosphorylation enhances calcium influx and depolarizes the postsynaptic membrane, establishing a phenomenon known as central sensitization, in which spinal neurons become hyperresponsive to subsequent stimuli. Central sensitization is further characterized by an increased expression of voltage-gated sodium channels (Nav1.7 and Nav1.8) and transient receptor potential (TRP) channels on nociceptive neurons, which amplify their excitability and contribute to prolonged inhibition of the quadriceps muscle, particularly the vastus medialis oblique (VMO).

The activation of these nociceptive pathways also triggers the release of pro-inflammatory cytokines, such as interleukin-1 β (IL-1 β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF- α), from activated spinal astrocytes and microglia. These glial cells become reactive and undergo morphological and functional changes, producing high levels of pro-inflammatory mediators that contribute to the maintenance of a pro-nociceptive environment. IL-1 β and TNF- α activate the NF- α B signaling pathway, leading to the transcriptional upregulation of cyclooxygenase-2 (COX-2) and the subsequent production of prostaglandin E2 (PGE2), which further sensitizes nociceptive neurons by binding to EP receptors and increasing intracellular cAMP levels. Additionally, reactive astrocytes release glutamate and ATP, which activate purinergic receptors such as P2X4 and P2X7 on microglia, triggering the release of brain-derived neurotrophic factor (BDNF). BDNF binds to the TrkB receptor on dorsal horn neurons, altering chloride homeostasis by downregulating the expression of the potassium-chloride cotransporter KCC2, thereby shifting the GABAergic inhibitory responses from

hyperpolarization to depolarization. This results in a loss of inhibitory tone and further enhances the excitability of nociceptive pathways, prolonging pain and contributing to the chronic inhibition of motor neurons innervating the quadriceps.

The persistent activation of nociceptive pathways not only modulates spinal circuits but also has significant effects at supraspinal levels. Functional neuroimaging studies by Grooms et al. (2017) have shown that ACL-injured individuals exhibit global increases in activity within the prefrontal cortex (PFC), sensorimotor cortex, and supplementary motor areas (SMA), indicative of compensatory mechanisms aimed at overcoming the diminished proprioceptive input from the injured joint. At the molecular level, this hyperactivity is driven by increased expression of synaptic plasticity-related proteins, including synapsin I, postsynaptic density protein 95 (PSD-95), and the immediate early gene c-fos. These changes are further reinforced by elevated levels of neurotrophins such as nerve growth factor (NGF) and BDNF, which promote synaptogenesis and dendritic growth. While this neuroplasticity initially serves as a compensatory mechanism, prolonged alterations in cortical excitability can lead to maladaptive plasticity, resulting in inefficient motor patterns and an increased reliance on higher-order cognitive strategies for motor control.

Interestingly, recent research has indicated that specific dietary polyphenols, such as procyanidins, may modulate these nociceptive and inflammatory processes through their antioxidant and anti-inflammatory properties. Procyanidins, which are oligomeric flavonoids found in high concentrations in grape seeds, apples, and cocoa, have been shown to attenuate neuroinflammation by targeting key signaling pathways involved in central sensitization and glial activation. Procyanidins exert their effects by scavenging reactive oxygen species (ROS) and inhibiting the activation of NADPH oxidase, thereby reducing oxidative stress within the spinal cord. This reduction in oxidative stress prevents the activation of MAPK and NF- κ B pathways in microglia and astrocytes, leading to decreased production of IL-1 β , TNF- α , and PGE2. Additionally, procyanidins have been found to inhibit the phosphorylation of extracellular signal-regulated kinases (ERK1/2) and p38 MAPK in nociceptive neurons, thereby reducing the expression of pro-nociceptive mediators such as COX-2 and inducible nitric oxide synthase (iNOS). This inhibition of inflammatory pathways not only attenuates central sensitization but also restores GABAergic inhibition by upregulating KCC2 expression, reversing the chloride ion imbalance induced by BDNF-TrkB signaling.

Procyanidins also modulate the activity of the transient receptor potential vanilloid 1 (TRPV1) channel, a key mediator of thermal and inflammatory pain, by inhibiting its phosphorylation and reducing calcium influx in nociceptive neurons. This leads to a decrease in TRPV1-mediated release of CGRP and substance P, further dampening nociceptive transmission at the spinal level. Moreover, procyanidins have been shown to promote the polarization of macrophages and microglia toward an anti-inflammatory M2 phenotype, characterized by increased production of IL-10 and TGF- β , which contribute to tissue repair and resolution of inflammation. By modulating these molecular pathways, procyanidins not only reduce the excitability of nociceptive pathways but also enhance the anti-inflammatory cytokine environment, potentially mitigating AMI and facilitating the restoration of normal motor control.

The presence of procyanidins in the post-ACL injury setting could therefore represent a novel therapeutic approach for targeting both peripheral and central mechanisms underlying AMI. Their ability to modulate key molecular targets—ranging from ROS production and pro-inflammatory cytokine expression to the regulation of synaptic plasticity proteins and ion channels—makes them a promising candidate for attenuating chronic pain and reversing the maladaptive plasticity associated with prolonged nociceptive input. Through these multifaceted molecular interactions, procyanidins may provide a complementary strategy to existing rehabilitation approaches, promoting faster recovery of neuromuscular function and reducing the risk of long-term complications such as muscle atrophy and reinjury.

Conclusion

ACL injuries initiate a cascade of highly coordinated molecular and neuromuscular changes that unfold in distinct temporal stages, each governed by specific cellular events, cytokine profiles, and

neuromuscular adaptations that collectively disrupt voluntary muscle activation and motor control. Upon ligament rupture, the immediate mechanical insult leads to the release of damage-associated molecular patterns (DAMPs), such as high mobility group box 1 (HMGB1), ATP, and heat shock proteins (HSPs), which bind to pattern recognition receptors (PRRs) like Toll-like receptors (TLRs) and NOD-like receptors (NLRs) on synovial cells and resident immune cells. This interaction triggers the rapid activation of intracellular signaling cascades, including the nuclear factor kappa-lightchain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, culminating in the production and secretion of pro-inflammatory cytokines such as interleukin-1 beta (IL-1 β), IL-6, and tumor necrosis factor-alpha (TNF- α). These cytokines initiate an acute inflammatory response, which serves to recruit neutrophils and macrophages into the synovial fluid and surrounding tissues. Neutrophils, in particular, release reactive oxygen species (ROS) and proteolytic enzymes like matrix metalloproteinases (MMPs), which further degrade extracellular matrix (ECM) components, exacerbating tissue damage and prolonging the inflammatory phase. The elevated ROS levels also activate redox-sensitive transcription factors such as activator protein 1 (AP-1) and NF-κB, amplifying the inflammatory cascade and creating a self-sustaining loop that drives continued cytokine production and joint degeneration.

The presence of these pro-inflammatory cytokines has profound effects on both the joint environment and the neuromuscular system. IL-1 β and TNF- α , for instance, sensitize peripheral nociceptors by upregulating the expression of pro-nociceptive ion channels such as transient receptor potential vanilloid 1 (TRPV1) and acid-sensing ion channels (ASICs) on sensory neurons, thereby lowering their activation thresholds and leading to heightened pain sensitivity. This increased sensitivity contributes to the phenomenon of peripheral sensitization, where previously innocuous stimuli become capable of triggering nociceptive responses. Concurrently, IL-6 acts through its receptor complex (IL-6R and gp130) to activate the JAK/STAT signaling pathway in both immune cells and muscle fibers, resulting in the transcription of catabolic genes that promote muscle protein degradation through the ubiquitin-proteasome system (UPS) and the autophagy-lysosome pathway. This catabolic state is marked by increased expression of muscle-specific E3 ubiquitin ligases, such as muscle RING finger-1 (MuRF1) and atrogin-1, which target structural muscle proteins for degradation, leading to significant muscle atrophy and weakness. The resulting loss of muscle mass, particularly in the quadriceps group, severely impairs voluntary muscle activation, reducing the joint's ability to stabilize during movement and increasing the risk of further injury.

As the inflammatory response progresses, nociceptive signals originating from the injured joint propagate through the dorsal horn of the spinal cord and ascend to higher cortical centers, where they contribute to both spinal and supraspinal plasticity. In the spinal cord, the activation of microglia and astrocytes by cytokines such as IL-1 β and TNF- α results in the release of additional proinflammatory mediators and neuroactive substances, including glutamate and ATP, which activate purinergic receptors such as P2X4 and P2X7 on microglia. This activation induces the release of brainderived neurotrophic factor (BDNF), which binds to TrkB receptors on dorsal horn neurons, altering chloride homeostasis by downregulating the potassium-chloride cotransporter (KCC2). The resultant shift in the chloride equilibrium potential reverses the inhibitory action of GABAergic and glycinergic neurotransmission, leading to disinhibition of spinal nociceptive circuits and further enhancing pain signaling. These changes at the spinal level are mirrored by altered patterns of cortical activation, as observed through functional MRI studies, where increased connectivity between the prefrontal cortex (PFC), primary motor cortex (M1), and supplementary motor area (SMA) suggests a reorganization of sensorimotor networks. This cortical plasticity, initially a compensatory mechanism to cope with the altered sensory input from the injured joint, can become maladaptive over time, resulting in aberrant motor patterns, inefficient muscle recruitment strategies, and chronic deficits in voluntary motor control.

During the later stages of recovery, typically around four to six weeks post-injury, the inflammatory environment undergoes a marked transition towards an anti-inflammatory profile, characterized by the increased expression of cytokines such as IL-10 and IL-4, which are secreted by M2 macrophages and regulatory T cells (Tregs). IL-10 signals through the IL-10 receptor (IL-10R)

complex to activate the STAT3 pathway, leading to the upregulation of suppressor of cytokine signaling (SOCS) proteins that inhibit NF- κ B and MAPK signaling, thereby reducing the expression of pro-inflammatory cytokines and chemokines. Similarly, IL-4, through its interaction with IL-4R α and subsequent activation of STAT6, promotes the polarization of macrophages into an anti-inflammatory M2 phenotype, which secretes growth factors such as transforming growth factor-beta (TGF- β) and insulin-like growth factor-1 (IGF-1). These growth factors play a critical role in tissue repair by stimulating fibroblast proliferation, enhancing collagen synthesis, and promoting extracellular matrix remodeling. However, if this anti-inflammatory response is dysregulated, it can lead to pathological fibrosis due to excessive collagen deposition, impairing joint mobility and contributing to long-term stiffness and reduced function.

Given the dynamic interplay between these molecular mediators and the neuromuscular system, understanding the temporal dynamics of cytokine expression and their effects on nociceptive and motor pathways is critical for designing effective rehabilitation strategies. For instance, early interventions that target pro-inflammatory pathways-such as the administration of specific cytokine inhibitors (e.g., IL-1 receptor antagonist) or the use of dietary polyphenols like procyanidins—may help mitigate the acute inflammatory response, thereby preserving muscle activation and reducing pain. In contrast, during the later stages of recovery, strategies that promote the anti-inflammatory and tissue regenerative properties of IL-10 and IL-4 could enhance muscle reconditioning and restore normal motor control. Moreover, future research should prioritize the development of personalized rehabilitation protocols that take into account individual variations in cytokine profiles, genetic predispositions, and baseline neuromuscular function, thereby optimizing recovery outcomes and reducing the risk of chronic pain and functional deficits. The integration of molecular diagnostics, such as cytokine profiling and neuroimaging biomarkers, could provide a more comprehensive understanding of each patient's unique inflammatory and neuromuscular response, enabling clinicians to tailor interventions that address the specific molecular drivers of AMI and promote a more efficient and complete recovery.

References

- 1. Von Porat A, Roos EM, Roos H. High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: a study of radiographic and patient relevant outcomes. Br J Sports Med. 2004;38(3):263.
- 2. Sherman MF, Bonamo JR. Primary repair of the anterior cruciate ligament. Clin Sports Med. 1988;7(4):739–50
- 3. Kaplan N, Wickiewicz TL, Warren RF. Primary surgical treatment of anterior cruciate ligament ruptures. A long-term follow-up study. Am J Sports Med. 1990;18(4):354–8.
- 4. Feagin Jr JA, Curl WW. Isolated tear of the anterior cruciate ligament: 5-year follow-up study. Am J Sports Med. 1976;4(3):95–100.
- 5. Larsen LB, Madsen JE, Hoiness PR, Ovre S. Should insertion of intramedullary nails for tibial fractures be with or without reaming? A prospective, randomized study with 3.8 years' follow-up. J Orthop Trauma. 2004;18(3):144–9.
- 6. Woo SL, Vogrin TM, Abramowitch SD. Healing and repair of ligament injuries in the knee. J Am Acad Orthop Surg. 2000;8(6):364–72.
- 7. Andrish J, Holmes R. Effects of synovial fluid on fibroblasts in tissue culture. Clin Orthop. 1979;138:279–83.
- 8. Amiel D, Ishizue KK, Harwood FL, Kitabayashi L, Akeson WH. Injury of the anterior cruciate ligament: the role of collagenase in ligament degeneration. J Orthop Res. 1989;7(4):486–93.
- 9. Saris DB, Dhert WJ, Verbout AJ. Joint homeostasis. The discrepancy between old and fresh defects in cartilage repair. J Bone Joint Surg Br. 2003;85(7):1067–76.
- 10. Wiig ME, Amiel D, Ivarsson M, Nagineni CN, Wallace CD, Arfors KE. Type I procollagen gene expression in normal and early healing of the medial collateral and anterior cruciate ligaments in rabbits: an in situ hybridization study. J Orthop Res. 1991;9(3):374–82.
- 11. Lyon RM, Akeson WH, Amiel D, Kitabayashi LR, Woo SL. Ultrastructural differences between the cells of the medial collateral and the anterior cruciate ligaments. Clin Orthop. 1991;272:279–86.
- 12. Nagineni CN, Amiel D, Green MH, Berchuck M, Akeson WH. Characterization of the intrinsic properties of the anterior cruciate and medial collateral ligament cells: an in vitro cell culture study. J Orthop Res. 1992;10(4):465–75.

- 13. Gesink DS, Pacheco HO, Kuiper SD, et al. Immunohistochemical localization of beta 1-integrins in anterior cruciate and medial collateral ligaments of human and rabbit. J Orthop Res. 1992;10(4):596–9.
- 14. Schreck PJ, Kitabayashi LR, Amiel D, Akeson WH, Woods Jr VL. Integrin display increases in the wounded rabbit medial collateral ligament but not the wounded anterior cruciate ligament. J Orthop Res. 1995;13(2):174–83.
- 15. Lee J, Harwood FL, Akeson WH, Amiel D. Growth factor expression in healing rabbit medial collateral and anterior cruciate ligaments. Iowa Orthop J. 1998;18:19–25.
- 16. Kobayashi K, Healey RM, Sah RL, et al. Novel method for the quantitative assessment of cell migration: a study on the motility of rabbit anterior cruciate (ACL) and medial collateral ligament (MCL) cells. Tissue Eng. 2000;6(1):29–38.
- 17. Murray MM, Martin SD, Spector M. Migration of cells from human anterior cruciate ligament explants into collagen-glycosaminoglycan scaffolds. J Orthop Res. 2000;18(4):557–64.
- 18. Murray MM, Spector M. The migration of cells from the ruptured human anterior cruciate ligament into collagen-glycosaminoglycan regeneration templates in vitro. Biomaterials. 2001;22(17):2393–402.
- 19. Murray MM, Martin SD, Martin TL, Spector M. Histological changes in the human anterior cruciate ligament after rupture. J Bone Joint Surg Am. 2000;82-A(10):1387–97.
- Spindler KP, Clark SW, Nanney LB, Davidson JM. Expression of collagen and matrix metalloproteinases in ruptured human anterior cruciate ligament: an in situ hybridization study. J Orthop Res. 1996;14(6):857–61
- 21. Andriacchi T, Sabiston P, DeHaven K. Ligament: injury and repair. In: Woo SLY, Buckwalter J, editors. Injury and repair of the musculoskeletal soft tissues. Chicago: American Academy of Orthopedic Surgeons; 1988. p. 103–28.
- 22. Buck RC. Regeneration of tendon. J Pathol Bacteriol. 1953;66:1–18.
- 23. Peach R, Williams G, Chapman JA. A light and electron optical study of regenerating tendon. Am J Pathol. 1961;38(4):495–513.
- 24. Kurosaka M, Yoshiya S, Andrish JT. A biomechanical comparison of different surgical techniques of graft fixation in anterior cruciate ligament reconstruction. Am J Sports Med. 1987;15(3):225–9.
- 25. Goradia VK, Rochat MC, Grana WA, Rohrer MD, Prasad HS. Tendon-to-bone healing of a semitendinosus tendon autograft used for ACL reconstruction in a sheep model. Am J Knee Surg. 2000;13(3):143–51.
- 26. Liu SH, Panossian V, al-Shaikh R, Tomin E, Shepherd E, Finerman GA, Lane JM. Morphology and matrix composition during early tendon to bone healing. Clin Orthop Relat Res. 1997;339:253–60.
- 27. Liu SH, Yang RS, al-Shaikh R, Lane JM. Collagen in tendon, ligament, and bone healing. A current review. Clin Orthop Relat Res. 1995;(318):265–78.
- 28. Arnoczky SP, Tarvin GB, Marshall JL. Anterior cruciate ligament replacement using patellar tendon. An evaluation of graft revascularization in the dog. J Bone Joint Surg Am. 1982;64(2):217–24.
- 29. Relph N, Herrington L, Tyson S. The effects of ACL injury on knee proprioception: a meta-analysis. Physiotherapy. 2014;100(3):187–95. https://doi.org/10.1016/j.physio.2013.11.002.
- 30. Fujioka H, Thakur R, Wang GJ, Mizuno K, Balian G, Hurwitz SR. Comparison of surgically attached and non-attached repair of the rat Achilles tendon-bone interface. Cellular organization and type X collagen expression. Connect Tissue Res. 1998;37(3–4):205–18.
- 31. Niyibizi C, Sagarrigo Visconti C, Gibson G, Kavalkovich K. Identification and immunolocalization of type X collagen at the ligament-bone interface. Biochem Biophys Res Commun. 1996;222(2):584–9.
- 32. Sagarriga H, Visconti C, Kavalkovich K, Wu J, Niyibizi C. Biochemical analysis of collagens at the ligament-bone interface reveals presence of cartilage-specific collagens. Arch Biochem Biophys. 1996;328(1):135–42.
- 33. Butler DL, Grood ES, Noyes FR, Zernicke RF. Biomechanics of ligaments and tendons. Exerc Sport Sci Rev. 1978;6:125–81.
- 34. Perrone GS, Proffen BL, Kiapour AM, Sieker JT, Fleming BC, Murray MM. Bench-to-bedside: bridge-enhanced anterior cruciate ligament repair. J Orthop Res. 2017;35(12):2606–12. https://doi.org/10.1002/jor.23632.
- 35. Murray MM, Martin SD, Martin TL, Spector M. Histological changes in the human anterior cruciate ligament after rupture. J Bone Joint Surg Am. 2000;82-A(10):1387–97.
- 36. Feagin JA Jr, Curl WW. Isolated tear of the anterior cruciate ligament: 5-year follow-up study. Clin Orthop Relat Res. 1996;325:4–9.
- 37. Marshall JL, Warren RF, Wickiewicz TL. Primary surgical treatment of anterior cruciate ligament lesions. Am J Sports Med. 1982;10(2):103–7.
- 38. Tyler TF, McHugh MP, Gleim GW, Nicholas SJ. Association of KT-1000 measurements with clinical tests of knee stability 1 year following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 1999;29(9):540–5. https://doi.org/10.2519/jospt.1999.29.9.540.
- 39. Strand T, Molster A, Hordvik M, Krukhaug Y. Long-term follow-up after primary repair of the anterior cruciate ligament: clinical and radiological evaluation 15–23 years postoperatively. Arch Orthop Trauma Surg. 2005;125(4):217–21. https://doi.org/10.1007/s00402-004-0766-2.

- 40. Vavken P, Murray MM. The potential for primary repair of the ACL. Sports Med Arthrosc. JSA.0b013e3182095e5d.
- 41. DiFelice GS, van der List JP. Clinical outcomes of arthroscopic primary repair of proximal anterior cruciate ligament tears are maintained at mid-term follow-up. Arthroscopy. 2018;34(4):1085–93. https://doi.org/10.1016/j.arthro.2017.10.028.
- 42. Alm A, Stromberg B. Transposed medial third of patellar ligament in reconstruction of the anterior cruciate ligament. A surgical and morphologic study in dogs. Acta Chir Scand Suppl. 1974;445:37–49.
- 43. Amiel D, Frank C, Harwood F, Fronek J, Akeson W. Tendons and ligaments: a morphological and biochemical comparison. J Orthop Res. 1984;1(3):257–65. https://doi.org/10.1002/jor.1100010305.
- 44. Kirschner S. Wilhelm Roux's concept of 'developmental mechanics.' Wurzburger medizinhistorische Mitteilungen. 2003;22:67–80.
- 45. Roux W. Die Entwicklungsmechanik, ein neuer Zweig der biologischen Wissenschaft 1904. In: Von der Naturforschung zur Naturwissenschaft: Springer; 1987. p. 265–86.
- 46. Cooper DE, Deng XH, Burstein AL, Warren RF. The strength of the central third patellar tendon graft. A biomechanical study. Am J Sports Med. 1993;21(6):818–24.
- 47. Hamner DL, Brown CH, Steiner ME, Hecker AT, Hayes WC. Hamstring tendon grafts for reconstruction of the anterior cruciate ligament: biomechanical evaluation of the use of multiple strands and tensioning techniques. J Bone Joint Surg. 1999;81A:549–57.
- 48. Arnoczky SP, Warren RF, Ashlock MA. Replacement of the anterior cruciate ligament using a patellar tendon allograft. An experimental study. J Bone Joint Surg. 1986;68A(3):376–85.
- 49. Jackson DW, Grood ES, Goldstein JD, Rosen MA, Kurzweil PR, Cummings JF, Simon TM. A comparison of patellar tendon autograft and allograft used for anterior cruciate ligament reconstruction in the goat model. Am J Sports Med. 1993;21(2):176–85.
- 50. Kleiner JB, Amiel D, Roux RD, Akeson WH. Origin of replacement cells for the anterior cruciate ligament autograft. J Orthop Res. 1986;4(4):466–74.
- 51. Rougraff BT, Shelbourne KD. Early histologic appearance of human patellar tendon autografts used for anterior cruciate ligament reconstruction. Clin Orthop Relat Res. 1993;297:247–52.
- 52. Rodeo SA, Arnoczky SP, Torzilli PA, Hidaka C, Warren RF. Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. J Bone Joint Surg Am. 1993;75(12):1795–803.
- 53. Weiler A, Hoffmann RF, Bail HJ, Rehm O, Sudkamp NP. Tendon healing in a bone tunnel. Part II: Histologic analysis after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep. Arthroscopy. 2002;18(2):124–35.
- 54. Blickenstaff KR, Grana WA, Egle D. Analysis of a semitendinosus autograft in a rabbit model. Am J Sports Med. 1997;25(4):554–9.
- 55. Tomita F, Yasuda K, Mikami S, Sakai T, Yamazaki S, Tohyama H. Comparisons of intraosseous graft healing between the doubled flexor tendon graft and the bone-patellar tendon-bone graft in anterior cruciate ligament reconstruction. Arthroscopy. 2001;17(5):461–76. https://doi.org/10.1053/jars.2001.24059.
- 56. Kobayashi M, Watanabe N, Oshima Y, Kajikawa Y, Kawata M, Kubo T. The fate of host and graft cells in early healing of bone tunnel after tendon graft. Am J Sports Med. 2005;33(12):1892–7. https://doi.org/10.1177/0363546505277140.
- 57. Cameron M, Buchgraber A, Passler H, Vogt M, Thonar E, Fu F, Evans CH. The natural history of the anterior cruciate ligament-deficient knee. Changes in synovial fluid cytokine and keratan sulfate concentrations. Am J Sports Med. 1997;25(6):751–62.
- 58. Higuchi H, Shirakura K, Kimura M, Terauchi M, Shinozaki T, Watanabe H, Takagishi K. Changes in biochemical parameters after anterior cruciate ligament injury. Int Orthop. 2006;30(1):43–7. https://doi.org/10.1007/s00264-005-0023-5.
- 59. Kleiner JB, Amiel D, Harwood FL, Akeson WH. Early histologic, metabolic, and vascular assessment of anterior cruciate ligament autografts. J Orthop Res. 1989;7(2):235–42. https://doi.org/10.1002/jor.1100070211.
- 60. Shino K, Horibe S. Experimental ligament reconstruction by allogeneic tendon graft in a canine model. Acta Orthop Belg. 1991;57(Suppl 2):44–53.
- 61. Yoshikawa T, Tohyama H, Katsura T, Kondo E, Enomoto H, Matsumoto H, Toyama Y, Yasuda K. Local administration of VEGF enhances mechanical deterioration of the tendon grafted to reconstruct the ACL, although it accelerates angiogenesis and cellular infiltration: a sheep model study. In: Paper presented at the Transactions of the Orthopedic Research. Washington DC; 2005.
- 62. Bosch U, Kasperczyk WJ, Oestern HJ, Tscherne H. The patellar tendon graft for PCL reconstruction. Morphological aspects in a sheep model. Acta Orthop Belg. 1994;60(Suppl 1):57–61.
- 63. Bosch U, Decker B, Kasperczyk W, Nerlich A, Oestern HJ, Tscherne H. The relationship of mechanical properties to morphology in patellar tendon autografts after posterior cruciate ligament replacement in sheep. J Biomech. 1992;25(8):821–30.

- 64. Steiner ME, Murray MM, Rodeo SA. Strategies to improve anterior cruciate ligament healing and graft placement. Am J Sports Med. 2008;36(1):176–89. https://doi.org/10.1177/0363546507311690.
- 65. Hays PL, Kawamura S, Deng XH, Dagher E, Mithoefer K, Ying L, Rodeo SA. The role of macrophages in early healing of a tendon graft in a bone tunnel. J Bone Joint Surg Am. 2008;90(3):565–79. https://doi.org/10.2106/JBJS.F.00531.
- 66. Warden SJ, Metcalf BR, Kiss ZS, Cook JL, Purdam CR, Bennell KL, Crossley KM. Low-intensity pulsed ultrasound for chronic patellar tendinopathy: a randomized, double-blind, placebo-controlled trial. Rheumatology (Oxford). 2008;47(4):467–71. https://doi.org/10.1093/rheumatology/kem384.
- 67. Grana WA, Egle DM, Mahnken R, Goodhart CW. An analysis of autograft fixation after anterior cruciate ligament reconstruction in a rabbit model. Am J Sports Med. 1994;22(3):344–51.
- 68. Papageorgiou CD, Ma CB, Abramowitch SD, Clineff TD, Woo SL. A multidisciplinary study of the healing of an intraarticular anterior cruciate ligament graft in a goat model. Am J Sports Med. 2001;29(5):620–6.
- 69. Weiler A, Forster C, Hunt P, Falk R, Jung T, Unterhauser FN, Bergmann V, Schmidmaier G, Haas NP. The influence of locally applied platelet-derived growth factor-BB on free tendon graft remodeling after anterior cruciate ligament reconstruction. Am J Sports Med. 2004;32(4):881–91. https://doi.org/10.1177/0363546503261711.
- 70. Ohno K, Yasuda K, Yamamoto N, Kaneda K, Hayashi K. Effects of complete stress-shielding on the mechanical properties and histology of in situ frozen patellar tendon. J Orthop Res. 1993;11(4):592–602.
- 71. Majima T, Yasuda K, Yamamoto N, Kaneda K, Hayashi K. Deterioration of mechanical properties of the autograft in controlled stress-shielded augmentation procedures. An experimental study with rabbit patellar tendon. Am J Sports Med. 1994;22(6):821–9. https://doi.org/10.1177/036354659402200614.
- 72. Majima T, Yasuda K, Tsuchida T, Tanaka K, Miyakawa K, Minami A, Hayashi K. Stress shielding of patellar tendon: effect on small-diameter collagen fibrils in a rabbit model. J Orthop Sci. 2003;8(6):836–41. https://doi.org/10.1007/s00776-003-0707-x.
- 73. Flint MH, Craig AS, Reilly HC, Gillard GC, Parry DA. Collagen fibril diameters and glycosaminoglycan content of skins—indices of tissue maturity and function. Connect Tissue Res. 1984;13(1):69–81.
- 74. Parry DA, Barnes GR, Craig AS. A comparison of the size distribution of collagen fibrils in connective tissues as a function of age and a possible relation between fibril size distribution and mechanical properties. Proc R Soc Lond B Biol Sci. 1978;203(1152):305–21. https://doi.org/10.1098/rspb.1978.0107.
- 75. Ahn T, Haider MA, Byun J, et al. Acute bone loss and infrapatellar fat pad fibrosis in the knee after an in vivo ACL injury in adolescent mice. *American Journal of Sports Medicine*. 2023;51:2342-2356.
- 76. Heilmeier U, Samaan MA, Pan F, et al. Infrapatellar fat pad abnormalities are associated with a higher inflammatory synovial fluid cytokine profile in young adults following ACL tear. *Osteoarthritis and Cartilage*. 2020;28:82-91.
- 77. Donnenfield JI, Gordon AM, Engebretsen L, et al. Predicting severity of cartilage damage in a post-traumatic porcine model: synovial fluid and gait in a support vector machine. *PLoS One*. 2022;17.
- 78. Ding C, Wang Y, Xu C, et al. Cold atmospheric pressure plasma: a potential physical therapy for rheumatoid arthritis hyperplastic synovium. *International Immunopharmacology*. 2023;123:110732.
- 79. Zamudio-Cuevas Y, Fernández-Torres J, Martínez-Flores K, et al. Antiphagocytic properties of polygallic acid with implications in gouty inflammation. *Inflammation*. 2023;46:263-275.
- 80. Mülek M, Seidel MF, Roth S, et al. Distribution of constituents and metabolites of maritime pine bark extract (Pycnogenol®) into serum, blood cells, and synovial fluid of patients with severe osteoarthritis: a randomized controlled trial. *Nutrients*. 2017;9:443.
- 81. Kobayashi M, Tada S, Fujimura K, et al. Apple polyphenols exhibit chondroprotective changes of synovium and prevent knee osteoarthritis. *Biochemical and Biophysical Research Communications*. 2022;614:120-124.
- 82. Fechtner S, Singh G, Chourasia M, et al. Molecular insights into the differences in anti-inflammatory activities of green tea catechins on IL-1β signaling in rheumatoid arthritis synovial fibroblasts. *Toxicology and Applied Pharmacology*. 2017;329:112-120.
- 83. Ghasemzadeh Rahbardar M, Hosseinzadeh H. A review of how the saffron (Crocus sativus) petal and its main constituents interact with the Nrf2 and NF-κB signaling pathways. *Naunyn-Schmiedeberg's Archives of Pharmacology*. 2023;396:1879-1909.
- 84. Damyanovich AZ, Chakrabarti R, Smeeton K, et al. 1H NMR metabolic profiling of synovial fluid from patients with anterior cruciate ligament tears and hemarthrosis. *Osteoarthritis and Cartilage*. 2023;31:1066-1077
- 85. Sun Y, Zhu S, Qu H, et al. LncRNA OIP5-AS1/miR-410-3p/Wnt7b axis promotes the proliferation of rheumatoid arthritis fibroblast-like synoviocytes via regulating the Wnt/β-catenin pathway. *Autoimmunity*. 2023;56:2189136.
- 86. Rzeczycki P, Ropka-Molik K, Wojtaniak K, et al. Cannabinoid receptor type 2 is upregulated in synovium following joint injury and mediates anti-inflammatory effects in synovial fibroblasts and macrophages. *Osteoarthritis and Cartilage*. 2021;29:1720-1731.

- 87. Lee F, Lee JC, Shen H, et al. Hyaluronic acid-green tea catechin conjugates as a potential therapeutic agent for rheumatoid arthritis. *RSC Advances*. 2021;11:14285-14294.
- 88. Mao X, Pan C, Wang J, et al. BRG1 mediates protective ability of spermidine to ameliorate osteoarthritic cartilage by Nrf2/KEAP1 and STAT3 signaling pathway. *International Immunopharmacology*. 2023;122:110593.
- 89. Seil R, Sturny S, Arnholdt J, et al. The anterior cruciate ligament injury severity scale (ACLISS) is an effective tool to document and categorize the magnitude of associated tissue damage in knees after primary ACL injury and reconstruction. *Knee Surgery, Sports Traumatology, Arthroscopy.* 2023;31:2983-2997.
- 90. Yang N, Sun P, Lin Y, et al. Grape seed proanthocyanidins inhibit migration and invasion of bladder cancer cells by reversing EMT through suppression of TGF-β signaling pathway. *Oxidative Medicine and Cellular Longevity*. 2021;2021:5564312.
- 91. Rathinavel A, Pandey NK, Gupta K, et al. Oligomeric proanthocyanidins protect myocardium by mitigating left ventricular remodeling in isoproterenol-induced postmyocardial infarction. *Fundamental and Clinical Pharmacology*. 2018;32:51-59.
- 92. Schrenker S, von Borstel T, Angenete E, et al. In vivo rAAV-mediated human TGF-β overexpression reduces perifocal osteoarthritis and improves osteochondral repair in a large animal model at one year. *Osteoarthritis and Cartilage*. 2023;31:467-481.
- 93. Gögele C, Holweg P, Kluger R, et al. Co-culture of mesenchymal stem cells and ligamentocytes on triphasic embroidered poly(L-lactide-co-ε-caprolactone) and polylactic acid scaffolds for anterior cruciate ligament enthesis tissue engineering. *International Journal of Molecular Sciences*. 2023;24:678.
- 94. Kapoor M, Takeuchi K, Ito M, et al. Effects of epicatechin gallate on wound healing and scar formation in a full-thickness incisional wound healing model in rats. *American Journal of Pathology*. 2004;165:299-307.
- 95. Lucarini M, Durazzo A, Santini A, et al. Role of catechin on collagen type I stability upon oxidation: a NMR approach. *Natural Product Research*. 2020;34:53-62.
- 96. Petelski AN, Pamies SC, Sosa GL. How procyanidin C1 sticks to collagen: the role of proline rings. *Biophysical Chemistry*. 2021;276:106627.
- 97. Holm PM, Klein M, Filardo G, et al. The effects of different management strategies or rehabilitation approaches on knee joint structural and molecular biomarkers following traumatic knee injury: a systematic review of randomized controlled trials for the OPTIKNEE consensus. *Journal of Orthopaedic and Sports Physical Therapy*. 2023;53.
- 98. Lieberthal J, Sambamurthy N, Scanzello CR. Inflammation in joint injury and post-traumatic osteoarthritis. *Osteoarthritis and Cartilage*. 2015;23:1825-1834.
- 99. Zeng Z, Lin H, Liu Y, et al. Pelargonidin ameliorates inflammatory response and cartilage degeneration in osteoarthritis via suppressing the NF-κB pathway. *Archives of Biochemistry and Biophysics*. 2023;743:109668.
- 100. Lou C, Yuan C, Wang J, et al. Extracts of *Oldenlandia diffusa* protects chondrocytes via inhibiting apoptosis and associated inflammatory response in osteoarthritis. *Journal of Ethnopharmacology*. 2023;316:116744.
- 101. Sherman DA, Woo YJ, Love DC, et al. Brain activation and single-limb balance following anterior cruciate ligament reconstruction. *Clinical Neurophysiology*. 2023;149:88-99.
- 102. Dare D, Rodeo S. Mechanisms of post-traumatic osteoarthritis after ACL injury. *Current Rheumatology Reports*. 2014;16:448.
- 103. Racine J, Aaron RK. Post-traumatic osteoarthritis after ACL injury. *Rhode Island Medical Journal*. 2013;97:25-28.
- 104. Koza LA, Zhang M, Li Y, et al. Protocatechuic acid extends survival, improves motor function, diminishes gliosis, and sustains neuromuscular junctions in the hSOD1(g93a) mouse model of amyotrophic lateral sclerosis. *Nutrients*. 2020;12:1610.
- 105. Jankovic G, Brcic N, Hrncic D, et al. Mechanisms of endothelium-dependent vasorelaxation induced by procyanidin B2 in venous bypass graft. *Journal of Pharmacological Sciences*. 2020;142:101-108.
- 106. Song DQ, Liu B, Lu B, et al. Procyanidin B2 inhibits lipopolysaccharide-induced apoptosis by suppressing the Bcl-2/Bax and NF-κB signalling pathways in human umbilical vein endothelial cells. *Molecular Medicine Reports*. 2021;23:101.
- 107. Festa J, Johnson J, Gonçalves R. Anthocyanins and vascular health: a matter of metabolites. *Nutrients*. 2023;15:212.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.