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Abstract

Given a triangular mesh in R® with a family of points associated to its vertices resp. a vectors associated
to its edges, we construct interpolating parametrized polynomial G1-spline surfaces by means of the
method of reduced side derivatives (RSD) with a locally generated G1-correction over mesh edges.
In the case of polynomial RSD shape functions, we establish polynomial edge corrections by means
of an algorithm with independent interest for finding optimal GCD cofactors with lowest degree for
arbitrary families of polynomials.
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1. Introduction

By a triangular mesh in 3D we mean a finite family 7 = {T4,..., Ty} of non-degenerate triangles
T; C R3 such that the intersections T; N T; (i # j) are either empty or mesh points or common
edges, and no three different mesh triangles meet in a common edge. A T -parametrized G-spline
surface is a continuous mapping F : [JY | T; — R3 whose subfunctions (the restrictions F; = F|r,) are
C*-smooth with G;-coupling along common edges (that is, given i # jand p € T; N T}, the tangent
vectors F/(p(q — p) = d/dt|—oFi(p + (tq — p) (q € T;) together with Pj’(p(q —p) (q € Tj) do not
span R3). It is well-known from classical differential geometry [7] that, in the above setting, if F is a
homeomorphism with G;-coupling and dim (F/(p)(T; — p)) = 2 (p € T;) in every triangle T; then
the figure range(F) is a C!-submanifold of R3.

Due to exigences of elaborating data of scanned surfaces, recently the construction of parametrized
G1-spline surfaces in 3D became a popular topics. It seems that one branch in the main stream consists
of papers aiming to establish reasonable meshes with plane figures fitting to a set of 3D-points, while
another branch concentrates in modifying algorithms with classical 1D- and 2D-splines in a 3D setting
exploiting the use of large computing capacity, sometimes with compromises e.g by adding artificial
new mesh points or modifying the underlying data (for typical examples see [2,4,5,6,12]).

In this paper we are going to apply our "minimalist" local C!-spline algorithm [9] extended in [10]
to more shape functions called RSD method (method of reduced side derivatives, to be introduced in
Section 2). By writing {p1, ..., pr} for the family of mesh vertices, our purpose is to investigate the
following problem with primary interest in polynomial solutions.

Gl-Interpolation Problem. Given two families [f; f{:l resp. (gl f].:l of vectors in R3, find a
parametrized Gy-spline surface F : (JN_; T, — R such that

F(pi) =, F'(p)(pj—p:) =8ij (ij€ [LR], [pipjisedgeinsomeT,). M
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We shall proceed the following strategy: By introducing extended barycentric weights Aq,..., AR :

U, Ty — [0,1] and using any RSD family of shape functions we obtain a GO-spline map in the
R

form f = 'Zl‘ljo( ) + Zz] 1 ( ) 8ij + » Z . [X()(/\,', )\j, Ak)Pi + Xl()\l’, )\j, Ak)gi,]’ which auto-
i= k)€S3

matically satisfies the initial conditions (1). To correct it to a G1-spline, we look for F in the form

F=f+ Y 1)\2)\2)\k[ i(Ai) + Z; j(1 = A;)] where the index set Z consists of all triples (i, j, k) being

(ij)eT

such that i < j, [p;, pj| is a double mesh edge (i.e., belonging to two different mesh triangles) and

Conv{p;, pj, px} is a mesh triangle. The splines F, f coincide along the mesh edges. The familiar

determinant condition of G1-coupling along the common edge [p;, p; of two adjacent subfunctions

F|T, and F|Ty with T, = Conv{p;, pj, px} resp. Ty = Conv{p;, pj, g} can be written in a form

det[v(t) — *(1 — t)2z(t),0(t) — o(t),u(t)] =0 )

where the terms u(t), v(t),7(t) are linear combinations of the vectors fj, f;, g/ ((,m = i, j, k, k) with
coefficients belonging to {¥(t), ¥} (t), ¥+(1 —t),'¥;(1 — t) }. We finish the paper with a study of the
case with polynomial shape functions ¥o(t), ¥1(t) such that £3|¥,(t), ¥1(t) and ¥o(t) + ¥o(1 — t) like
the functions @, © in [9], furthermore assuming that the families G, = {gy, : [ps, Pm] is a mesh edge }
(¢ =1,...,R) are coplanar like in the case when g ,, is a tangent vector of a smooth surface at the
point py. Then we achieve a complete solution of the Problem, constructing a solution of (2) by means
a of family ¢'(t), g%(t), g°(t) of cofactors for the GCD (greatest common divisor) p(t) of the components
wl (1), w?(t), w(t) of w(t) = [T(t) — v(t)] x u(t).

In general, given a family py(t),..., px(t) € F[t] of polynomials over an arbitrary field F, it is of
independent interest to find cofactors (that is polynomials gy, ...,qx € F[t] with TK_; gx(t)ar(t) =
GCD(ay, ..., ax)) with lowest degrees possible. Actually one can choose gy, . . ., Jx above satisfying
maxk_ deg(qx) < maxf_; deg(py). Since we do not know a reference (cf. Remark 7), we give a proof
for this fact and describe a related algorithmic construction.

2. Preliminaries

To establish standard notations, let R” = {x : x = [x1,...,x3], x1,...,X; € R} denote the
vector space of real n-tuples, equipped with the scalar product: (x|y) = Yx xxyx giving rise to the
norm ||x|| = (x|x)!/? and the Euclidean distance dj(xy) = [[(x —y||. We shall use the notation
F'(x)u = % | i—o [F(x 4 tu) — F(x)] for the Fréchet derivative of a function defined on some subset
D C R" along the vector u € R” whenever x + [—¢,eJu C D for some € > 0. It is well-known that the
mapping is linear whenever F is continuously differentiable.

By a triangle with vertices pi1,p2,p3 € R" we mean their convex hull T =
Conv{p1,p2,p3} = { LktkPk : [t1,f2,t3] € A3z} in terms of the unit 3-simplex Az = {[t,f,t3] :
Yutk=1, t > O}. The tangent space {Y  px : Lx tx = O} and the supporting affine manifold (line or
2-plane) {¥x tpx : Li tx = 1} of T will be denoted with Tan(T) and Aff(T), respectively. The triangle
T is non-degenerate if dim(Aff(T)) = 2 that is when the vectors p; — p; (i,j = 1,2,3) are non-parallel.
Given a non-degenerate triangle, the normalized barycentric weights [3] of its vertices are the functions
Ap, : Aff(T) — R unambiguously defined by the relations

2/\ X)pr=x, Y Ap(x)=1,  (x€Aff(T)).
k

The weights AJ_are affine functions (i.e., satisfying the identity Ay (tx+ (1 —t)y) = tA} (x) + (1 —
))LT (y)) with Fréchet derivatives being independent of the location which we denote w1th G p U
Namely Gy u = [Ag, ' (x)u = Ap (x+u) (u € Tan(T)).
In the sequel we mainly restrict our considerations to settings in R3. We shall write x x y =
[ny3 — Y2X3,X3Y1 — Y3X1, X1Y2 — V1 xz} for vectorial product in R3. In terms of the vectorial and scalar
product in R3, the determinant formed by the components of three vectors x, y,z € R? can be expressed
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as det[x,y,z] = (x|y x z). By a triangular mesh we mean a family of non-degenerate triagles with
pairwise disjoint interior whose pairs are disjoint or meet in a common vertex or edge. An edge
belonging to two different mesh triangles is said to be a double edge, the remaing edges are the single
edges. A triangular mesh is regular if no three different members admit a common vertex., resp.
connected if each of its members admits a double edge.

3. Mesh Structure, Data of First Order

Henceforth let 7 = {Ty,..., Ty} be an arbitrarily fixed connected regular triangular mesh in R3
with vertices resp edges ordered in the arrays P = [py,...,pr] C R?resp. £ = [Ey,..., Ep] where

T, = COHV{Pi*(n,l)/Pi*(n,Z)/Pi*(n,a) }, i(ﬂ, 1) < i(?’l,Z) <i(1’l,3) (1’[ =1,..., N), (3)
Ey = Conv{pj, (1), Pj,(m2)}, j(m,1) < j(m,2) (m=1,...,M) 4

with suitable index function i, : [1, N] x [1,3] — [1, R] resp. j« : [1, N] x [1, M]. We also assume that
the indices of double edges precede those of the single ones: {double edges} = {E,, : m =1,..., M*}.
Three further index functions ns, ks : [1, M] x [1,2] — [1,R] resp. m, : [1,N] x [1,3] — [1, M] will be
used to describe edge adjacency:

n.(m,1) = min{n:E, C Ty}, n.(m,2) =max{n:E, C Ty}, (5)

ki(m,£) = [k:Span({px} UEn =T, (o] (£=12), (6)

my(n,l) = {m : Ej, is the opposite edge of vertex Pi*(n,é)] inT, (£=1,23). )

In the sequel we write

N M

T= UlTn/ E= UlEmI PZ{Plz--wPR}; F:{fll"’lfR}/ Pi,j:Pj_Pi/ (8)
n= m=

3 5 2 B 3 5 2
uy = ), Pn.(m1) — 2 D Pu.(me), Wm = )y Pu.(m,) — 2 )y P (m,0) )
(=1 =1 (=1 (=1

for the polyhedron formed by the mesh triangles, the skeleton of edges and the set of vertices, the the
matrix of edge vectors and the weight line vectors, respectively.

Our later spline surface constructions will consist of families of curved images of the mesh
triangles connecting point triples {fi, f5, f3} C F whenever Conv{fy, fy, f3} € 7. To prescribe tangent
vectors for them at the vertices, henceforth we fix an arbitrary matrix

G= {gi,j:i,jzl,...,R], g€ R3

with vector entries satisfying the geometric constrains. With the standard notations for the line segment
— i ik _
[pi, p]-] = Conv{pi,pj} resp the triangle G;” = Conv{0, 8 gj,k},

g,j=0 if i=jor [p;,pj] &¢, (10)
G{'k is non-degenerate if Conv{p;, p;, pr} € 7, (11)
G{'k N G{’E = [0,g;;] whenever E,, = [p;, p;j] is a double edge. (12)

Remark 1. These restrictions are natural in the sense that, for each mesh vertex p;, (10), (11) imply
the existence of a plane S; passing through the point f; such that g; ; € Tan(S;) (i,j = 1,...,R). The
plane S; will play the role of a guessed tangent plane of the surface interpolating the points in F by our
construction. Condition (12) excludes "too twisted" surfaces.

Remark 2. The popular task of constructing surfaces passing through the mesh vertices, corresponds to
the case f; = p; (i € [1, R]. Often only scanned data for the mesh points P with a triangularization (the
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family T') are available and the tangent vectors g; ; should be guessed. If we are given the tangent plane
S; (e.g., the scanner provides also a normal vector n; to the scanned surface) there is a natural choice,
namely the orthogonal projection of the edge vector p; ; = p; — p; onto S;. Without further information
on tangent planes, if the mesh triangles form a closed surface, a convenient guess for normal vectors is
n; =Pij,; XPij +zZ@1 Pij. X Pij.,, Wherepj, ..., Piv) form a cycle of the neighboring vertices of p;

1

such that all the segments between consecutive elements are mesh edges.

Definition 1. Given any mesh vertex p; € P, define its extended weights Ay : T — [0,1] as the union of
the functions Ag;’ on the mesh triangles containing the point py as a vertex letting to vanish on the
remaining mesh triangles. That is, in terms of restrictions,

M Tu = Apl if pr € Ty Ag|Ty =0 else. (13)

Notice that the functions A; are well-defined and continuous. This is clear outside the double edges
since they consist of affine functions restricted to pairwise disjoint sets. Given any double edge
En = T, N Tz = [p;, pjl, we have the coincidence Ag]:‘ |En = /\g}: |E;,. Indeed, in terms of the
Kronecker- at the end points p;, p; we have )\g,:’ (pe) = ok = /\}T,kﬁ(pg) (¢ =1i,j). Since the graph of an
affine function defined on a triangle in R® is a triangle in R*, the graphs of the subfunctions Ag,’:, Ag,‘f
of Ay form two adjacent triangles in R* meeting in the segment with end points [p;, & ;] resp. [p;, 6]
whence the continuity of Ay is immediate.

Remark 3. (i) By definition C'(T,, R?) is the family of all continuous functions F : T, — R3 being
continuously differentiable on the the interior T = UR {x € T, : A;(x) > 0} of T, whose Fréchet
derivatives (as functions T} — £(Tan(T,),R3)) extend continuously to T,. It is an easy conse-
quence of Whitney’s embedding theorem [11] that any function F € C'(T,, R%) admits a continuously
differentiable extension to Aff(T})

(ii) Recall that a parametrized Gy-spline surface in 3D over the mesh 7 is a continuous function F :
T — R3 with subfunctions F, = F|T,1 € C!(T,) such that any two submaps F,, F; (n = j.(m,1), 7 =
j«(m,2)) along a double edge E,, meet with tangent spaces not spanning the whole R3:

dimSpan({P,’z(x)u cu € Tan(T,)} U{F(u:uc Tan(Tﬁ)}} <2 (x€Ep). (14)
Lemma 1. In terms of the edge- resp. weight line vectors, the Gy-coupling relation (14) can be expressed in the
analytic form

det {F,;(x)um,P%(x)ﬁm,P,; (x)pi,j] =0 (x € B = [pi,pj] = TuNT, n #7) (15)

Proof. This is an immediate consequence of the fact that Tan(T,) = Span{uy;, p;;} and Tan(Tj) =
Span{u,, p;,} if B, is a double edge with n = n.(m,1), i = n.(m,2), x € Ey resp. i = j.(m,1),
j=j«(m,2)and x € Ey, = [p;, p;]. O

4. Construction Lemma

The next observation describes the pattern of our later constructions.

Lemma 2. Let f : T — R3 be a continuous map with subfunctions f, = f|T, € CY(R3). Assume
z1,...,zm € C1([0,1]%,R3) are functions such that, for m = 1,..., M we have

Zm(t,1— 1) O ()

2(1 — t)%det [Ty (t) — vm(t) | = det [Ty (t) (0<t<1); (16)
Um(t) U (t)

on(t) = fu (" wm, On(t) = frO" ) m,  wn(t) = £ (" )Pj(m1),(m,2) (17)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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with the indices
n=n.(m1), 7=n.(m2), x{"=tpj 1+ 1—1pjma O0<t<1); (18)
3 2 _ 3 2
=1 =1 =1 =1

and wy,, Wy, are the weight line vectors given in (9). Then the function

o 2 2
F = f — Z, 7 = 2 Zm (/\](m,l)’/\](m,z))/\](m,l)/\](m,Z) [Ak(m,l) + Ak(m,Z)} (20)

m=1

is a parametrized Gy-spline surface over the mesh T .

Proof. Consider any mesh triangle T, with edges E,;, = [Pr,, Prs), Em, = [Pry, Pry] Tesp. Epy =
[Pry, Pr,]. Observe that the restriction F, = F|T, of F to T, has the form

Fx =fa = [2m (Aryy Arg) A AR AR |, +

+ Z71120”3'/\"1 >A72A$3A$1 ‘Tn + Zma(Afl' /\TZ)A /\2 Az |Tn:| .

Since each weight A, vanishes on the edge E;;, (k = 1,2,3), all products functions of the form
zm(Ar, As)AgAZA2 with m € {my, my, m3 and {q, 7,5} = {r1,r2,73} belong to C!(T,) and vanish along
the edges of T}, Since the subfunctions f,;, A,|T, (r = 1,...,R) belong to C'(T,) by assumption, also
F, € C}(T,,R3). Thus F : T — R is a continuous function coinciding with f on the mesh edges.

To complete the proof we have to show the Gi-coupling of the subfunctions of F along the mesh
edges. Suppose (without loss of generality) that E;, = E;;; = [pr,, Pr,| is a duble edge between
the triangles T, = Conv{p;,, pr,, Pr,} and Ty = Conv{p;,, pr,, Pr; }- According to Lemma 1, the
subfunctions F, and F; are G-coupled if and only if the determinant criterion (15) holds.

Let x = x; = tpy, + (1 — t)pr, be a generic point on E,,,. Since the function A,, vanishes on
[P, Pra), we have

F) 50t = £330t — 2 (A () 2y (30) (Gt (02, ()2 =
= fr(x)um — zm(t,1 = 1)[Gryun] (1 — t)? =
= () —zm(t,1— t)[Grsum]tz(l _ t)z'

Similarly FL(x¢)um = U (t) — zm(t,1 — t)[Gpum|t>(1 — t)2. Thus (9) holds if and only if

[0 (8) — 2(1 = )2z (£, 1 — 1) ]
0 =det [Ty (t) — t2(1 — t)%zp(t,1 —t)| =
I u(t) |
[0 (t) — (1~ P22 (t,1 - )] 2(1— 1)2z(t,1— 1)
= det m(t) — om(t) — det O (£) — o (t)
L m (t) ] U (t)

which completes the proof. [J

Remark 4. Notice that the statement imposes constrains on the corrector functions z, : [0,1]* — R3
only by the determinant condition 16) referring to the segment {(t, 1—-1):0<¢t< 1}. We can choose
the values z(t1,tp) for (0 < ty,tp, 1 + t» < 0. rather freely which may influence heavily the behaviour
of the spline-surface F outside the mesh edges.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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5. RSD Interpolation

Henceforth let IT = [¥1, xo, 1] be an arbitrarily fixed tuple of functions ¥g, ¥; € C! ([0,1]) resp.
xo,x1 € C1([0,1]3) such that

0= ¥0(0) = ¥h(0) = ¥1(0) = ¥}(0) = ¥p(1), 1="Fo(1) =¥;(1) @)
0= x,(1,0,0) = 14(0,1,0) = 14(0,0,1) (k=1,2). @2)

For arbitrary dimensional triagular meshes T C R with arbitrary dimensional data F = [fy:n =
1,...,N],G = [gjj:i,j=1,...,R] in another space R? such that g;; = 0, we define the associated

basic I-interpolation splines T — RY as the functions

N N
TEC = 3 [Folhfi+¥1 (A 1o Ajmig| +
i=1 j=1
+ ) [XO()H’/ A A+ x1(Ai A, )\k)gi,]} (23)
(i,jk)€Ss
with S3 = {permutations of 1,2,3}. Notice that under the hypothesis (21), (22), ﬁ’T’G interpolates

the data in F, G in the sense that

F,T,G

e ( (A =t)p1 +tpj) = 8ij

e

p1) = f; Pz)Pz,]

d‘t 0+

whenever [p;, pj] is an edge of a mesh triangle T;,.

Definition 2. We say that IT = [¥o, ¥1, X0, x1] is an RSD tuple if given any non-degenerate triangle
T = Conv{p;, pj, px} in R? (regarded as a mesh consisting of a single element), with 1-dimensional
data F = {f,fp,f3} C Rresp. G = [g;; :1,j = 1,2,3} C Rwith g;; = 0, along any edge [p;, pj] of T,
independently of the data fy, g i, g,; associated with the third vertex, we have

EC(tpi + (1= t)p;) =

=Yo(t)pi +Yo(1 —t)p; +¥1(t)(1 —t)gij +¥1(1 - t)tgj, (24)
PRSI (tpi + (1 — £)pj)ue =
1 1
=Y¥(t) [gi,k zgl,]:| +¥1(1-1) [g], Egj,z} with wg = p — S[pi+pj] - (25)

Remark 5. The term RSD is an abbreviation for reduced side derivative named after the property described
in (25). Motivated by the main result of [9], in [10] we introduced the concept of RSD tuples and proved
that given any pair of functions ¥y, ¥1 € C1([0,1]) satisfying (21), one can find xo, x1 € C'([0,1]%)
with (22) such that [¥1, ¥o, X0, x1] be an RSD tuple.

In (25) we apply [10, Definition 3.2] with the weight line vectors u,,. In accordance with [9,
Theorem 1] and [10, Example 3.15ab], for later use we propose the following two convenient choices:

Iy = [®,0,3013t3t3,12313t3] resp. I1; = [®, ®,30t315t3,30t56513] (26)
in terms of the shape functions
O(t) = £3(10 — 15t + 6t2) and O(t) = t3(4 — 3t). (27)

(a) Iy is the unique polynomial RSD tuple II of minimal degrees with the range shift property

THVEG — fIEG 1y (v € R?). This follows from the classification in [8] of all locally generated

constant preserving C!-spline procedures with polynomial shape functions.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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(b) I1; is a polynomial RSD tuple obtained with affinity invariant procedure in the sense of [10].

Hence, it has range shift property along with the coordinate stability fry, TEAT (y)

A(T) = [pj—pi:ij=123].

Notice that due to linearity, given any tuple IT with range shift property (in particular the tuples

Jpj—pitij=123
Iy, I1;), the figure range FITII[P] piij ])

= Identity; where

coincides with T. Nevertheless Iy is not coordinate stable.
Heuristically: we can expect to achieve better approximation by using procedures with I1; than with
I if the side derivatives g; ; are close to g; — g;.

Proposition 1. Even in the general setting of T being a triangular mesh in R? and F, G C RY, if IT is and
RSD tuple then the the subfunctions frTI’F'G T, of the related interpolation function (23) have also properties
(24),(25) with the substitutions i = i,(n,1),j = ix(n,2),k = ix(n,3).

Proof. The statement is an immediate consequence of the observations that, given any mesh triangle
Ty, its supporting plane Aff(T,) is affinely equivalent to R? and that one can verify 24),25) by checking
the component functions x — ( fE’F’G |e?> (¢ =1,...,d) with the unit vectors e, of RY. [J

6. RSD Corrections over Mesh Edges

We turn back to the setting in R* and we are going to apply the construction in Lemma 2 with the
RSD interpolation function f : T — R of the data. Concerning the derivative data G = [gi,j 1, =
1,..., R] we assume that there is an indexed family [ni i=1,..., R] of unit vectors (candidates for
normal vectors at the mesh point for the parametrized surface to be constructed (cf. Remark 1) such
that

gij L n (,j=1,...,R). (28)

TFG .

Henceforth, for short, we write f = f;;""" in terms of the weight values (t;,t5,t3) € A3 of a generic

point in a mesh triangle:

3

3
tl,tz,t3 Z [ f”—l—"Pl Z t]glj} (x?htz,fs — 2 tgp?,

- (=1 (29)

+ kz ‘JXO ti, t], tk Pl + X1 (tz/ t], tk)gl]} P? = pi(n,f) gkf ql(n k),i(n, Z))

Given a double mesh edge E,, coupling the adjacent mesh triangles T", T with n = n,(m,1) <7 =
n.(m,2), we can express the the directional derivatives vy, Ty, ti, U : [0,1] — R3 in Lemma 1 in terms
of the shape functions ¥y, ¥; and the directions as follows. With suitable indices i, j, k ke {1,...,R)
we can write

Ex = [pi,pj], Tn= Conv{p, Pjr pr},  Tw=Conv{p;p; Pz},

1 1
Uy = Pk — 5 [Pz‘ + Pj] =Pik — 2P1] Pjx — Epj,if

_ 1
Um = Pr — > [Pi + pj] =Pir— 2P1,] Pix— 2Pj,i :
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Due to the side derivative reduction property (25),
um(t) = f(tpi+(1-1) P])um
= i) [glk 2gz ]] +¥ [g] k— zgj,i] (30)
Tlt) = 1(0)[gx— 58] + 00 g 58], (31)
d
um(t) = f(tpi+ (1—t)pj)pji = _Ef(Pi —tpji) =
= Yo(O)(pi —Yo(1—H)p; + [Y1()(1 — 1) = ¥1(b)]8i; —
— [Tll (1 — i’)t - 11;1 (1 - t)] gj,i . (32)
Therefore, by setting
wm(t) = um(t) X [Em(t) - Z’m(t)] (33)
the determinant conditon (15) of G-coupling has the form
0= (om(t) — (1 — P)zm(t)|[wm(t))  (0<t<1). (34)

Geometrically, the parameter ¢ above is the weight value t = A;(x;) = 1 — A;(x;) of a generic point
xt = tp;+ (1 —t)pj = 1 — A,. Taking the algebraically more symmetric form z(t) = 3z(A;(x¢)) +
3z(1 = Aj(xt)), we conclude the following characterization.

Theorem 1. Given any RSD tuple 11 = [¥o, Y1, x0, x1] with a family of functions zi,...,zp €
C1([0,1)%,R3), the map

— fTIPG _ ZTP sz] where
M
T,P,G _
Z = zm (A1) Aiom) Al 1) A 2) [Prm1) + Ak 2))

m=1

defined in terms the mesh T with the structure described in Section (3) is a parametrized Gy-spline surface
T — R3 satisfying the constraints (1) in the Gl-Interpolation Problem whenever, in terms of the vector
functions (30), (31), (33) we have

O (F)
(1 - t)2<zm(t,1 - t)‘wm(t)> = Au(t) (0<t<1) with Ay(t) =det|B,(t)]|.  (35)
U (1)

Remark 6. In terms of the index function (7), by setting zps+1, . .., zp = 0, the subfunction ZITI'P'G |Tn
has the form

T,P,G ( n 2 2—01 20y 203
Zip " (X ) = Y zmlt, )8 18 T ((f b 1) € As); 56
=1

whenever z,, = [solution of (35)if m < M*, 0 else]

7. Criteria for RSD Solutions

Throughout the whole section, let IT = [¥, ¥1, x0, x1| denote an arbitrarily fixed RSD tuple.
For simplifying terminology, we use the term divisibility for functions in C! ([0, 1]), meaning that f is
divisible by ¢ whenever f(t) = g(t)g(t) 0 < t < 1) for some (unique) continuous function g : [0,1[— R
(being necessarily smooth on (0, 1)).

We start with the following observation, which will be crucial when looking for polynomial
solutions of the equations (35) to the G1l-Interpolation Problem.
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Proposition 2. If ¥o(t) + ¥o(1 —t) = 1 (0 < t < 1) and the shape functions Yo, ¥ are divisible by t> then
the determinant functions Ay (t) in (35) are divisible by t?(1 — t)2.

Proof. Fix an arbitrary edge index m and, for short, omit it for the terms A, v, U, w. Also we shorten
the determinant expressions det[ - - - ] in the form |- - |.

Start the argument recalling that, by assumption, the guessed tangent vectors issued from a mesh
vertex are coplanar. In particular

8 8ik 8ik = ’gj,z‘/ 8j ks g]-j‘ =0 (37)
for the terms appearing in (30), (31), (32). On the other hand, since by (30), (31) we simply have

o(t) —o(t) = ¥1()[g;x — 8ikl + ¥1(1 - 1)[g; 7 — 8jil-

Furthermore the relation ¥ (t) + ¥o(1 —t) = 1 implies ¥{,(t) — ¥{,(1 — t) = 0 entailing that ¥{(t) =
t2(1 — t)?5(t) with the function 17(t) = t72(1 — t) [Py (t)]) = (1 —t)2[3¢o(t) + ty}(t)] which is
continuous on [0,1). By the symmetry ¥{(t) = ¥{(1 — t),  is continuous also on (0, —1] and hence on
the whole closed interval [0, 1]. Therefore we have

10 [gia 2 g + 1 (1 D)lgge 275
A(t) = Yi(t)[gir—2 gz;]+‘1’1(1—f)[gp 271g;i]
Fo(Hpji + [T (1) = F1(t)]gij — [F1(1 - )t = F1(1—t)]g;;
— OB+ E T T (5 0) 1 (10 B () @

with the functions To(t) = t, T (t) = 1 —t i.e., T/(t) = t%0(1 — t)°01 where

row 1 of A(t) term with ¥ (1, (1))
Ao = [row 2 of A(t)|, Ay, 0, (1) = term with ¥ (1, (1))
¥o(t)pj,i terms with ¥y (77, (t), ¥} (1, (1))

We complete the proof with the observations that
(a) A is divisible with Y (t) being divisible with (1 — t)2;

(b) For (¢1,¢5,43) # (0,0,0) or (1,1,1), the determinant function 341152153&) is divisible with
T] (Tgl (t))Tl (ng (t)) [‘Pl (’L'g3 (t)) —l—‘Pi (Tg3 (i’)) [1 — Tgs( )} Here the term ‘Pl (Tgl (i’))‘Pl (ng (t))‘f’l (TgS (t))
is divisible with the product e, Tgr = 13190, 00,5 00,15]
(1— 1) Houp+os], Similarly Y1 (ty, (t)) ¥1 (72, (£)) %] (T, (1)) [1 — 10, ()] is divisible with 7y, (t)31, (t) 7, (£)?[1 —
70, (H)] = $3%.61 F300,0, 200,65 01,05 (1- t)35”1 80,6723 015 Here the sum of the exponents of + and
(1—1t)equals 3+3+2+1=09. ie., both terms are divisible by a product # (1 —#)°~" for some
0 <r=r(ly,0l3) <9. Observe that, except for the cases (¢1,¢»,¢3) = (0,0,0) or (1,1,1), we have
2 S r(€1,€2,€3) S 7.

gik—27'8i;
(©) Do(t) =F1 (8 [F1 (1) +¥1 (1) (1 - )] |8,z — 27 'gij| = 0 and Ay (t) = F1(1—£)*[¥1(1 -
8ij
8k —2 '8
)+ ¥, (1 — 1)t 8k~ 27!g;il = 0 because the vector triples {g; — 271gi,j,gij —27'g;,gj;} resp.
8,

1 1
{gj,k — 28,/ 8j% — 28 g]-,z-} are coplanar. [J
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8. Complete Polynomial RSD Solutions

Henceforth, until the end of the section, we assume that the terms in II are polynomials. In
particular we shall be interested in the extreme RSD tuples Iy, I1; in (26) with the shape functions
(27). Notice that

(1) =302 (1 —t)%, d(H)+D(1—t)=1 resp. O (t)(1—1t) =12t2(1— 1) (39)

We shall apply the following elementary facts from the theory of Euclidean resp. prime ideal rings [1]
restricted to the setting of real polynomials:

F1. Ifp,q,v : R — R are polynomial functions such that p(t)q(t) = t?r(t) and p(0),p(1) # O then
21— 02q(t).

F2. Ifpy,...,px, v : R — Rare polynomial functions then there exist polynomials (the so-called cofactors of
rwrt. qu, ..., qx) such that r = p1gq + - - - + pxqx if and only if GCD(p1, ..., px)|r ie., the greatest
common divisor of {p1, ..., px} is a divisor of r.

Remark 7. The computer algebra packages MAPLE resp. WolframMathematica contain commands
providing a cofactor representation GCD(p1, p2) = p1¢1(p1, p2) + p2P2(p1, p2) with the degree limita-
tion max {deg (¢, (p1,p2)) : £ = 1,2} < max{deg(¢/(p1, p2) : £ = 1,2}. According to the reference in
the packages, the construction of ¢, ¢ goes back to an early work [1] of Bézout, relying on a careful
inspection of the steps of Euclidean division, restricted to the case of two polynomials. It seems, there
is no analogous command for more polynomials. Our later discussion requires to calculate the GCD of
three terms. Clearly we can produce a cofactor representation of the form by calculating consecutively
the cofactors of ¥ = GCD(py, p2) and then the cofactors of GCD(r, p3) with the standard routines ¢1, ¢»
we get a representation GCD(p1, p2, p3) = p1lq11921] + p2[q1,292.1] + p3g22 with g1 = ¢e(p1, p2),
92,0 = ¢¢(r, p3). Unfortunately, the degree limitation max{deg(q1,1421), deg(q1,292,1), deg(g12) } is no
longer valid generally. (One can find several counter-examples of the form p; = s1s2, p2 = s253,
p3 = s351 with random coefficients). Nevertheless we can prove the following sharpened version
of F1 suited for reducing remarkably the numerical costs involving algorithms with GCD of several
polynomials.

F2*. Given any family p1,..., pk of real polynomials (or even polynomials with coefficients in a generic
field), we can choose qu, ..., qx with maxk_ deg(qy) < maxK_ deg(qy) such that Y5 prqr =
GCD(p1, ..., Pk)-

Since we do not know any reference, we include an Appendix with constructive proof which gives rise
to a related algorithm in a straightforward manner.

Lemma 3. Let Eyy = [p;, pj| be a double edge being the intersection of the mesh triangles T, =
Conv{p;, pj,px} and Ty = Conv{p;, pj, ps}. Assume ¥o,¥1,x0,x1 are polynomial maps and the lat-
eral derivatives v, T, u in (30), (31), (32), (33) are polynomial functions. Then the determinant equation (35)
admits a polynomial solution z,, : R? — R whenever t2(1 — t)2|Ap (t).

Proof. Omitting the indices m without danger of confusion, let us write w!, w?, w3 for the components
of the polynomial vector function w : R — R and let p = GCD(w!, w? w?®). Assume that A(t) =
t2(1 — t)25(t) for some polynomial 6 : R — R.

Observe that due to hypothesis (12) on the vectors g, s (r,s € {i, ], k,k}), we have

p(0),p(1) # 0. (40)

2 w3 whence

Proof by contradiction: The relation 0 = p(0) = GCD(w!, w?, w®) would imply t|w!, w
0 =w(0) = [5(0) —v(0)] x u(0) = [g;; — 8ix] x i, This is impossible since, by supposing (40), we

would have g, = g;x + 7g;, for some scalar v € R which would mean that the intersection of the
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triangles Conv{p;, pj;, p,} (r = k,k) would be a nondegenerate triangle. We conclude p(1) # 0 by
arguing with the index change i,

Consider the case t?(1 — t)?|A(t) i.e., A(t) = t2(1 — t)25 for some polynomial § : R — R. On the
other hand, since p = GCD(w w?,w?), we can write w(t) = p(t)w(t) with the polynomial function
with components @' = w'(t)/p(t). By (33), we have w(t) = v(t) x w(t) and hence we get the identity

(1 - 1)2(t) = p(t)<v(t))ww(t)>.

According to F1, we see that necessarily #?(1 — t)z‘ (v(t)|[w(t)) thatis p(t) ‘ p%- According to F2,

there are polynomials ¢, 4%, 4> : R — R such that

—tz@—(_t)t)z = g" (B! (5) + g2 (D) (1) + 'l (1) = (q(8) ()

which completes the proof. [
As an immediate corollary, we find the following polynomial solution of the G1-Interpolation

Problem.

Theorem 2. Given any polynomial RSD tuple 11, in particular T1 = Ty or I1 = Iy, the map F : T — R3 in
Theorem 1 applied with polynomial edge corrections z, (t1, 4:2) such that

zm(t,1—t) = [%} Gm (1) (m =1,. ,,,M*) where

Ap(t) = (vm(t)|wm(i)), interms of (30),(31),(32),(33) applied to f = fTPG,
pm(t) = GCD(w}n(t),wfn(t),wfn(t)) with cofactors g2, (t), 2 (), g2, (t)

(41)

is a parametrized G1-spline surface passing through the mesh points p; with the lateral derivatives F'(p;)p;; =
8i; ([pi,pj] € &) along mesh edges, which consists of polynomial submaps F | T,
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Algorithm 1. Representation of range(Fg'F'G) with a polynomial RSD tuple I1

Require: R, N, M* for the number of mesh vertices, triangles resp. double edges;
the index functions iy, j«, 14, ki, M of the mesh structure in (3), (4), (5), (6), (7);
[pi] 11,2:1, [f;] 13:1’ (8] fj:l for mesh vertices, data values resp. data vectors in (1);

polynomial RSD shape functions Yo, ¥1 € C'([0,1]), xo,x1 € C'([0,1]%).

Ensure: List of functions Fy, F1, ..., Fy, Fy : Az — R3 representing subfunctions FFTI’P’G

. T,P
in the form F, (tl, ty, t3) = FH’ G (x?lftzft3) ((tl, ty, i’z) S A3)
in terms of the local barycentric parametrization x}., ,, ;. in (29) of triangle T.

T,

Calculation: With auxiliary storages
O, Oy Um, Wi, Gm (m € [1, M]) for polynomial maps R — R?;
Cm,pm m=1,..., M) for polynomial functions.
STEP 1: Compute and store the basic approximations frTI'T'G | Ty

Fp [(tl,tz, t3) = f(x!,,,.) givenin (29)} (n=1,...,N),

Substitutions t1 = A; (1), f2 = Aj (n2), 13 = Ay (n,3) In €ach Fy;
STEP 2: For m = 1,...,m, compute and save the edge correction functions
(Om () |wm (£))  Um, Om, wy defined in (30), (31), (32), (33),

t2(1 —t)20m(t)”  pm = [GCD of the components of w,,]
STEP 3: Using Algorithm 2, compute and save the GCD cofactors of the

components w}, (), w2, (t), w3, (t) of wpy (t)
qm < [Cofactory(wm(t)) : £ =1,2,3].
OUTPUT];: The subfunctions FE'F'G

computed consecutively along the double edges E,,, (m =1,..., M¥)
with corrections corresponding to
z(t,1—t) = 3¢(t) + 3¢(1 — t) in Lemma 2:

i—j.(m, 1), jeji(m,2), k—ki(m, 1), ki—ki(m,2), ne—n,(m,1), 7j.(m,2);

1
Fy + F, + Etf)\%)\?)\k [Zm(AD)qm (A7) + T (1= Aj)gm(1 = A))],

1
By  Frt St AP G (M) (M) + G (1= A7)am(1 = A)));
OUTPUT,: The subfunctions FE’F’G

§m<—{tn—>

T, in storages F, in terms of extended weights

T, in storages F, in terms of local weights

Fu « |F, with substitution A; (,, — t; (£ = 1,2,3)]

Appendix A GCD Cofactors with Low Degree

Let F denote an arbitrarily fixed field and let ¢ be a fixed variable symbol. For short, write Poly (F)
for the family of all polynomials p = p(t) = ag + ayt + - - - +ant" (as formal sums) with coefficients
from F having degree deg(p) = max{k, —co : a; # 0}. For the polynomial division (Euclidean
division) and its remainder term of p, g € Pol(FF) = Ux_; Poly(F) resp. the greatest common divisor
of a family {ay,...,ax} C Pol(F) we write p+q with p(p, g resp. GCD(ay, ..., ax). Thus, by definition
p = [p+qlq + p(p, q) where the main coefficient of GCD(ay, ..., ak) has the value 1 € F.

Remark 8. For later use, we recall the following elementary facts:
(@) If p,q € Poly(F) with deg(p) > deg(q) > 1 then

deg(p+q) = deg(p) — deg(q) and deg(p(p,q)) < deg(q).
(b) If p,q € Poly(F) with deg(p) > deg(q) > 1 then
{Common divisors of p and q} = {Common divisors of g and p(p,q)}.
(c) Given any family a3, ...,ax € Pol(F), we have
GCD(ay, ..., ax) = Y&, qray with suitable polynomials g1, . . ., gx € Pol(F).
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In most popular computer algebra packages, there is a command performing an algorithm due to
Bézout [1] providing cofactors Q1 (a1, a2), Q2(a1,a2) € Pol(IF) such that GCD(ay,a2) = Y Q (a1, a2)ay
with max deg(Qx(a1,42)) < maxy deg(ay). As mentioned in Remark 7, it seems that no analogous
algorithm (or related theoretical result) is available providing the GCD of three polynomials with
sufficiently law dimensional cofactors. Below we are going to fill in this gap.

Lemma4. Ifay,...,ax € Pol(F) with N = maxf_, deg(ay) > 1and R = deg(GCD(ay, . .., ag)) then we
have GCD(ay, ..., ax) = q1a1 + - - - + qag. for some qy, ..., qx € Poly_r_1(F).

Proof. Let Q := GCD(ay,...,ak), K > 1. Observe that for any family g, ..., gk of polynomials we
have giay + - - - + ggax = Qif and only if g1 [a1/Q] + - - - + gx[ax/Q] = 1. Thus since deg(a;/Q) =
deg(a;) — deg(Q) = deg(a;) — M, and GCD(a1/Q,...,ax/Q) = GCD(a1+Q,...,ax+Q) = 1, it
suffices to restrict ourselves to the cases with Q = 1. That is it suffices to see the following statement:

() If the polynomials ay, . . ., ax are relatively prime (i.e., GCD(ay, ..., ag) = 1) and N = deg(ay) >

K
--->deg(ag) >1 then there exist qq, . .., qx of degree< N—1 such that 'y qra=1.
k=1

The case N =1 is trivial: if GCD{ay,...,ax} = 1 and 1 = maxX_, deg(ak) then there are indices
my # my such that a,,, (t) = ayt + By £ = 1,2) with either a1, a # 0 or aq, B # 0 = ay. In any case
1 = y1am, (t) + Y2am, (t) with suitable constants v, 7, € F.

We proceed by induction: Let N > 1. Assume that given any polynomials by, ..., bx with
1 < maxK_ deg(b) < N there existry,...,rx € Poly(F) such that 1 = Y X | riby.

Consider any sequence ay,...,ax € Polyyq(F) with GCD(ay,...,ax) = 1. Let M :=
min{deg(a;) : a; # 0} and let m denote an index such that deg(a,) = M. Notice that in the case of
M = 0 we simply have 0 # a,,(t) = a € F and hence trivially 1 = Y&, qxa, with g, = «~! and 7;=0
for j # m.

In the remainder cases M > 1 we have the alternatives
(i) N+1>M2>1ie, N> min{deg(a;):a; # 0} = ay, for some index m;
(i) N+1= Mie,deg(a;) = N +1 for all indices j with a; # 0.
In the case (i), define b, = ay,, bj = p(aj, ay) for j # m (in particular bj =0if aj = 0). According to
Remark 8(b), GCD(ay, ..., ax) = GCD(by, ..., bx) = 1. By Remark 8(a), also deg(bj) < deg(ay) =M
(j # m) Thus max;deg(b;) = deg(an) and by the induction hypothesis, there are polynomials
r1,...,rg with degree<deg(a,;) —1=M—1 such that

K
1=mrby+--+rkbk = rmam +j§m rilaj — (aj=am)am] = ];1 qjaj
with gj =7, (j #£m), Gu=rm— ; (aj+am)r;.
m

Here we have :

deg(qj) = deg(r;) < deg(an) 1= M—1< N (j #m),

deg(qm) = max {deg(ru), deg((aj=an)rj) :m #j=1,..., K—1}.

Since, for j # m, deg(aj+anu) = deg(a;) — deg(am) < N +1—deg(am) = N +1— M, we have
deg(qm) < N+1—deg(am) +deg(rj) < N+1—deg(am)+deg(am) —1 = N.Itfollows deg(q;) < N
for all indices which completes the proof in case (i).

Case (ii): Let deg(a;) = an = N +1 for all indices with a; # 0. Disregarding the trivial
case aj = 0 (j # m) with 0 # a,;, we can apply the arguments used in Case (i) to the sequence
aj = aj (j #m), @ = p(an, an) with some index n such that a, # 0, with the the conclusion
that Z]K:l qa; = 1 for suitable 7;,...,7x € Poly(F). Since p(an,am) = an — (an+am)ay, where
deg(an+a,) = deg(a,) — deg(ay) = 0 that is a,, = a, — ya, with some constant y € F, we have

K
1 = ﬁm(an — Yam) —I—j;mﬁjaj = jg q;4; with the polynomials q; = ﬁj (j # n,m), qn = Ty + Qs
Gm = —7q,, of degree < N. [
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Remark 9. Following the arguments in the proof of Lemma 4, we find GCD cofactors with degree< N
for a sequence a° = [a)(t),...,a%(t)] of polynomials with degree N by a procedure which consists
of decreasing the degree of some of the polynomials stepwise with multiplication with a suitable
(K x K)-matrix with polynomial entries.

Starting with a° resp. X = Idg repeat the operations A, R, D realized by multiplications from
the right with the (K x K)-matrices Ny, Rz, Dy given below until we achieve a sequence of the form
7 =[0,...,0,a%(t)].

N, R,D:F[t]K — F[t]X operations on K-tuples of polynomials,
N [ak(l‘)]f:1 > [ak(t)/maincoeff(ak)]kK:1 normalization,
N(P) =PNp, Ny = [ j/maincoeff.(p;)] fj:l

where maincoeff( ) axt*) = ay if ay # 0 resp. maincoeff(0) = 0,
R : o (t)] ]Ile = (a0 () (t)]ll;l reordering,

where 0 = 03 is an index permutation with the effect

|deg(arx(1))| > [deg(ar(2))] = --- = |deg(ar(K))|, (deg(0) = —co);
RP=PRp, Ry = (00,0511
D:[0,...,0,a.(t),...,ax(t)] — [0,...,0,a5(t),ar41, ..., ak(t)] (ar #0)

degree decreasing with a7 (t) = ap (t) — tde8(eL)—deglaLi)g; (1),

and leaving the sequences of the form [0, ..., 0, ak(t)] invariant;
resp. Dy =1dif L = K.

The procedure terminates after at most S = Y’ _; deg(a?) steps because the sum of the degrees of the

non-zero polynomials in any sequence containing more than on non-zero members is decreased by 1

after each application of D. The GCD of the non-zero polynomials in any sequence remains invariant

after each substep. Hence for the values p,, X, of stores p resp. X; at the end of STEP(s) we have

Psy1 = a°X;. Thus in STEP(S*) of the termination, we have p = ps. = [0,0,...,GCD] = a°X =

Z]Ic(:] HQXK,k-

Algorithm 2. Construction of GCD cofactors with low degree

Require: K € {2,3,...} for the number of polynomials for GCD calculation;

2 = [a(t),ax(t),...,a%(t)], list of polynomials in the variable ¢

Ensure: GCD(a),...,a%) and alist § = [g1(t),...,qa(t)] of polynomials
such that maxX_; deg(qx) < maxX_, deg(ay) and ©f_; axqx = GCD(ay, ..., ak).

Calculation: With auxiliary stores p for K-vectors resp. X, N, R, D for (K x K)-matrices.

STEP(0): P+, Xo+ Idg;
STEP(s+1): 7 < Nyp, X + XNy,
7+ Ryp, X « XRy,
ﬁ(‘ Dﬁ?/ X+ XDf,
STOP if pl(t) == pK—l(t) =0.
OUTPUT: pk(t) as the GCD of ad(t), ..., a%(t),
Xk1(t), Xk (t), ..., Xk k(t) as its cofactors wrt. ad(t), ..., a%(t).
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