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Abstract

Given a triangular mesh in R3 with a family of points associated to its vertices resp. a vectors associated
to its edges, we construct interpolating parametrized polynomial G1-spline surfaces by means of the
method of reduced side derivatives (RSD) with a locally generated G1-correction over mesh edges.
In the case of polynomial RSD shape functions, we establish polynomial edge corrections by means
of an algorithm with independent interest for finding optimal GCD cofactors with lowest degree for
arbitrary families of polynomials.
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1. Introduction
By a triangular mesh in 3D we mean a finite family T = {T1, . . . , TN} of non-degenerate triangles

Ti ⊂ R3 such that the intersections Ti ∩ Tj (i ̸= j) are either empty or mesh points or common
edges, and no three different mesh triangles meet in a common edge. A T -parametrized G1-spline
surface is a continuous mapping F :

⋃N
i=1 Ti → R3 whose subfunctions

(
the restrictions Fi = F|Ti

)
are

C∞-smooth with G1-coupling along common edges (that is, given i ̸= j and p ∈ Ti ∩ Tj, the tangent
vectors F′i (p(q− p) = d/dt|t=0Fi(p + (tq− p) (q ∈ Ti) together with F′j (p(q− p) (q ∈ Tj) do not
span R3). It is well-known from classical differential geometry [7] that, in the above setting, if F is a
homeomorphism with G1-coupling and dim

(
F′i (p)(Ti − p)

)
= 2 (p ∈ Ti) in every triangle Ti then

the figure range(F) is a C1-submanifold of R3.
Due to exigences of elaborating data of scanned surfaces, recently the construction of parametrized

G1-spline surfaces in 3D became a popular topics. It seems that one branch in the main stream consists
of papers aiming to establish reasonable meshes with plane figures fitting to a set of 3D-points, while
another branch concentrates in modifying algorithms with classical 1D- and 2D-splines in a 3D setting
exploiting the use of large computing capacity, sometimes with compromises e.g by adding artificial
new mesh points or modifying the underlying data (for typical examples see [2,4,5,6,12]).

In this paper we are going to apply our "minimalist" local C1-spline algorithm [9] extended in [10]
to more shape functions called RSD method (method of reduced side derivatives, to be introduced in
Section 2). By writing

{
p1, . . . , pR

}
for the family of mesh vertices, our purpose is to investigate the

following problem with primary interest in polynomial solutions.

G1-Interpolation Problem. Given two families
[
fi
]R

i=1 resp.
[
gi,j

]R
i,j=1 of vectors in R3, find a

parametrized G1-spline surface F :
⋃N

n=1 Tn → R3 such that

F(pi) = fi, F′(pi)(pj − pi) = gi,j

(
i, j ∈ [1, R], [pi, pj] is edge in some Tn

)
. (1)
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We shall proceed the following strategy: By introducing extended barycentric weights λ1, . . . , λR :⋃N
n=1 Tn → [0, 1] and using any RSD family of shape functions we obtain a G0-spline map in the

form f =
R
∑

i=1
Ψ0(λi)fi + ∑R

i,j=1 Ψ1(λi)λjgi,j + ∑
(i,j,k)∈S3

[
χ0(λi, λj, λk)pi + χ1(λi, λj, λk)gi,j which auto-

matically satisfies the initial conditions (1). To correct it to a G1-spline, we look for F in the form
F = f + ∑

(i,j)∈I

1
2 λ2

i λ2
j λk

[
Zi,j(λi) + Zi,j(1− λj)

]
where the index set I consists of all triples (i, j, k) being

such that i < j, [pi, pj] is a double mesh edge (i.e., belonging to two different mesh triangles) and
Conv{pi, pj, pk} is a mesh triangle. The splines F, f coincide along the mesh edges. The familiar
determinant condition of G1-coupling along the common edge [pi, pj of two adjacent subfunctions
F
∣∣Tn and F

∣∣Tn with Tn = Conv{pi, pj, pk} resp. Tn = Conv{pi, pj, pk} can be written in a form

det
[
v(t)− t2(1− t)2z(t), v(t)− v(t), u(t)

]
≡ 0 (2)

where the terms u(t), v(t), v(t) are linear combinations of the vectors fj, fi, gℓ,m (ℓ, m = i, j, k, k) with
coefficients belonging to

{
Ψr(t), Ψ′r(t), Ψr(1− t), Ψ′r(1− t)

}
. We finish the paper with a study of the

case with polynomial shape functions Ψ0(t), Ψ1(t) such that t3
∣∣Ψr(t), Ψ1(t) and Ψ0(t) + Ψ0(1− t) like

the functions Φ, Θ in [9], furthermore assuming that the families Gℓ =
{

gℓ,m : [pℓ, pm] is a mesh edge
}

(ℓ = 1, . . . , R) are coplanar like in the case when gℓ,m is a tangent vector of a smooth surface at the
point pℓ. Then we achieve a complete solution of the Problem, constructing a solution of (2) by means
a of family q1(t), q2(t), q3(t) of cofactors for the GCD (greatest common divisor) ρ(t) of the components
w1(t), w2(t), w3(t) of w(t) = [v(t)− v(t)]× u(t).

In general, given a family p1(t), . . . , pk(t) ∈ F[t] of polynomials over an arbitrary field F, it is of
independent interest to find cofactors

(
that is polynomials q1, . . . , qK ∈ F[t] with ∑K

k=1 qk(t)ak(t) =
GCD(a1, . . . , aK)

)
with lowest degrees possible. Actually one can choose q1, . . . , qK above satisfying

maxK
k=1 deg(qk) ≤ maxK

k=1 deg(pk). Since we do not know a reference (cf. Remark 7), we give a proof
for this fact and describe a related algorithmic construction.

2. Preliminaries
To establish standard notations, let Rn = {x : x = [x1, . . . , x3], x1, . . . , xn ∈ R} denote the

vector space of real n-tuples, equipped with the scalar product: ⟨x|y⟩ = ∑k xkyk giving rise to the
norm ∥x∥ = ⟨x|x⟩1/2 and the Euclidean distance d∥.∥(x, y) = ∥(x − y∥. We shall use the notation
F′(x)u = d

dt

∣∣
t=0

[
F(x + tu)− F(x)

]
for the Fréchet derivative of a function defined on some subset

D ⊂ Rn along the vector u ∈ Rn whenever x + [−ε, ε]u ⊂ D for some ε > 0. It is well-known that the
mapping is linear whenever F is continuously differentiable.

By a triangle with vertices p1, p2, p3 ∈ Rn we mean their convex hull T =

Conv{p1, p2, p3} =
{

∑k tkpk : [t1, t2, t3] ∈ ∆3
}

in terms of the unit 3-simplex ∆3 =
{
[t1, t2, t3] :

∑k tk = 1, tk ≥ 0
}

. The tangent space {∑k pk : ∑k tk = 0
}

and the supporting affine manifold (line or
2-plane) {∑k tkpk : ∑k tk = 1

}
of T will be denoted with Tan(T) and Aff(T), respectively. The triangle

T is non-degenerate if dim(Aff(T)) = 2 that is when the vectors pi − pj (i, j = 1, 2, 3) are non-parallel.
Given a non-degenerate triangle, the normalized barycentric weights [3] of its vertices are the functions
λT

pi
: Aff(T)→ R unambiguously defined by the relations

∑
k

λT
px (x)pk = x, ∑

k
λT

px (x) = 1,
(
x ∈ Aff(T)

)
.

The weights λT
pk

are affine functions
(
i.e., satisfying the identity λT

pk

(
tx + (1− t)y

)
= tλT

pk
(x) + (1−

t)λT
pk
(y)

)
with Fréchet derivatives being independent of the location which we denote with GT

pk
u.

Namely GT
pk

u =
[
λT

pk

]′
(x)u = λT

pk
(x + u)

(
u ∈ Tan(T)

)
.

In the sequel we mainly restrict our considerations to settings in R3. We shall write x × y =[
x2y3 − y2x3, x3y1 − y3x1, x1y2 − y1x2

]
for vectorial product in R3. In terms of the vectorial and scalar

product in R3, the determinant formed by the components of three vectors x, y, z ∈ R3 can be expressed
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as det
[
x, y, z

]
=

〈
x
∣∣y× z

〉
. By a triangular mesh we mean a family of non-degenerate triagles with

pairwise disjoint interior whose pairs are disjoint or meet in a common vertex or edge. An edge
belonging to two different mesh triangles is said to be a double edge, the remaing edges are the single
edges. A triangular mesh is regular if no three different members admit a common vertex., resp.
connected if each of its members admits a double edge.

3. Mesh Structure, Data of First Order
Henceforth let T =

{
T1, . . . , TN

}
be an arbitrarily fixed connected regular triangular mesh in R3

with vertices resp edges ordered in the arrays P =
[
p1, . . . , pR

]
⊂ R3 resp. E =

[
E1, . . . , EM

]
where

Tn = Conv{pi∗(n,1), pi∗(n,2), pi∗(n,3)}, i(n, 1)< i(n, 2)< i(n, 3) (n = 1, . . . , N), (3)

Em = Conv{pj∗(m,1), pj∗(m,2)}, j(m, 1) < j(m, 2) (m = 1, . . . , M) (4)

with suitable index function i∗ : [1, N]× [1, 3]→ [1, R] resp. j∗ : [1, N]× [1, M]. We also assume that
the indices of double edges precede those of the single ones: {double edges} =

{
Em : m = 1, . . . , M∗

}
.

Three further index functions n∗, k∗ : [1, M]× [1, 2]→ [1, R] resp. m∗ : [1, N]× [1, 3]→ [1, M] will be
used to describe edge adjacency:

n∗(m, 1) = min{n : Em ⊂ Tn
}

, n∗(m, 2) = max{n : Em ⊂ Tn
}

, (5)

k∗(m, ℓ) =
[
k : Span

(
{pk} ∪ Em = Tn∗(m,ℓ)

]
(ℓ = 1, 2), (6)

m∗(n, ℓ) =
[
m : Em is the opposite edge of vertex pi∗(n,ℓ)

]
in Tn (ℓ = 1, 2, 3). (7)

In the sequel we write

T=
N⋃

n=1
Tn, E=

M⋃
m=1

Em, P={p1, . . . , pR}, F={f1, . . . , fR}, pi,j =pj−pi, (8)

um =
3
∑
ℓ=1

pn∗(m,1) − 3
2

2
∑
ℓ=1

pn∗(m,ℓ) , um =
3
∑
ℓ=1

pn∗(m,) − 3
2

2
∑
ℓ=1

pn∗(m,ℓ) (9)

for the polyhedron formed by the mesh triangles, the skeleton of edges and the set of vertices, the the
matrix of edge vectors and the weight line vectors, respectively.

Our later spline surface constructions will consist of families of curved images of the mesh
triangles connecting point triples {f1, f2, f3} ⊂ F whenever Conv{f1, f2, f3} ∈ T . To prescribe tangent
vectors for them at the vertices, henceforth we fix an arbitrary matrix

G =
[
gi,j : i, j = 1, . . . , R

]
, gi,j ∈ R3

with vector entries satisfying the geometric constrains. With the standard notations for the line segment
[pi, pj] = Conv{pi, pj} resp the triangle Gj,k

i = Conv{0, gi,j, gj,k},

gi,j = 0 if i = j or [pi, pj] ̸∈ E , (10)

Gj,k
i is non-degenerate if Conv{pi, pj, pk} ∈ T , (11)

Gj,k
i ∩ Gj,k

i = [0, gi,j] whenever Em = [pi, pj] is a double edge. (12)

Remark 1. These restrictions are natural in the sense that, for each mesh vertex pi, (10), (11) imply
the existence of a plane Si passing through the point fi such that gi,j ∈ Tan(Si) (i, j = 1, . . . , R). The
plane Si will play the role of a guessed tangent plane of the surface interpolating the points in F by our
construction. Condition (12) excludes "too twisted" surfaces.

Remark 2. The popular task of constructing surfaces passing through the mesh vertices, corresponds to
the case fi = pi (i ∈ [1, R]. Often only scanned data for the mesh points P with a triangularization (the
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family T ) are available and the tangent vectors gi,j should be guessed. If we are given the tangent plane
Si (e.g., the scanner provides also a normal vector ni to the scanned surface) there is a natural choice,
namely the orthogonal projection of the edge vector pi,j = pj − pi onto Si. Without further information
on tangent planes, if the mesh triangles form a closed surface, a convenient guess for normal vectors is
ni =pi,jν(i)×pi,j1+∑

ν(i)
k=1 pi,jk×pi,jk+1

where pj1 , . . . , pjν(i) form a cycle of the neighboring vertices of pi

such that all the segments between consecutive elements are mesh edges.

Definition 1. Given any mesh vertex pi ∈ P , define its extended weights λk : T→ [0, 1] as the union of
the functions λTn

pk on the mesh triangles containing the point pk as a vertex letting to vanish on the
remaining mesh triangles. That is, in terms of restrictions,

λk
∣∣Tn = λTn

pk
if pk ∈ Tn; λk

∣∣Tn = 0 else. (13)

Notice that the functions λi are well-defined and continuous. This is clear outside the double edges
since they consist of affine functions restricted to pairwise disjoint sets. Given any double edge
Em = Tn ∩ Tn = [pi, pj], we have the coincidence λTn

pk |Em = λTn
pk |Em. Indeed, in terms of the

Kronecker-δ at the end points pi, pj we have λTn
pk (pℓ) = δk,ℓ = λTn

pk (pℓ)
(
ℓ = i, j

)
. Since the graph of an

affine function defined on a triangle in R3 is a triangle in R4, the graphs of the subfunctions λTn
pk , λTn

pk

of λk form two adjacent triangles in R4 meeting in the segment with end points [pi, δk,i] resp. [pj, δk,j]

whence the continuity of λk is immediate.

Remark 3. (i) By definition C1(Tn,R3) is the family of all continuous functions F : Tn → R3 being
continuously differentiable on the the interior To

n =
⋃R

i=1{x ∈ Tn : λi(x) > 0} of Tn whose Fréchet
derivatives

(
as functions To

n → L
(
Tan(Tn),R3) ) extend continuously to Tn. It is an easy conse-

quence of Whitney’s embedding theorem [11] that any function F ∈ C1(Tn,R3) admits a continuously
differentiable extension to Aff(Tn)

(ii) Recall that a parametrized G1-spline surface in 3D over the mesh T is a continuous function F :
T→ R3 with subfunctions Fn = F

∣∣Tn ∈ C1(Tn) such that any two submaps Fn, Fn (n = j∗(m, 1), n =

j∗(m, 2)) along a double edge Em meet with tangent spaces not spanning the whole R3:

dim Span
({

F′n(x)u : u ∈ Tan(Tn)
}
∪
{

F′n(u : u ∈ Tan(Tn)
}}
≤ 2

(
x ∈ Em

)
. (14)

Lemma 1. In terms of the edge- resp. weight line vectors, the G1-coupling relation (14) can be expressed in the
analytic form

det
[

F′n(x)um, F′n(x)um, F′n(x)pi,j

]
= 0

(
x ∈ Em = [pi, pj] = Tn ∩ T, n ̸= n

)
(15)

Proof. This is an immediate consequence of the fact that Tan(Tn) = Span
{

um, pi,j
}

and Tan(Tn) =

Span
{

um, pi,j
}

if Em is a double edge with n = n∗(m, 1), n = n∗(m, 2), x ∈ Em resp. i = j∗(m, 1),
j = j∗(m, 2) and x ∈ Em = [pi, pj].

4. Construction Lemma
The next observation describes the pattern of our later constructions.

Lemma 2. Let f : T → R3 be a continuous map with subfunctions fn = f |Tn ∈ C1(R3). Assume
z1, . . . , zM ∈ C1([0, 1]2,R3) are functions such that, for m = 1, . . . , M we have

t2(1− t)2det

 zm(t, 1− t)
vm(t)− vm(t)

um(t)

 = det

vm(t)
vm(t)
um(t)

 (0< t<1); (16)

vm(t) = f ′n(xm
t )um, vm(t) = f ′n(x

m
t )um, um(t) = f ′n(xm

t )pj(m,1),j(m,2) (17)
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with the indices

n = n∗(m, 1), n = n∗(m, 2), xm
t = tpj∗(m,1) + (1− t)pj∗(m,2) (0 ≤ t ≤ 1); (18)

k =
3
∑
ℓ=1

i(n, ℓ)−
2
∑
ℓ=1

j(m, ℓ), k =
3
∑
ℓ=1

i(n, ℓ)−
2
∑
ℓ=1

j(m, ℓ) (19)

and um, um are the weight line vectors given in (9). Then the function

F = f − Z, Z =
M

∑
m=1

zm
(
λj(m,1), λj(m,2)

)
λ2

j(m,1)λ
2
j(m,2)

[
λk(m,1) + λk(m,2)

]
(20)

is a parametrized G1-spline surface over the mesh T .

Proof. Consider any mesh triangle Tn with edges Em1 = [pr2 , pr3 ], Em2 = [pr3 , pr1 ] resp. Em3 =

[pr1 , pr2 ]. Observe that the restriction Fn = F|Tn of F to Tn has the form

Fn = fn −
[
zm1(λr2 , λr3)λr1 λ2

r2
λ2

r3
|Tn+

+ zm2(λr3 , λr1)λr2 λ2
r3

λ2
r1
|Tn + zm3(λr1 , λr2)λr3 λ2

r1
λ2

r2
|Tn

]
.

Since each weight λrk vanishes on the edge Emk (k = 1, 2, 3), all products functions of the form
zm(λr, λs)λqλ2

r λ2
s with m ∈ {m1, m2, m3 and {q, r, s} = {r1, r2, r3} belong to C1(Tn) and vanish along

the edges of Tn. Since the subfunctions fn, λr|Tn (r = 1, . . . , R) belong to C1(Tn) by assumption, also
Fn ∈ C1(Tn,R3). Thus F : T→ R3 is a continuous function coinciding with f on the mesh edges.

To complete the proof we have to show the G1-coupling of the subfunctions of F along the mesh
edges. Suppose (without loss of generality) that Em = Em3 = [pr1 , pr2 ] is a duble edge between
the triangles Tn = Conv{pr1 , pr2 , pr3} and Tn = Conv{pr1 , pr2 , pr3}. According to Lemma 1, the
subfunctions Fn and Fn are G1-coupled if and only if the determinant criterion (15) holds.

Let x = xt = tpr1 + (1− t)pr2 be a generic point on Em3 . Since the function λr3 vanishes on
[pr1 , pr2 ], we have

F′n(xt)um = f ′n(xt)um − zm
(
λr1(xt), λr2(xt)

)
[Gr3 u]λr1(xt)

2λr2(xt)
2 =

= f ′n(xt)um − zm(t, 1− t)[Gr3 um]t2(1− t)2 =

= um(t)− zm(t, 1− t)[Gr3 um]t2(1− t)2.

Similarly F′n(xt)um = um(t)− zm(t, 1− t)[Gr3 um]t2(1− t)2. Thus (9) holds if and only if

0 = det

vm(t)− t2(1− t)2zm(t, 1− t)
vm(t)− t2(1− t)2zm(t, 1− t)

u(t)

 =

= det

vm(t)− t2(1− t)2zm(t, 1− t)
vm(t)− vm(t)

um(t)

− det

t2(1− t)2zm(t, 1− t)
vm(t)− vm(t)

um(t)


which completes the proof.

Remark 4. Notice that the statement imposes constrains on the corrector functions zm : [0, 1]2 → R3

only by the determinant condition 16) referring to the segment
{
(t, 1− t) : 0 ≤ t ≤ 1

}
. We can choose

the values z(t1, t2) for (0 ≤ t1, t2, t1 + t2 < 0. rather freely which may influence heavily the behaviour
of the spline-surface F outside the mesh edges.
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5. RSD Interpolation
Henceforth let Π = [Ψ1, χ0, χ1] be an arbitrarily fixed tuple of functions Ψ0, Ψ1 ∈ C1([0, 1]

)
resp.

χ0, χ1 ∈ C1([0, 1]3
)

such that

0 = Ψ0(0) = Ψ′0(0) = Ψ1(0) = Ψ′1(0) = Ψ′0(1), 1 = Ψ0(1) = Ψ1(1) (21)

0 = χ′k(1, 0, 0) = χ′k(0, 1, 0) = χ′k(0, 0, 1) (k = 1, 2). (22)

For arbitrary dimensional triagular meshes T ⊂ Rd with arbitrary dimensional data F =
[
fn : n =

1, . . . , N
]
, G =

[
gi,j : i, j = 1, . . . , R

]
in another space Rd such that gi,i = 0, we define the associated

basic Π-interpolation splines T→ Rd as the functions

f T,F,G
Π =

N

∑
i=1

[
Ψ0(λi)fi + Ψ1(λi

N

∑
j=1

λjgi,j

]
+

+ ∑
(i,j,k)∈S3

[
χ0(λi, λj, λk)fi + χ1(λi, λj, λk)gi,j

]
(23)

with S3 =
{

permutations of 1, 2, 3
}

. Notice that under the hypothesis (21), (22), f F,T,G
Π interpolates

the data in F, G in the sense that

f F,T,G
Π (p1) = fi,

[
f F,T,G
Π

]′
n(pi)pi,j =

d
dt

∣∣∣
t=0+

f F,T,G
Π

(
(1− t)p1 + tpj

)
= gi,j

whenever [pi, pj] is an edge of a mesh triangle Tn.

Definition 2. We say that Π = [Ψ0, Ψ1, χ0, χ1] is an RSD tuple if given any non-degenerate triangle
T = Conv{pi, pj, pk} in R2 (regarded as a mesh consisting of a single element), with 1-dimensional
data F = {f1, f2, f3} ⊂ R resp. G =

[
gi,j : i, j = 1, 2, 3} ⊂ R with gi,i = 0, along any edge [pi, pj] of T,

independently of the data fk, gk,i, gk,j associated with the third vertex, we have

f T,F,G
Π

(
tpi + (1− t)pj

)
=

= Ψ0(t)pi + Ψ0(1− t)pj + Ψ1(t)(1− t)gi,j + Ψ1(1− t)tgj,i , (24)

[ f T,F,G]′Π
(
tpi + (1− t)pj

)
uk =

= Ψ1(t)
[
gi,k −

1
2

gi,j

]
+ Ψ1(1− t)

[
gj,k −

1
2

gj,i

]
with uk = pk −

1
2
[pi+pj] . (25)

Remark 5. The term RSD is an abbreviation for reduced side derivative named after the property described
in (25). Motivated by the main result of [9], in [10] we introduced the concept of RSD tuples and proved
that given any pair of functions Ψ0, Ψ1 ∈ C1([0, 1]

)
satisfying (21), one can find χ0, χ1 ∈ C1([0, 1]3

)
with (22) such that [Ψ1, Ψ0, χ0, χ1] be an RSD tuple.

In (25) we apply [10, Definition 3.2] with the weight line vectors um. In accordance with [9,
Theorem 1] and [10, Example 3.15ab], for later use we propose the following two convenient choices:

Π0 = [Φ, Θ, 30t2
1t2

2t3, 12t2
1t2

2t3] resp. Π1 = [Φ, Φ, 30t2
1t2

2t3, 30t2
1t3

2t3] (26)

in terms of the shape functions

Φ(t) = t3(10− 15t + 6t2) and Θ(t) = t3(4− 3t). (27)

(a) Π0 is the unique polynomial RSD tuple Π of minimal degrees with the range shift property
f T+v,F,G
Π = f T,F,G

Π +v (v ∈ R2). This follows from the classification in [8] of all locally generated
constant preserving C1-spline procedures with polynomial shape functions.
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(b) Π1 is a polynomial RSD tuple obtained with affinity invariant procedure in the sense of [10].
Hence, it has range shift property along with the coordinate stability f T,F,∆T

Π1
(x) = IdentityT where

∆(T) =
[
pj − pi : i, j = 1, 2, 3

]
.

Notice that due to linearity, given any tuple Π with range shift property (in particular the tuples

Π0, Π1), the figure range
(

F
T,[pj−pi :i,j=1,2,3]
Π1

)
coincides with T. Nevertheless Π0 is not coordinate stable.

Heuristically: we can expect to achieve better approximation by using procedures with Π1 than with
Π0 if the side derivatives gi,j are close to gj − gi.

Proposition 1. Even in the general setting of T being a triangular mesh in Rd and F, G ⊂ Rd, if Π is and
RSD tuple then the the subfunctions f T,F,G

Π

∣∣Tn of the related interpolation function (23) have also properties
(24),(25) with the substitutions i = i∗(n, 1), j = i∗(n, 2), k = i∗(n, 3).

Proof. The statement is an immediate consequence of the observations that, given any mesh triangle
Tn, its supporting plane Aff(Tn) is affinely equivalent to R2 and that one can verify 24),25) by checking
the component functions x 7→

〈
f T,F,G
Π

∣∣ed
ℓ

〉
(ℓ = 1, . . . , d) with the unit vectors eℓ of Rd.

6. RSD Corrections over Mesh Edges
We turn back to the setting in R3 and we are going to apply the construction in Lemma 2 with the

RSD interpolation function f : T → R of the data. Concerning the derivative data G =
[
gi,j : i, j =

1, . . . , R
]

we assume that there is an indexed family
[
ni : i = 1, . . . , R

]
of unit vectors (candidates for

normal vectors at the mesh point for the parametrized surface to be constructed (cf. Remark 1) such
that

gi,j ⊥ ni
(
i, j = 1, . . . , R

)
. (28)

Henceforth, for short, we write f = f T,F,G
Π in terms of the weight values (ti, t2, t3) ∈ ∆3 of a generic

point in a mesh triangle:

f (xn
t1,t2,t3

) =
3

∑
i=1

[
Ψ0(ti)fn

i +Ψ1(ti)
3

∑
j=1

tjgn
i,j

]
+

+ ∑
(i,j,k)∈S3

[
χ0(ti, tj, tk)p

n
i + χ1(ti, tj, tk)g

n
i,j

]
,

(
xn

t1,t2,t3
=

3

∑
ℓ=1

tℓpn
ℓ ,

pn
ℓ = pi(n,ℓ), gn

k,ℓ=qi(n,k),i(n,ℓ)

)
.

(29)

Given a double mesh edge Em coupling the adjacent mesh triangles Tn, Tn with n = n∗(m, 1) < n =

n∗(m, 2), we can express the the directional derivatives vm, vm, um, um : [0, 1]→ R3 in Lemma 1 in terms
of the shape functions Ψ0, Ψ1 and the directions as follows. With suitable indices i, j, k, k ∈ {1, . . . , R)
we can write

Em =
[
pi, pj

]
, Tn = Conv

{
pi, pj, pk

}
, Tn = Conv

{
pi, pj, pk

}
,

um = pk −
1
2
[
pi + pj

]
= pi,k −

1
2

pi,j = pj,k −
1
2

pj,i,

um = pk −
1
2
[
pi + pj

]
= pi,k −

1
2

pi,j = pj,k −
1
2

pj,i .
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Due to the side derivative reduction property (25),

vm(t) = f ′
(
tpi + (1− t)pj

)
um =

= Ψ1(t)
[
gi,k −

1
2

gi,j

]
+ Ψ1(1− t)

[
gj,k −

1
2

gj,i

]
. (30)

vm(t) = Ψ1(t)
[
gi,k −

1
2

gi,j

]
+ Ψ1(1− t)

[
gj,k −

1
2

gj,i

]
, (31)

um(t) = f ′
(
tpi + (1− t)pj

)
pj,i = −

d
dt

f
(
pi − tpj,i

)
=

= Ψ′0(t)(t)pi −Ψ′0(1− t)pj +
[
Ψ′1(t)(1− t)−Ψ1(t)

]
gi,j −

−
[
Ψ′1(1− t)t−Ψ1(1− t)

]
gj,i . (32)

Therefore, by setting
wm(t) = um(t)×

[
vm(t)− vm(t)

]
(33)

the determinant conditon (15) of G1-coupling has the form

0 =
〈
vm(t)− t2(1− t2)zm(t)

∣∣wm(t)
〉

(0 ≤ t ≤ 1). (34)

Geometrically, the parameter t above is the weight value t = λi(xt) = 1− λj(xj) of a generic point
xt = tp i + (1− t)pj = 1− λj. Taking the algebraically more symmetric form z(t) = 1

2 z
(
λi(xt)

)
+

1
2 z
(
1− λj(xt)

)
, we conclude the following characterization.

Theorem 1. Given any RSD tuple Π = [Ψ0, Ψ1, χ0, χ1] with a family of functions z1, . . . , zM ∈
C1([0, 1]2,R3), the map

F = f T,P,G
Π − ZT,P,G

[z1,...,zm ]
where

ZT,P,G
[z1,...,zm ]

=
M

∑
m=1

zm
(
λj(m,1), λj(m,2)

)
λ2

j(m,1)λ
2
j(m,2)

[
λk(m,1) + λk(m,2)

]
defined in terms the mesh T with the structure described in Section (3) is a parametrized G1-spline surface
T → R3 satisfying the constraints (1) in the G1-Interpolation Problem whenever, in terms of the vector
functions (30), (31), (33) we have

t2(1− t)2
〈

zm(t, 1− t)
∣∣∣wm(t)

〉
= ∆m(t) (0 ≤ t ≤ 1) with ∆m(t) = det

vm(t)
vm(t)
um(t)

. (35)

Remark 6. In terms of the index function (7), by setting zM∗+1, . . . , zM = 0, the subfunction ZT,P,G
Π

∣∣Tn

has the form

ZT,P,G
Π

(
xn

t1,t2,t3

)
=

3

∑
ℓ=1

zm(t1, t2)t
2−δ1,ℓ
1 t2−δ2,ℓ

2 t2−δ3,ℓ
3

(
(t1, t2, t3) ∈ ∆3

)
;

whenever zm =
[
solution of (35) if m ≤ M∗, 0 else

] (36)

7. Criteria for RSD Solutions
Throughout the whole section, let Π = [Ψ0, Ψ1, χ0, χ1] denote an arbitrarily fixed RSD tuple.

For simplifying terminology, we use the term divisibility for functions in C1([0, 1]
)
, meaning that f is

divisible by g whenever f (t) = q(t)g(t) 0 ≤ t ≤ 1) for some (unique) continuous function g : [0, 1[→ R
(being necessarily smooth on (0, 1)).

We start with the following observation, which will be crucial when looking for polynomial
solutions of the equations (35) to the G1-Interpolation Problem.
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Proposition 2. If Ψ0(t) + Ψ0(1− t) = 1 (0 ≤ t ≤ 1) and the shape functions Ψ0, Ψ are divisible by t3 then
the determinant functions ∆m(t) in (35) are divisible by t2(1− t)2.

Proof. Fix an arbitrary edge index m and, for short, omit it for the terms ∆m, vm, vm, w. Also we shorten
the determinant expressions det

[
· · ·

]
in the form

∣∣ · · · ∣∣.
Start the argument recalling that, by assumption, the guessed tangent vectors issued from a mesh

vertex are coplanar. In particular ∣∣∣gi,j, gi,k, gi,k =
∣∣∣gj,i, gj,k, gj,k

∣∣∣ = 0 (37)

for the terms appearing in (30), (31), (32). On the other hand, since by (30), (31) we simply have

v(t)− v(t) = Ψ1(t)[gi,k − gi,k] + Ψ1(1− t)[gj,k − gj,k].

Furthermore the relation Ψ0(t) + Ψ0(1− t) ≡ 1 implies Ψ′0(t)−Ψ′0(1− t) ≡ 0 entailing that Ψ′0(t) =
t2(1− t)2η(t) with the function η(t) = t−2(1− t)−2[t3ψ0(t)]′ = (1− t)−2[3ψ0(t) + tψ′0(t)] which is
continuous on [0, 1). By the symmetry Ψ′0(t) = Ψ′0(1− t), η is continuous also on (0,−1] and hence on
the whole closed interval [0, 1]. Therefore we have

∆(t) =

∣∣∣∣∣∣∣
Ψ1(t)[gi,k − 2−1gi,j] + Ψ1(1− t)[gj,k − 2−1gj,i]

Ψ1(t)[gi,k − 2−1gi,j] + Ψ1(1− t)[gj,k − 2−1gj,i]

Ψ′0(t)pj,i +
[
Ψ′1(t)(1− t)−Ψ1(t)

]
gi,j −

[
Ψ′1(1− t)t−Ψ1(1− t)

]
gj,i

∣∣∣∣∣∣∣ .

= Ψ′0(t)∆̃0(t) +
2
∑

ℓ1=1

1
∑

ℓ2=0

2
∑

ℓ3=1
Ψ1

(
τℓ1(t)

)
Ψ1

(
τℓ2(t)

)
∆̃ℓ1,ℓ2,ℓ3(t) (38)

with the functions τ0(t) = t, τ1(t) = 1− t i.e., τℓ(t) = tδℓ,0(1− t)δℓ,1 where

∆̃0 =

∣∣∣∣∣∣∣
row 1 of ∆(t)
row 2 of ∆(t)

Ψ′0(t)pj,i

∣∣∣∣∣∣∣, ∆̃ℓ1,ℓ2,ℓ3(t) =

∣∣∣∣∣∣∣
term with Ψ1

(
τℓ1(t)

)
term with Ψ1

(
τℓ2(t)

)
terms with Ψ1

(
τℓ3(t), Ψ′1

(
τℓ3(t)

)
∣∣∣∣∣∣∣

We complete the proof with the observations that

(a) ∆̃0 is divisible with Ψ′0(t) being divisible with t2(1− t)2;

(b) For (ℓ1, ℓ2, ℓ3) ̸= (0, 0, 0) or (1, 1, 1), the determinant function ∆̃ℓ1,ℓ2,ℓ3(t) is divisible with
Ψ1

(
τℓ1(t)

)
Ψ1

(
τℓ2(t)

)[
Ψ1(τℓ3(t)

)
+Ψ′1

(
τℓ3(t)

)[
1− τℓ3(t)

]
. Here the term Ψ1

(
τℓ1(t)

)
Ψ1

(
τℓ2(t)

)
Ψ1

(
τℓ3(t)

)
is divisible with the product ∏3

r=1 τ3
ℓr

= t3[δ0,ℓ1
+δ0,ℓ2

+δ0,ℓ3
]

(1− t)3[δ1,ℓ1
+δ1,ℓ2

+δ1,ℓ3
]. Similarly Ψ1

(
τℓ1(t)

)
Ψ1

(
τℓ2(t)

)
Ψ′1

(
τℓ3(t)

)[
1− τℓ3(t)

]
is divisible with τℓ1(t)

3τℓ2(t)τℓ3(t)
2[1−

τℓ3(t)] = t3δ0,ℓ1
+3δ0,ℓ2

+2δ0,ℓ3
+δ1,ℓ3 (1− t)3δ1,ℓ1

+3δ1,ℓ2
+2δ1,ℓ3

+δ1,ℓ3 . Here the sum of the exponents of t and
(1− t) equals 3 + 3 + 2 + 1 = 9. i.e., both terms are divisible by a product tr(1− t)9−r for some
0 ≤ r = r(ℓ1, ℓ2, ℓ3) ≤ 9. Observe that, except for the cases (ℓ1, ℓ2, ℓ3) = (0, 0, 0) or (1, 1, 1), we have
2 ≤ r(ℓ1, ℓ2, ℓ3) ≤ 7.

(c) ∆̃0,0,0(t) = Ψ1(t)2[Ψ1(t)+Ψ′1(t)(1− t)
]∣∣∣∣∣∣∣

gi,k − 2−1gi,j

gi,k − 2−1gi,j

gi,j

∣∣∣∣∣∣∣ = 0 and ∆̃1,1,1(t) = Ψ1(1− t)2[Ψ1(1−

t) + Ψ′1(1− t)t
]∣∣∣∣∣∣∣

gj,k − 2−1gj,i

gj,k − 2−1gj,i

gj,i

∣∣∣∣∣∣∣ = 0 because the vector triples
{

gi,k − 2−1gi,j, gi,k − 2−1gi,j, gi,j
}

resp.

{
gj,k − 1

2 gj,i, gj,k −
1
2 gj,i, gj,i

}
are coplanar.
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8. Complete Polynomial RSD Solutions
Henceforth, until the end of the section, we assume that the terms in Π are polynomials. In

particular we shall be interested in the extreme RSD tuples Π0, Π1 in (26) with the shape functions
(27). Notice that

Φ′(t) = 30t2(1− t)2, Φ(t) + Φ(1− t) = 1 resp. Θ′(t)(1− t) = 12t2(1− t)2. (39)

We shall apply the following elementary facts from the theory of Euclidean resp. prime ideal rings [1]
restricted to the setting of real polynomials:

F1. If p, q, r : R → R are polynomial functions such that p(t)q(t) = t2r(t) and p(0), p(1) ̸= 0 then
t2(1− t)2

∣∣q(t).
F2. If p1, . . . , pK, r : R→ R are polynomial functions then there exist polynomials (the so-called cofactors of

r wrt. q1, . . . , qK) such that r = p1q1 + · · ·+ pKqK if and only if GCD(p1, . . . , pK)
∣∣r i.e., the greatest

common divisor of {p1, . . . , pK} is a divisor of r.

Remark 7. The computer algebra packages MAPLE resp. WolframMathematica contain commands
providing a cofactor representation GCD(p1, p2) = p1ϕ1(p1, p2) + p2Φ2(p1, p2) with the degree limita-
tion max

{
deg

(
ϕℓ(p1, p2)

)
: ℓ = 1, 2

}
≤ max{deg(ϕℓ(p1, p2) : ℓ = 1, 2}. According to the reference in

the packages, the construction of ϕ1, ϕ2 goes back to an early work [1] of Bézout, relying on a careful
inspection of the steps of Euclidean division, restricted to the case of two polynomials. It seems, there
is no analogous command for more polynomials. Our later discussion requires to calculate the GCD of
three terms. Clearly we can produce a cofactor representation of the form by calculating consecutively
the cofactors of r = GCD(p1, p2) and then the cofactors of GCD(r, p3) with the standard routines ϕ1, ϕ2

we get a representation GCD(p1, p2, p3) = p1[q1,1q2,1] + p2[q1,2q2,1] + p3q2,2 with q1,ℓ = ϕℓ(p1, p2),
q2,ℓ = ϕℓ(r, p3). Unfortunately, the degree limitation max{deg(q1,1q2,1), deg(q1,2q2,1), deg(q1,2)} is no
longer valid generally. (One can find several counter-examples of the form p1 = s1s2, p2 = s2s3,
p3 = s3s1 with random coefficients). Nevertheless we can prove the following sharpened version
of F1 suited for reducing remarkably the numerical costs involving algorithms with GCD of several
polynomials.

F2∗. Given any family p1, . . . , pK of real polynomials (or even polynomials with coefficients in a generic
field), we can choose q1, . . . , qK with maxK

k=1 deg(qk) ≤ maxK
k=1 deg(qk) such that ∑K

k=1 pkqk =

GCD(p1, . . . , pK).

Since we do not know any reference, we include an Appendix with constructive proof which gives rise
to a related algorithm in a straightforward manner.

Lemma 3. Let Em = [pi, pj] be a double edge being the intersection of the mesh triangles Tn =

Conv
{

pi, pj, pk
}

and Tn = Conv
{

pi, pj, pk
}

. Assume Ψ0, Ψ1, χ0, χ1 are polynomial maps and the lat-
eral derivatives v, v, u in (30), (31), (32), (33) are polynomial functions. Then the determinant equation (35)
admits a polynomial solution zm : R2 → R3 whenever t2(1− t)2

∣∣∆m(t).

Proof. Omitting the indices m without danger of confusion, let us write w1, w2, w3 for the components
of the polynomial vector function w : R → R and let ρ = GCD(w1, w2, w3). Assume that ∆(t) =

t2(1− t)2δ(t) for some polynomial δ : R→ R.
Observe that due to hypothesis (12) on the vectors gr,s (r, s ∈ {i, j, k, k}), we have

ρ(0), ρ(1) ̸= 0. (40)

Proof by contradiction: The relation 0 = ρ(0) = GCD(w1, w2, w3) would imply t
∣∣w1, w2, w3 whence

0 = w(0) = [v(0)− v(0)]× u(0) =
[
gi,k − gi,k

]
× gi,j. This is impossible since, by supposing (40), we

would have gi,k = gi,k + γgi,j for some scalar γ ∈ R which would mean that the intersection of the
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triangles Conv
{

pi, pj, pr
}
(r = k, k) would be a nondegenerate triangle. We conclude ρ(1) ̸= 0 by

arguing with the index change i↔ j.
Consider the case t2(1− t)2

∣∣∆(t) i.e., ∆(t) = t2(1− t)2δ for some polynomial δ : R→ R. On the
other hand, since ρ = GCD(w1, w2, w3), we can write w(t) = ρ(t)w(t) with the polynomial function
with components wℓ = wℓ(t)/ρ(t). By (33), we have w(t) = v(t)×w(t) and hence we get the identity

t2(1− t)2δ(t) = ρ(t)
〈

v(t)
∣∣∣ww(t)

〉
.

According to F1, we see that necessarily t2(1− t)2
∣∣∣〈v(t)

∣∣w(t)
〉

that is ρ(t)
∣∣∣ ∆(t)

t2(1−t)2 . According to F2,

there are polynomials q1, q2, q3 : R→ R such that

∆(t)
t2(1− t)2 = q1(t)w1(t) + q2(t)w2(t) + q(t)w1(t) =

〈
q(t)

∣∣w(t)
〉

which completes the proof.

As an immediate corollary, we find the following polynomial solution of the G1-Interpolation
Problem.

Theorem 2. Given any polynomial RSD tuple Π, in particular Π = Π0 or Π = Π1, the map F : T→ R3 in
Theorem 1 applied with polynomial edge corrections zm(t1, tt2) such that

zm(t, 1− t) =
[

∆m(t)
t2(1− t)2ρ(t)

]
qm(t)

(
m = 1, . . . , M∗

)
where

∆m(t) =
〈
vm(t)

∣∣wm(i)
〉
, in terms of (30), (31), (32), (33) applied to f = f T,P,G

Π ,

ρm(t) = GCD
(
w1

m(t), w2
m(t), w3

m(t)
)

with cofactors q1
m(t), q2

m(t), q3
m(t)

(41)

is a parametrized G1-spline surface passing through the mesh points pi with the lateral derivatives F′(pi)pi,j =

gi,j
(
[pi, pj] ∈ E

)
along mesh edges, which consists of polynomial submaps F

∣∣Tn.
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Algorithm 1. Representation of range
(

FT,F,G
Π

)
with a polynomial RSD tuple Π

Require: R, N, M∗ for the number of mesh vertices, triangles resp. double edges;
the index functions i∗, j∗, n∗, k∗, m∗ of the mesh structure in (3), (4), (5), (6), (7);[
pi
]R

i=1,
[
fi
]R

i=1,
[
gi,j

]R
i,j=1 for mesh vertices, data values resp. data vectors in (1);

polynomial RSD shape functions Ψ0, Ψ1 ∈ C1([0, 1]
)
, χ0, χ1 ∈ C1([0, 1]3

)
.

Ensure: List of functions F1, F1, . . . , FN , FN : ∆3→R3 representing subfunctions FT,P,G
Π

∣∣Tn

in the form Fn(t1, t2, t3) = FT,P,G
Π

(
xn

t1,t2,t3

) (
(t1, t2, t2) ∈ ∆3

)
in terms of the local barycentric parametrization xn

t1,t2,t3
in (29) of triangle Tn.

Calculation: With auxiliary storages
vm, vm, um, wm, qm (m ∈ [1, M]) for polynomial maps R→R3;
ζm, ρm m = 1, . . . , M) for polynomial functions.

STEP 1: Compute and store the basic approximations f T,T,G
Π |Tn

Fn ←
[
(t1, t2, t3) 7→ f (xn

t1,t2,t3
) given in (29)

]
(n = 1, . . . , N),

Substitutions t1 → λi∗(n,1), t2 → λi∗(n,2), t3 → λi∗(n,3) in each Fn;
STEP 2: For m = 1, . . . , m, compute and save the edge correction functions

ζm ←
[

t 7→ ⟨vm(t)|wm(t)⟩
t2(1− t)2ρm(t)

,
vm, vm, wm defined in (30), (31), (32), (33),

ρm = [GCD of the components of wm]

]
.

STEP 3: Using Algorithm 2, compute and save the GCD cofactors of the
components w1

m(t), w2
m(t), w3

m(t) of wm(t)
qm ←

[
Cofactorℓ

(
wm(t)) : ℓ = 1, 2, 3

]
.

OUTPUT1: The subfunctions FT,F,G
Π

∣∣∣Tn in storages Fn in terms of extended weights

computed consecutively along the double edges Em (m = 1, . . . , M∗)
with corrections corresponding to
z(t, 1− t) = 1

2 ζ(t) + 1
2 ζ(1− t) in Lemma 2:

i←j∗(m, 1), j←j∗(m, 2), k←k∗(m, 1), k←k∗(m, 2), n←n∗(m, 1), n←j∗(m, 2);

Fn ← Fn +
1
2

tℓλ2
i λ2

j λk
[
ζm(λi)qm(λi) + ζm(1− λj)qm(1− λj)

]
,

Fn ← Fn +
1
2

tℓλ2
i λ2

j λk
[
ζm(λi)qm(λi) + ζm(1− λj)qm(1− λj)

]
;

OUTPUT2: The subfunctions FT,F,G
Π

∣∣∣Tn in storages Fn in terms of local weights

Fn ←
[

Fn with substitution λi∗(n,ℓ → tℓ (ℓ = 1, 2, 3)
]
.

Appendix A GCD Cofactors with Low Degree

Let F denote an arbitrarily fixed field and let t be a fixed variable symbol. For short, write PolN(F)
for the family of all polynomials p = p(t) = a0 + a1t + · · ·+ aNtN (as formal sums) with coefficients
from F having degree deg(p) = max{k,−∞ : ak ̸= 0}. For the polynomial division (Euclidean
division) and its remainder term of p, q ∈ Pol(F) =

⋃∞
N=1 PolN(F) resp. the greatest common divisor

of a family {a1, . . . , aK} ⊂ Pol(F) we write p :−q with ρ(p, q resp. GCD(a1, . . . , aK). Thus, by definition
p = [p :−q]q + ρ(p, q) where the main coefficient of GCD(a1, . . . , aK) has the value 1 ∈ F.

Remark 8. For later use, we recall the following elementary facts:

(a) If p, q ∈ PolN(F) with deg(p) ≥ deg(q) ≥ 1 then
deg(p :−q) = deg(p)− deg(q) and deg(ρ(p, q)) < deg(q).

(b) If p, q ∈ PolN(F) with deg(p) ≥ deg(q) ≥ 1 then
{Common divisors of p and q} = {Common divisors of q and ρ(p, q)}.

(c) Given any family a1, . . . , aK ∈ Pol(F), we have
GCD(a1, . . . , aK) = ∑K

k=1 qkak with suitable polynomials q1, . . . , qk ∈ Pol(F).
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In most popular computer algebra packages, there is a command performing an algorithm due to
Bézout [1] providing cofactors Q1(a1, a2), Q2(a1, a2) ∈ Pol(F) such that GCD(a1, a2) = ∑k Qk(a1, a2)ak

with maxk deg
(
Qk(a1, a2)

)
≤ maxk deg(ak). As mentioned in Remark 7, it seems that no analogous

algorithm (or related theoretical result) is available providing the GCD of three polynomials with
sufficiently law dimensional cofactors. Below we are going to fill in this gap.

Lemma 4. If a1, . . . , aK ∈ Pol(F) with N = maxK
k=1 deg(ak) ≥ 1 and R = deg(GCD(a1, . . . , aK)) then we

have GCD(a1, . . . , aK) = q1a1 + · · ·+ qKaK. for some q1, . . . , qK ∈ PolN−R−1(F).

Proof. Let Q := GCD(a1, . . . , aK), K > 1. Observe that for any family q1, . . . , qK of polynomials we
have q1a1 + · · ·+ qKaK = Q if and only if q1[a1/Q] + · · ·+ qK[aK/Q] = 1. Thus since deg(aj/Q) =

deg(aj) − deg(Q) = deg(aj) − M, and GCD(a1/Q, . . . , aK/Q) = GCD(a1 :−Q, . . . , aK :−Q) = 1, it
suffices to restrict ourselves to the cases with Q = 1. That is it suffices to see the following statement:

(∗) If the polynomials a1, . . . , aK are relatively prime (i.e., GCD(a1, . . . , aK) = 1) and N = deg(a1)≥

· · ·≥deg(aK)≥1 then there exist q1, . . . , qK of degree≤N−1 such that
K
∑

k=1
qkak =1.

The case N=1 is trivial: if GCD{a1, . . . , aK} = 1 and 1 = maxK
k=1 deg(aK) then there are indices

m1 ̸= m2 such that amℓ
(t) ≡ αℓt + βℓ ℓ = 1, 2) with either α1, α2 ̸= 0 or α1, β2 ̸= 0 = α2. In any case

1 ≡ γ1am1(t) + γ2am2(t) with suitable constants γ1, γ2 ∈ F.
We proceed by induction: Let N ≥ 1. Assume that given any polynomials b1, . . . , bK with

1 ≤ maxK
k=1 deg(bk) ≤ N there exist r1, . . . , rK ∈ PolN(F) such that 1 ≡ ∑K

k=1 rkbk.
Consider any sequence a1, . . . , aK ∈ PolN+1(F) with GCD(a1, . . . , aK) = 1. Let M :=

min{deg(aj) : aj ̸≡ 0} and let m denote an index such that deg(am) = M. Notice that in the case of
M = 0 we simply have 0 ̸= am(t) ≡ α ∈ F and hence trivially 1 = ∑K

k=1 qkak with qm ≡ α−1 and qj ≡ 0
for j ̸= m.

In the remainder cases M ≥ 1 we have the alternatives

(i) N + 1 > M ≥ 1 i.e., N ≥ min{deg(aj) : aj ̸≡ 0} = am for some index m;
(ii) N + 1 = M i.e., deg(aj) = N + 1 for all indices j with aj ̸= 0.

In the case (i), define bm = am, bj := ρ(aj, am) for j ̸= m (in particular bj = 0 if aj = 0). According to
Remark 8(b), GCD(a1, . . . , aK) = GCD(b1, . . . , bK) = 1. By Remark 8(a), also deg(bj) < deg(am) = M
(j ̸= m) Thus maxj deg(bj) = deg(am) and by the induction hypothesis, there are polynomials
r1, . . . , rK with degree≤deg(am)−1=M−1 such that

1 = r1b1 + · · ·+ rKbK = rmam + ∑
j ̸=m

rj[aj − (aj :−am)am] =
K
∑

j=1
qjaj

with qj = rj (j ̸= m), qm = rm − ∑
j ̸=m

(aj :−am)rj.

Here we have
deg(qj) = deg(rj) ≤ deg(am)− 1 = M− 1 ≤ N (j ̸= m),
deg(qm) = max

{
deg(rm), deg((aj :−am)rj) : m ̸= j = 1, . . . , K− 1

}
.

Since, for j ̸= m, deg(aj :−am) = deg(aj) − deg(am) ≤ N + 1 − deg(am) = N + 1 − M, we have
deg(qm) ≤ N + 1−deg(am)+deg(rj) ≤ N + 1−deg(am)+deg(am)− 1 = N. It follows deg(qj) ≤ N
for all indices which completes the proof in case (i).

Case (ii): Let deg(aj) = am = N + 1 for all indices with aj ̸= 0. Disregarding the trivial
case aj = 0 (j ̸= m) with 0 ̸= am, we can apply the arguments used in Case (i) to the sequence
aj := aj (j ̸= m), am := ρ(an, am) with some index n such that an ̸= 0, with the the conclusion
that ∑K

j=1 qjaj = 1 for suitable q1, . . . , qK ∈ PolN(F). Since ρ(an, am) = an − (an :−am)am where
deg(an :−an) = deg(an)− deg(am) = 0 that is am = an − γam with some constant γ ∈ F, we have

1 = qm(an − γam) + ∑
j ̸=m

qjaj =
K
∑

j=1
qjaj with the polynomials qj := qj (j ̸= n, m), qn := qn + qm,

qm := −γqm of degree ≤ N.
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Remark 9. Following the arguments in the proof of Lemma 4, we find GCD cofactors with degree≤ N
for a sequence a0 =

[
a0

1(t), . . . , a0
K(t)

]
of polynomials with degree N by a procedure which consists

of decreasing the degree of some of the polynomials stepwise with multiplication with a suitable
(K× K)-matrix with polynomial entries.

Starting with a0 resp. X0 = IdK repeat the operations N ,R,D realized by multiplications from
the right with the (K× K)-matrices Np, Rp, Dp given below until we achieve a sequence of the form
as =

[
0, . . . , 0, as

K(t)
]
.

N ,R,D : F[t]K → F[t]K operations on K-tuples of polynomials,
N :

[
ak(t)

]K
k=1 7→

[
ak(t)/maincoeff(ak)

]K
k=1 normalization,

N (p) = pNp, Np =
[
δi,j/maincoeff∗(pj)

]K
i,j=1

where maincoeff
(

∑N
k=0 αktk) = αN if αN ̸= 0 resp. maincoeff(0) = 0,

R :
[
ak(t)

]K
k=1 7→

[
aσ(k)(t)

]K
k=1 reordering,

where σ = σp is an index permutation with the effect
|deg(aπ(1))| ≥ |deg(aπ(2))| ≥ · · · ≥ |deg(aπ(K))|, (deg(0) = −∞);

Rp = pRp, Rp =
[
δi,σp(j)

]K
i,j=1.

D :
[
0, . . . , 0, aL(t), . . . , aK(t)

]
7→

[
0, . . . , 0, a∗L(t), aL+1, . . . , aK(t)

]
(aL ̸= 0)

degree decreasing with a∗L(t) = aL(t)− tdeg(aL)−deg(aL+1)aL+1(t),
and leaving the sequences of the form [0, . . . , 0, aK(t)] invariant;

resp. Dp = Id if L = K.
The procedure terminates after at most S = ∑K

k=1 deg(a0
k) steps because the sum of the degrees of the

non-zero polynomials in any sequence containing more than on non-zero members is decreased by 1
after each application of D. The GCD of the non-zero polynomials in any sequence remains invariant
after each substep. Hence for the values ps, Xs of stores p resp. Xs at the end of STEP(s) we have
ps+1 = a0Xs. Thus in STEP(S∗) of the termination, we have p = pS∗ =

[
0, 0, . . . , GCD

]
= a0X =

∑K
k=1 a0

k XK,k.

Algorithm 2. Construction of GCD cofactors with low degree

Require: K ∈ {2, 3, . . .} for the number of polynomials for GCD calculation;
a0 =

[
a0

1(t), a2(t), . . . , a0
K(t)

]
, list of polynomials in the variable t

Ensure: GCD(a0
1, . . . , a0

K) and a list q =
[
q1(t), . . . , qn(t)

]
of polynomials

such that maxK
k=1 deg(qk) ≤ maxK

k=1 deg(ak) and ∑K
k=1 akqk = GCD(a1, . . . , aK).

Calculation: With auxiliary stores p for K-vectors resp. X, N, R, D for (K× K)-matrices.

STEP(0): p← a0, X0 ← IdK ;
STEP(s+1): q← Np p, X ← XNp,

p← Rp p, X ← XRp,
p← Dpr, X ← XDp ;

STOP if p1(t) = · · · = pK−1(t) ≡ 0.
OUTPUT: pK(t) as the GCD of a0

1(t), . . . , a0
K(t),

XK,1(t), XK,2(t), . . . , XK,K(t) as its cofactors wrt. a0
1(t), . . . , a0

K(t).
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