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Article 

A Systematic Series Development and Calm Water 
Resistance Prediction for a Fast Catamaran Ferry 
Utilizing Machine Learning Tools 
Amin Nazemian 1,*, Evangelos Boulougouris 1 and Myo Zin Aung 1 
1  Maritime Safety Research Centre (MSRC), Department of Naval Architecture, Ocean and Marine 

Engineering, University of Strathclyde, Glasgow, UK; evangelos.boulougouris@strath.ac.uk, 
myo.aung@strath.ac.uk 

*  Correspondence: amin.nazemian@strath.ac.uk 

Abstract:  The  aim  of  article  is  to  design  a  calm water  resistance  predictor  based  on Machine 
Learning Tools and development of a systematic series  for battery‐driven catamaran hull  forms. 
Regression Trees  (RT),  Support Vector Machines  (SVM),  and Artificial Neural Network  (ANN) 
regression models are applied for dataset training on developed systematic series of catamarans. A 
hullform optimization was  implemented  for various catamarans  including dimensional and hull 
coefficient parameters based on resistance and structural weight reduction and battery performance 
improvement. This paper provides a diverse database of catamaran hullform. Hence, an automated 
Matlab  program  was  coded  for  geometry  generation  and  cost  function  evaluation.  Design 
distribution based on Lackenby transformation fulfills all design space and sequentially a novel self‐
blending method reconstructs new hullforms based on two parents blending. Finally, a machine 
learning approach was conducted on generated data of case study. This study shows  that ANN 
algorithm correlates well with the measured resistance. Accordingly, a general and unique tool is 
proposed for optimized and desired design in first design stage. 

Keywords: systematic series; machine learning; Lackenby variation method; self‐blending method; 
panel method 

 

1. Introduction 

The EU  funded project “TrAM‐Transport: Advanced and Modular” develops battery‐driven 
zero emission fast passenger vessels for coastal areas and  inland waterways. Modular design and 
manufacturing methods are the focus of this project with the objectives to minimise environmental 
impact and life cycle cost [1,2]. The development of a systematic series of zero‐emission catamaran 
hullform  for  different  displacement  tonnage  and  ship  types  can  significantly  help  this  process. 
Enormous  catamaran  hullforms  will  generate  during  the  systematic  series  development  and 
resistance calculation takes time for each design. An accurate and fast resistance predictor yields to 
convenient  tool  for  a  class  of  hullforms.  Therefore,  a  new  model  for  such  diversity  with  an 
appropriate generalization to new predictions is desired in this field, this leads us the data mining 
approaches [3]. 

2. Background 

Resistance  calculations  in  past  decades  have  been  implemented  by model  tests  or  sea  trial 
measurements. The  classic  regression models have  limited  to  conventional vessels with  specified 
general particulars. Besides,  the  accuracy and  its  cost were barriers  to  implement EFD and CFD 
measurements for new designs. During the past decades, some nonlinear dynamic approaches have 
been developed, which produces comparable results and more flexibility [4,5] 

Ship resistance optimization plays an  important role  in the hullform development. Assessing 
the ship resistance  in the first stage of ship design allows the designer to analyze the  influence of 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 December 2023                   doi:10.20944/preprints202312.0049.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202312.0049.v1
http://creativecommons.org/licenses/by/4.0/


  2 

 

different hull forms and parameters. Accordingly, different methods of geometry optimization and 
design study have been developed during past decades [6]. Papanikolaou et al. [7] implemented a 
global and local hullform optimization of the fast catamaran in two design study scenarios. In the 
first stage of optimization, 1000 hullforms were elaborated with surrogate‐based design study using 
potential theory 3D panel code. After that, two most promising designs have been selected as initial 
hullform  of  local modification  focusing  on  the  stern  region. However,  a  comprehensive  design 
optimization might be proposed according to balance between accuracy and time, which is discussed 
in different previous papers [8–10]. An all‐inclusive hullform optimization in the field of ship design 
defines  various  hullforms with  different  geometrical  parameters.  Accordingly, marine  industry 
needs an optimization platform  to minimize  the  required propulsion power according  to various 
possibilities  of  hullform.  Besides,  a  systematic  series  are  developed  on  generated  geometries  to 
establish a resistance predictor. 

Li  et  al.  [11]  by  using  Single‐Parameter  Lagrangian  Support  Vector  Regression  (SPL‐SVR) 
developed a metamodel on  seakeeping data. A multidisciplinary design optimization  in  concept 
design  stage  of  ships  has  been  proposed.  Recently,  Fahrnholz  and  Caprace    [12]  conducted  a 
regression analysis on  three  sailboatsʹ systematic  series. Based on machine  learning  techniques, a 
resistance predictor was designed on  resistance data. Nazemian and Ghadimi  [13] by using a D‐
optimal DoE study investigated resistance performance of a trimaran hull series. A resistance analysis 
and its improvement was encompassed to extract optimum value of hull parameters and sidehull 
arrangement.   

Machine learning techniques have commenced in the last decade in the field of ship design and 
hydrodynamics [14,15]. The resistance prediction has been developed and compared by traditional 
approaches by Radojic et al. [16,17]. An Artificial Neural Network regression method was designed 
for planing boats at different series types. The machine learning models can also implement on added 
resistance [18] and ice resistance [19]. Different aspects of ship design targets can be considered in 
dataset analysis. Liu and Papanikolaou [20] developed a semi‐empirical formula, approximating the 
added  resistance  of  ships  in  regular waves  of  arbitrary  heading. Develop  of  a  catamaran  class 
alongside optimization process has been considered in the current study with an automatic design 
generation. 

The present paper divides in two phases, focusing on systematic series development for a fast 
passenger and freight zero‐emission catamaran and applying machine learning on generated data. 
Based on surveyed literature, it can be concluded that a hullform optimization process needs to be 
added to ship series. For each tonnage condition and ship type, a predictive machine learning model 
develops to calculate calm water resistance. Besides the final design would be the best design with 
respect to the lowest resistance at multi‐design speeds. An automated optimization code is carried 
out in Matlab software to prepare data set of different hullform. In the frame of TrAM project, various 
optimized design options prepare based on ship dimension and coefficient and hullform alteration. 
Accordingly,  design  study  starts  with  numerous  ship  types  and  tonnage  and  offer  different 
possibility  of  catamaran  hullform  as  flexibility  for  ownerʹs  selection.  Owners  can  choose  their 
optimized design based on their requirements.   

Performing parametric transformations and self‐blending method creates a series of hull forms 
with systematically varying parameters. Parametric transformation by moving ship sections and self‐
blending by moving Control Points  implement parametric  transformations  to create new hulls. A 
regression formula calculates structural weight of catamarans for scantling and deck weights. The 
steel weight of shells computes based on wetted surface area when design draft is placed on main 
deck. Weight  of  installed  battery  automatically  decreases  by  reduction  of  total  resistance  and 
consequently power requirement. 

3. Methodology 

Presentʹs optimization code capabilities, allowing any type of hullform to be modeled in case of 
different ship design targets, offer scope for the creation of a wide range of hull forms and provide 
an optional selection for owners. Combined with the built‐in resistance, structure weight and battery‐
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driven system performance calculations, you have the tools to experiment with shapes and explore 
design parameters. Accordingly, an extensive fast catamaran series has been developed and for each 
selection, an optimized hull obtains. The case study is a catamaran hull [1,2] as an initial design of 
database production. The database consists of three tonnages (∆ଵൌ 75,  ∆ଶൌ 80,  ∆ଷൌ 85) tons. Two 
types of passenger and freight catamaran boats are defined as initial hullform. General arrangement 
of under‐studied catamarans depicts in Figure 1. 

   
Figure 1. General Arrangement plan of passenger and freight catamaran boat. 

Three design study processes apply to three hullforms (75 ton, 80 ton, 85 ton). After the model 
has been altered total resistance calculates via slender body method. Structural weight of each design 
is estimated by a regression formula and shell expansion of hull surface. Propulsion system of vessel 
works with electrically powered battery spares. Performance and battery weight computes based on 
resistance and consequently break power of the catamaran [21–24]. Output of optimization process 
is resistance at 12 knot and resistance at 22 knot, which represent by a weighting cost function: 𝐶𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ൌ ቆቀ ோ௧ಽ೚ೢಷ೙ோ௧ಽ೚ೢಷ೙బቁ𝑊𝑡௅௢௪ி௡ ൅ ൬ ோ௧ಹ೔೒೓ಷ೙ோ௧ಹ೔೒೓ಷ೙బ൰𝑊𝑡ு௜௚௛ி௡ ൅ ሺ𝑊𝑒𝑖𝑔ℎ𝑡/𝑊𝑒𝑖𝑔ℎ𝑡0ሻ ∗𝑊𝑡ௐ௘௜௚௛௧ሻቇ ൈ ቀ ஽௜௦௣଴஽௜௦௣_௚௘௧ ൈ ଵଵ଴଴଴ቁ,  (1)

The framework of design study and machine learning illustrates in Figure 2. For each tonnage, 
ship geometry is designed and distributed on design space according to multi‐level combination of 
design variables. Total resistance and weight estimation of structure and battery weight calculate for 
each  design.  Pre‐processing  progress  is  applied  to  obtained  data  to  define  different  regression 
schemes. Herein, Regression  Tree  (RT),  Support Vector  Regression  (SVR),  and Artificial Neural 
Network  (ANN)  methods  are  used  to  predict  other  interesting  designs  and  find  a  resistance 
predictive model. 

The case study catamaran  is the prototype hullform, which  is designed and built  in frame of 
Horizon 2020 European Research project TrAM [25]. The main purpose of this effort is to replicate 
this hullform based on small modifications. Optimization process conducts on 6 design variables and 
2 constraints that are shown in Table 1. As a result, the displacement constraint is defined as follows: ฬ∆೙೐ೢି∆೚ೝ೒∆೚ೝ೒ ฬ ൑ 0.01,  (2)

Another  constraint  of  the  present  study  is  total  beam  of  the  catamaran  to  satisfy  port 
requirements, therefore: 

2 ൈ 𝐷𝑒𝑚𝑖ℎ𝑢𝑙𝑙 𝑜𝑓𝑓𝑠𝑒𝑡 ൅ 𝑑𝑒𝑚𝑖ℎ𝑢𝑙𝑙 𝑏𝑒𝑎𝑚 ൑ 9,  (3)

Demihull offset is the distance between centerline of each demihull. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 December 2023                   doi:10.20944/preprints202312.0049.v1

https://doi.org/10.20944/preprints202312.0049.v1


  4 

 

 
Figure 2. Framework of design study and machine learning methodology. 

Table 1. Design parameters of the catamaran case study. 

Optimization parameter  Symbol  specifications 
Design Variable  Lwl  Waterline length (m) 

Design Variable  B Demi hull Beam (m) 
Design Variable  T  Draft (m) 
Design Variable  DT  Demi hull transverse distance (m) 
Free Variable  Cb Block coefficient 

Design Variable  Cm Max section area coefficient 
Design Variable  LCB (% of Lwl)  Longitudinal Center of Buoyancy 

Constraint  𝞩  Displacement (Ton) 
Constraint  (DTx2)+B  Total Beam (m) 

9 design parameters of catamaran ship are selected as  input data of regression  learner. Total 
resistance value  is output parameter of the study, which calculates through slender body method 
[26,27]. Attribute selection is depicted in Table 2. Regression models implements on each ship speed 
[12, 13.25, 14.5, 15.75, 17, 18.25, 19.5, 20.75, 22] knot. Finally, a comprehensive regression is applied to 
all generated hulls at different drafts and dimensions to generalize the systematic series. 
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Table 2. Selected attributes for data mining with their respective statistics values. 

specifications  Symbol  Min  Max  Mean  Deviation 
Ship speed [kn]  V  12  22  17  3.4232 

Waterline length (m)  Lwl  28  33  30.2139  1.2354 
Demi hull Beam (m)  B  2.0985  2.2065  2.1407  0.0352 

Draft (m)  T  1.283  1.386  1.3152  0.0318 
Demi hull transverse distance (m)  DT  3.35  3.424  3.3889  0.0239 

Block coefficient  Cb  0.4349  0.5062  0.4663  0.0144 
Max section area coefficient  Cm  0.7091  0.7610  0.7293  0.0135 

Longitudinal Center of Buoyancy (% of 
L) 

LCB  0.5346  0.5549  0.5463  0.0047 

Waterplane area (m2)  Aw  96.235  104.339  100.488  2.9536 
Maximum section area (m2)  Ax  3.923  4.153  4.094  0.0582 

4. Database generation of catamaran case study 

Optimization  process  conducts  for  each  design  scenario  to  obtain  the  best  design  for  each 
configuration.  The  developed  geometry  reconstruction model  offers  designer  the  possibility  to 
control/specify  the main  particulars  of  the  demihull  along with  the  hull  form  details within  a 
reasonable range of variation of the defined design variables, while at the same time, adequate quality 
of fairness and smoothness of the hull is ensured. The designer is enabled to explore the huge design 
space of automatically generated hull forms and decide on the most favorable ones based on rational, 
holistic criteria. Regression  learners are applied on 5 design configurations every 1955 hullforms, 
which turns to 9775 designs. The pre‐processing procedure reforms database to the application of 
machine learning techniques. Linear normalization is implemented on each parameter according to 
Eq.(4):  𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟௡௢௥௠௔௟௜௭௘ௗ ൌ ௣௔௥௔௠௘௧௘௥೚ೝ೔೒೔೙ೌ೗ି௣௔௥௔௠௘௧௘௥೘೔೙.ೡೌ೗ೠ೐௣௔௥௔௠௘௧௘௥೘ೌೣ.ೡೌ೗ೠ೐ି௣௔௥௔௠௘௧௘௥೘೔೙.ೡೌ೗ೠ೐,  (4)

Another step of preprocessing  is using a principal component analysis  technique  (PCA) and 
Outlier detection using the hotellings T2 test [28]. Selecting the outliers can be useful to remove them 
from  the dataset or  for deeper  investigation. Dimensionality reduction  is applied  to  the  inputs  to 
project data into a space of lower dimension while preserving a maximum of information. Number 
of data reduces from 9775 to 8745 records according to PCA and outlier detection with confidence 
interval of 0.05 [29,30]. Finally, the database is randomly split into a learning set and test set, which 
contains 70% and 30% of the records, respectively. 

Regression  trees  (RT),  support vector machines  (SVM),  and artificial neural network  (ANN) 
regression models  are  applied  for  data  set  training  based  on  9  predictors  and  1  response.  The 
regression  tree  is  a  supervised  learning  algorithm with  tree‐structured  classification.  There  is  a 
decision‐related algorithm for each node based on the attributes. Each step in a prediction involves 
checking  the value of one predictor variable  to determine whether  an  attribute  is  larger  than or 
smaller or equal to a value of the following branch. The response value contains  in the  last node, 
which  is known as  leaf node. Second supervised regression  tool  is  linear epsilon‐insensitive SVM 
regression. This method disregards prediction errors that are less than some fixed hyperplane. Data 
points include in the support vectors that have errors larger than admissible error of the model. The 
function the SVM uses to predict new values depends only on the support vectors to minimize the 
error. Box constraint, Epsilon value, and Kernel scale parameter are set to automatic mode that the 
application uses a heuristic procedure to select appropriate value. 

The  artificial  neural  network  is  inter‐connected  neurons  that  organized  in  layers. An ANN 
algorithm works based on human neuron system, which consists of number of layers, the kind of 
neural synapses and the learning algorithm [12,31]. The artificial neural network is herein applied to 
dataset using multilayer feedforward networks. Ship hull parameters define at first fully connected 
layer, and each subsequent layer has a connection from the previous layer. Weight matrix multiplies 
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to each fully connected layer. Weight intensity iteratively changes aiming to decrease the final error. 
The number of layers and their neurons is selected by the Bayesian optimizable algorithm [32]. 

Internal  parameters  of  regression model  can  be  chosen manually,  however,  the  optimized 
regression methods  can  select  optimized  internal  values  by using  hyperparameter  optimization. 
Some  of  these  options  can  strongly  affect  regression  methodʹs  performance.  Accordingly, 
Optimizable Regression Tree, Optimizable SVM, and Optimizable ANN methods are applied herein 
[33]. Model  evaluation  is  implemented  by  statistical parameters  and  test datasets. Coefficient  of 
model determination  consists of R‐squared  (R2), mean  squared  error  (MSE), mean absolute  error 
(MAE), and root mean square error (RMSE): 𝑅ଶ ൌ 1 െ ∑ ሺ௬೔ି௫೔ሻమ೔∑ ሺ௬೔ି௬തሻమ೔ ,  (5)

𝑦ത ൌ ଵ௡∑ 𝑦௜௡௜ୀଵ ,  (6)

𝑀𝑆𝐸 ൌ ଵ௡∑ ሺ𝑦௜ െ 𝑥௜ሻଶ௡௜ୀଵ ,  (7)

𝑀𝐴𝐸 ൌ ଵ௡∑ |𝑦௜ െ 𝑥௜|௡௜ୀଵ ,  (8)

𝑅𝑀𝑆𝐸 ൌ ටଵ௡∑ ሺ𝑦௜ െ 𝑥௜ሻଶ௡௜ୀଵ ,  (9)

Where  𝑦௜  is predicted resistance of the record i,  𝑥௜  is the calculated resistance from dataset, and 
n is number of samples. 

5. Results 

Three  regression models  have  been  developed  according  to  internal  parameter  selection  to 
minimize MSE value. The PCA dimensionality  reduction reduces number of  features  from 9  to 6 
features. Table 3 presents evaluation results of model performance and internal obtained parameters 
of regression models. 

Table 3. Internal parameters of optimum regression models. 

Optimizable Regression Tree  Optimizable Neural Network  Optimizable SVM 
RMSE: 0.1043 

R2: 0.98 
MSE: 0.01088 
MAE: 0.057334 

RMSE: 0.03037 
R2: 1 

MSE: 0.000922 
MAE: 0.020429 

RMSE: 0.1168 
R2: 0.97 

MSE: 0.01365 
MAE: 0.06614 

Minimum leaf size: 3 

Num. of layers: 2 
Activation: Sigmoid 
Lambda: 1.5276e‐08 
First Layer size: 26 

Second Layer size: 77 

Box constraint: 17.0223 
Kernel scale: 8.5763 
Epsilon: 8.17e‐4 

Kernel function: Gaussian 

Regression  evaluation  results  depict  that  the  model  developed  using  the  artificial  neural 
networks algorithm has been fitted more suitable than other implemented models. This model has 
R‐squared determination equal  to 1, while  the errors and dispersion measurements are minimal. 
Figure 3  illustrates history of MSE parameter minimization  for  three applied methods. Dark blue 
point corresponds  to observed minimum MSE and  light blue one  represents estimated minimum 
MSE. Number of iterations consider 30, which best point of MSE value is shown in red color. 
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(c) 

Figure  3. MSE  history  reduction  through  optimizable  regression  process  (a) Regression  Tree  (b) 
Regression SVM (c) Regression ANN. 

Response plot presents in Figure 4, shows the main and predicted response versus the record 
number. Besides, Predicted vs. Actual and Residual plots are shown in Figure 5 for each regression 
model. These plots help to understand how well the regression model makes predictions for different 
response values. It can be indicated that ANN method can predict responses close to actual ones due 
to well‐scattered  samples  along  the  diagonal  line. Additionally,  residual  plot  depicts  difference 
between the predicted and true responses, which can be interpreted as a clear distribution around 
zero  for  ANN  regression  method.  Assessment  of  response  plots  represents  the  appropriate 
performance of ANN method against other implemented methods. 

 
(a) 
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(b) 

 
(c) 

Figure  4.  Prediction  vs  True  design  comparison  through  optimizable  regression  process  (a) 
Regression Tree (b) Regression SVM (c) Regression ANN. 

   
(a) 
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(b) 

   
(c) 

Figure 5. Residual plot comparison  through optimizable  regression process  (a) Regression 
Tree (b) Regression SVM (c) Regression ANN. 

5.1. Regression model evaluation 

5.1.1. Dataset test cases 

A  comparison  conducts  between  RT,  SVM,  and  ANN  methods  for  evaluating  resistance 
predictors. Two designs of dataset have been selected randomly  for evaluation  in this subsection. 
Figure    6 (a) shows the results for a random hull in hullform series. In addition, Figure 6 (b) depicts 
the results for a random catamaran hullform for 85D series. 

The proposed models fit well the observed data for test cases among dataset. However, it can be 
indicated a small underestimate values at speeds 15 to 18 knot. R‐square and RMSE values for Figure 
6 (random design test model 1&2) are presented in Table 4. The artificial neural networks algorithm 
fits observed data effectively according to lower values of prediction parameters. 

Table 4. Prediction parameters of model test for dataset designs. 

  Test model 1  Test model 2 

RT 
RMSE: 0.6051 
R2: 0.9991 

RMSE: 1.4895 
R2: 0.9934 

SVM 
RMSE: 0.3185 
R2: 0.9996 

RMSE: 1.1625 
R2: 0.9971 

ANN  RMSE: 0.8083  RMSE: 0.3606 
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R2: 0.9997  R2: 0.9994 

 
(a) 

 
(b) 

Figure 6. Model comparison between RT, SVM, and ANN methods for (a) random design Test model 
1 and (b) random design Test model 2. 

5.1.2. Interpolation test cases 

In this section, two interpolated designs based on ship tonnage have been imported to regression 
models. Catamaran hullforms of 77.5 ton and 82.5 ton are designed for regression model evaluation. 
Three implemented regression models are adjusted on 77.5 ton hullform (Figure 7 (a)) and 82.5 ton 
hullform  (Figure  7  (b)).  Regression  data  is well  adjusted  using ANN method  for  both  designs 
according to predictor parameters presented in Table 5. However, a slight difference can be observed 
at higher speeds of case 82.5 ton, which is slightly superior. 

Table 5. Prediction parameters of model test for interpolation designs. 

  77.5 ton  82.5 ton 

RT 
RMSE: 0.7597 
R2: 0.9965 

RMSE: 1.4029 
R2: 0.9911 

SVM  RMSE: 1.0426  RMSE: 1.4938 
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R2: 0.9976  R2: 0.9906 

ANN 
RMSE: 0.4677 
R2: 0.9988 

RMSE: 0.8633 
R2: 0.9977 

 
(a) 

 
(b) 

Figure 7. Model comparison between RT, SVM, and ANN methods for (a) interpolation design 77.5 
ton and (b) interpolation design 82.5 ton. 

5.1.3. Extrapolation test cases 

Extrapolation  designs  define  hullforms  out  of  displacement  bound  of  dataset.  Considering 
displacement  of  all  designs  from  dataset  are  designed  between  75  to  85  tones.  Two Catamaran 
hullforms of 71.5 ton and 88.5 ton are considered for regression model evaluation. The purpose of 
extrapolation test is assessment of regression models for out‐boundaries catamarans. Figure 8 (a) and 
Figure  8  (b)  show  resistance  values  against  speed  for  Slender  Body Method  results  and  fitted 
regressions for 71.5 ton design and 88.5 ton design respectively. In Figure 8 (a), all regression models 
estimate resistance higher than actual values. On contrary, the proposed models are inferior to SBM 
results in Figure 8 (b). In the transition to high speeds, the models get less accurate. In addition, Table 
6 presents prediction values of fitting quality, which depicts regressions are more precise in lower 
displacement design than in higher one. 
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Table 6. Prediction parameters of model test for extrapolation designs. 

  71.5 ton  88.5 ton 

RT 
RMSE: 1.8147 
R2: 0.9964 

RMSE: 2.4631 
R2: 0.9975 

SVM 
RMSE: 1.6215 
R2: 0.9965 

RMSE: 2.7815 
R2: 0.9975 

ANN 
RMSE: 1.3860 
R2: 0.9968 

RMSE: 2.2180 
R2: 0.9983 

 
(a) 

 
(b) 

Figure 8. Model comparison between RT, SVM, and ANN methods for (a) extrapolation design 71.5 
ton and (b) extrapolation design 88.5 ton. 

6. Conclusions 

A systematic series of novel catamaran ships has been developed for two types of passenger and 
freight boats. Three different  ship  tonnages  75,  80,  and  85  tones  are  considered  to produce new 
designs.  A  shift  transformation  and  self‐blending method  are  sequentially  applied  to  generate 
different  hullforms.  Three  different  supervised machine  learning methods  have  been  applied  to 
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generated dataset of catamarans to predict resistance at different ship speeds. Generated hullforms 
have  been  sorted  based  on  a  cost  function  of  resistance  to  obtain  the  optimum  design  for  each 
displacement  series. Accordingly, 9775  catamaran hullforms have been produced  to make a vast 
optional  condition  for  ship owners. Using machine  learning algorithms,  it  is worth developing a 
continuous  total  resistance  predictor  well  fitted  to  database  of  ship  series.  Three  regression 
algorithms Regression Tree, Support Vector Machine, and Artificial Neural Network approaches are 
applied to dataset. Regression estimation has good compliance with results of SBM method at wide 
range of speeds. However, RT and SVM methods have some differences in higher speed. The ANN 
approach depicts well‐adjusted regression on the data. The validation of fitting methods evaluates 
by  case  test  of  dataset,  interpolation,  and  extrapolation  catamarans. Accordingly,  a  general  and 
unique tool is proposed to predict resistance of the series at different displacements and hullforms. 
The proposed model is a valuable tool to assess the resistance of catamaran hulls during the early 
design stages. Finally, a sophisticated ANN model is proposed by exploring different features and 
training/optimization algorithms. Resistance calculations by more precise methods  including  trim 
and sinkage effect can be carried out for future works. 
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