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Abstract: The aim of article is to design a calm water resistance predictor based on Machine
Learning Tools and development of a systematic series for battery-driven catamaran hull forms.
Regression Trees (RT), Support Vector Machines (SVM), and Artificial Neural Network (ANN)
regression models are applied for dataset training on developed systematic series of catamarans. A
hullform optimization was implemented for various catamarans including dimensional and hull
coefficient parameters based on resistance and structural weight reduction and battery performance
improvement. This paper provides a diverse database of catamaran hullform. Hence, an automated
Matlab program was coded for geometry generation and cost function evaluation. Design
distribution based on Lackenby transformation fulfills all design space and sequentially a novel self-
blending method reconstructs new hullforms based on two parents blending. Finally, a machine
learning approach was conducted on generated data of case study. This study shows that ANN
algorithm correlates well with the measured resistance. Accordingly, a general and unique tool is
proposed for optimized and desired design in first design stage.

Keywords: systematic series; machine learning; Lackenby variation method; self-blending method;
panel method

1. Introduction

The EU funded project “TrAM-Transport: Advanced and Modular” develops battery-driven
zero emission fast passenger vessels for coastal areas and inland waterways. Modular design and
manufacturing methods are the focus of this project with the objectives to minimise environmental
impact and life cycle cost [1,2]. The development of a systematic series of zero-emission catamaran
hullform for different displacement tonnage and ship types can significantly help this process.
Enormous catamaran hullforms will generate during the systematic series development and
resistance calculation takes time for each design. An accurate and fast resistance predictor yields to
convenient tool for a class of hullforms. Therefore, a new model for such diversity with an
appropriate generalization to new predictions is desired in this field, this leads us the data mining
approaches [3].

2. Background

Resistance calculations in past decades have been implemented by model tests or sea trial
measurements. The classic regression models have limited to conventional vessels with specified
general particulars. Besides, the accuracy and its cost were barriers to implement EFD and CFD
measurements for new designs. During the past decades, some nonlinear dynamic approaches have
been developed, which produces comparable results and more flexibility [4,5]

Ship resistance optimization plays an important role in the hullform development. Assessing
the ship resistance in the first stage of ship design allows the designer to analyze the influence of

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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different hull forms and parameters. Accordingly, different methods of geometry optimization and
design study have been developed during past decades [6]. Papanikolaou et al. [7] implemented a
global and local hullform optimization of the fast catamaran in two design study scenarios. In the
first stage of optimization, 1000 hullforms were elaborated with surrogate-based design study using
potential theory 3D panel code. After that, two most promising designs have been selected as initial
hullform of local modification focusing on the stern region. However, a comprehensive design
optimization might be proposed according to balance between accuracy and time, which is discussed
in different previous papers [8-10]. An all-inclusive hullform optimization in the field of ship design
defines various hullforms with different geometrical parameters. Accordingly, marine industry
needs an optimization platform to minimize the required propulsion power according to various
possibilities of hullform. Besides, a systematic series are developed on generated geometries to
establish a resistance predictor.

Li et al. [11] by using Single-Parameter Lagrangian Support Vector Regression (SPL-SVR)
developed a metamodel on seakeeping data. A multidisciplinary design optimization in concept
design stage of ships has been proposed. Recently, Fahrnholz and Caprace [12] conducted a
regression analysis on three sailboats' systematic series. Based on machine learning techniques, a
resistance predictor was designed on resistance data. Nazemian and Ghadimi [13] by using a D-
optimal DoE study investigated resistance performance of a trimaran hull series. A resistance analysis
and its improvement was encompassed to extract optimum value of hull parameters and sidehull
arrangement.

Machine learning techniques have commenced in the last decade in the field of ship design and
hydrodynamics [14,15]. The resistance prediction has been developed and compared by traditional
approaches by Radojic et al. [16,17]. An Artificial Neural Network regression method was designed
for planing boats at different series types. The machine learning models can also implement on added
resistance [18] and ice resistance [19]. Different aspects of ship design targets can be considered in
dataset analysis. Liu and Papanikolaou [20] developed a semi-empirical formula, approximating the
added resistance of ships in regular waves of arbitrary heading. Develop of a catamaran class
alongside optimization process has been considered in the current study with an automatic design
generation.

The present paper divides in two phases, focusing on systematic series development for a fast
passenger and freight zero-emission catamaran and applying machine learning on generated data.
Based on surveyed literature, it can be concluded that a hullform optimization process needs to be
added to ship series. For each tonnage condition and ship type, a predictive machine learning model
develops to calculate calm water resistance. Besides the final design would be the best design with
respect to the lowest resistance at multi-design speeds. An automated optimization code is carried
out in Matlab software to prepare data set of different hullform. In the frame of TrAM project, various
optimized design options prepare based on ship dimension and coefficient and hullform alteration.
Accordingly, design study starts with numerous ship types and tonnage and offer different
possibility of catamaran hullform as flexibility for owner's selection. Owners can choose their
optimized design based on their requirements.

Performing parametric transformations and self-blending method creates a series of hull forms
with systematically varying parameters. Parametric transformation by moving ship sections and self-
blending by moving Control Points implement parametric transformations to create new hulls. A
regression formula calculates structural weight of catamarans for scantling and deck weights. The
steel weight of shells computes based on wetted surface area when design draft is placed on main
deck. Weight of installed battery automatically decreases by reduction of total resistance and
consequently power requirement.

3. Methodology

Present's optimization code capabilities, allowing any type of hullform to be modeled in case of
different ship design targets, offer scope for the creation of a wide range of hull forms and provide
an optional selection for owners. Combined with the built-in resistance, structure weight and battery-
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driven system performance calculations, you have the tools to experiment with shapes and explore
design parameters. Accordingly, an extensive fast catamaran series has been developed and for each
selection, an optimized hull obtains. The case study is a catamaran hull [1,2] as an initial design of
database production. The database consists of three tonnages (A;= 75, A,= 80, A;= 85) tons. Two
types of passenger and freight catamaran boats are defined as initial hullform. General arrangement
of under-studied catamarans depicts in Figure 1.
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Figure 1. General Arrangement plan of passenger and freight catamaran boat.

Three design study processes apply to three hullforms (75 ton, 80 ton, 85 ton). After the model
has been altered total resistance calculates via slender body method. Structural weight of each design
is estimated by a regression formula and shell expansion of hull surface. Propulsion system of vessel
works with electrically powered battery spares. Performance and battery weight computes based on
resistance and consequently break power of the catamaran [21-24]. Output of optimization process
is resistance at 12 knot and resistance at 22 knot, which represent by a weighting cost function:

Cost function = ((RtL"—WF") Wtiowrn + (m) Wtyignen + (Weight/Weight0) *

RtrowFno RtHighFno
Disp0 1
Wty ei X ( X —)
weight) Disp_get ~ 1000/

The framework of design study and machine learning illustrates in Figure 2. For each tonnage,
ship geometry is designed and distributed on design space according to multi-level combination of
design variables. Total resistance and weight estimation of structure and battery weight calculate for
each design. Pre-processing progress is applied to obtained data to define different regression
schemes. Herein, Regression Tree (RT), Support Vector Regression (SVR), and Artificial Neural
Network (ANN) methods are used to predict other interesting designs and find a resistance
predictive model.

The case study catamaran is the prototype hullform, which is designed and built in frame of
Horizon 2020 European Research project TrAM [25]. The main purpose of this effort is to replicate
this hullform based on small modifications. Optimization process conducts on 6 design variables and
2 constraints that are shown in Table 1. As a result, the displacement constraint is defined as follows:

@™

Anew—Rorg

< 0.01, ()

AOT'g

Another constraint of the present study is total beam of the catamaran to satisfy port
requirements, therefore:

2 X Demihull of fset + demihull beam < 9, 3)

Demihull offset is the distance between centerline of each demihull.


https://doi.org/10.20944/preprints202312.0049.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 December 2023 doi:10.20944/preprints202312.0049.v1

75 ton 80 ton 85 ton

~
Inputs: [Lwl, B, T, Cm, LCB, Demi_offset]
5 Outputs: [Resistance, Structure weight, Battery-driven performance]
b J
N
= y
o ~
[ Geometry construction: [Shift transformation + Self-blending method]
J
Inputs: [Lwl, B, T, Cm, LCB, Demi_offset, Cb, Aw, Ax]
Outputs: [Resistance]
/ Machine Learning \

s

§ ) RT model

3 Normalizer

> 0.1) . MSE

% SVM model RMSE

<

= Outlier filter R?

ANN model
Data split
(70%, 30%)

Figure 2. Framework of design study and machine learning methodology.

Table 1. Design parameters of the catamaran case study.

Optimization parameter Symbol specifications

Design Variable Lwl Waterline length (m)

Design Variable B Demi hull Beam (m)

Design Variable T Draft (m)

Design Variable DT Demi hull transverse distance (m)

Free Variable Cb Block coefficient

Design Variable Cm Max section area coefficient

Design Variable LCB (% of Lwl) Longitudinal Center of Buoyancy
Constraint v Displacement (Ton)
Constraint (DTx2)+B Total Beam (m)

9 design parameters of catamaran ship are selected as input data of regression learner. Total
resistance value is output parameter of the study, which calculates through slender body method
[26,27]. Attribute selection is depicted in Table 2. Regression models implements on each ship speed
[12,13.25, 14.5,15.75, 17, 18.25, 19.5, 20.75, 22] knot. Finally, a comprehensive regression is applied to
all generated hulls at different drafts and dimensions to generalize the systematic series.
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Table 2. Selected attributes for data mining with their respective statistics values.
specifications Symbol Min Max Mean  Deviation

Ship speed [kn] \Y% 12 22 17 3.4232
Waterline length (m) Lwl 28 33 30.2139 1.2354
Demi hull Beam (m) B 2.0985 2.2065 2.1407 0.0352
Draft (m) T 1.283 1.386 1.3152 0.0318
Demi hull transverse distance (m) DT 3.35 3.424 3.3889 0.0239
Block coefficient Cb 0.4349 0.5062 0.4663 0.0144
Max section area coefficient Cm 0.7091 0.7610 0.7293 0.0135
Longitudinal Centir) of Buoyancy (%oof =y g (5346 05549 05463 0.0047
Waterplane area (m2) Aw 96.235 104.339  100.488 2.9536
Maximum section area (m2) Ax 3.923 4.153 4.094 0.0582

4. Database generation of catamaran case study

Optimization process conducts for each design scenario to obtain the best design for each
configuration. The developed geometry reconstruction model offers designer the possibility to
control/specify the main particulars of the demihull along with the hull form details within a
reasonable range of variation of the defined design variables, while at the same time, adequate quality
of fairness and smoothness of the hull is ensured. The designer is enabled to explore the huge design
space of automatically generated hull forms and decide on the most favorable ones based on rational,
holistic criteria. Regression learners are applied on 5 design configurations every 1955 hullforms,
which turns to 9775 designs. The pre-processing procedure reforms database to the application of
machine learning techniques. Linear normalization is implemented on each parameter according to
Eq.(4):

parameteroriginal—Parametermin value

parameter,ormatized =

4)

Another step of preprocessing is using a principal component analysis technique (PCA) and
Outlier detection using the hotellings T2 test [28]. Selecting the outliers can be useful to remove them
from the dataset or for deeper investigation. Dimensionality reduction is applied to the inputs to
project data into a space of lower dimension while preserving a maximum of information. Number
of data reduces from 9775 to 8745 records according to PCA and outlier detection with confidence
interval of 0.05 [29,30]. Finally, the database is randomly split into a learning set and test set, which
contains 70% and 30% of the records, respectively.

Regression trees (RT), support vector machines (SVM), and artificial neural network (ANN)
regression models are applied for data set training based on 9 predictors and 1 response. The
regression tree is a supervised learning algorithm with tree-structured classification. There is a

7
parametermax.palue—PaArametermin value

decision-related algorithm for each node based on the attributes. Each step in a prediction involves
checking the value of one predictor variable to determine whether an attribute is larger than or
smaller or equal to a value of the following branch. The response value contains in the last node,
which is known as leaf node. Second supervised regression tool is linear epsilon-insensitive SVM
regression. This method disregards prediction errors that are less than some fixed hyperplane. Data
points include in the support vectors that have errors larger than admissible error of the model. The
function the SVM uses to predict new values depends only on the support vectors to minimize the
error. Box constraint, Epsilon value, and Kernel scale parameter are set to automatic mode that the
application uses a heuristic procedure to select appropriate value.

The artificial neural network is inter-connected neurons that organized in layers. An ANN
algorithm works based on human neuron system, which consists of number of layers, the kind of
neural synapses and the learning algorithm [12,31]. The artificial neural network is herein applied to
dataset using multilayer feedforward networks. Ship hull parameters define at first fully connected
layer, and each subsequent layer has a connection from the previous layer. Weight matrix multiplies
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to each fully connected layer. Weight intensity iteratively changes aiming to decrease the final error.
The number of layers and their neurons is selected by the Bayesian optimizable algorithm [32].

Internal parameters of regression model can be chosen manually, however, the optimized
regression methods can select optimized internal values by using hyperparameter optimization.
Some of these options can strongly affect regression method's performance. Accordingly,
Optimizable Regression Tree, Optimizable SVM, and Optimizable ANN methods are applied herein
[33]. Model evaluation is implemented by statistical parameters and test datasets. Coefficient of
model determination consists of R-squared (R?), mean squared error (MSE), mean absolute error
(MAE), and root mean square error (RMSE):

R2 = 1 _ Zi0imx)?

Tivi-)?’ ®)

I
y=1Li=1Yu (6)
MSE = -3, (y; — x)?, )
MAE = =311 ly; — xil, (®)
RMSE = [-31, (i = x0%, ©

Where y; is predicted resistance of the record i, x; is the calculated resistance from dataset, and
n is number of samples.

5. Results

Three regression models have been developed according to internal parameter selection to
minimize MSE value. The PCA dimensionality reduction reduces number of features from 9 to 6
features. Table 3 presents evaluation results of model performance and internal obtained parameters
of regression models.

Table 3. Internal parameters of optimum regression models.

Optimizable Regression Tree =~ Optimizable Neural Network Optimizable SVM
RMSE: 0.1043 RMSE: 0.03037 RMSE: 0.1168
R20.98 R21 R20.97
MSE: 0.01088 MSE: 0.000922 MSE: 0.01365
MAE: 0.057334 MAE: 0.020429 MAE: 0.06614

Num. of layers: 2
Activation: Sigmoid
Minimum leaf size: 3 Lambda: 1.5276e-08
First Layer size: 26
Second Layer size: 77

Box constraint: 17.0223
Kernel scale: 8.5763
Epsilon: 8.17e-4
Kernel function: Gaussian

Regression evaluation results depict that the model developed using the artificial neural
networks algorithm has been fitted more suitable than other implemented models. This model has
R-squared determination equal to 1, while the errors and dispersion measurements are minimal.
Figure 3 illustrates history of MSE parameter minimization for three applied methods. Dark blue
point corresponds to observed minimum MSE and light blue one represents estimated minimum
MSE. Number of iterations consider 30, which best point of MSE value is shown in red color.
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Figure 3. MSE history reduction through optimizable regression process (a) Regression Tree (b)
Regression SVM (c) Regression ANN.

Response plot presents in Figure 4, shows the main and predicted response versus the record
number. Besides, Predicted vs. Actual and Residual plots are shown in Figure 5 for each regression
model. These plots help to understand how well the regression model makes predictions for different
response values. It can be indicated that ANN method can predict responses close to actual ones due
to well-scattered samples along the diagonal line. Additionally, residual plot depicts difference
between the predicted and true responses, which can be interpreted as a clear distribution around
zero for ANN regression method. Assessment of response plots represents the appropriate
performance of ANN method against other implemented methods.
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Figure 4. Prediction vs True design comparison through optimizable regression process (a)
Regression Tree (b) Regression SVM (c) Regression ANN.
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Figure 5. Residual plot comparison through optimizable regression process (a) Regression
Tree (b) Regression SVM (c) Regression ANN.

5.1. Regression model evaluation

5.1.1. Dataset test cases

A comparison conducts between RT, SVM, and ANN methods for evaluating resistance
predictors. Two designs of dataset have been selected randomly for evaluation in this subsection.
Figure 6 (a) shows the results for a random hull in hullform series. In addition, Figure 6 (b) depicts
the results for a random catamaran hullform for 85D series.

The proposed models fit well the observed data for test cases among dataset. However, it can be
indicated a small underestimate values at speeds 15 to 18 knot. R-square and RMSE values for Figure
6 (random design test model 1&2) are presented in Table 4. The artificial neural networks algorithm
fits observed data effectively according to lower values of prediction parameters.

Table 4. Prediction parameters of model test for dataset designs.

Test model 1 Test model 2

RT RMSE: 0.6051 RMSE: 1.4895
R2:0.9991 R2:0.9934

SYM RMSE: 0.3185 RMSE: 1.1625
R2: 0.9996 R2: 0.9971

ANN RMSE: 0.8083 RMSE: 0.3606
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Figure 6. Model comparison between RT, SVM, and ANN methods for (a) random design Test model

1 and (b) random design Test model 2.

5.1.2. Interpolation test cases

In this section, two interpolated designs based on ship tonnage have been imported to regression
models. Catamaran hullforms of 77.5 ton and 82.5 ton are designed for regression model evaluation.
Three implemented regression models are adjusted on 77.5 ton hullform (Figure 7 (a)) and 82.5 ton
hullform (Figure 7 (b)). Regression data is well adjusted using ANN method for both designs
according to predictor parameters presented in Table 5. However, a slight difference can be observed

at higher speeds of case 82.5 ton, which is slightly superior.

Table 5. Prediction parameters of model test for interpolation designs.

77.5 ton 82.5 ton
RT RMSE: 0.7597 RMSE: 1.4029
R2: 0.9965 R2:0.9911
SVM RMSE: 1.0426 RMSE: 1.4938
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Figure 7. Model comparison between RT, SVM, and ANN methods for (a) interpolation design 77.5
ton and (b) interpolation design 82.5 ton.

5.1.3. Extrapolation test cases

Extrapolation designs define hullforms out of displacement bound of dataset. Considering
displacement of all designs from dataset are designed between 75 to 85 tones. Two Catamaran
hullforms of 71.5 ton and 88.5 ton are considered for regression model evaluation. The purpose of
extrapolation test is assessment of regression models for out-boundaries catamarans. Figure 8 (a) and
Figure 8 (b) show resistance values against speed for Slender Body Method results and fitted
regressions for 71.5 ton design and 88.5 ton design respectively. In Figure 8 (a), all regression models
estimate resistance higher than actual values. On contrary, the proposed models are inferior to SBM
results in Figure 8 (b). In the transition to high speeds, the models get less accurate. In addition, Table
6 presents prediction values of fitting quality, which depicts regressions are more precise in lower
displacement design than in higher one.
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55
SBM results
//'b
>0 - - 3. = Regression Tree .27
45
g 40
Y 35
c
g 30
%
20
15
o +-——+t+t—t—t—t*Ft———~Ft—tt L i o —
11 12 13 14 15 16 17 18 19 20 21 22 23
Speed [kn]
(a)
60
SBM results s
> - . 3. - Regression Tree i
50 wereespeens SVR X
g 45 - =~ = ANN R
= 40
)
g 35
S
2 30
O
x 25
20
15
10 4 -ttt t—t——t——t—
11 12 13 14 15 16 17 18 19 20 21 22 23
Speed [kn]
(b)

Figure 8. Model comparison between RT, SVM, and ANN methods for (a) extrapolation design 71.5
ton and (b) extrapolation design 88.5 ton.

6. Conclusions

A systematic series of novel catamaran ships has been developed for two types of passenger and
freight boats. Three different ship tonnages 75, 80, and 85 tones are considered to produce new
designs. A shift transformation and self-blending method are sequentially applied to generate
different hullforms. Three different supervised machine learning methods have been applied to
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generated dataset of catamarans to predict resistance at different ship speeds. Generated hullforms
have been sorted based on a cost function of resistance to obtain the optimum design for each
displacement series. Accordingly, 9775 catamaran hullforms have been produced to make a vast
optional condition for ship owners. Using machine learning algorithms, it is worth developing a
continuous total resistance predictor well fitted to database of ship series. Three regression
algorithms Regression Tree, Support Vector Machine, and Artificial Neural Network approaches are
applied to dataset. Regression estimation has good compliance with results of SBM method at wide
range of speeds. However, RT and SVM methods have some differences in higher speed. The ANN
approach depicts well-adjusted regression on the data. The validation of fitting methods evaluates
by case test of dataset, interpolation, and extrapolation catamarans. Accordingly, a general and
unique tool is proposed to predict resistance of the series at different displacements and hullforms.
The proposed model is a valuable tool to assess the resistance of catamaran hulls during the early
design stages. Finally, a sophisticated ANN model is proposed by exploring different features and
training/optimization algorithms. Resistance calculations by more precise methods including trim
and sinkage effect can be carried out for future works.
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