
Article Not peer-reviewed version

Comparison of Supervised and

Unsupervised Neural Networks for

Pricing Rainbow Options

Ayesha Ahmad * and Adnan Khan

Posted Date: 22 July 2025

doi: 10.20944/preprints202507.1820.v1

Keywords: multi-asset options; artificial neural networks; option pricing; physics-informed neural networks

(PINNs); exchange options

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/3810733
https://sciprofiles.com/profile/726005

Article

Comparison of Supervised and Unsupervised Neural
Networks for Pricing Rainbow Options
Ayesha Ahmad * and Adnan Khan

Department of Mathematics, Lahore University of Management Sciences, Lahore, Pakistan
* Correspondence: ayesha.ahmad@lums.edu.pk

Abstract

This study presents a comparative analysis of supervised and unsupervised neural network approaches
for pricing multi-asset options, with a particular focus on exchange options involving two underlying
assets. The supervised methodology utilises data-driven neural networks trained on simulated option
prices. In contrast, the unsupervised approach employs Physics-Informed Neural Networks that incor-
porate the governing partial differential equation along with boundary and initial conditions directly
into the loss function. Addressing a notable gap in the literature, this work evaluates the relative
efficiency of PINNs and supervised neural networks in pricing multi-asset derivatives. Additionally,
we propose a novel grid search framework to systematically identify optimal hyperparameters for
both approaches, enabling a fair comparison in terms of accuracy, computational speed, and overall
efficiency. Empirical results indicate that the supervised neural network outperforms the PINNs ap-
proach, achieving superior accuracy and significantly reduced execution times, which underscores its
suitability for real-time financial applications. However, the findings also highlight that PINNs remain
a valuable alternative in scenarios where data availability is limited, offering a flexible model-free
solution for complex option pricing problems.

Keywords: multi-asset options; artificial neural networks; option pricing; physics-informed neural
networks (PINNs); exchange options

1. Introduction
A substantial share of today’s financial markets is comprised of derivatives—financial instru-

ments whose value depends on the performance of underlying assets such as stocks, bonds, indices,
commodities, or interest rates. Among these, options are among the most actively traded. An option
is a contract granting the holder the right, but not the obligation, to buy or sell an underlying asset
at a predetermined strike price, either on or before a specified expiry date. The two primary types
of options are calls, which confer the right to buy, and puts, which confer the right to sell. Investors
commonly use options to gain leverage or to hedge against financial risks. Despite their usefulness,
accurately pricing options poses significant computational challenges

Options trading has a long history, with standardized options first traded on the Chicago Board
Options Exchange (CBOE) on April 26, 1973. The Black-Scholes model ([17]), developed by Fischer
Black and Myron Scholes in 1973, provided a groundbreaking closed-form solution for pricing Eu-
ropean options. This work earned Black and Scholes the Nobel Prize in Economics in 1997 and laid
the foundation for more complex option pricing models and associated numerical methods. Over the
decades, advanced models incorporating realistic assumptions have been developed, though explicit
solutions are often not feasible. Consequently, various numerical methods have emerged, including
binomial and trinomial trees, Monte Carlo simulations and finite difference and finite element schemes
for solving partial differential equations (PDEs).

[10] applied Monte Carlo simulation to the field of financial derivatives, this works by simulating
a large number of random paths of the underlying asset’s price to estimate the value of any financial

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1820.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0009-0005-4685-8293
https://doi.org/10.20944/preprints202507.1820.v1
http://creativecommons.org/licenses/by/4.0/

2 of 16

derivative. [11] refined the Monte Carlo method for option pricing, particularly focusing on variance
reduction techniques to improve computational efficiency.

[13] introduced the binomial tree method; a discrete-time model for option pricing approximates
the Black-Scholes model’s continuous-time process. [9] developed the trinomial tree model which
offered better accuracy than the binomial model by incorporating an additional possible state at each
node. [30] extended the binomial model, typically applied to single-asset options, to multi-dimensional
options.

[12] extended the application of finite difference methods for solving the Black-Scholes partial
differential equation, providing improved accuracy and stability. [25] proposed a fourth-order compact
finite difference scheme to tackle a one-dimensional (1-D) nonlinear Black-Scholes equation, demon-
strating unconditional stability. The application of the finite element method in option pricing by [27]
offered a robust method for solving option pricing PDEs, particularly useful for exotic derivatives with
complex boundaries.

[35] presented a superconvergent fitted finite volume method for solving a degenerate nonlinear
penalized Black-Scholes equation, which was an improvement on conventional finite volume methods.
[15] suggested an advanced high-order finite difference method applicable to various option pricing
models, encompassing the 1-D nonlinear Black-Scholes equation, Merton’s jump-diffusion model, and
2-D Heston’s stochastic volatility model. [24] introduced a distinctive finite volume method tailored
for solving the Black-Scholes model involving two underlying assets.

Although these methods are effective, they face practical limitations. For example, assumptions
like constant volatility often fail to align with dynamic market conditions, leading to inaccuracies.
Additionally, high-dimensional problems, such as those encountered with basket or exotic options,
pose considerable computational challenges, often referred to as the "curse of dimensionality." While
improvements in numerical methods have addressed some of these challenges, they often require
substantial computational resources and increased complexity.

The formalization of Artificial Neural Networks originated by [28] as a programming paradigm
inspired by biology, enabling computers to learn from observable data. The introduction of the error
backpropagation learning algorithm by [7] greatly enhanced the appeal of neural networks (NNs)
across diverse research fields. Today, NNs and deep learning are recognized as the most potent tools
for addressing numerous challenges in image recognition, speech recognition, and natural language
processing. They have also been applied to forecast and categorize economic and financial variables.

In the context of pricing financial derivatives, numerous studies have highlighted the benefits of
employing neural networks (NNs) as a primary or supplementary tool. For example, [22] advocated the
utilization of learning networks to estimate the value of European options. They asserted that learning
networks could reconstruct the Black–Scholes formula by utilizing a two-year training set comprising
daily options prices. The resulting network, according to their findings, could then be applied to
derive prices and effectively delta-hedge options in out-of-sample scenarios. In their 2000 study, [18]
derived a generalized option pricing formula with a structure akin to the Black–Scholes formula
using a feed-forward neural network (NN) model. Their findings revealed minimal delta-hedging
errors compared to the hedging effectiveness of the Black–Scholes model. [14]’s study highlighted the
transformative potential of deep learning in finance, demonstrating how advancements in technology
and the accessibility of vast datasets have democratized the application of sophisticated neural network
models for option pricing, marking a significant leap forward in the integration of artificial intelligence
within the financial sector.

In the study by [20], the researchers redefined the high-dimensional nonlinear Black–Scholes (BS)
equation as a set of backward stochastic differential equations (BSDEs) and approximated the solution’s
gradient using deep neural networks. They illustrated the effectiveness of their deep BSDE method
through a demonstration of a 100-dimensional problem. In a recent work by [16], the researchers
suggested resolving the one-dimensional Black–Scholes (BS) equation to predict the value of European
call options. They achieved this by employing a feed-forward neural network, specifically one with a

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1820.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1820.v1
http://creativecommons.org/licenses/by/4.0/

3 of 16

single hidden layer. Additional sources discussing the utilization of neural networks in option pricing
and hedging can be explored in a recent review article by [31].

Physics-Informed Neural Networks (PINNs) have shown promising results in solving partial
differential equations (PDEs) by incorporating domain knowledge into the training process. Option
pricing often involves solving complex PDEs, such as the Black-Scholes equation or more advanced
models. Recently [19] used PINNs to price path-dependent options like American options. Also,
PINNs have successfully been used to price two-dimensional European and American options by [36].
[42] have successfully priced multiasset, path-dependent options using PINNs.

In this work we focus on the pricing of multi-asset options; such contracts enable investors to
speculate on the relative performance of multiple underlying assets. Multi-asset options have gained
prominence due to their ability to capture correlations and interactions among various assets, making
them a valuable tool for risk management. They also play an important role in diversification and
complex trading strategies.

In the absence of closed-form solutions, numerical methods have to be used for multi-asset option
pricing. Choosing a suitable numerical scheme involves a combination of speed, accuracy, simplicity,
and generality. There is currently no comparison done on the efficiency of PINNs and supervised
learning for pricing multi-asset options. We aim to address this gap in our work.

This paper is organized as follows. After the introduction and literature review in section 2,
two types of Neural network methodologies (supervised and unsupervised) are presented. The
mathematical formulation of Supervised Neural networks and unsupervised neural networks (PINNs)
for option pricing PDEs is discussed in section 3. In section 4, we benchmark neural network-based
approaches on the standard Black-Scholes Partial Differential Equation (PDE) for a European call
option on a single asset, using both supervised learning and Physics-Informed Neural Networks
(PINNs). In section 5, we extend the methodology to two underlying assets and use supervised neural
networks and PINNs to calculate option prices for exchange options and discuss the efficiency and
accuracy of the two methods we also compare the two approaches. In section 6, we summarize our
findings and discuss future work.

2. Methodology: Option Pricing Using Neural Networks:
The pricing of a European-style multi-asset option, denoted as O , is governed by the following

partial differential equation (PDE):

∂O

∂τ
− 1

2

d

∑
i=1

d

∑
j=1

σiσjρijUiUj
∂2O

∂Ui∂Uj
− r

d

∑
i=1

∂O

∂Ui
Ui + rO = 0 (1)

where σi represents the volatility of the underlying asset Ui, ρij denotes the correlation coefficient
between assets Ui and Uj, r is the risk-free interest rate, and τ = T − t is the time to expiry. The
solution to Equation (1), subject to the terminal condition g(U, τ = 0), determines the option price O .

To reformulate the Black–Scholes Partial Differential Equation (BSPDE) within any neural net
framework (supervised or unsupervised), it is necessary to first apply a suitable transformation to
the input variables. This preprocessing step, referred to as scaling, enhances convergence speed,
stability, and numerical efficiency during training. By ensuring that all features contribute equitably
to the optimization process, scaling mitigates the dominance of variables with large magnitudes, as
highlighted in [33]. Specifically, we introduce the following transformations:

xi =
Ui
S

, V =
O

S
(2)

where S is a constant chosen based on the structure of the option’s payoff function, for example, the
strike price. Applying these substitutions yields this scaled PDE for the European option:

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1820.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1820.v1
http://creativecommons.org/licenses/by/4.0/

4 of 16

∂V

∂τ
− 1

2

d

∑
i=1

d

∑
j=1

σiσjρijxixj
∂2V

∂xi∂xj
− r

d

∑
i=1

∂V

∂xi
xi + rV = 0. (3)

2.1. Supervised Approach for Pricing Options

In the supervised learning approach for solving differential equations using neural networks, a
set of randomly sampled points, Pi, is selected from the domain to construct a dataset. In this dataset,
each Pi serves as the input where

Pi = (xi
1, xi

2, ...xi
d, τ) or (x̄, τ)

while Vi represents the corresponding output. In our case, output Vi is the option value at the ith input
point, computed using a conventional solver. Formally, the dataset is defined as:

D = {(P1, V1), (P2, V2), ..., (P|D|, V|D|)}.

A neural network is then trained to approximate the mapping:

P → V̂(P, W),

where the network’s weights, W, are optimized by minimizing the loss function L(V̂(P, W). Once
trained, the neural network can be used to approximate solutions for any new input values.

Figure 1. Supervised Learning Training Scheme for Option Pricing.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1820.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1820.v1
http://creativecommons.org/licenses/by/4.0/

5 of 16

Algorithm 1 Supervised Neural Network Training for Option Pricing

Require: Black-Scholes function: exact.sol(x, τ), Parameters: dp, S, σ, r, Ntest, epochs, hidden_layers,
activation, solver
Step 1: Initialize data array data(dp, d) and option price array price(dp)
for i = 1 to dp do:

Step 2: Randomly generate scaled stock prices xi ∼ U(0.1, 2.5) for each stock
Step 3: Randomly generate time to expiry τ ∼ U(0.1, 1)
Step 4: Compute scaled call price using the available exact solution:

price[i] = exact.sol(x[i], τ[i])

Step 5: Store x[i] and τ[i] in data[i]
end for
Step 6: Split the dataset into training and testing sets:

(xtrain, xtest, ytrain, ytest) = train_test_split(data, price, test_size = Ntest)

Step 7: Initialize MLP with hidden_layers, activation, and solver
for epoch = 1 to epochs do

Step 8: Fit the MLP Regressor on the training data:

regr.fit(xtrain, ytrain)

Step 9: Use specified activation function activation and solver solver
end for
Step 10: Evaluate the model on the test data:

score = regr.score(xtest, ytest)

Step 11: Predict the call prices on the test set:

yresult = regr.predict(xtest)

Step 12: Print the model’s accuracy score

2.2. Unsupervised Approach for Pricing Options

PINNs represent a class of deep learning models that are designed to leverage the structure of
governing equations—such as PDEs—along with associated initial and boundary conditions to guide
the learning process.

At the core of a PINNs is a neural network V̂ (P , W), which serves as a function approximator
for the solution of the target differential equation, with P representing the input vector. The training
objective is defined by a composite loss function that encapsulates the system’s physics

• PDE Residual Loss: Enforces the satisfaction of the governing PDE D [V̂ (P , W)] = 0, where D

denotes the differential operator.
• Boundary Condition Loss: Penalizes deviations from prescribed boundary conditions; B[V̂ (P, W)] =

0.
• Initial Condition Loss: Enforces compliance with initial states of the system.

To compute the necessary derivatives of the neural network for its inputs, PINNs employ automatic
differentiation (AD). This eliminates the need for numerical differentiation and enhances the accuracy
and stability of gradient computations.

Training is performed by minimising the total loss for the network parameters W using gradient-
based optimisation methods. This optimisation process ensures that the neural network solution
adheres to the fundamental physical principles encoded in the form of differential equations.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1820.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1820.v1
http://creativecommons.org/licenses/by/4.0/

6 of 16

Figure 2. PINNs Training Scheme for Option Pricing.

To formulate the BSPDE for pricing European options with multiple underlying assets as a
PINNs-based problem, we first express the BSPDE in its general form:

D(P , V) :
∂V

∂τ
− 1

2

d

∑
i=1

d

∑
j=1

σiσjρijxixj
∂2V

∂xi∂xj
− r

d

∑
i=1

∂V

∂xi
xi + rV = 0,

subject to boundary conditions:

B(P , V) : g(x̄, τ),

where x̄ is array of xi with 1 ≤ i ≤ d.
Here D and B are the differential operators on the domain and boundary, respectively. We select

(randomly) a collection of interior and boundary points P l , PB where each Pi point is in an n-tuple
of size n = d + 1 (for d=number of stocks and extra one dimension to accommodate time). The
solution of any differential equation using PINNs involves minimizing a single loss function defined
as a weighted sum of the L2 norm of the differential equation and boundary conditions:

L(W) =
wl

|Pl |

nl

∑
i=1

D(P l
i , V̂ (W))2 +

wB

|PB|

nB

∑
i=1

B(PB
i , V̂ (W))2

where wl and wB are weights and P l and PB are the sets of input points on the domain and boundary,
respectively.

Minimizing L(W) means we are trying to find a set of weights W for which the PDE, D(P , V̂ (W))

is zero or as close to zero as possible and the boundary conditions are also met, i.e. V̂ (W) solves the
PDE ([40]).

We use deepxde library of python for our model.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1820.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1820.v1
http://creativecommons.org/licenses/by/4.0/

7 of 16

Algorithm 2 Solving Option Pricing Differential Equations using PINNs

Step 1: Specify the computational domain using the geometry module.
Step 2: Define the PDE according to the option under consideration using TensorFlow’s syntax.
Step 3: Specify the boundary and initial/final conditions according to the nature of the option.
Step 4: Combine the geometry, PDE, and boundary/initial/final conditions into data.TimePDE
Step 5: Construct a neural network.
Step 6: Define a Model by integrating the PDE problem from Step 4 and the neural network from
Step 5.
Step 7: Call Model.compile to set the optimization hyperparameters, including the optimizer and
learning rate.
Step 8: Call Model.train to train the network from random initialization
Step 9: Call Model.predict to obtain the PDE solution at various locations.

3. Benchmarking: European Call Option on a Single Underlying Asset
As a preliminary validation of our approach, we first consider solving the scaled Black–Scholes

partial differential equation (BSPDE) for a single underlying asset. This is achieved by setting d = 1 in
Equation (3):

∂V

∂τ
− 1

2
σ2x2 ∂2V

∂x2 − rx
∂V

∂x
+ rV = 0. (4)

The scalled price of a European call option, denoted as Vc, is determined by solving Equation (4)
subject to the following boundary and initial conditions:

Vc(x, τ) = (x − 1)e−rτ , at x = L,

Vc(x, τ) = 0, at x = 0,

Vc(x, τ = 0) = g(x, τ = 0) = max(x(0)− 1, 0), at τ = 0.

Here, L represents a suitably large truncation parameter, used to approximate the semi-infinite domain
[0, ∞) by [0, L]. For computational feasibility, we set L = 5.

The input features of one underlying call option are scaled stock price x and time to maturity τ

and one output, the scaled option price (V). This problem has a well-known closed-form solution in
[37]

For numerical experiments, we solve this model using the following fixed parameter values:

S = 4, r = 0.03, σ = 0.3

3.1. Supervised Approach for Pricing European Option on Single Asset

For supervised approach we first need to generate a data set. For that, we used uniform distribu-
tion to randomly select the stock price (x) ranges from $0.1 to $2.5, and the time to maturity (τ) from 0
years to 1 year. The scaled European call option prices V serve as the target values obtained using the
analytical solution of the BSPDE.

To implement this approach, we must first determine the appropriate architecture of the neural
network, including the number of layers and the number of neurons per layer. The debate over shallow
versus deep neural networks has been extensively studied. While increasing the depth of a neural
network can enhance accuracy, this comes at the cost of significantly higher computational complexity.
Furthermore, as observed by [41], deeper architectures often yield only marginal improvements in
accuracy.

We generated 1,000,000 training data points and used them to train a fully connected feedforward
neural network with standard hyperparameters (activation function: logistic, solver: L-BFGS,α =

0.0001, maximum iterations: 1000). To assess the effect of depth of network, we evaluated models
with different numbers of hidden layers and found that a depth of three to seven hidden layers was

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1820.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1820.v1
http://creativecommons.org/licenses/by/4.0/

8 of 16

sufficient. Increasing the number of layers beyond this range did not improve accuracy and, in some
cases, led to overfitting, as illustrated in Figure 3.

Similarly, when varying the number of neurons per hidden layer while keeping the number of
layers fixed at three, we observed that the optimal performance was achieved with 20–70 neurons per
layer. Beyond this range, the accuracy either plateaued or deteriorated due to overfitting, as depicted
in Figure 3.

(a) (b)

Figure 3. Impact of depth and width of neural network on supervised learning problem.(a) shows Effect of the
number of layers on error while (b) shows Effect of the number of neurons per layer on error.

Based on these observations, we selected a neural network architecture with three hidden layers,
each containing 30 neurons. Which means our model comprises a total of 7851 trainable parameters.

The next step involved tuning the hyperparameters to achieve optimal performance. The follow-
ing hyperparameter ranges were considered:

• Activation function: ["logistic", "ReLU", "tanh"]
• Optimizer: ["L-BFGS", "SGD", "Adam"]
• Regularization parameter (α): [0.0001, 0.0005, 0.00001]
• Maximum iterations: [1000, 2000, 4000]

We employed the grid search method from the scikit-learn library to identify the optimal
hyperparameters. This method evaluates all possible combinations of parameter values and selects the
configuration yielding the highest accuracy. The total training time for the grid search procedure was
6991.19 seconds. The optimal hyperparameter configuration was found to be: activation function of
ReLU, the solver as Adam, α is 5 × 10−5, and 1000 the maximum number of iterations.

Training the final model on 1,000,000 data points took 264.415 seconds. The model’s performance
was evaluated using several key metrics. The root mean squared error (RMSE) was calculated to be
0.0023, indicating a low average deviation between the predicted and actual values. Notably, the RMSE
is particularly informative compared to the normalized strike price of $1, as it signifies that the average
error constitutes only 0.23% of the strike price. Furthermore, the coefficient of determination (R2score)
was found to be 99.9999%, demonstrating an exceptional fit between the model’s predictions and the
observed data. Additionally, the L2 relative error was determined to be 0.00027, further underscoring
the model’s high degree of accuracy. The error is computed using the following equation:

errori =
Vexact

i − Vnn
i

Vexact
(5)

A histogram of the error distribution is shown in Figure 4. The observed error is consistently within
±0.2%, demonstrating the high accuracy of our model.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1820.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1820.v1
http://creativecommons.org/licenses/by/4.0/

9 of 16

Figure 4. one underlying option priced using supervised neural network.

3.2. Unsupervised Approach (PINNs) for pricing European Option on One Asset

For the PINNs approach, we utilize the equation given in Equation (4), along with the correspond-
ing boundary and initial conditions, as the loss function.

Similar to the supervised approach, we analyze the effect of varying the network depth (number
of hidden layers) and width (number of neurons per hidden layer). As expected, increasing these
hyperparameters beyond a certain threshold does not lead to significant accuracy improvements, as
illustrated in Figure 5. Based on this analysis, we select a PINNs architecture with five hidden layers,
each containing 50 neurons. The selected neural network architecture consists of two input nodes and
a single output node. This results in a total of 7851 weights.

To determine the optimal number of training iterations and the most effective network structure,
we conduct a grid search over the following hyperparameter ranges:

• Activation function: [’ReLU’, ’tanh’, ’swish’, ’sin’, ’sigmoid’]
• Optimizer: ["RMSprop", "SGD", "Adam"]
• Regularization parameter (α): [0.0001, 0.0005, 0.00001]
• maximum iterations: [2000, 4000]

We evaluated the L2 loss across all possible parameter combinations and selected the configuration
that minimized the error. The optimal hyperparameters obtained from the grid search are: activation
function of tanh, solver as Adam, α = 1 × 10−5, and a maximum of 3000 iterations.

Training was performed in two stages. Initially, the Adam optimizer was used for 3000 iterations
with a learning rate of 10−5, Adam achieved a loss of 8.22 × 10−1 over 16,409.27 seconds. Following
this, training switched to the L-BFGS optimizer, which does not require an explicit learning rate, and

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1820.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1820.v1
http://creativecommons.org/licenses/by/4.0/

10 of 16

continued until convergence. L-BFGS attained loss of 2.61 × 10−5 within 10,236.10 seconds. Overall,
the total execution time for the entire training process was approximately 26,673.9 seconds.

(a) (b)

Figure 5. Impact of network depth and width on PINN accuracy for pricing a European option. (a) shows Effect
of number of hidden layers on error, (b) shows Effect of number of neurons per layer on error

To facilitate error comparison, we first convert the PINN-predicted scaled price (V) into the actual
option price (O) using Equation (2):

To rigorously evaluate the model’s performance, we sample 60,000 random points from the
domain [0, L]× (0, 1]. The error is computed using Equation (5), and the resulting error histogram is
displayed Figure 6.

Figure 6. one underlying option priced using PINNs.

The model’s performance was rigorously evaluated using several key metrics. The L2 relative
error was calculated to be 0.003156, indicating a minimal discrepancy between the predicted and actual

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1820.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1820.v1
http://creativecommons.org/licenses/by/4.0/

11 of 16

values. The Root Mean Squared Error (RMSE) was determined to be 4.784 × 10−6, further demonstrat-
ing the model’s precision. Notably, the model achieved an accuracy rate of 100%, underscoring its
reliability. Additionally, the coefficient of determination (R2) was found to be 0.99998, signifying an
excellent fit and a strong correlation between the model’s predictions and the observed data.

3.3. Comparison of Supervised and Unsupervised Approaches

Table 1 provides a comparative analysis of the two models. The results indicate that PINNs
achieve accuracy and efficiency comparable to the supervised, data-driven approach, with slightly
higher relative error but competitive RMSE and R2 scores.

Table 1. Performance Comparison of Supervised Learning and PINNs

Metric Supervised Approach PINNs

RMSE 0.0023 0.0017
R2 Score 0.999999 0.99998
L2 Relative Error 0.00027 0.003156
Accuracy (%) 100% 100%

4. Pricing Multi-Asset Options Using Neural Networks
Next, we compare the efficiency of supervised and unsupervised neural networks in pricing

exchange options with two underlying assets. An exchange option allows the holder to exchange one
asset for another, and its price is determined by solving the Black-Scholes PDE for two assets. The
governing PDE for such an option is obtained by setting d = 2 in Equation (3):

∂V

∂τ
− 1

2
σ2

1 x2
1

∂2V

∂x2
1
− 1

2
σ2

2 x2
2

∂2V

∂x2
2

−ρσ1σ2x1x2
∂2V

∂x1∂x2
− rx1

∂V

∂x1
− rx2

∂V

∂x2
+ rV = 0, (6)

defined on (0, ∞)2 × [0, 1]. Here, ρ is the correlation coefficient between the two assets. The function
V (x1, x2, τ) is the scaled option value, which depends on the (scaled) prices of the underlying assets
x1, x2 and time τ.

Since exchange options do not have a strike price, we normalise the asset prices by selecting a
reasonable scaling factor K. In our case, we define:

K =
U1(0) + U2(0)

2
, x1 =

U1

K
, x2 =

U2

K
and recover the actual option price via:

O = K · V .

The payoff function for the scaled exchange option is:

V (x1, x2, τ) = max(x1 − x2, 0). (7)

This problem is more complex than standard European options but still admits an exact solution. For
numerical experiments, we solve this model using the following fixed parameter values:

r1 = 0.05, r2 = 0.03, σ1 = 0.2, σ2 = 0.25, ρ = 0.6, T = 1.

In this case, the neural network takes as input the scaled initial prices of the two underlying assets,
(x1, x2), along with the time to expiry, τ. And to calculate the output, From [37], Margrabe’s formula
provides the exact solution.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1820.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1820.v1
http://creativecommons.org/licenses/by/4.0/

12 of 16

4.1. Supervised Learning Approach for Pricing Exchange Options

To construct the training dataset, we generated random samples from the following uniform
distributions:

The initial price of asset one (x1) ranges from $0.1 to $5, while the initial price of asset two (x2)
varies between $0.1 and $5. The time to expiry (τ) spans from 0.1 year to 1 year.

The corresponding scaled option prices, V , serving as the target values for the model, were
computed using the closed-form solution of the Black-Scholes PDE for exchange options.

We trained a fully connected neural network comprising of four hidden layers, each containing
40 neurons. The depth and width were decided using the discussion in the single asset case. To
optimize the neural network architecture, we performed a comprehensive grid search over a range
of hyperparameters described in the last section. This process, which took approximately 9,738.35
seconds, identified the following optimal configuration: the activation function employed was Rectified
Linear Unit (ReLU); the optimization algorithm utilized was Adam; the regularization parameter (α)
was set to 5 × 10−5; and the maximum number of iterations allowed was 1000.

With these parameters, The training process, conducted on a dataset of 1,000,000 samples, was
completed in 233.23 seconds. The model demonstrated exceptional accuracy, achieving a root-mean-
squared error (RMSE) of 0.00095 and an R² score of 99.9999%, indicating near-perfect alignment with
the exact solution. Additionally, the L2 relative error was found to be 0.00067, further affirming the
model’s precision.

Figure 7 illustrates the distribution of errors. The histogram exhibits a bell-shaped curve, centered
around zero, with error values constrained within ±0.5%, underscoring the robustness and reliability
of the model’s predictions.

(a) (b)

Figure 7. two-asset exchange option, priced using Supervised Approach. (a)3d plot of exchange option at time to
expiry one, (b) relative percentage error histogram.

4.2. Pricing Exchange Options Using Physics-Informed Neural Networks

To price exchange options using Physics-Informed Neural Networks (PINNs), we use the PDE
given in Equation (6), as the loss function of the neural network, along with appropriate boundary and
initial conditions. The option pricing parameters are identical to those used in the previous section for
consistency and comparability.

The spatial domain (x1, x2) is truncated to a bounded computational region, where 0 ≤ x1 ≤ 5
and 0 ≤ x2 ≤ 5. The imposed Dirichlet boundary conditions ensure numerical stability and accurate
representation of the problem physics. Specifically, the option price is set to zero at the boundaries
x1 = 0 and x2 = 5, i.e.,

O = 0, for x1 = 0 or x2 = 5.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1820.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1820.v1
http://creativecommons.org/licenses/by/4.0/

13 of 16

Additionally, at τ = 0 (maturity) or when x2 = 0, the payoff condition follows the exchange option
structure: V = max(x1 − x2, 0). We decided the neural network to have a fully connected architecture
with a depth of six layers, including five hidden layers, each with 40 neurons, resulting in a total of
3,871 trainable parameters. The discussion in the case of single asset provides us with a reasonable
range to choose depth and width from.

The optimal hyperparameters identified using gridsearch, were a sine activation function, the
Adam optimizer as the solver, a regularization parameter (α) of 1 × 10−4, and a maximum of 4000
iterations. The training dataset comprised 20,000 residual points sampled within the spatio-temporal
domain, 2,000 training points sampled on the boundary, and 1,000 residual points corresponding to
the initial conditions.

The training process was conducted in two phases. Initially, the Adam optimizer was employed
which achieved a final training loss of 9.90 × 10−3 in approximately 3,505.2 seconds. Followed by
a switch to the L-BFGS optimizer which further reduced the training loss to 7.18 × 10−7 over an
additional 15,757.1 seconds. The total training time for both optimizers was 19,262.3 seconds. This
two-stage optimization approach ensured robust convergence and minimized the residual error in the
PINN-based solution.

Figure 8 shows the 3d plot of numerical solution of exchange option using PINNS at τ = 1.

(a) (b)

Figure 8. two-asset exchange option, priced using PINNs. (a)3d plot of exchange option at time to expiry one, (b)
relative percentage error histogram.

To rigorously assess the performance of our Physics-Informed Neural Network (PINN) model,
we sampled 60,000 random points from the input domain. The resulting error histogram, depicted in
Figure 8, exhibits a bell-shaped distribution centered around zero, with errors confined within ±0.2%,
indicating minimal deviation.

Quantitative evaluation metrics further substantiate the model’s efficacy: the L2 relative error
was computed to be 0.0106, and the root mean square error (RMSE) was determined to be 2.5 × 10−3.
Moreover, the model achieved an accuracy rate of 100%, and the coefficient of determination (R2) was
calculated as 0.9998, signifying an excellent

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1820.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1820.v1
http://creativecommons.org/licenses/by/4.0/

14 of 16

4.3. Comparison of Supervised & Unsupervised Approach

Table 2 shows a comparison of the two models.

Table 2. Model Performance Comparison for exchange options

Metric Supervised Approach PINNs

RMSE 2.228 × 10−3 2.5037. × 10−3

R² score 99.9997% 99.9823%
L2 relative error 0.00067 0.0106
Accuracy (%) 100% 100%

5. Conclusions
This investigation provides a comprehensive comparative analysis of supervised neural networks

and Physics-Informed Neural Networks (PINNs) in the context of multi-asset option pricing, with a
particular emphasis on exchange options. Notably, our study introduces the application of grid search
methodologies for hyperparameter optimization within this domain—a technique seldom employed
in option pricing models utilizing neural networks. This approach enabled a systematic exploration of
neural network architectures, including an in-depth examination of network depth and width, which
represents a novel contribution to option pricing research.

Empirical evidence from our study indicates that supervised learning models, which leverage
extensive market datasets, exhibit remarkable efficiency in both computational speed and predictive
accuracy. This efficiency renders them highly suitable for real-time financial applications where rapid
decision-making is critical.

Conversely, PINNs emerge as a potent alternative in environments characterized by limited or
non-existent market data. By embedding the fundamental partial differential equations governing
option pricing directly into the neural network’s loss function, PINNs provide a robust framework
capable of tackling intricate pricing challenges without the necessity for large datasets. This intrinsic
incorporation of domain-specific knowledge enables PINNs to maintain predictive reliability even in
data-scarce scenarios.

The outcomes of this study underscore the importance of aligning the choice of modelling
technique with data availability and the specific demands of the financial application at hand. Future
research endeavours could explore the development of hybrid models that synergistically combine
the strengths of both supervised learning and PINNs. Additionally, extending the application of
these methodologies to more complex derivative instruments and diverse market conditions could
significantly enhance the repertoire of tools available for financial modelling. Such advancements
would further solidify the integration of machine learning techniques within the domain of quantitative
finance, offering more versatile and resilient modelling approaches.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Horváth, Á.; Medvegyev, P. Pricing Asian Options: A Comparison of Numerical and Sim-

ulation Approaches Twenty Years Later. ERN: Options (Topic) 2016. Available online:
https://api.semanticscholar.org/CorpusID:31807417.

2. Turnbull, S.; Wakeman, L. A Quick Algorithm for Pricing European Average Options. J. Financ. Quant. Anal.
1991, 26, 309–326. https://doi.org/10.2307/2331213.

3. Levy, E. The Valuation of Average Rate Currency Options. J. Int. Money Finance 1992, 11, 474–491.
https://doi.org/10.1016/0261-5606(92)90013-N.

4. Geman, H.; Yor, M. Bessel Processes, Asian Options, and Perpetuities. Math. Finance 1993, 3, 349–375.
https://doi.org/10.1111/j.1467-9965.1993.tb00038.x.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1820.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1820.v1
http://creativecommons.org/licenses/by/4.0/

15 of 16

5. Kirkby, J.L. An Efficient Transform Method for Asian Option Pricing. SIAM J. Financ. Math. 2016, 7, 845–892.
6. Kemna, A.G.Z.; Vorst, A.C.F. A Pricing Method for Options Based on Average Asset Values. J. Bank. Finance

1990, 14, 113–129.
7. Rumelhart, D.; Hinton, G.; Williams, R. Learning Representations by Back-Propagating Errors. Nature 1986,

323, 533–536.
8. Vecer, J. Unified Asian Pricing. Risk 2002, 15, 113–118.
9. Boyle, P.P.; Evnine, J.; Gibbs, S. Numerical Evaluation of Multivariate Contingent Claims. Rev. Financ. Stud.

1989, 2, 241–250.
10. Boyle, P.P. Options: A Monte Carlo Approach. J. Financ. Econ. 1977, 4, 323–338. https://doi.org/10.1016/0304-

405X(77)90005-8.
11. Broadie, M.; Glasserman, P. Estimating Security Price Derivatives Using Simulation. Manag. Sci. 1996, 42,

269–285. https://doi.org/10.1287/mnsc.42.2.269.
12. Courtadon, G. A More Accurate Finite Difference Approximation for the Valuation of Options. J. Financ.

Quant. Anal. 1983, 17, 697–703. https://doi.org/10.2307/2330857.
13. Cox, J.C.; Ross, S.A.; Rubinstein, M. Option Pricing: A Simplified Approach. J. Financ. Econ. 1979, 7, 229–263.

https://doi.org/10.1016/0304-405X(79)90015-1.
14. Culkin, R. Machine Learning in Finance: The Case of Deep Learning for Option Pricing. Comput. Sci. 2017.

Available online: https://api.semanticscholar.org/CorpusID:92991481.
15. Dilloo, M.J.; Tangman, D.Y. A High-Order Finite Difference Method for Option Valuation. Comput. Math.

Appl. 2017, 74, 652–670. https://doi.org/10.1016/j.camwa.2017.05.006.
16. Eskiizmirliler, S.; Günel, K.; Polat, R. On the Solution of the Black-Scholes Equation Using Feed-Forward

Neural Networks. Comput. Econ. 2021, 58, 915–941. https://doi.org/10.1007/s10614-020-10070-w.
17. Black, F.; Scholes, M. The Pricing of Options and Corporate Liabilities. J. Polit. Econ. 1973, 81, 637–654.

https://doi.org/10.1086/260062.
18. Garcia, R.; Gençay, R. Pricing and Hedging Derivative Securities with Neural Networks and a Homogeneity

Hint. J. Econom. 2000, 94, 93–115. https://doi.org/10.1016/S0304-4076(99)00018-4.
19. Gatta, F.; Schiano Di Cola, V.; Giampaolo, F.; Piccialli, F.; Cuomo, S. Meshless Methods for American

Option Pricing through Physics-Informed Neural Networks. Eng. Anal. Bound. Elem. 2023, 151, 68–82.
https://doi.org/10.1016/j.enganabound.2023.02.040.

20. Han, J.; Jentzen, A.; Ee, W. Solving High-Dimensional Partial Differential Equations Using Deep Learning.
Proc. Natl. Acad. Sci. 2018, 115, 8505–8510. https://doi.org/10.1073/pnas.1718942115.

21. Hozman, J.; Tichý, T. DG Method for Numerical Pricing of Multi-Asset Asian Options—The Case of Options
with Floating Strike. Appl. Math. 2017, 62, 171–195. https://doi.org/10.21136/AM.2017.0273-16.

22. Hutchinson, J.M.; Lo, A.W.; Poggio, T. A Nonparametric Approach to Pricing and Hedging Derivative
Securities via Learning Networks. J. Finance 1994, 49, 851–889.

23. Kaya, D. Pricing a Multi-Asset American Option in a Parallel Environment by a Finite
Element Method Approach. Ph.D. Thesis, Uppsala University, Uppsala, Sweden, 2011.
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-155546.

24. Koffi, R.S.; Tambue, A. A Fitted L-Multi-Point Flux Approximation Method for Pricing Options. Comput.
Econ. 2022, 60, 633–663. https://api.semanticscholar.org/CorpusID:209516245.

25. Liao, W.; Khaliq, A.Q.M. High-Order Compact Scheme for Solving Nonlinear Black–Scholes Equation with
Transaction Cost. Int. J. Comput. Math. 2009, 86, 1009–1023. https://doi.org/10.1080/00207160802209788.

26. Longstaff, F.A.; Schwartz, E.S. Valuing American Options by Simulation: A Simple Least-Squares Approach.
Rev. Financ. Stud. 2001, 14, 113–147. http://dx.doi.org/10.1093/rfs/14.1.113.

27. Andalaft-Chacur, A.; Ali, M.M.; Salazar, J.G. Real Options Pricing by the Finite Element Method. Comput.
Math. Appl. 2011, 16, 2863–2873. https://doi.org/10.1016/j.camwa.2011.03.070.

28. McCulloch, W.S.; Pitts, W. A Logical Calculus of the Ideas Immanent in Nervous Activity. Bull. Math. Biophys.
1943, 5, 115–133. https://doi.org/10.1007/BF02478259. Reprinted in McCulloch, 1964, pp. 16–39.

29. Mollapourasl, R.; Fereshtian, A.; Vanmaele, M. Radial Basis Functions with Partition of Unity
Method for American Options with Stochastic Volatility. Comput. Econ. 2019, 53, 259–287.
https://doi.org/10.1007/s10614-017-9739-8.

30. Moon, K.-S.; Kim, W.-J.; Kim, H. Adaptive Lattice Methods for Multi-Asset Models. Comput. Math. Appl.
2008, 56, 352–366. https://doi.org/10.1016/j.camwa.2007.12.008.

31. Ruf, J.; Wang, W. Neural Networks for Option Pricing and Hedging: A Literature Review. J. Comput. Financ.
2020, 24, 1–45. https://doi.org/10.21314/JCF.2020.390.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1820.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1820.v1
http://creativecommons.org/licenses/by/4.0/

16 of 16

32. Seydel, R.U. Tools for Computational Finance, 5th ed.; Springer: Berlin, Germany, 2012.
33. Sola, J.; Sevilla, J. Importance of Input Data Normalization for the Application of Neural Networks to

Complex Industrial Problems. IEEE Trans. Nucl. Sci. 1997, 44, 1464–1468. https://doi.org/10.1109/23.589532.
34. Soleymani, F.; Zhu, S. RBF-FD Solution for a Financial Partial-Integro Differential Equation

Utilizing the Generalized Multiquadric Function. Comput. Math. Appl. 2021, 82, 161–178.
https://doi.org/10.1016/j.camwa.2020.11.010.

35. Wang, S.; Zhang, S.; Fang, Z. A Superconvergent Fitted Finite Volume Method for Black-Scholes Equations
Governing European and American Option Valuation. Numer. Methods Partial Differ. Equ. 2014, 31, 1190–1208.
https://doi.org/10.1002/num.21941.

36. Wang, X.; Li, J.; Li, J. A Deep Learning Based Numerical PDE Method for Option Pricing. Comput. Econ.
2023, 62, 149–164. https://doi.org/10.1007/s10614-022-10279-.

37. Wilmott, P. Paul Wilmott on Quantitative Finance, 2nd ed.; John Wiley and Sons: Hoboken, NJ, USA, 2006.
38. Wilmott, P.; Dewynne, J.; Howison, S. Option Pricing: Mathematical Models and Computation; Oxford

Financial Press: Oxford, UK, 1993.
39. Du Toit, J.F.; Laubscher, R. Evaluation of Physics-Informed Neural Network Solution Accuracy and

Efficiency for Modeling Aortic Transvalvular Blood Flow. Math. Comput. Appl. 2023, 28, 62.
https://doi.org/10.3390/mca28020062.

40. Lu, L.; Meng, X.; Mao, Z.; Karniadakis, G.E. DeepXDE: A Deep Learning Library for Solving Differential
Equations. SIAM J. Sci. Comput. 2019, 41, A463–A483. https://doi.org/10.1137/19M1274067.

41. Zagoruyko, S.; Komodakis, N. Wide Residual Networks. In Proceedings of the British Machine Vision Conference
(BMVC); 2016. https://doi.org/10.5244/C.30.87.

42. Ahmad, A.; Khan, A. Pricing Rainbow Options Using PINNs. Preprints 2024, August.
https://doi.org/10.20944/preprints202408.2226.v2. License CC BY 4.0. Institution: Adnan Khan’s
Lab.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1820.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1820.v1
http://creativecommons.org/licenses/by/4.0/

