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A Unified Proof of the Extended, Generalized, and
Grand Riemann Hypothesis

Weicun Zhang

University of Science and Technology Beijing, Beijing 100083, China; weicunzhang@ustb.edu.cn

Abstract

To study the non-trivial zero distribution of different kinds of L-functions, this paper generalizes the key
lemma—Lemma 8 in Ref.[1] to Theorems 1-4. Based on Theorem 4, the Extended Riemann Hypothesis
(for Dedekind zeta function), the Generalized Riemann Hypothesis (for Dirichlet L-function), and
the Grand Riemann Hypothesis (for modular form L-function, automorphic L-function, and etc.) are
proved under a unified framework based on the divisibility in the symmetrical functional equation of
completed L-functions represented as Hadamard products.

Keywords: extended Riemann hypothesis; generalized Riemann hypothesis; Grand Riemann hypothesis;
L-functions; Hadamard product; functional equation

1. Introduction

The Riemann Hypothesis (RH) is proved in Ref.[1] based on a new expression of the completed
zeta function §(s), which was obtained through pairing the conjugate zeros p; and g; in the Hadamard
product expression, with consideration of the multiplicities of zeros, i.e.

ol 20— ) =0 (P + )
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where §(0) = 3, 0i = a; + jBi, p; = & — jBi, with 0 < &; <1, B; # 0,0 < |B1| < [B2 < ---,and m; > 1
is the multiplicity of p;.

It should be noted that in this article and Ref.[1], j is used to denote the imaginary unit (j* = —1),
while i serves as a natural number index.

Lemma 8 is the key lemma to the proof of the RH in Ref.[1]. The key points include the divisibility
contained in the variant of functional equation ¢(s) = ¢(1 — s) and the uniqueness of the multiplicity
m; of zero p; (although it is unknown), we actually obtain
(1—-s

—a)?\ i
72) ,1=1,2,3,...

§<s):c<1_s)@(1+<sﬁ;‘f>2)m"=(1+ -

which is further equivalent to
1 ,
= 5,0 <[p1] <[B2f <[fs| <---,i=1,23,...
Here we give the details of Lemma 8 as the base of subsequent discussions.

Lemma 8 [!I: Given two entire functions represented as absolutely convergent (on the whole
complex plane) infinite products of polynomial factors

flo) =TT (1+ 2y )
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and

ad (1—s— txi)z)mi )

f(1—s) :1‘[(1+i2
i=1 nBi
where s is the complex variable, p; = «; + jB; and p; = «; — jp; are the complex conjugate zeros of the
completed zeta function (s), 0 < a; < 1 and B; # 0 are real numbers, 0 < [B1] < |B2| < |B3] < ---,
m; > 11is the multiplicity of quadruplets of zeros (p;, p;, 1 — pi, 1 — p;).

Then we have
1

0(1'22
f&)=f1=s)& ¢ 0<|p] <|Bal < B3] < 3)
i=1,23,

The other related Lemmas in Ref.[1] are also provided in the following.

Lemma 1 [l: Non-trivial zeroes of {(s), noted as p = a + jB, have the following properties
1) The number of non-trivial zeroes is infinity;
2)p#0;
30<a<l;
4) p,p,1 —p,1 — p are all non-trivial zeroes.

Lemma 2 [!l: The zeros of &(s) coincide with the non-trivial zeros of {(s).

Lemma 3 ! Let m(x), g1(x), ..., gu(x) € Rlx],n > 2. If m(x) is irreducible (prime) and divides
the product g3 (x) - - - g»(x), then m(x) divides one of the polynomials g1 (x), ..., gn(x).

Lemma 4 [ Let f(x), m(x) € R[x]. If m(x) is irreducible and f(x) is any polynomial, then either
m(x) divides f(x) or ged(m(x), f(x)) = 1.

Lemma 5 [ Let m(x),$1(x),g2(x),... € R[x]. If m(x) is irreducible and divides the infinite
product [T52 gi(x), then m(x) divides one of the polynomials g1 (x), g2(x), .. ..

Lemma 6 [!I: Let f(s) be a non-zero entire function, and let sy be a zero of f(s). Then the
multiplicity of sy is a finite positive integer.

Lemma 7 [I: Let f(s) be a non-zero entire function, and let sy be a zero of f(s). Then the
multiplicity of sq is unique.

2 m;
Lemma 9 [!l: The infinite product I, (a%’j_" ﬁ?) converges to a non-zero constant, given the
conditions: 0 < a; < 1,B; # 0,774 ﬁl—z < o0, and m; > 1is the multiplicity of zero &; + jB;.

Remark: Lemmas 1-4 are the well-known results summarized from related journal papers, or
textbooks/monographs. Lemmas 5-9 are proved in Ref.[1].

2. Generalization of Lemma 8

As pointed in Ref.[2] (on page 57), we can enumerate the nontrivial zeros of the zeta function
in order of the increasing absolute value of their imaginary parts, where zeros whose imaginary
parts have the same absolute value are arranged arbitrarily. Thus we remove the ordering of |B;/,
|B1] < |B2| < ---, as condition hereafter for simplicity.

Generalization 1 of Lemma 8: The following Theorem 1 extends the critical strip from 0 < R(s) <
1in Lemma 8 to 0 < R(s) < k, k > 0 is a constant real number.

Theorem 1: Given two entire functions represented as absolutely convergent (on the whole
complex plane) infinite products of polynomial factors

= (s — o) 2\ mi
F(s) = I (1 + e ) 4)
and - L .
Flk—s) =TT (14 5= 200y )
i=1 i
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where s is a complex variable, p; = «; + jB; and p; = a; — jp; are the complex conjugate zeros of F(s),
0 < wa; <k k>0,and B; # 0 are real numbers, m; > 1 is the multiplicity of quadruplets of zeros
(Pi/P_i/k - Pi/k - pi)/ Zzoil ‘p+‘z < oo.

Then we have

k -
| — 5, b= 1/2/37”'
F(s) = F(k —s) Y= 2l ©)
0<|pal <I[Bal <IBs <---
Proof. We will prove both directions of Eq.(6).
Sufficiency («):
Assume that forall i, ¢; = § and 0 < |B1] < [Ba] < |B3| < -~
Then we have
(1+(5—“i)2)mi:(14_(7‘—3—“1’)2)"”i:123... 7)
B B

Taking infinite products on both sides of Eq.(7), the sufficiency of Eq.(6) is proven.
Necessity (=):

According to the definition of divisibility of entire functions [3,4] (or more specifically the defini-
tion that a polynomial divides an entire function expressed as infinite product of polynomial factors
1), the functional equation F(s) = F(k — s) implies that each polynomial factor on either side must
divide the infinite product on the opposite side, i.e.,

(1+%)|P(k—s)

e )2
F(s) =Fk=s) =  (1+ 5520 | F(5) ®)
i=1,2,3, -
where "|" is the divisible sign.
Since 1 + (S_ﬁ#)z (with discriminant A = —4 - é < 0)and 1+ (k_jgiza’)z (with discriminant

A=—4. é < 0) are irreducible over the field R, then by Lemma 5, Eq.(8) yields:

(4 55) 1 (12

(-5 (452 0

i=1,2,3,--:1=1,2,3,--

For the special kind of polynomials in Eq.(9), "divisible" means "equal", which can be verified by
comparing the like terms in equation (1 + %) =K (1 + %),k’ #0¢c Rtogetk = 1.
Further, due to the uniqueness of the multiplicity m;, the only solution to Eq.(9) is i = [, otherwise,
new duplicated zeros with a; = k —a;, k — a; = a;, ,[312 = ,B%,l # i would be generated to change m;.
Therefore we have from Eq.(9):

(14 ) = (e B2l 12, (10

By comparing the like terms in the above polynomial equation, we obtain a; = % Further, to ensure
the uniqueness of m; while a; = &, we need limit the B; values to be distinct, i.e., 0 < [B1] < |B2| <

|Ba| <---.
Thus the necessity of Eq.(6) is proven.

That completes the proof of Theorem 1. [
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Remark: Lemma 8 is a special case of Theorem 1 (with k = 1). Consequently, the proof of Theorem
1 also provides a simpler alternative proof for Lemma 8.

Generalization 2 of Lemma 8: The following Theorem 2 will extend the polynomial factor
expression in Lemma 8 to several other variants.

Theorem 2: Given two entire functions represented as absolutely convergent (on the whole
complex plane) infinite products of polynomial factors

°° 2 —x: )2\ m;
G(S):E< zi;;z*i.zf;;)z)

0(1
_ ﬁ (1- pi)'” (1- 5)’” (11)
ad s
=11(1-5)

and

:ﬁ<1_k;S>mi<1_k_—'S>mi (12)

where s is a complex variable, p; = a; + jB; and p; = a; — jB; are the complex conjugate zeros of G(s),
0 < a; <k k>0,and B; # 0 are real numbers, m; > 1 is the multiplicity of quadruplets of zeros
(pi/ﬁi/k - Pi/k - pi)/ Z?il ﬁ < oo.

Then we have
a=5%i=123, -

G(s) = G(k—s) (13)
0 <[B1] <|Ba| < B3| <---
Proof. According to Theorem 1 and Lemma 9, we have
F(s) = F(k—5s)
4
© 2 m; © 2 m;
: (s) = : F(k —s)
NG o -IGs)
& (14)
ﬁ( 2 12 2 (52—a1)22>mi:1°—°1( 2 j 2 (k_zs_oél)z)mZ
i1t B At B i=1 %+ B; o + B
=
G(s) =G(k—s)
Then we know that
=ki=123. ..
G(s) = G(k —s) M=l (15)

0<|Bil <|B2l < B3| <
That completes the proof of Theorem 2. [

Generalization 3 of Lemma 8: In this case, we actually intend to lay a foundation for the study of
zero distribution of completed L-functions.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Theorem 3: Given two entire functions represented by their Hadamard products:
_ AMN+BMNSTT (1 S\.5
A(As) = e I (1 e (16)
i=1 pi
and
— ot o — 5\ ks
ARk~ 5) = ADEDG= T (1 - & . e (17)
i=1 i

where s is a complex variable, A denotes a mathematical object (e.g., Dirichlet character, modular
form, automorphic representation), A is the dual of A, p; = a; + jB; and p; = a; — jB; are the complex
conjugate zeros of A(A,s),0 < a; < k, k > 0, and B; # 0 are real numbers, ) ° \P%IZ < 0.

Then we have

a=5,i=123,

A)L, = AAX,k_
e S P TS

(18)

where €(1) is a complex number of absolute 1, called the "root number" of L-function L(A,s) (see
Ref.[5] on page 94 for more details).

Proof. First, we have

AQA,s) = AW (1= 2

i=1 Pi
o 2a;s
_ AM)+B() — S5V (1 = 5\t
—e 131(1 pi)<1 pi)e + (19)

_ ANB(s . E e ﬁ (1 - i) (1 _ i)

.. 2u; 1 20; ;
Noticing that } 7 ; P <2k-Y24 P <% then we have ) 72, sl € R, c # 0. With further

1

consideration of the multiplicity m; > 1 of each zero, we obtain

A(A,S) _ eA(A)—&-[B(A)-&-c]s IO—OI <1 B i)mi (1 _ P_i)mz 20)
i=1 i i

Accordingly

- -+ 1B(T = k —s\mi k—s\mi
Ak — ) = eAMFBA)+c] (k=) 1— 1—
( ) g ( Pi ) ( Pi )
Then we conclude that Theorem 3 is true according to Theorem 2, considering AN+ BN +es and
£(A)eAM+ B+ (k=) have no zeros, thus both of them have no effect on the complex zeros related
divisibility in the functional equation A(A,s) = e(A)A(A, k —s).
That completes the proof of Theorem 3. [

Generalization 4 of Lemma 8: In this case, we make further efforts to lay a foundation for the
study of completed L-functions that possess both real and complex non-trivial zeros, denoted by
P € Zreal (S(p) = 0)and p € Zomplex (S(p) # 0), respectively. When these two zero sets have no
common elements, we express their disjointness by: Zieq1 N Zcomplex = -

The reason we need to consider this case is that, so far, we cannot rule out the existence of
exceptional zeros (or Landau-Siegel zeros), although their numbers are very limited even if they do
exist.

To be specificc, denote the set of real zeros in the critical strip as
Zreal = {an €R|0<a, <k, n=1,2,...,N}, where N is a finite natural number. This finiteness

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.0481.v2
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 June 2025 d0i:10.20944/preprints202506.0481.v2

6 of 13

follows from the Identity Theorem, which implies that any non-zero entire function cannot have in-
finitely many zeros in a bounded region, as zeros of such functions are isolated and cannot accumulate.
Theorem 4: Given two entire functions represented by their Hadamard products:

A(A,5) = eANFBOTT (1 %)e%

0
e I G=g)e IL (=g)e @
_ 3A<A>+[B<A>+c}sﬁ[1 (1- 2o ﬁ (1- pi) (1- 5)

and

P
— AN +B(A) (k—s) pEZI—LI (1 K ; S)e% pezl;{lplex (1 _k ; S)ek’%s )
= AM)+[B(A)+c](k—=s) ﬁ (1 _ ka_ns>ekﬂ;ns lli—o]l: (1 . k;i S) (1 B kp—i s>
) 20;

where s is a complex variable, c = ) ; A denotes a mathematical object, A is the dual of A,

1
pi = a; + jB; and p; = w; — jB; are the complex conjugate zeros of A(A,s),0 < a; < k, 0 < a, <k,

k > 0, and B; # 0 are real numbers, ) :° ﬁ < 00, Zreal N Zcomplex = -

Then we have

w=5%i=123,
A(A,s) = e(M)AA k —s) = 0<|B1] < B2l <IBs] <--- (23)

unzg,nzl

i.e., all the zeros (both real and complex) of A(A, s) lie on the critical line.

Proof. By Theorem 3, to determine the distribution of the complex zeros of A(A,s), we only need

to show that the newly added parts [],cz, (1 — ﬁ)eﬂ and []pez, ( - T)(37 do not affect
the complex zeros related divisibility in the functional equation A(A,s) = ¢(A)A(A, k —s), which

is an obvious fact since the given condition Zieq N Zeomplex = & means that [Tpez,., (1 - %)eﬁ

and Hpe Zreal (1 k ps )e ¢ are co-prime according to Ref.[3] (on pages 174, 208) and Ref.[4] (see its
THEOREM 4).
Thus, we conclude by Theorem 3 that

aizg,i:Lz,?,l... o)
0 < |p1] < || <|Bsl <---

Next, we consider the real zeros of A(A,s).
By canceling the complex non-trivial zeros related polynomial factors on both sides of A(A,s) =
e(A)A(A, k —s), we have

N _ _
AN H[B(A)+cJs H (1 _ i)eﬁ — £(A)eAMHBO)+el (k=) (1 k= S)ﬁf 25)

n=1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Further Eq.(25) is equivalent to
. N o N
AN +B)+c]s 1 (s _ an) = g(A)eANFBA)+1(k=s) IT (s — (k- an)) (26)
n=1 n=1
where ¢ = c+ Y, o
Suppose the multiplicity of zero s = a; is m, (m, > 1) that is finite and unique although unknown.
Then Eq.(26) becomes
. myg 5 TN T m
AN+ [BA)+c]s H (S _ at) _ s(/\)eA()\)+[B(/\)+c (k—s) H (S — (k- at)) 27)
t=1 t=1

where YT, m; = N.
Considering (s — a;) and (s — (k — a;)) are irreducible over R, then by Lemma 3, Eq.(27) means

(s—ar) [ (s = (k—an)
(s = (k—ar) | (s —am) (28)
t=123,--,T;m=123,--,T

The only solution to Eq.(28) is t = m, a; = %,t =1,..-,T, otherwise the uniqueness of m; would
be violated with a; + a,, = k, t # m. To avoid changing the multiplicity of m; while a; = %, we need to
limit T = 1. Thus we get

N =

where zero s = a; = % with multiplicity m; = N .
Putting Eq.(24) and Eq.(29) together, we proved Eq.(23).
That completes the proof of Theorem 4. [

Remark: As pointed out in Ref.[5] (on page 102), if p; = a; + jB; is a zero of A(A,s), then
pi = a; — jB;i is a zero of A(A,s). Therefore, to use Theorem 4 while A # A, we need to construct a
new symmetric functional equation A(A,s)A(A,s) = e(A)e(A)A(A, k —s)A(A, k — s) to ensure that the
conjugate zeros appear together. For more details, see the proofs of Theorem 5 and Theorem 7.

Actually, Theorem 4 provides a unified proof framework for the Extended Riemann Hypothesis,
the Generalized Riemann Hypothesis, and the Grand Riemann Hypothesis.

3. The Applications of Theorem 4

We will make use of Theorem 4 to prove the Extended Riemann Hypothesis (for Dedekind zeta
function), the Generalized Riemann Hypothesis (for Dirichlet L-function), and the Grand Riemann
Hypothesis (for modular form L-Function, automorphic L-function, and etc.).

To facilitate the subsequent discussion, we give the details of the Extended Riemann Hypothesis,
the Generalized Riemann Hypothesis, and the Grand Riemann Hypothesis. In the following contents,
the critical line means: R(s) = %, or more generally, R(s) = g, k > 0is a constant real number.

The Generalized Riemann Hypothesis: The nontrivial zeros of Dirichlet L-functions lie on the
critical line.

The Extended Riemann Hypothesis: The nontrivial zeros of Dedekind zeta function lie on the
critical line.

The Grand Riemann Hypothesis: The nontrivial zeros of all L-functions lie on the critical line.

To begin with, we provide a general property of L-functions, which was labeled Lemma 5.5 in
Ref.[5] on page 101.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Lemma 5.5 °): Let L(f,s) be an L-function. All zeros p of A(f,s) are in the critical strip 0 < o < 1.
For any € > 0, we have
Y Jol ¢ < oo,
p7#0,1
where, A(f,s) is the completed L-function corresponding to L(f,s), ¢ is the real part of p, and f is
identical to A in this paper as a symbol representing a mathematical object (e.g., Dirichlet character,
modular form, automorphic representation).

Another general property of L-functions is as follows.

The zeros of A(f,s) are precisely the non-trivial zeros of L(f, s), as the trivial zeros of L(f,s) are
canceled by the poles of the Gamma factors in the completion process (see Ref.[5] on page 96 for more
details).

Thus, we can discuss the non trivial zeros of L-functions based on the zeros of the corresponding
completed L-functions.

3.1. Dirichlet L-Function

Definition: The Dirichlet L-function associated with a Dirichlet character y modulo g is defined
for R(s) > 1 by the series:

L(xs) = i"(’;‘) (30)

n

For the principal character x( (where xo(n) = 1if ged(n,q) = 1 and xo(n) = 0 otherwise), the
L-function is related to the Riemann zeta function by:

1
Los) = TT(1- ;) @1
pla P
Completed L-function: The completed Dirichlet L-function is defined as:
Ao = () T 1 32)
Xs) =\ 5 X

where a = 0if x(—1) = 1 (even character) and a = 1 if x(—1) = —1 (odd character).
Functional Equation: The completed Dirichlet L-function satisfies the functional equation:

Axs) = WA 1 —s) (33)
where W() is the Gauss sum:
W0 = 70 @

and T(x) = ¥ _, x(n)e¥ /1 is the Gauss sum associated with y.
Hadamard Product: For non-principal characters x, the completed L-function A(y,s) is an entire
function and has the Hadamard product:

Al s) = AW T (1 _ S) o5/ (35)
14 p

where the product is over all zeros p of A(x,s), and A(x) and B(x) are constants depending on x.

Next we prove the Generalized Riemann Hypothesis.

Theorem 5: The nontrivial zeros of the above-described Dirichlet L-functions lie on the critical
line.

Remark: We only need to prove that all the zeros of the completed Dirichlet L-function A(x, s)
have real part %, i.e., all the zeros of A(), s) lie on the critical line.

Proof. We conduct the proof in two cases.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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CASE 1: x = x (self-dual)

It suffices to verify that the properties of A(x,s) with x = x match the conditions of Theorem
4 with A = x, ¢(A) = W(x), k = 1. Eq.(35) is equivalent to Eq.(21) by separating all zeros into
two sets Zyeq and Zeomplex- Actually, to restrict x = ¥ is to guarantee that the conjugate zeros of
A(x,s) appear in pairs, and then the quadruplets of non-trivial zeros (p;, p;, 1 — p;, 1 — p;) with their
multiplicities appear together according to Eq.(33). The condition ) ;°, |P%|2 < co can be assured by
Lemma 5.5, considering that Y7 ﬁ is a subseries of Yp£01 ﬁ; The condition Zea N Zeomplex = &
holds because Zieq and Zeomplex are mutually exclusive sets, i.e., if p € Zyey, then S(p) = 0; if
pE ZcornpleXI then S(p) # 0.

Therefore, by Theorem 4 with A = x, ¢(A) = W(x), k = 1, we know that both the real (if exists)
and the complex zeros of A(x,s) with x = ¥ lie on the critical line.

CASE2: x #x

In this case, the conjugate non-trivial zeros do not appear together in Eq.(35), because if p is a zero
of A(x,s), then g is a zero of A({,s).

Thus, we need to extend Eq.(33) to another form, i.e.,

Alx,s) = W(R)A(x 1 —5) (36)

Combining (36) with (33), we get a new functional equation

AR s)A(xs) = WEROWQ)A QX1 —s)A(x, 1 —5) (37)

Both sides of Eq.(37) are the products of entire functions, thus they are still entire functions. And we
know that the conjugate zeros of A(x,s)A(x,s) appear in pairs, and then the quadruplets of non-trivial
zeros (p;, pi, 1 — pi, 1 — p;) with their multiplicities appear together according to Eq.(37). Further, based

on Eq.(35), we have
_ S 5y s =2 s s
A s)A(R,s) = eA+AD+BEB@+es TT (1- et [T(1-2)(1-2 (38)
I (=)0 -5)0-7)
where ¢ = Y%, “221‘%2.
The condition ) ;°; ﬁ < o0 and condition Zies N Zeomplex = & hold for the same reasons as in

CASE 1.

Therefore, by Theorem 4, we know that both the real (if exists) and the complex zeros of
A(x,s)A(x,s) (thus of A(x,s)) with x # x lie on the critical line.

Combining CASE 1 and CASE 2, we conclude that Theorem 5 holds as a specific case of Theorem
4withk=1land A =y. O

3.2. Dedekind Zeta Function
Definition: For a number field K with ring of integers Ok, the Dedekind zeta function is defined

for R(s) > 1by:

Ck(s) =Y N(la) (39)

a

where the sum is over all non-zero ideals a of Ok, and N(a) is the norm of the ideal.
Completed Zeta Function: The completed Dedekind zeta function is defined as:

Ax(s) = D2 (721 (2)) " (2m) T (s) 2k (s) (40)

where Dy is the discriminant of K, r is the number of real embeddings of K, r, is the number of
pairs of complex embeddings of K.
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Functional Equation: The completed Dedekind zeta function satisfies:

Ak(s) = e(K)Ak(1 =) (41)

where ¢(K) = 1 for all number fields K, showing the symmetry of the functional equation.
Hadamard Product: The completed Dedekind zeta function has a simple pole at s = 1 with

residue 271(2@#, where hig is the class number, Ry is the regulator, and wg is the number of roots
wk K
of unity in K. The function s(s — 1) Ag(s) is entire and has the Hadamard product:
s(s — 1) Ag(s) = e B T <1 - S)es/p (42)
#0,1 P

where the product is over all zeros p of Ag(s) except p = 0 and p = 1, and Ak and Bg are
constants depending on K.

For more details of the completed Dedekind zeta function, please be referred to Ref.[5] (Chapter
5.10) and Ref.[6] (Section 10.5.1).

Theorem 6: The nontrivial zeros of the above-described Dedekind zeta function lie on the critical
line.

Remark: We only need to prove that all the zeros of Ak(s) have real part %, i.e., all the zeros of
Ak(s) lie on the critical line.

Proof. It suffices to show that the properties of Ag(s) match the conditions of Theorem 4 with A = K,
e(A)=1k=1.
Actually, Eq.(41) and Eq.(42) guarantee that

eAk+Bks H (1 _ ;>€S/p — eAKJrBK(l*S) H (1 _ 1 ; S)els/p (43)

p#£0,1 00,1

where T[] (1—%)es/9 = (1—%)65/9 1T (1—%)65/9.
p#0,1 PE Zreal\{0,1} PEZcomplex
And we know that the conjugate zeros of Ax(s) appear in pairs, and then the quadruplets of

non-trivial zeros (p;, p;, 1 — pi, 1 — p;) with their multiplicities appear together according to Eq.(41).
The condition }{° 4 IP%IZ < o0 and condition Ziea1 N Zeomplex = @ hold for the same reasons as in CASE
1 in the proof of Theorem 5.

Therefore, by Theorem 4 we know that both the real (if exists) and the complex zeros of Ak(s)
lie on the critical line, i.e., Theorem 6 holds as a specific case of Theorem 4 with A = K, ¢(A) =1,
k=1. O

In the following contents, we prove the Grand Riemann Hypothesis for modular form L-Functions
and automorphic L-functions, respectively. After that we will make a summarization, and conclude
that the Grand Riemann Hypothesis holds for all L-functions satisfying some general properties.

3.3. Modular Form L-Function

Definition: For a modular form f(z) = Z;’Zo: €271 of weight k for a congruence subgroup T,

the associated L-function is defined for R(s) > 1

L(f,s)=Y & (44)

s
n=1 n

Completed L-function: For a cusp form f of weight k for I'y(N) (level N is any positive integer)
with Nebentypus character x, the completed modular form L-function is defined as:

A(f,s) = N*2(2m) T (s)L(f,s) (45)
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Functional Equation: For a normalized Hecke eigenform f of weight k for I'o(N) with Nebentypus
character y, the completed modular form L-function satisfies:

A(f,s) = e(f)A(f k—s) (46)

where ¢(f) = =£1 is the epsilon factor, which is the eigenvalue of f under the Atkin-Lehner
involution, and ]7 is the modular form with Fourier coefficients @,,.

Hadamard Product: For a cusp form f, the completed L-function A(f,s) is an entire function of
order 1 and has the Hadamard product:

Alf,s) = eA(f)+B(f)sH<1 N S)es/p 47)
0 P

where the product is over all zeros p of A(f,s), and A(f) and B(f) are constants depending on f.

For more details of the completed modular form L-function, please be referred to Refs.[5][7].

We have the following result about the non-trivial zero distribution of modular form L-Functions.

Theorem 7: The non-trivial zeros of the above-described modular form L-Functions lie on the
critical line.

Remark: We only need to prove that all the zeros of A(f,s) have real part %, i.e., all the zeros of
A(f,s) lie on the critical line.

Proof. We conduct the proof in two cases.

CASE 1: f = f (self-dual)

It suffices to show that the properties of A(f,s) with f = f match the conditions of Theorem 4
with A = f. Eq.(47) is equivalent to Eq.(21) by separating all zeros into two sets 2., and Z complex-
Actually, to restrict f = f is to guarantee that the conjugate zeros of A(f,s)) appear in pairs. Then the
quadruplets of non-trivial zeros (p;, p;, k — p;, k — p;) with their multiplicities appear together according
to Eq.(46). The condition };°; “# < o0 and condition Zyea1 N Zeomplex = @ hold for the same reasons
as in CASE 1 in the proof of Theorem 5.

Therefore, by Theorem 4, we know that both the real (if exists) and the complex zeros of A(f,s)
with f = f lie on the critical line.

CASE2: f # f

To deal with this case f # f, we need first to extend Eq.(46) to another form, i.e.,

A(f.s) =e(f)A(f. k—s) (48)

Combining (48) with (46), we get a new functional equation

A(f.s)A(f,5) = e(fe(f)A(f, k= s)A(f,k —s) (49)

Obviously, both sides of Eq.(49) are the products of entire functions, thus they are still entire functions.
And we know that the conjugate zeros of A(f,s)A(f,s) appear in pairs, and then the quadruplets of
non-trivial zeros (p;, p;, k — pi, k — p;) with their multiplicities appear together according to Eq.(49).
Further, based on Eq.(47), we have

Af,9)A(F,5) = eADFADHBD =B el T (1_S)ezﬁ<1_s> <1_ f‘) 50)
P pi Pi

PEZreal i=1 :

o0 2061'
=ladp

The condition ) ;°; le < o0 and condition Zies N Zeomplex = & hold for the same reasons as in
CASE 1 in the proof of Theorem 5.

wherec =Y
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Therefore, by Theorem 4, we know that both the real (if exists) and the complex zeros of
A(f,s)A(f,s) (thus of A(f,s)) with f # f lie on the critical line.

Combining CASE 1 and CASE 2, we conclude that Theorem 7 holds as a specific case of Theorem
4withA = f. O

3.4. Automorphic L-Function

Definition: For an automorphic representation 7t of GL; (Ag), the associated L-function is defined
for R(s) > 1by:
L(rt,s) = [ [ Lyp(7p,s) (51)
p

where Ly(7p,s) is the local L-factor at the prime p. For unramified 71, with Satake parameters
{lxl,pl cery an,p}/

Ly(7Tp,5) :ﬁ(l— DW’)_l (52)

S
i=1 p

Completed L-function: The completed automorphic L-function is defined as:

noo
A(rs) = QT (s + pig) - L, 9) (53)
i=1
where Q is the conductor of 77, y; , are complex numbers determined by the i-th local component of
TTeo, and
() (s) = Tr(s) = ﬂ’%l"(%), for real representations. (54)
I'c(s) = (2)~°T(s), for complex representations.
Functional Equation: The completed automorphic L-function satisfies:
A(m,s) = e(m)A(7,1—5) (55)

where 77 is the contragredient representation of 77 and &(77) is the epsilon factor, a complex number
of absolute value 1.

Hadamard Product: For a cuspidal automorphic representation 7, the completed L-function
A(,s) is an entire function of order 1 and has the Hadamard product:

_ LA(m)+B(m)s 5\ s/
A(rm,s)=e 1;[<1 p)e (56)

where the product is over all zeros p of A(7,s), and A(7r) and B(7r) are constants depending
on 7.

For more details of the completed automorphic L-function, please be referred to Refs.[5,7].

We have the following result about the non-trivial zero distribution of automorphic L-Functions.

Theorem 8: The non-trivial zeros of the above-described automorphic L-Functions lie on the
critical line.

Remark: We only need to prove that all the zeros of A(7,s) have real part %, i.e., all the zeros of
A(7,s) lie on the critical line.

Proof. The proof procedures of Theorem 8 is similar to that of Theorem 7 with k = 1 and f replaced
by 7, f replaced by 7. Thus the proof details are omitted for simplicity. [J

Actually, from the above proofs of Theorem 5, Theorem 6, and Theorem 7, we can note that each
proof does not depend on the specific definition of the L-function L(A,s), but rather relies on the
following general properties of the corresponding completed L-function A(A,s):

P1: Symmetric functional equation between A(A,s) and A(A, k —s): A(A,s) = e(A)A(A k —s);
P2: Hadamard product expression of entire function A(A,s) or s™0(k —s)™A(A,s), mg > 1,m; > 1
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are the multiplicities (orders) of poles s = 0,s = k, respectively;

P3: The zeros of A(A,s) are precisely the non-trivial zeros of L(A, s);

P4: Zero distribution related items: 1) the concurrence of quadruplets of complex non-trivial zeros
with their multiplicities; 2) the property stated in Lemma 5.5; 3) the disjointness of real and complex
non-trivial zero sets.

Therefore we conclude that the Grand Riemann Hypothesis holds for all kinds of L-functions
satisfying properties P1, P2, P3, and P4, i.e., If only the completed L-function A(A,s) satisfies the
requirements of P1, P2, P3, and P4, the non-trivial zeros of the corresponding L-Function L(A, s) lie on
the critical line.
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